1
|
Lin G, Elkashif A, Saha C, Coulter JA, Dunne NJ, McCarthy HO. Key considerations for a prostate cancer mRNA vaccine. Crit Rev Oncol Hematol 2025; 208:104643. [PMID: 39900315 DOI: 10.1016/j.critrevonc.2025.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Prostate cancer has the second highest cancer mortality rate in the UK in males. Early prostate cancer is typically asymptomatic, with diagnosis at a locally advanced or metastatic stage. In addition, the inherent heterogeneity of prostate cancer tumours differs significantly in terms of genetic, molecular, and histological features. The successful treatment of prostate cancer is therefore exceedingly challenging. Immunotherapies, particularly therapeutic vaccines, have been widely used in preclinical and clinical studies to treat various cancers. Sipuleucel-T was the first cancer vaccine approved by the FDA for the treatment of asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC), ushering in a new era of immunotherapy. In this review, the latest immunotherapy strategies for prostate cancer are considered with key tumour-associated antigens (TAA) and tumour-specific antigens (TSA) highlighted. The key components of mRNA vaccines include in vitro transcription, stability, and immunogenicity. Finally, strategies to circumvent in vivo mRNA degradation and approaches to optimise in vitro transcription (IVT) process are also discussed.
Collapse
Affiliation(s)
- Guanjie Lin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chayanika Saha
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin D09 NA55, Ireland; Biodesign Europe, Dublin City University, Dublin D09 NA55, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 PN40, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin D09 NA55, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 PN40, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Shi Y, Shi M, Du W, Zhang Y, Li B, Zhang T, Miao J, Sun G, Li Y, Xu H, Liu B. Increased N-glycosylation of PSMA by GnT-V enhances tumor malignancy through interacting with JAK2 and the subsequent STAT3-mediated transcriptional activation in prostate cancer. Int J Biol Macromol 2025; 307:142238. [PMID: 40112979 DOI: 10.1016/j.ijbiomac.2025.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Prostate-specific membrane antigen (PSMA), a membrane glycoprotein with high specificity, has emerged as an effective target for imaging and therapy in prostate cancer. Despite its potential, the role and molecular mechanism underlying PSMA glycosylation and overexpression remain to be fully clarified. In this study, we performed a comprehensive analysis of site-specific N-glycosylation patterns of PSMA, revealing that β1,6-GlcNAc branching at N121 and N336, catalyzed by GnT-V, is crucial for its expression. We found that the degradation of non-N-glycosylated PSMA predominantly occurs through the autophagy-lysosome pathway. Notably, androgen deprivation was shown to upregulate the expression of PSMA and GnT-V, simultaneously activating the transcription factor STAT3. Co-immunoprecipitation assay confirmed a direct interaction between PSMA and JAK2, which facilitates the activation of STAT3. This, in turn, drives the overexpression of PSMA and promotes its aberrant N-glycosylation, thereby advancing prostate cancer progression. Importantly, combined inhibition of STAT3 and N-glycosylation demonstrated a synergistic effect in reducing tumor viability. Our findings elucidate a novel positive feedback loop involving JAK2/STAT3/GnT-V/PSMA axis, contributing to the malignancy of prostate cancer and providing a foundation for innovative therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Yutian Shi
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China; 108K of Clinical Medicine, the Second Clinical Medical School, China Medical University, Shenyang 110122, Liaoning, China
| | - Meng Shi
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Wenqian Du
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China; Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang 110016, Liaoning, China
| | - Yige Zhang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Baiqiang Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Ting Zhang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Jixing Miao
- 107K of Clinical Medicine, the First Clinical Medical School, China Medical University, Shenyang 110001, Liaoning, China
| | - Guoming Sun
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuheng Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China
| | - Haozhe Xu
- 108K of Clinical Medicine, the Fourth Clinical Medical School, China Medical University, Shenyang 110122, Liaoning, China
| | - Baoqin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
3
|
Phung SK, Zorko NA, Soignier Y, Waller RL, Shackelford M, Walker JT, Nelson TD, Selleck C, Bendzick LE, Kotz LE, Kile QM, Bozicevich AJ, Miller SE, Khaw M, Shetty M, Hinderlie P, Ehrhardt M, Li Y, Luo X, Dehm SM, Antonarakis ES, Kennedy PR, Miller JS, Felices M. A PSMA-Targeted Tri-Specific Killer Engager Enhances NK Cell Cytotoxicity against Prostate Cancer. Cancer Immunol Res 2025; 13:258-272. [PMID: 39545924 PMCID: PMC11790377 DOI: 10.1158/2326-6066.cir-24-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
NK cell tumor infiltration is associated with good prognosis in patients with metastatic castration-resistant prostate cancer (mCRPC). NK cells recognize and kill targets by a process called natural cytotoxicity. We hypothesized that promoting an antigen-specific synapse with coactivation may enhance NK cell function in mCRPC. We describe a tri-specific killer engager (TriKE) construct that engages with the activating receptor CD16 on NK cells and prostate-specific membrane antigen (PSMA) on mCRPC cells and has an IL15 moiety that is essential for NK cell survival, proliferation, and priming. We show that the PSMA TriKE specifically binds to PSMA-expressing cells and significantly enhances expansion, degranulation, and cytokine production of NK cells derived from healthy donors or patients with prostate cancer. Bystander killing of PSMA-negative tumor cells was also achieved with PSMA TriKE treatment when cocultured with PSMA-positive cells, suggesting potential PSMA TriKE benefit in controlling tumor antigen escape. When tested under physiologic conditions recapitulating the mCRPC tumor microenvironment, NK cells treated with PSMA TriKE and prolonged exposure to hypoxia or myeloid-derived suppressor cells maintained their potent function whereas IL15-treated NK cells showed greatly impaired cytotoxicity. Finally, in vivo testing of PSMA TriKE showed improved tumor control and survival of mice as compared with IL15-treated and untreated control groups. In conclusion, PSMA TriKE demonstrates potential as a new therapy for advanced prostate cancer by providing additional signals to NK cells to maximize their antitumor potential in prostate cancer, especially in the setting of a hostile tumor microenvironment.
Collapse
Affiliation(s)
| | - Nicholas A. Zorko
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | - Carly Selleck
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | - Laura E. Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | - Laura E. Kotz
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - Mihir Shetty
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael Ehrhardt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Xianghua Luo
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Philippa R. Kennedy
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S. Miller
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Masonic Cancer Center, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Steinhelfer L, Jungmann F, Nickel M, Kaissis G, Hofer ML, Tauber R, Schmaderer C, Rauscher I, Haller B, Makowski MR, Eiber M, Braren RF. Automated CT Measurement of Total Kidney Volume for Predicting Renal Function Decline after 177Lu Prostate-specific Membrane Antigen-I&T Radioligand Therapy. Radiology 2025; 314:e240427. [PMID: 39998377 DOI: 10.1148/radiol.240427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Background Lutetium 177 (177Lu) prostate-specific membrane antigen (PSMA) radioligand therapy is a novel treatment option for metastatic castration-resistant prostate cancer. Evidence suggests nephrotoxicity is a delayed adverse effect in a considerable proportion of patients. Purpose To identify predictive markers for clinically significant deterioration of renal function in patients undergoing 177Lu-PSMA-I&T radioligand therapy. Materials and Methods This retrospective study analyzed patients who underwent at least four cycles of 177Lu-PSMA-I&T therapy between December 2015 and May 2022. Total kidney volume (TKV) at 3 and 6 months after treatment was extracted from CT images using TotalSegmentator, a deep learning segmentation model based on the nnU-Net framework. A decline in estimated glomerular filtration rate (eGFR) of 30% or greater was defined as clinically significant, indicating a higher risk of end-stage renal disease. Two-sided t tests and Mann-Whitney U tests were used to compare baseline nephrotoxic risk factors, changes in eGFR and TKV, prior treatments, and the number of 177Lu-PSMA-I&T cycles between patients with and without clinically significant eGFR decline at 12 months. Threshold values to differentiate between these two patient groups were identified using receiver operating characteristic curve analysis and the Youden index. Results A total of 121 patients (mean age, 76 years ± 7 [SD]) who underwent four or more cycles of 177Lu-PSMA-I&T therapy with 12 months of follow-up were included. A 10% or greater decrease in TKV at 6 months predicted 30% or greater eGFR decline at 12 months (area under the receiver operating characteristic curve, 0.90 [95% CI: 0.85, 0.96]; P < .001), surpassing other parameters. Baseline risk factors (ρ = 0.01; P = .88), prior treatments (ρ = -0.06; P = .50), and number of 177Lu-PSMA-I&T cycles (ρ = 0.08; P = .36) did not correlate with relative eGFR percentage decrease at 12 months. Conclusion Automated TKV assessment on standard-of-care CT images predicted deterioration of renal function 12 months after 177Lu-PSMA-I&T therapy initiation in metastatic castration-resistant prostate cancer. Its better performance than early relative eGFR change highlights its potential as a noninvasive marker when treatment decisions are pending. © RSNA, 2025 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Lisa Steinhelfer
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Friederike Jungmann
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Manuel Nickel
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Georgios Kaissis
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Marie-Luise Hofer
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Robert Tauber
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Christoph Schmaderer
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Isabel Rauscher
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Bernhard Haller
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Marcus R Makowski
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Matthias Eiber
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| | - Rickmer F Braren
- From the Institute for Diagnostic and Interventional Radiology, (L.S., F.J., G.K., M.L.H., M.R.M., R.F.B.), Institute of AI and Informatics in Medicine (M.N., G.K., B.H.), Department of Urology (R.T.), Department of Nephrology (C.S.), and Department of Nuclear Medicine (I.R., M.E.), School of Medicine, Technical University of Munich, Klinikum Rechts der Isar, Ismaninger Str 22, 81675 Munich, Germany; and German Cancer Consortium (DKTK) Partner Site Munich, Technical University of Munich, Munich, Germany (M.E., R.F.B.)
| |
Collapse
|
5
|
Flippot R, Telli T, Velev M, Fléchon A, De Vries-Brilland M, Turpin L, Bergman A, Turco F, Mahammedi H, Fendler WP, Giraudet AL, Josset Q, Montravers F, Vogel W, Gillessen S, Berardi Vilei S, Herrmann K, Kryza D, Paone G, Hadaschik B, Merlin C, Dufour PA, Bernard-Tessier A, Naoun N, Patrikidou A, Garcia C, Foulon S, Pagès A, Fizazi K. Activity of Lutetium-177 Prostate-specific Membrane Antigen and Determinants of Outcomes in Patients with Metastatic Castration-resistant Prostate Cancer Previously Treated with Cabazitaxel: The PACAP Study. Eur Urol Oncol 2024; 7:1132-1140. [PMID: 38664139 DOI: 10.1016/j.euo.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/26/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Both cabazitaxel and lutetium-177 prostate-specific membrane antigen (Lu-PSMA) improve survival in metastatic castration-resistant prostate cancer (mCRPC) after an androgen receptor pathway inhibitor and docetaxel, but there are limited data regarding Lu-PSMA activity after cabazitaxel. OBJECTIVE To assess the activity of Lu-PSMA and determinants of outcomes after cabazitaxel in mCRPC. DESIGN, SETTING, AND PARTICIPANTS A retrospective analysis was conducted of consecutive mCRPC patients from eight European centers treated with Lu-PSMA after cabazitaxel. INTERVENTION Lu-PSMA every 6-8 wk at a dose of 6-7.6 GBq. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was radiographic progression-free survival (rPFS). The secondary endpoints included time to prostate-specific antigen (PSA) progression (TTPSA), overall survival (OS), PSA decline, objective response rate (ORR), clinical benefit, and safety. RESULTS AND LIMITATIONS Of 126 patients, 68% had International Society of Urological Pathology (ISUP) grade 4-5 disease, 21% had visceral metastases, and 7% had lymph node disease only. DNA damage repair (DDR) alterations were detected in 11/50 (22%) patients with available testing. Patients received a median number of 3 Lu-PSMA cycles (interquartile range 2-4). With a median follow-up of 12.0 mo, the median rPFS was 4.4 mo (95% confidence interval [CI] 3.2-5.4), TTPSA 3.5 mo (95% CI 3.0-4.6), and OS 8.9 mo (95% CI 6.5-12.7). The ORR was 35%, and 55 patients (44%) experienced a PSA decline of ≥50%. The time to castration resistance of <12 mo was associated with shorter rPFS (p = 0.01). A similar trend was observed for ISUP grade 4-5 (p = 0.08), and baseline positron-emission tomography parameters including PSMA mean standardized uptake value (SUV) and maximum SUV (respectively, p = 0.06 and 0.05). The duration of previous cabazitaxel or DDR status did not impact outcomes. Patients experiencing a PSA decline of ≥ 50% on therapy demonstrated longer rPFS, TTPSA, and OS (all p < 0.0001). Limitations include retrospective data collection and investigator-based rPFS assessment. CONCLUSIONS Lu-PSMA demonstrated a substantial PSA decline but limited rPFS after cabazitaxel in a real-life setting. Adverse baseline characteristics, baseline positron-emission tomography parameters, and quality of PSA response may help identify patients less likely to benefit from Lu-PSMA. PATIENT SUMMARY Lutetium-177 prostate-specific membrane antigen (Lu-PSMA) improved outcomes in patients with castration-resistant prostate cancer, but there are limited data about its activity after cabazitaxel, a chemotherapy that is also the standard of care in this setting. We conducted a study across eight European centers and showed substantial responses on Lu-PSMA after cabazitaxel, although activity was short lived in a heavily pretreated population. Our findings prompt for real-life evaluation of Lu-PSMA in earlier settings to define the best therapeutic sequence.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France.
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Maud Velev
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Aude Fléchon
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | | | - Léa Turpin
- Department of Nuclear Medicine, Tenon University Hospital, Paris, France
| | - Andries Bergman
- Division of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fabio Turco
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Oncology, at Division of Medical Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Hakim Mahammedi
- Department of Medical Oncology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - Quentin Josset
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest, Angers, France
| | | | - Wouter Vogel
- Division of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Silke Gillessen
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Simona Berardi Vilei
- Istituto Oncologico della Svizzera Italiana, EOC, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - David Kryza
- Department of Nuclear Medicine, Centre Leon Bérard, Lyon, France
| | - Gaetano Paone
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Clinic of Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
| | - Boris Hadaschik
- German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; Department of Urology, University of Duisburg-Essen, Essen, Germany
| | - Charles Merlin
- Department of Nuclear Medicine, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre-Alban Dufour
- Department of Nuclear Medicine, Institut de Cancérologie de l'Ouest, Angers, France
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Natacha Naoun
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Anna Patrikidou
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Camilo Garcia
- Department of Nuclear Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Stéphanie Foulon
- Department of Biostatistics and Epidemiology, INSERM UMR 1018 "Oncostat", Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Arnaud Pagès
- Department of Biostatistics and Epidemiology, INSERM UMR 1018 "Oncostat", Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Karim Fizazi
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| |
Collapse
|
6
|
Mirzaei Y, Hussein Mer A, Fattah Maran B, Omidvar L, Misamogooe F, Amirkhani Z, Javaheri Haghighi N, Bagheri N, Keshtkaran Z, Rezaei B, Bargrizaneh F, Jahandideh S, Barpour N, Shahsavarani H, Bazyari A, Abdollahpour-Alitappeh M. Clinical and preclinical advances in PSMA-Directed Antibody-Drug conjugates (ADCs): Current status and hope for the future. Bioorg Chem 2024; 153:107803. [PMID: 39270526 DOI: 10.1016/j.bioorg.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer. The present study aims to completely review clinical- and preclinical-stage PSMA-directed ADCs.
Collapse
Affiliation(s)
- Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Bahia Fattah Maran
- Department of business administration, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Leila Omidvar
- Department of Internal Medicine, School of Medicine, Clinical Research Development Unit (CRDU), Valiasr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Rezaei
- Laparoscopy Research Center, Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Fars province, Iran
| | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran; Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran 1533734716, Iran
| | - Ahmadreza Bazyari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
7
|
Kınıkoğlu O, Öven BB, Çelik S, Alan Selçuk N, Beydağı G, Akçay K, Kabasakal L. Investigating Combination Therapy: The Role of Lutetium-177 PSMA-617 Radioligand Therapy and Androgen Receptor Pathway Inhibitors in Metastatic Castration-Resistant Prostate Cancer. J Clin Med 2024; 13:4585. [PMID: 39200727 PMCID: PMC11354391 DOI: 10.3390/jcm13164585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Background: The combination of Lutetium-177 (Lu-177) PSMA-617 radioligand therapy (RLT) with androgen receptor pathway inhibitors (ARPIs) has shown promise in metastatic castration-resistant prostate cancer (mCRPC). However, real-world data on the efficacy and safety of this combination are limited. This study aimed to evaluate the impact of combination therapy with Lu-177 PSMA-617 RLT and ARPIs on progression-free survival (PFS) and overall survival (OS) in patients with mCRPC. Methods: In this retrospective study, 104 mCRPC patients receiving Lu-177 PSMA-617 RLT at our institution between December 2017 and January 2024 were divided into the following two groups those receiving Lu-177 PSMA-617 RLT plus ARPI (n = 34) and those receiving Lu-177 PSMA-617 RLT alone (n = 70). Patients received 150 to 200 millicuries Lu-177 PSMA-617 RLT in each cycle. PFS and zOS were assessed using Kaplan-Meier analysis and Cox proportional hazard models. Results: The combination therapy significantly prolonged median PFS compared to Lu-177 PSMA-617 RLT alone (11 vs. 5.6 months; HR, 0.47; 95% CI, 0.28-0.79; p < 0.01). A trend towards improved OS was also observed in the combination group (20.3 vs. 15.9 months; HR, 0.58; 95% CI, 0.33-1.02; p = 0.06). Age was a significant predictor of OS (21.2 vs. 12.4 months for younger vs. older patients; p < 0.01), while Gleason score and visceral involvement did not significantly impact PFS. The safety profile indicated that adverse effects were generally comparable between the two groups, with no statistically significant differences in the incidence of anemia, neutropenia, thrombocytopenia, nephrotoxicity, or hepatotoxicity. Conclusions: This study provides evidence that combining Lu-177 PSMA-617 RLT with ARPIs may significantly improve PFS in mCRPC patients. The potential OS benefit warrants further investigation in larger prospective trials. Age should be considered when making treatment decisions for mCRPC patients.
Collapse
Affiliation(s)
- Oğuzcan Kınıkoğlu
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, İstanbul 34865, Türkiye
| | - Bala Başak Öven
- Department of Medical Oncology, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (B.B.Ö.); (S.Ç.)
| | - Serkan Çelik
- Department of Medical Oncology, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (B.B.Ö.); (S.Ç.)
| | - Nalan Alan Selçuk
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Gamze Beydağı
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Kaan Akçay
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Levent Kabasakal
- Department of Nuclear Medicine, Istanbul University Cerrahpaşa Medical Faculty, İstanbul 34098, Türkiye;
| |
Collapse
|
8
|
Stamatakos PV, Fragkoulis C, Leventi A, Gklinos K, Kontolatis N, Papatsoris A, Dellis A. PSMA-based therapeutics for prostate cancer. Expert Opin Pharmacother 2024; 25:1405-1419. [PMID: 39054909 DOI: 10.1080/14656566.2024.2385726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The prostate cancer (PCa) consists the most frequently diagnosed malignancy of urogenital system in males. Traditionally, treatment of localized PCa was based on surgery or radiotherapy while hormonotherapy was used in more advanced stages. However, the implementation of radiolabels has revolutionized the landscape of prostate cancer. Specifically, prostate-specific membrane antigen (PSMA) has been investigated in different aspects of PCa therapeutic era. AREAS COVERED A literature review is presented about the implications of PSMA radiolabels on prostate cancer treatment. PSMA tracers were initially used as an imaging technique. Afterwards, PSMA labeled with isotopes presenting cytotoxic abilities, such as lutetium-117 and actinium-225, while reports exist about the use of radioligand immunotherapy. Meanwhile, ongoing trials examine the development of novel radionuclides as well as the evolution of the PSMA-targeted ligands. EXPERT OPINION Currently, PSMA radioligand treatment of prostate cancer is approved in the metastatic stage of the disease. Meanwhile, a variety of trials exist about its possible role in less advanced stages. However, plenty of parameters should be addressed before these implementations, such as PSMA dosage, dosimetry issues, and its safety profile. A future well-designed study with proper patient selection is mandatory to further explore PSMA radioligand theranostics perspectives.
Collapse
Affiliation(s)
| | | | - Aggeliki Leventi
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Konstantinos Gklinos
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Nikolaos Kontolatis
- Department of Urology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, National and Kapodistrian University of Athens, Hospital of Athens "Sismanoglio", Athens, Greece
| | - Athanasios Dellis
- 1st Department of Urology, School of Medicine, National and Kapodistrian University of Athens, Hospital of Athens "Aretaieion", Athens, Greece
| |
Collapse
|
9
|
Abdelaal AM, Sohal IS, Iyer SG, Sudarshan K, Orellana EA, Ozcan KE, dos Santos AP, Low PS, Kasinski AL. Selective targeting of chemically modified miR-34a to prostate cancer using a small molecule ligand and an endosomal escape agent. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102193. [PMID: 38745855 PMCID: PMC11091501 DOI: 10.1016/j.omtn.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Use of tumor-suppressive microRNAs (miRNAs) as anti-cancer agents is hindered by the lack of effective delivery vehicles, entrapment of the miRNA within endocytic compartments, and rapid degradation of miRNA by nucleases. To address these issues, we developed a miRNA delivery strategy that includes (1) a targeting ligand, (2) an endosomal escape agent, nigericin and (3) a chemically modified miRNA. The delivery ligand, DUPA (2-[3-(1,3-dicarboxy propyl) ureido] pentanedioic acid), was selected based on its specificity for prostate-specific membrane antigen (PSMA), a receptor routinely upregulated in prostate cancer-one of the leading causes of cancer death among men. DUPA was conjugated to the tumor suppressive miRNA, miR-34a (DUPA-miR-34a) based on the ability of miR-34a to inhibit prostate cancer cell proliferation. To mediate endosomal escape, nigericin was incorporated into the complex, resulting in DUPA-nigericin-miR-34a. Both DUPA-miR-34a and DUPA-nigericin-miR-34a specifically bound to, and were taken up by, PSMA-expressing cells in vitro and in vivo. And while both DUPA-miR-34a and DUPA-nigericin-miR-34a downregulated miR-34a target genes, only DUPA-nigericin-miR-34a decreased cell proliferation in vitro and delayed tumor growth in vivo. Tumor growth was further reduced using a fully modified version of miR-34a that has significantly increased stability.
Collapse
Affiliation(s)
- Ahmed M. Abdelaal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ikjot S. Sohal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shreyas G. Iyer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Esteban A. Orellana
- Department of Molecular and Systems Biology, Dartmouth Geisel School of Medicine, Hanover, NH 03755, USA
| | - Kenan E. Ozcan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea P. dos Santos
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S. Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Al-Ibraheem A, Abdlkadir AS, Sweedat DA, Maus S, Al-Rasheed U, Salah S, Khriesh F, Juaidi D, Abu Dayek D, Istatieh F, Anwar F, Asrawi A, Abufara A, Al-Rwashdeh M, Abu-Hijlih R, Sharaf B, Ghanem R, Abdel-Razeq H, Mansour A. From Despair to Hope: First Arabic Experience of 177Lu-PSMA and 161Tb-PSMA Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2024; 16:1974. [PMID: 38893095 PMCID: PMC11171070 DOI: 10.3390/cancers16111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The objective of this retrospective study is to assess the effectiveness and safety of two beta-emitting prostate-specific membrane antigen (PSMA) radioligands, [177Lu]Lu and [161Tb]Tb, in heavily treated patients with metastatic castration-resistant prostate cancer (mCRPC). A total of 148 cycles of beta-emitting PSMA radioligand therapy were given to 53 patients at a specialized cancer care center in Amman, Jordan. This treatment was offered following the exhaustion of all prior treatment modalities. Approximately half of the cases (n = 26) demonstrated an initial partial response to PSMA radioligand therapy. Moreover, roughly one-fourth of the patients (n = 13) exhibited a sustained satisfactory biochemical response, which qualified them to receive a total of six PSMA radioligand therapy cycles and maintain continued follow-up for additional treatment cycles. This was reflected by an adequate prostate-specific antigen (PSA) decline and a concomitant partial response evident on [68Ga]Ga-PSMA positron emission tomography/computed tomography imaging. A minority of patients (n= 18; 34%) experienced side effects. Generally, these were low-grade and self-limiting toxicities. This study endorses previous research evidence about PSMA radioligand therapy's safety and efficacy. It also provides the first clinical insight from patients of Arab ethnicity. This should facilitate and promote further evidence, both regionally and internationally.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
- School of Medicine, University of Jordan, Al-Jubeiha, Amman 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Deya’ Aldeen Sweedat
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University Medical Center, D-66421 Homburg, Germany;
| | - Ula Al-Rasheed
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Samer Salah
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.S.); (A.A.); (M.A.-R.); (B.S.); (H.A.-R.)
| | - Fadi Khriesh
- Department of Nuclear Medicine, Klinikum Fulda, Pacelliallee 4, 36039 Fulda, Germany;
| | - Diyaa Juaidi
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Dina Abu Dayek
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Feras Istatieh
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman 11941, Jordan; (A.S.A.); (D.A.S.); (U.A.-R.); (D.J.); (D.A.D.); (F.I.)
| | - Farah Anwar
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala 56001, Iraq;
| | - Aisha Asrawi
- Department of Nursing, King Hussein Cancer Center (KHCC), Amman 11941, Jordan;
| | - Alaa Abufara
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.S.); (A.A.); (M.A.-R.); (B.S.); (H.A.-R.)
| | - Mohammad Al-Rwashdeh
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.S.); (A.A.); (M.A.-R.); (B.S.); (H.A.-R.)
| | - Ramiz Abu-Hijlih
- Department of Radiation Oncology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan;
| | - Baha’ Sharaf
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.S.); (A.A.); (M.A.-R.); (B.S.); (H.A.-R.)
| | - Rami Ghanem
- Department of Surgery, King Hussein Cancer Center (KHCC), Amman 11941, Jordan;
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.S.); (A.A.); (M.A.-R.); (B.S.); (H.A.-R.)
| | - Asem Mansour
- Department of Diagnostic Radiology, King Hussein Cancer Center (KHCC), Amman 11941, Jordan;
| |
Collapse
|
11
|
Chi KN, Yip SM, Bauman G, Probst S, Emmenegger U, Kollmannsberger CK, Martineau P, Niazi T, Pouliot F, Rendon R, Hotte SJ, Laidley DT, Saad F. 177Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer: A Review of the Evidence and Implications for Canadian Clinical Practice. Curr Oncol 2024; 31:1400-1415. [PMID: 38534939 PMCID: PMC10969693 DOI: 10.3390/curroncol31030106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is highly expressed in prostate cancer and a therapeutic target. Lutetium-177 (177Lu)-PSMA-617 is the first radioligand therapy to be approved in Canada for use in patients with metastatic castration-resistant prostate cancer (mCRPC). As this treatment represents a new therapeutic class, guidance regarding how to integrate it into clinical practice is needed. This article aims to review the evidence from prospective phase 2 and 3 clinical trials and meta-analyses of observational studies on the use of 177Lu-PSMA-617 in prostate cancer and discuss how Canadian clinicians might best apply these data in practice. The selection of appropriate patients, the practicalities of treatment administration, including necessary facilities for treatment procedures, the assessment of treatment response, and the management of adverse events are considered. Survival benefits were observed in clinical trials of 177Lu-PSMA-617 in patients with progressive, PSMA-positive mCRPC who were pretreated with androgen receptor pathway inhibitors and taxanes, as well as in taxane-naïve patients. However, the results of ongoing trials are awaited to clarify questions regarding the optimal sequencing of 177Lu-PSMA-617 with other therapies, as well as the implications of predictive biomarkers, personalized dosimetry, and combinations with other therapies.
Collapse
Affiliation(s)
- Kim N. Chi
- Department of Medical Oncology, BC Cancer—Vancouver, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Steven M. Yip
- Department of Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Glenn Bauman
- London Regional Cancer Program, Department of Oncology, Western University, London, ON N6A 5W9, Canada;
| | - Stephan Probst
- Department of Nuclear Medicine, Jewish General Hospital, McGill University, Montreal, QC H3A 0G4, Canada
| | - Urban Emmenegger
- Department of Medicine, Odette Cancer Centre, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Christian K. Kollmannsberger
- Department of Medical Oncology, BC Cancer—Vancouver, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Patrick Martineau
- Department of Radiology, BC Cancer—Vancouver, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Tamim Niazi
- Department of Radiation Oncology, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Frédéric Pouliot
- Department of Urology, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
- Department of Surgery, Université Laval, Québec, QC G1V 0A6, Canada
| | - Ricardo Rendon
- Department of Urology, Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sebastien J. Hotte
- Department of Oncology, Juravinski Cancer Centre, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - David T. Laidley
- Department of Medical Imaging-Nuclear Medicine, London Health Sciences Centre, Western University, London, ON N6A 3K7, Canada
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC H2X 0A9, Canada;
- Department of Surgery, Université de Montréal, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
12
|
Kryza D, Vinceneux A, Bidaux AS, Garin G, Tatu D, Cropet C, Badel JN, Perol D, Giraudet AL. A multicentric, single arm, open-label, phase I/II study evaluating PSMA targeted radionuclide therapy in adult patients with metastatic clear cell renal cancer (PRadR). BMC Cancer 2024; 24:163. [PMID: 38302933 PMCID: PMC10835868 DOI: 10.1186/s12885-023-11702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Despite advancements in managing metastatic clear cell renal carcinoma (mccRCC) through antiangiogenic tyrosine kinase inhibitors and immunotherapy, there remains a demand for novel treatments for patients experiencing progression despite the use of these medications. There is currently no established standard treatment for patients receiving third therapy line. Prostate Specific Membrane Antigen (PSMA) whose high expression has been demonstrated in metastatic aggressive prostate adenocarcinoma is also highly expressed in neovessels of various solid tumors including renal cell carcinoma (RCC): 86% of clear cell RCC, 61% of chromophobe RCC, and 28% of papillary RCC. Therefore, PSMA may be a target expressed in metastatic ccRCC for radionuclide therapy using PSMA ligands radiolabeled with Lutetium-177 (PRLT). 177Lu-PSMA delivers ß-particle radiation to PSMA-expressing cells and the surrounding microenvironment with demonstrated efficacy in metastatic prostate cancer. METHODS This is a multicenter phase I/II study designed to assess the tolerability and effectiveness of 177Lu-PSMA-1 in individuals with PSMA-positive metastatic clear cell renal cell carcinoma (ccRCC), identified through 68Ga-PSMA PET, conducted in France (PRadR). 48 patients will be treated with 4 cycles of 7.4 GBq of 177Lu-PSMA-1 every 6 weeks. The primary objective is to evaluate the safety of 177Lu-PSMA-1 (phase I) and the efficacy of 177Lu-PSMA-1 in mccRCC patients (phase II). Primary endpoints are incidence of Severe Toxicities (ST) occurring during the first cycle (i.e. 6 first weeks) and disease Control Rate after 24 weeks of treatment (DCR24w) as per RECIST V1.1. Secondary objective is to further document the clinical activity of 177Lu-PSMA-1 in mccRCC patients (duration of response (DoR), best overall response rate (BORR), progression fee survival (PFS) and overall survival (OS). DISCUSSION Our prospective study may lead to new potential indications for the use of 177Lu-PSMA-1 in mccRCC patients and should confirm the efficacy and safety of this radionuclide therapy with limited adverse events. The use of 177Lu-PSMA-1may lead to increase disease control, objective response rate and the quality of life in mccRCC patients. TRIAL REGISTRATION ClinicalTrials.gov: NCT06059014.
Collapse
Affiliation(s)
- David Kryza
- Hospices Civils de Lyon, Lyon, France.
- UNIV Lyon-Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS Villeurbanne, Villeurbanne, 69100, France.
- Centre de médecine nucléaire Lumen, 15 rue Gabriel Sarrazin, cedex 08, Lyon, 69373, France.
| | | | | | - Gwenaelle Garin
- Department of Clinical Research, Centre Leon Berard, Lyon, France
| | - Delphine Tatu
- Department of Clinical Research, Centre Leon Berard, Lyon, France
| | - Claire Cropet
- Department of Biostatistics, Centre Leon Berard, Lyon, France
| | - Jean-Noël Badel
- Lumen Nuclear Medicine Department, Centre Léon Bérard, Lyon, France
| | - David Perol
- Department of Clinical Research, Centre Leon Berard, Lyon, France
| | - Anne-Laure Giraudet
- Lumen Nuclear Medicine Department, Centre Léon Bérard, Lyon, France.
- Centre de médecine nucléaire Lumen, 15 rue Gabriel Sarrazin, cedex 08, Lyon, 69373, France.
| |
Collapse
|
13
|
Kaur K, Nagi S, Satapathy S, Aggarwal P, Sood A, Mittal BR. Estimation of absorbed dose to salivary glands in mCRPC patients undergoing 177 Lu- PSMA-617 radioligand therapy using quantitative SPECT-CT at single time point: a single-center feasibility study. Nucl Med Commun 2024; 45:115-120. [PMID: 37982573 DOI: 10.1097/mnm.0000000000001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE 177 Lu-PSMA-617-radioligand therapy (RLT) has shown promising therapeutic role in patients with metastatic castration-resistant prostate cancer. However, off-target action in salivary glands often presents with xerostomia. Personalized dosimetry can help in optimizing the treatment, however, has so far been tedious due to multiple time-point imaging. In this prospective study, we intended to estimate the absorbed dose delivered to the salivary glands in patients undergoing 177 Lu-PSMA-617-RLT using quantitative SPECT/CT at a single time point. METHODS Patients undergoing 177 Lu-PSMA-617 RLT were included in this prospective study. Post-therapy whole-body images and regional quantitative single time-point SPECT/CT were acquired at 24 h with high-energy collimator. The data was processed and analyzed using Q.Metrix software. A scaling factor, that is, the time-integrated activity conversion factor was applied for the image acquired at 24 h. Absorbed doses were computed using MIRD scheme and OLINDA software. RESULTS A total of 21 patients (mean age: 66 ± 9 years) were included. The value of mean absorbed dose for the parotid glands was 1.90 ± 1.31Gy (range: 0.26-6.23) and that for the submandibular glands was 1.37 ± 0.94Gy (range: 0.16-3.65). The mean absorbed doses per administered activity for the parotid and submandibular glands were 0.26 ± 0.18 Gy/GBq and 0.19 ± 0.12 Gy/GBq, respectively. The absorbed doses were estimated for one cycle of therapy and were well within acceptable limits. None of the patients experienced dryness of mouth. CONCLUSION Single time-point dosimetry with quantitative SPECT/CT is feasible and can be standardized to estimate the absorbed dose to salivary glands instead of multiple time-point acquisitions.
Collapse
Affiliation(s)
- Komalpreet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
14
|
Unterrainer LM, Calais J, Bander NH. Prostate-Specific Membrane Antigen: Gateway to Management of Advanced Prostate Cancer. Annu Rev Med 2024; 75:49-66. [PMID: 38285513 DOI: 10.1146/annurev-med-081522-031439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.
Collapse
Affiliation(s)
- Lena M Unterrainer
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; ,
| | - Neil H Bander
- Department of Urology, Weill Cornell Medicine, New York, NY, USA;
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Nolan-Stevaux O, Li C, Liang L, Zhan J, Estrada J, Osgood T, Li F, Zhang H, Case R, Murawsky CM, Estes B, Moore GL, Bernett MJ, Muchhal U, Desjarlais JR, Staley BK, Stevens J, Cooke KS, Aeffner F, Thomas O, Stieglmaier J, Lee JL, Coxon A, Bailis JM. AMG 509 (Xaluritamig), an Anti-STEAP1 XmAb 2+1 T-cell Redirecting Immune Therapy with Avidity-Dependent Activity against Prostate Cancer. Cancer Discov 2024; 14:90-103. [PMID: 37861452 DOI: 10.1158/2159-8290.cd-23-0984] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
The tumor-associated antigen STEAP1 is a potential therapeutic target that is expressed in most prostate tumors and at increased levels in metastatic castration-resistant prostate cancer (mCRPC). We developed a STEAP1-targeted XmAb 2+1 T-cell engager (TCE) molecule, AMG 509 (also designated xaluritamig), that is designed to redirect T cells to kill prostate cancer cells that express STEAP1. AMG 509 mediates potent T cell-dependent cytotoxicity of prostate cancer cell lines in vitro and promotes tumor regression in xenograft and syngeneic mouse models of prostate cancer in vivo. The avidity-driven activity of AMG 509 enables selectivity for tumor cells with high STEAP1 expression compared with normal cells. AMG 509 is the first STEAP1 TCE to advance to clinical testing, and we report a case study of a patient with mCRPC who achieved an objective response on AMG 509 treatment. SIGNIFICANCE Immunotherapy in prostate cancer has met with limited success due to the immunosuppressive microenvironment and lack of tumor-specific targets. AMG 509 provides a targeted immunotherapy approach to engage a patient's T cells to kill STEAP1-expressing tumor cells and represents a new treatment option for mCRPC and potentially more broadly for prostate cancer. See related commentary by Hage Chehade et al., p. 20. See related article by Kelly et al., p. 76. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
| | - Cong Li
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Lingming Liang
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jinghui Zhan
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Juan Estrada
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Tao Osgood
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Fei Li
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Hanzhi Zhang
- Structural Biology, Amgen Research, Amgen Inc., South San Francisco, California
| | - Ryan Case
- Lead Discovery and Characterization, Amgen Research, Amgen Inc., South San Francisco, California
| | | | - Bram Estes
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | | | | | | | | | - Binnaz K Staley
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Jennitte Stevens
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California
| | - Keegan S Cooke
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety and Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julia Stieglmaier
- Early Development Oncology, Amgen Research (Munich) GmbH, Munich, Germany
| | - Jae-Lyun Lee
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Angela Coxon
- Oncology Research, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Julie M Bailis
- Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| |
Collapse
|
16
|
Giraudet AL. [Combination of internal and external beam radiotherapy]. Cancer Radiother 2023; 27:754-758. [PMID: 37953187 DOI: 10.1016/j.canrad.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023]
Abstract
External beam radiation therapy and internal vectorized radiation therapy are two types of radiotherapy that can be used to treat cancer. They differ in the way they are administered, and the type of radiation used. Although they can be effective in treating cancer, they each have their own advantages and disadvantages, and their combination could be synergistic. Preclinical studies on combined internal and external beam radiation therapy have mainly used radiolabelled antibodies, whose bone marrow toxicity remains the limiting factor in increasing the administered activities. The use of small radioligands in clinical trials has shown to be better tolerated and more effective, which explains their rapid development. The results of preclinical studies on combined internal and external beam radiation therapy appear heterogeneous, making it impossible to determine an ideal therapeutic sequencing scheme, and complicating the transposition to clinical studies. The few clinical studies on combined internal and external beam radiation therapy available to date have demonstrated feasibility and tolerability. More work remains to be done in the fields of dosimetry and radiobiology, as well as in the sequencing of these two irradiation modalities to optimize their combination.
Collapse
Affiliation(s)
- A-L Giraudet
- Centre Léon-Bérard, 15, rue Gabriel-Sarrazin, 69008 Lyon, France.
| |
Collapse
|
17
|
Das G, Ptacek J, Havlinova B, Nedvedova J, Barinka C, Novakova Z. Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen. ACS Pharmacol Transl Sci 2023; 6:1703-1714. [PMID: 37974624 PMCID: PMC10644396 DOI: 10.1021/acsptsci.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 11/19/2023]
Abstract
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated in vitro using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Barbora Havlinova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Jana Nedvedova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Cyril Barinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Zora Novakova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| |
Collapse
|
18
|
van Lith SAM, Pruis IJ, Tolboom N, Snijders TJ, Henssen D, Ter Laan M, Te Dorsthorst M, Leenders WPJ, Gotthardt M, Nagarajah J, Robe PA, De Witt Hamer P, Hendrikse H, Oprea-Lager DE, Yaqub M, Boellaard R, Wesseling P, Balvers RK, Verburg FA, Harteveld AA, Smits M, van den Bent M, van Zanten SEMV, van de Giessen E. PET Imaging and Protein Expression of Prostate-Specific Membrane Antigen in Glioblastoma: A Multicenter Inventory Study. J Nucl Med 2023; 64:1526-1531. [PMID: 37652540 DOI: 10.2967/jnumed.123.265738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Indexed: 09/02/2023] Open
Abstract
Upregulation of prostate-specific membrane antigen (PSMA) in neovasculature has been described in glioblastoma multiforme (GBM), whereas vasculature in nonaffected brain shows hardly any expression of PSMA. It is unclear whether PSMA-targeting tracer uptake on PET is based on PSMA-specific binding to neovasculature or aspecific uptake in tumor. Here, we quantified uptake of various PSMA-targeting tracers in GBM and correlated this with PSMA expression in tumor biopsy samples from the same patients. Methods: Fourteen patients diagnosed with de novo (n = 8) or recurrent (n = 6) GBM underwent a preoperative PET scan after injection of 1.5 MBq/kg [68Ga]Ga-PSMA-11 (n = 7), 200 MBq of [18F]DCFpyl (n = 3), or 200 MBq of [18F]PSMA-1007 (n = 4). Uptake in tumor and tumor-to-background ratios, with contralateral nonaffected brain as background, were determined. In a subset of patients, PSMA expression levels from different regions in the tumor tissue samples (n = 40), determined using immunohistochemistry (n = 35) or RNA sequencing (n = 13), were correlated with tracer uptake on PET. Results: Moderate to high (SUVmax, 1.3-20.0) heterogeneous uptake was found in all tumors irrespective of the tracer type used. Uptake in nonaffected brain was low, resulting in high tumor-to-background ratios (6.1-359.0) calculated by dividing SUVmax of tumor by SUVmax of background. Immunohistochemistry showed variable PSMA expression on endothelial cells of tumor microvasculature, as well as on dispersed individual cells (of unknown origin), and granular staining of the neuropil. No correlation was found between in vivo uptake and PSMA expression levels (for immunohistochemistry, r = -0.173, P = 0.320; for RNA, r = -0.033, P = 0.915). Conclusion: Our results indicate the potential use of various PSMA-targeting tracers in GBM. However, we found no correlation between PSMA expression levels on immunohistochemistry and uptake intensity on PET. Whether this may be explained by methodologic reasons, such as the inability to measure functionally active PSMA with immunohistochemistry, tracer pharmacokinetics, or the contribution of a disturbed blood-brain barrier to tracer retention, should still be investigated.
Collapse
Affiliation(s)
- Sanne A M van Lith
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilanah J Pruis
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Nelleke Tolboom
- Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom J Snijders
- Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dylan Henssen
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - William P J Leenders
- Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
- Predica Diagnostics, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pierre A Robe
- Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Harry Hendrikse
- Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | | | - Maqsood Yaqub
- Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Pathology, Amsterdam UMC, VUmc, Amsterdam, The Netherlands
- Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Anita A Harteveld
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion Smits
- Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands; and
| | - Martin van den Bent
- Brain Tumor Center at Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Meng L, Yang Y, Mortazavi A, Zhang J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int J Mol Sci 2023; 24:14347. [PMID: 37762648 PMCID: PMC10531627 DOI: 10.3390/ijms241814347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has emerged as an important approach for cancer treatment, but its clinical efficacy has been limited in prostate cancer compared to other malignancies. This review summarizes key immunotherapy strategies under evaluation for prostate cancer, including immune checkpoint inhibitors, bispecific T cell-engaging antibodies, chimeric antigen receptor (CAR) T cells, therapeutic vaccines, and cytokines. For each modality, the rationale stemming from preclinical studies is discussed along with outcomes from completed clinical trials and strategies to improve clinical efficacy that are being tested in ongoing clinical trials. Imperative endeavors include biomarker discovery for patient selection, deciphering resistance mechanisms, refining cellular therapies such as CAR T cells, and early-stage intervention were reviewed. These ongoing efforts instill optimism that immunotherapy may eventually deliver significant clinical benefits and expand treatment options for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Giovanella L, Garo ML, Cuzzocrea M, Paone G, Herrmann K. Prognostic role of early prostate specific antigen changes after [ 177 Lu]Lu-PSMA radioligand therapy of metastasized prostate cancer: A meta-analysis. Eur J Clin Invest 2023; 53:e14014. [PMID: 37194605 DOI: 10.1111/eci.14014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Approximately 10%-20% of prostate cancers progress to metastatic and castration-resistant forms (mCRPC). Radioligand (RLT) therapy with [177 Lu]Lu-prostate-specific membrane antigen (PSMA) is an emerging treatment for metastasized mCRPC and its efficacy is assessed not only but also by prostate specific antigen (PSA) measurement after 12 weeks or more after treatment. Our aim was to evaluate the role of early PSA measurement after RLT in predicting overall survival (OS) of mCRPC patients. METHODS A systematic search on PubMed, Web Of Science and Scopus was performed from January to December 2022. PRISMA guidelines for prognostic studies was adopted. Risk of bias was assessed using quality of prognostic studies (QUIPS). RESULTS Twelve studies at low-intermediate risk of bias, were included in the meta-analysis (1646 patients, mean age 70 years). About 50% of patients showed a PSA decline after 1-2 of [177 Lu]Lu-PSMA, and more than 30% reported a PSA decline ≥50%. The median OS range for patients with any PSA decline was 13-20 months, while for patients with stable or increased PSA, the median OS fell to 6-12 months. The OS rate for a PSA decline after the one-two [177 Lu]Lu-PSMA cycles was 0.39 (95% CI: 0.31-0.50), while OS for a PSA decline ≥50% was 0.69 (95% CI: 0.57-0.83). CONCLUSIONS A PSA decline is observed in almost 50% of mCRPC patients after 1-2 [177 Lu]Lu-PSMA cycles, with a significantly longer OS compared to stable or increased PSA levels, respectively. Accordingly, any PSA decline after 1-2 cycles of therapy should be regarded as a favourable prognostic factor for OS.
Collapse
Affiliation(s)
- Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| | - Maria Luisa Garo
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Cardiac Surgery, Department of Cardiovascular Surgery, Università Campus Bio-Medico, Rome, Italy
| | - Marco Cuzzocrea
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Gaetano Paone
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ken Herrmann
- Clinic for Nuclear Medicine, Essen University Hospital, Essen, Germany
| |
Collapse
|
21
|
Giraudet AL, Vinceneux A, Pretet V, Paquet E, Lajusticia AS, Khayi F, Badel JN, Boyle H, Flechon A, Kryza D. Rationale for Prostate-Specific-Membrane-Antigen-Targeted Radionuclide Theranostic Applied to Metastatic Clear Cell Renal Carcinoma. Pharmaceuticals (Basel) 2023; 16:995. [PMID: 37513907 PMCID: PMC10383345 DOI: 10.3390/ph16070995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), whose high expression has been demonstrated in metastatic aggressive prostate adenocarcinoma, is also highly expressed in the neovessels of various solid tumors, including clear cell renal cell carcinoma (ccRCC). In the VISION phase III clinical trial, PSMA-targeted radioligand therapy (PRLT) with lutetium 177 demonstrated a 4-month overall survival OS benefit compared to the best standard of care in heavily pretreated metastatic prostate cancer. Despite the improvement in the management of metastatic clear cell renal cell carcinoma (mccRCC) with antiangiogenic tyrosine kinase inhibitor (TKI) and immunotherapy, there is still a need for new treatments for patients who progress despite these drugs. In this study, we discuss the rationale of PRLT applied to the treavtment of mccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Kryza
- Lumen Nuclear Medicine Department, Hospices Civils de Lyon, 69437 Lyon, France
- UNIV Lyon-Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS Villeurbanne, 69100 Villeurbanne, France
| |
Collapse
|
22
|
Dawson DA, Lock M, Laidley D, Bauman G. What's to come in PSMA therapies and diagnostics: A summary of clinical trials involving PSMA radioligand-based therapeutic and/or diagnostic approaches with active recruitment. Expert Rev Anticancer Ther 2023; 23:835-851. [PMID: 37350543 DOI: 10.1080/14737140.2023.2223987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Prostate-Specific Membrane Antigen (PSMA)-based diagnostics and therapeutics are proving highly valuable in identifying disease sites and providing targeted radioligand therapy (RLT) for disseminated disease in prostate cancer (PC). With successful integration of these tools in limited PC presentations, there is a real need and excitement for trials testing PSMA-based approaches more broadly. AREAS COVERED We review the ongoing trials registered on ClinicalTrials.gov which aim to evaluate PSMA-PET or PSMA-RLT applications. We outline clinical contexts which have significant ongoing study and therefore may see imminent change, as well as contexts which are lacking in study in the hopes of guiding future research. EXPERT OPINION Trials examining intensification strategies through targeted radiotherapy, combination systemic therapies, and RLTs have the potential to demonstrate improved clinical outcomes using PSMA-PET CT for guidance. We expect that PSMA-PET will become fundamental in the work-up of patients before targeted radiotherapy or surgery. The results of ongoing trials will likely clarify the benefits of PSMA-RLT in metastatic PC including in oligometastatic and hormone-sensitive disease; however, there is a sparsity of trials evaluating PSMA-RLT outside of metastatic PC. Clinical trials with PSMA PET/CT as an endpoint for disease control are emerging and standardized reporting and metrics for PSMA staging and response will facilitate the inclusion of PSMA PET endpoints into therapeutic trials.
Collapse
Affiliation(s)
- Debra Ann Dawson
- Division of Nuclear Medicine, Department of Medical Imaging; Western University and London Health Sciences Centre, London Ontario, Canada
| | - Michael Lock
- Division of Radiation Oncology, Department of Oncology; Western University and London Health Sciences Centre, London, Ontario, Canada
| | - David Laidley
- Division of Nuclear Medicine, Department of Medical Imaging; Western University and London Health Sciences Centre, London Ontario, Canada
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology; Western University and London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
23
|
Martin FC, Dorff TB, Tran B. The new era of prostate-specific membrane antigen-directed immunotherapies and beyond in advanced prostate cancer: a review. Ther Adv Med Oncol 2023; 15:17588359231170474. [PMID: 37152424 PMCID: PMC10155011 DOI: 10.1177/17588359231170474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
The lack of success in prostate cancer from immune checkpoint inhibitors, which is likely multifactorial, has led to the development and investigation of a number of other novel immunotherapeutic techniques, including antibody-drug conjugates, T-cell redirected bispecific therapies, cancer vaccines and chimeric antigen receptor T-cell therapies. Prostate-specific membrane antigen (PSMA) is a tumour-associated antigen (TAA) that is highly expressed in metastatic prostate cancer and has been validated as an effective target for radionuclide treatment. But while PSMA has thus far been the 'front runner' target for these novel immunotherapeutic techniques, it may not be the ideal target for immunotherapy and there are other potential targetable TAAs that will require further exploration. This review will focus on these various PSMA-directed therapies, as well as other potential targets for immunotherapy beyond PSMA.
Collapse
Affiliation(s)
- Felicity C. Martin
- Department of Medical Oncology, Peter MacCallum Cancer
Centre, Melbourne, VIC, Australia
| | - Tanya B. Dorff
- Department of Medical Oncology and Therapeutics Research,
City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer
Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The
University of Melbourne, Parkville, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research,
Melbourne, VIC, Australia
| |
Collapse
|
24
|
Cai M, Song XL, Li XA, Chen M, Guo J, Yang DH, Chen Z, Zhao SC. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat 2023; 68:100962. [PMID: 37068396 DOI: 10.1016/j.drup.2023.100962] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Castration-resistant prostate cancer (CRPC), especially metastatic castration-resistant prostate cancer (mCRPC) is one of the most prevalent malignancies and main cause of cancer-related death among men in the world. In addition, it is very difficult for clinical treatment because of the natural or acquired drug resistance of CRPC. Mechanisms of drug resistance are extremely complicated and how to overcome it remains an urgent clinical problem to be solved. Thus, a comprehensive and thorough understanding for mechanisms of drug resistance in mCRPC is indispensable to develop novel and better therapeutic strategies. In this review, we aim to review new insight of the treatment of mCRPC and elucidate mechanisms governing resistance to new drugs: taxanes, androgen receptor signaling inhibitors (ARSIs) and poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). Most importantly, in order to improve efficacy of these drugs, strategies of overcoming drug resistance are also discussed based on their mechanisms respectively.
Collapse
Affiliation(s)
- Maoping Cai
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, Guangdong, PR China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong, PR China
| | - Xin-An Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, PR China
| | - Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiading Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola 11501, NY, USA.
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang 524045, Guangdong, PR China.
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, PR China; The Third Clinical College, Southern Medical University, Guangzhou 510630, Guangdong, PR China; Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
25
|
Sayar E, Patel RA, Coleman IM, Roudier MP, Zhang A, Mustafi P, Low JY, Hanratty B, Ang LS, Bhatia V, Adil M, Bakbak H, Quigley DA, Schweizer MT, Hawley JE, Kollath L, True LD, Feng FY, Bander NH, Corey E, Lee JK, Morrissey C, Gulati R, Nelson PS, Haffner MC. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight 2023; 8:e162907. [PMID: 36821396 PMCID: PMC10132157 DOI: 10.1172/jci.insight.162907] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.
Collapse
Affiliation(s)
- Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martine P. Roudier
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Ailin Zhang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Pallabi Mustafi
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vipul Bhatia
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mohamed Adil
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hasim Bakbak
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David A. Quigley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Michael T. Schweizer
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jessica E. Hawley
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lori Kollath
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Felix Y. Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Neil H. Bander
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Eva Corey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Colm Morrissey
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Urology, University of Washington (UW), Seattle, Washington, USA
- Division of Medical Oncology, Department of Medicine, UW, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, UW, Seattle, Washington, USA
| |
Collapse
|
26
|
Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J Clin Med 2023; 12:jcm12041446. [PMID: 36835981 PMCID: PMC9966657 DOI: 10.3390/jcm12041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide, making up 21% of all cancer cases. With 345,000 deaths per year owing to the disease, there is an urgent need to optimize prostate cancer care. This systematic review collated and synthesized findings of completed Phase III clinical trials administering immunotherapy; a current clinical trial index (2022) of all ongoing Phase I-III clinical trial records was also formulated. A total of four Phase III clinical trials with 3588 participants were included administering DCVAC, ipilimumab, personalized peptide vaccine, and the PROSTVAC vaccine. In this original research article, promising results were seen for ipilimumab intervention, with improved overall survival trends. A total of 68 ongoing trial records pooling in 7923 participants were included, spanning completion until June 2028. Immunotherapy is an emerging option for patients with prostate cancer, with immune checkpoint inhibitors and adjuvant therapies forming a large part of the emerging landscape. With various ongoing trials, the characteristics and premises of the prospective findings will be key in improving outcomes in the future.
Collapse
|
27
|
Gomis Sellés E, Maldonado A, Triviño-Ibañez EM, Linares Mesa NA, Sanmamed Salgado N, del Castillo Acuña R, Calais J, Kishan AU, Rodriguez Fernandez A, Recio Rodriguez M, Subiela JD, Lopez Campos F, Couñago F. PSMA PET/CT imaging for biochemical recurrence of prostate cancer after radiotherapy: is it necessary to review the Phoenix criteria? Clin Transl Imaging 2023; 11:241-254. [DOI: 10.1007/s40336-023-00543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023]
|
28
|
Peptide Modification Diminishes HLA Class II-restricted CD4 + T Cell Recognition of Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms232315234. [PMID: 36499557 PMCID: PMC9738740 DOI: 10.3390/ijms232315234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022] Open
Abstract
Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.
Collapse
|
29
|
Kim N, Lee ES, Won SE, Yang M, Lee AJ, Shin Y, Ko Y, Pyo J, Park HJ, Kim KW. Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence. Korean J Radiol 2022; 23:1089-1101. [PMID: 36098343 PMCID: PMC9614294 DOI: 10.3348/kjr.2022.0225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has revolutionized and opened a new paradigm for cancer treatment. In the era of immunotherapy and molecular targeted therapy, precision medicine has gained emphasis, and an early response assessment is a key element of this approach. Treatment response assessment for immunotherapy is challenging for radiologists because of the rapid development of immunotherapeutic agents, from immune checkpoint inhibitors to chimeric antigen receptor-T cells, with which many radiologists may not be familiar, and the atypical responses to therapy, such as pseudoprogression and hyperprogression. Therefore, new response assessment methods such as immune response assessment, functional/molecular imaging biomarkers, and artificial intelligence (including radiomics and machine learning approaches) have been developed and investigated. Radiologists should be aware of recent trends in immunotherapy development and new response assessment methods.
Collapse
Affiliation(s)
- Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eun Sung Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Eun Won
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Mihyun Yang
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Amy Junghyun Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Youngbin Shin
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yousun Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Junhee Pyo
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Kyung Won Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
30
|
Yehya A, Ghamlouche F, Zahwe A, Zeid Y, Wakimian K, Mukherji D, Abou-Kheir W. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:667-690. [PMID: 36176747 PMCID: PMC9511807 DOI: 10.20517/cdr.2022.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Amin Zahwe
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Yousef Zeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
31
|
Menon S, Parakh S, Scott AM, Gan HK. Antibody-drug conjugates: beyond current approvals and potential future strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:252-277. [PMID: 36046842 PMCID: PMC9400743 DOI: 10.37349/etat.2022.00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in recent years have fuelled the ongoing development of this class of drugs. These novel agents combine the benefits of high specific targeting of oncogenic cell surface antigens with the additional cell kill from high potency cytotoxic payloads, thus achieving wider therapeutic windows. This review will summarise the clinical activity of ADCs in tumour types not covered elsewhere in this issue, such as gastrointestinal (GI) and genitourinary (GU) cancers and glioblastoma (GBM). In addition to the ongoing clinical testing of existing ADCs, there is substantial preclinical and early phase testing of newer ADCs or ADC incorporating strategies. This review will provide selected insights into such future development, focusing on the development of novel ADCs against new antigen targets in the tumour microenvironment (TME) and combination of ADCs with immuno-oncology (IO) agents.
Collapse
Affiliation(s)
- Siddharth Menon
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Hui K. Gan
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| |
Collapse
|