1
|
Schallmoser A, Emrich N, Einenkel R, Sänger N. Explorative 3-D culture of early secondary follicles in a time lapse system for up to 36 days gives valuable, but limited insights in follicular development. Placenta 2025; 164:50-63. [PMID: 40127611 DOI: 10.1016/j.placenta.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cryopreservation of ovarian cortical tissue is an important option for female fertility preservation. This is particularly valuable for cancer patients who need to be treated urgently with chemotherapy, leaving no time for hormonal stimulation. The transfer of malignant cells in certain cancers remains as a potential risk after freezing, thawing and transplantation of ovarian tissue while isolation and in vitro growth (IVG) of follicles could be a safe alternate approach of female fertility protection. METHODS Ovarian cortex tissue was frozen, thawed and cultured for 8 days prior to isolating and embedding of early secondary follicles in a 3D matrix, suitable for time lapse monitoring for up to 36 days. Continuous growth of a theca-like cell layer and extrafollicular protrusions were visually evaluated with a permanent monitoring system facilitating real-time follicular development without deviations in the culture conditions. Occurrence of theca cell growth was visually characterized by extrafollicular formation of cells, beyond the outer follicle boundaries. To validate the results observed by time-lapse monitoring, live cell imaging was conducted and determined with immunofluorescence staining. RESULTS Individual follicles significantly increased in size over time. Time-lapse video monitoring revealed extending and retracting of filopodia-like structures in the outer follicular region adjacent to the 3D environment. Theca-like cells and actin components of filopodia-like structures were identified based on immunofluorescence staining. CONCLUSIONS Time lapse monitoring of 3-D cultured follicles is a promising explorative approach to obtain valuable visual insights regarding the many facets of follicular growth and to optimize follicular culture conditions towards a clinical application. As the study is limited by a lack of mechanistic insights into theca cell differentiation and filopodia function, additional studies are necessary to validate the preliminary results of this approach.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Norah Emrich
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Germany.
| |
Collapse
|
2
|
Li X, Luo X, Zhang X, Guo Y, Cheng L, Cheng M, Tang S, Gong Y. COL1A1 promotes cell proliferation, cell cycle progression, and anoikis resistance in granulosa cells of chicken pre-ovulatory follicles. Int J Biol Macromol 2025; 306:141524. [PMID: 40020834 DOI: 10.1016/j.ijbiomac.2025.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Chicken follicular granulosa cells (GCs) are the earliest differentiated follicular somatic cells, which play a crucial role throughout follicular growth and development. The extracellular matrix (ECM) plays a key role in maintaining cell-cell interactions and communication during follicular development. This study investigated the effects of the COL1A1 gene, a major component of ECM, on chicken pre-ovulatory follicular granulosa cells (PO-GCs) and the related regulatory mechanism. Transcriptomic analysis results showed that silencing COL1A1 significantly inhibited GCs proliferation, cell cycle, and anoikis-related biological functions and pathways. The overexpression of endogenous COL1A1 promoted the GCs proliferation through the ERK1/2 signaling pathway, increased the number of GCs in the S/G2 phase of the cell cycle, and enhanced anoikis resistance of GCs. The exogenous addition of collagen Ι (Col Ι) promoted GCs proliferation but did not affect the cell cycle progression and anoikis resistance of GCs. In addition, we identified multiple genes involved in COL1A1 knockdown-induced anoikis in GCs, of which 7 genes including PIK3CA, DAPK2, TSC2, BMF, SRC, NTRK2, and NOTCH1 were identified as the core anoikis genes. Our findings provide new perspectives for exploring the role of ECM in chicken follicle development and lay the foundation for further revealing the regulatory network of follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaxia Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Lu Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Manman Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Zhang H, Wang J, Liu J, Fan X, Jia Y, Huang Y, Han Q, Wang S, Xiao L, Li X, Zhang C. LncPrep + 96kb inhibits ovarian fibrosis by upregulating prolyl oligopeptidase expression. Mol Med Rep 2025; 31:113. [PMID: 40017148 PMCID: PMC11894593 DOI: 10.3892/mmr.2025.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
LncPrep + 96kb is a long non‑coding RNA expressed in murine granulosa cells. The 2.2-kb fragment of lncPrep + 96kb inhibits aromatase expression and estrogen secretion in ovarian granulosa cells. In the present study, lncPrep + 96kb‑knockout (KO) mice were generated, and significant ovarian fibrosis and reduced female fertility through fertility monitoring and superovulation. The augmentation of ovarian fibrosis was observed by Sirius red staining and western blot and RT‑qPCR. Notably, lncPrep + 96kb was identified in conserved non‑coding sequences adjacent to the prolyl oligopeptidase (POP) gene. Furthermore, POP expression was shown to be reduced in lncPrep + 96kb‑KO mice, whereas overexpression of lncPrep + 96kb increased POP expression. Further studies revealed that POP regulated the expression levels of factors related to fibrosis, including matrix metalloproteinase 2 (MMP2), transforming growth factor β1 (TGF‑β1) and peroxisome proliferator activated receptor γ (PPAR‑γ). In conclusion, ovarian fibrosis was elevated in lncPrep + 96kb‑KO mice, and POP may act as a target of lncPrep + 96kb, which mediates ovarian fibrosis through the regulation of PPAR‑γ, MMP2 and TGF‑β1 expression.
Collapse
Affiliation(s)
- Hongdan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
- Department of Pathology, The Second Affiliated Hospital of Army Medical University, Chongqing 400000, P.R. China
| | - Jing Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Jianwei Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Xiang Fan
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Yinuo Jia
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Yingtong Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Qihui Han
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Shimeng Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Li Xiao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Xiang Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| | - Chunping Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330019, P.R. China
| |
Collapse
|
4
|
León-Félix CM, Ouni E, Herinckx G, Vertommen D, Amorim CA, Lucci CM. Decellularized extracellular matrix from bovine ovarian tissue maintains the protein composition of the native matrisome. J Proteomics 2025; 311:105347. [PMID: 39521401 DOI: 10.1016/j.jprot.2024.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Recent approaches of regenerative reproductive medicine investigate the decellularized extracellular matrix to develop a transplantable engineered ovary (TEO). However, a full proteomic analysis is not usually performed after the decellularization process to evaluate the preservation of the extracellular matrix (ECM). In this study, the ECM of the bovine ovarian cortex was analyzed before and after decellularization using mass spectrometry and bioinformatics. A total of 155 matrisome proteins were identified in the native ECM of the bovine ovarian cortex, with 145 matrisome proteins detected in the decellularized ECM. After decellularization, only 10 matrisome proteins were lost, and notably, none belonged to the category of reproductive biological processes. Histology and histochemistry analyses were employed to assess the general morphology of both native and decellularized ECM, allowing for the identification of the most abundant ECM proteins. Moreover, our study highlighted collagen type VI alpha 3 and heparan sulfate proteoglycan 2 as the most abundant components in the bovine ovarian ECM, mirroring the composition observed in the human ovary. These findings enhance our understanding of the composition of both native and decellularized ECM, with the potential implications for the development of a TEO. SIGNIFICANCE: The significance of the present study lies on the possibility of advancing towards developing a bioengineered ovary, which is the ultimate strategy to regain fertility in women. The results demonstrate that the decellularized extracellular matrix of the bovine ovary maintains the protein composition of the native matrisome, using a recently described decellularization protocol. The decellularized matrix may serve as scaffolding for seeding ovarian stromal cells and follicles to create a bioengineered ovary, and as closer its composition is to the native matrix the better. Also, comparing the bovine ovarian matrisome, which was described for the first time here, with the human ovarian matrisome, we could see a great similarity, suggesting that the bovine ovary decellularized matrix may serve as a model for developing a human bioengineered ovary.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Emna Ouni
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Gaëtan Herinckx
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Didier Vertommen
- PHOS Unit and MASSPROT Platform de Duve Institute, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Carolina M Lucci
- Institute of Biological Sciences, Department of Physiology, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
5
|
Butler AE, Nandakumar M, Sathyapalan T, Brennan E, Atkin SL. Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Their Ratios in Women with Polycystic Ovary Syndrome and Healthy Controls. Int J Mol Sci 2025; 26:321. [PMID: 39796177 PMCID: PMC11720512 DOI: 10.3390/ijms26010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS. A Somascan proteomic analysis of 12 MMPs, three of their inhibitors (TIMP-1, 2, 3), two ADAMS (9, 12), five ADAMTS (1, 4, 5, 13, 15), insulin-like growth factor binding protein-1 (IGFBP-1), and insulin-like growth factor-1 (IGF-1) was undertaken in a well-validated PCOS database of 143 women with PCOS and 97 controls. Women with PCOS had significantly higher levels of MMP-9 and lower levels of MMP-2, MMP-14, TIMP-2, IGFBP-1, and IGF-1 compared to the controls (p < 0.0001, p < 0.005, p < 0.04, p < 0.05, p < 0.0001, and p < 0.0001, respectively). No differences were observed for any other MMPs. The ADAMS or ADAMTS levels did not differ between groups. Body mass index (BMI) was correlated with MMP-9 (p < 0.01), MMP-1 (p < 0.05), MMP-2 (p < 0.05), MMP-10 (p < 0.005), MMP-12 (p < 0.005), ADAM-9 (p < 0.05), and IGFBP-1 (p < 0.0001), but only MMP-9 still differed after accounting for BMI. MMP-9/TIMP-1, MMP-9/TIMP-2, and MMP-9/TIMP-3 ratios were higher in the PCOS group (p < 0.01), whilst MMP-17/TIMP-1 and MMP-17/TIMP-2 were lower (p = 0.01). MMP-2/TIMP ratios showed no difference between groups. TIMP-2 was positively correlated with CRP (p < 0.01). MMP changes in PCOS are largely driven by BMI, though increased MMP-9 is BMI-independent, suggesting that any deleterious effects of MMP-9 would be potentially exacerbated by a concomitantly increased BMI. The significant increases in the MMP-9/TIMP ratios suggests MMP-9 overactivity in PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Manjula Nandakumar
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RX, UK;
| | - Edwina Brennan
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Adliya 15503, Bahrain; (M.N.); (E.B.); (S.L.A.)
| |
Collapse
|
6
|
Fushii M, Kyogoku H, Lee J, Miyano T. Change in the ability of bovine granulosa cells to elongate transzonal projections and their transcriptome changes during follicle development. J Reprod Dev 2024; 70:362-371. [PMID: 39401905 DOI: 10.1262/jrd.2024-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Granulosa cells (GCs) in secondary follicles differentiate into cumulus cells (CCs) and mural granulosa cells (MGCs) in the antral follicle. Only CCs maintain direct connections with oocytes through transzonal projections (TZPs) and support oocyte growth. Here, we examined whether granulosa cells (GCs) from secondary follicles and MGCs from early and late antral follicles were able to reconstruct complexes with TZP-free denuded oocytes (DOs) and regenerate TZPs. Furthermore, to confirm that the regenerated TZPs were functional, the development of the reconstructed complexes and oocyte growth in the complexes were evaluated. After coculture, GCs and MGCs from early antral follicles reconstructed the complexes with DOs and regenerated TZPs. Furthermore, the oocytes in the integrally reconstructed complexes grew fully and acquired meiotic competence, suggesting that the regenerated TZPs were functional. In contrast, MGCs from the late antral follicles lost their ability to elongate TZPs. As the ability to regenerate TZPs differed among cells, we analyzed the transcriptomes of GCs, CCs, and MGCs collected from follicles of different sizes. The characteristics of TZP generation coincided with the transcriptome changes in two directions: from GCs to CCs and MGCs. In conclusion, until the early antral follicle stage, bovine GCs, CCs, and MGCs have common characteristics to elongate TZPs and form antrum-like structures that support oocyte growth in vitro. Furthermore, as the follicle develops, MGCs lose the ability to elongate TZPs.
Collapse
Affiliation(s)
- Mihoko Fushii
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa Kyogoku
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Miyano
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Francés-Herrero E, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Soto-Prado A, Buigues A, Herraiz S, Pellicer A, Cervelló I. Growth factor-loaded ovarian extracellular matrix hydrogels promote in vivo ovarian niche regeneration and enhance fertility in premature ovarian insufficiency preclinical models. Acta Biomater 2024; 186:125-140. [PMID: 39111680 DOI: 10.1016/j.actbio.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Premature ovarian insufficiency (POI) means menopause before 40 years of age affecting about 1 % of women. Approaches based on cell therapy and the paracrine effects of stem cells or bioproducts such as platelet-rich plasma have been proposed, but concerns remain about undesired systemic effects, as well as the need to optimize delivery methods through bioengineering methods. This study explores the efficacy of decellularized bovine ovarian cortex extracellular matrix (OvaECM) hydrogels alone and as a growth factor (GF) carrier (OvaECM+GF) in a chemotherapy-induced POI murine model. In vitro assays showed a gradual release of GF from the OvaECM sustained for two weeks. Chemotherapy drastically reduced follicle numbers, but OvaECM+GF treatment restored pre-antral follicle development. Moreover, this treatment notably regenerated the ovarian microenvironment by increasing cell proliferation and microvessel density while reducing chemotherapy-induced apoptosis and fibrosis. Whole-ovary RNA sequencing and gene set enrichment analysis revealed an upregulation of regeneration-related genes and a downregulation of apoptotic pathways. The OvaECM+GF treatment also yielded significantly better outcomes following ovarian stimulation and in vitro fertilization. After two consecutive crossbreeding cycles, OvaECM+GF-treated mice showed normal reproductive function. This research showcases the biocompatibility and efficacy of OvaECM to reverse POI in mice, setting a foundation to explore innovative bioengineering-based POI therapies. STATEMENT OF SIGNIFICANCE: Premature ovarian insufficiency (POI) affects about 1 % of women worldwide, causing early menopause before 40 years old. Current treatments alleviate symptoms but do not restore ovarian function. This study explores an innovative approach using ovarian cortex extracellular matrix hydrogels to deliver growth factors into the murine ovarian niche and reverse POI. In vitro release kinetic assays demonstrated a gradual and sustained release of growth factors. In a POI-induced mouse model, intraovarian injections of the hydrogel encapsulating growth factors restored pre-antral follicle development, increased cell proliferation, reduced apoptosis and fibrosis, and improved ovarian response and in vitro fertilization outcomes. Long-term benefits included larger litter sizes. This innovative technique shows promise in regenerating the ovarian environment and improving reproductive outcomes.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Alexandra Soto-Prado
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Roma Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
9
|
Sanguansook P, Martínez-López C, Izquierdo-Rico MJ, Martínez-Cáceres C, López-Orozco M, Chatdarong K, García-Vázquez FA. Development of decellularization protocols for female cat reproductive organs. Res Vet Sci 2024; 173:105257. [PMID: 38636324 DOI: 10.1016/j.rvsc.2024.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.
Collapse
Affiliation(s)
- Phakjira Sanguansook
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Cristina Martínez-López
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain; Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain
| | | | - Marina López-Orozco
- Departamento de Producción Animal, Facultad de Veterinaria, Campus de Excelencia Internacional para la Educación Superior y la Investigación "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Francisco Alberto García-Vázquez
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), Murcia, Spain; Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
10
|
Candelaria JI, Denicol AC. Assessment of ovarian tissue and follicular integrity after cryopreservation via slow freezing or vitrification followed by in vitro culture. F&S SCIENCE 2024; 5:154-162. [PMID: 39382049 DOI: 10.1016/j.xfss.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To evaluate ovarian tissue and follicle integrity before and after slow freezing or vitrification and postthawing in vitro culture. DESIGN A laboratory study using bovine ovarian cortical tissue. SETTING Academic laboratory. ANIMALS Ovaries from healthy cattle. INTERVENTIONS Bovine ovarian cortical tissue was subjected to either slow freezing or vitrification and subsequent in vitro culture. Tissue and follicle integrity were assessed before and after cryopreservation and culture. MAIN OUTCOME MEASURES Hematoxylin and eosin staining was used to assess follicle stages, morphology, and stromal cell density. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to examine apoptosis, and Masson's trichrome staining was used to evaluate collagen content in the stromal environment. Immunofluorescent labeling was used to localize and quantify connexin 37 (CX37) and Ki67 expression. RESULTS Regardless of previous cryopreservation, ovarian tissue culture resulted in a decreased percentage of primordial follicles and an increased percentage of primary follicles compared with fresh tissue, indicating that follicle activation was not negatively affected by cryopreservation. However, both culture and cryopreservation followed by culture decreased the percentage of normal preantral follicles compared with fresh tissue that had not been cultured. Culture and/or cryopreservation did not impact stromal cell number, but there was increased cell apoptosis in tissue that was cultured after vitrification compared with tissue that was not cultured. Tissue culture, regardless of cryopreservation, resulted in decreased collagen deposition. There were fewer follicles expressing CX37 in vitrified and thawed tissue compared with all other treatments. Cryopreservation and/or culture of ovarian tissue did not change the percentage of follicles that contained Ki67-positive granulosa cells or the percentage of Ki67-positive granulosa cells within those follicles. CONCLUSION Based on these data, we conclude that tissue cryopreservation followed by culture does not affect follicle activation and growth, but it decreases the proportion of viable follicles within the tissue. Slow freezing was superior to vitrification as indicated by a higher proportion of follicles with normal morphology, lower stromal cell apoptosis, and maintenance of CX37 expression postthawing and after culture.
Collapse
Affiliation(s)
| | - Anna C Denicol
- Department of Animal Science, University of California Davis, Davis, California.
| |
Collapse
|
11
|
Adamowski M, Sharma Y, Molcan T, Wołodko K, Kelsey G, Galvão AM. Leptin signalling regulates transcriptional differences in granulosa cells from genetically obese mice but not the activation of NLRP3 inflammasome. Sci Rep 2024; 14:8070. [PMID: 38580672 PMCID: PMC10997671 DOI: 10.1038/s41598-024-58181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Yashaswi Sharma
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
12
|
Li L, Zhu Y, Zhang S, Wang J, Guo S, Ding B, Zhang Z. Effects of a mixture of glycerol monolaurate and cinnamaldehyde supplementation on laying performance, egg quality, and antioxidant status in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2015-2022. [PMID: 37919879 DOI: 10.1002/jsfa.13092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND This study aimed to determine the effects of a mixture of glycerol monolaurate and cinnamaldehyde (GCM) supplementation on the laying performance, egg quality, antioxidant capacity, and serum parameters of laying hens. A total of 1120 14-week-old Jingfen-1 strain laying hens with similar performance were randomly allocated to four dietary treatments: control, and GCM groups supplemented with 250, 500, or 1000 mg kg-1 for 12 weeks. RESULTS Compared with the control group, GCM-supplemented groups significantly reduced (P < 0.05) the rate of unqualified eggs of laying hens aged 17-24 weeks. Supplementation of GCM significantly increased (P < 0.05) yolk color and serum glutathione peroxidase (GSH-Px) activity but decreased (P < 0.05) the hydrogen peroxide (H2 O2 ) content in the serum of laying hens at the age of 20 weeks. Furthermore, groups supplemented with GCM showed a significant increase (P < 0.05) in Haugh unit, yolk color, activities of total superoxide dismutase and GSH-Px, and the glucose content in serum, and a decrease (P < 0.05) in the content of urea nitrogen and H2 O2 and malondialdehyde in serum of laying hens at the age of 24 weeks. 500 mg kg-1 GCM supplementation significantly increased (P < 0.05) the number of large white follicles and 1000 mg kg-1 GCM supplementation decreased the number of large yellow follicles in 28-week-old laying hens. CONCLUSION These results indicated that GCM supplementation has positive effects on reducing egg loss and improving egg quality in the early laying period of laying hens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanlan Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Yue Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Jihua Wang
- Calid Biotech (Wuhan) Co., Ltd, Wuhan, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
13
|
Sistani MN, Zavareh S, Valojerdi MR, Salehnia M. Reconstruction of ovarian follicular-like structure by recellularization of a cell-free human ovarian scaffold with mouse fetal ovarian cells. Cytotechnology 2024; 76:27-38. [PMID: 38304626 PMCID: PMC10828258 DOI: 10.1007/s10616-023-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
The present study assessed the supportive roles of the decellularized human ovarian tissue in homing of mouse fetal ovarian cells into the scaffold as well as the formation of the follicular-like structure. The human ovarian cortical tissues were decellularized by three freeze-thaw cycles and then, treated with Triton X-100 for 15 h and 0.5% sodium dodecyl sulfate for 72 h. After isolation and preparation of mouse fetal ovarian cells (19 dpc) they were seeded into the decellularized scaffolds and cultured for 7 days, then using a light microscope, laser confocal scanning microscope, and scanning electron microscope these scaffolds were studied. Analysis of gene expression related to oocyte and follicular cells such as Ddx4, Nobox, Gdf9, and Connexin37 was assessed by real-time RT-PCR and the DDX4 and GDF9 proteins were detected by immunohistochemistry. The result showed that the human ovarian tissue was decellularized properly and the tissue elements and integrity were well preserved. After 7 days of in vitro culture, the fetal ovarian cells attached and penetrated into different sites and depths of the scaffold. The formed organoid within the scaffold showed large round, small polyhedral, and elongated spindle cells similar to the follicle structure. The molecular analysis and immunohistochemistry were confirmed an increase in the expression of genes and proteins related to oocyte and follicular cells in these reconstructed structures. In conclusion, the recellularization of human ovarian scaffolds by mouse fetal ovarian cells could support the follicular-like structure formation and it provides an in vitro model for follicle reconstitution and offers an alternative approach for clinical usage.
Collapse
Affiliation(s)
- Maryam Nezhad Sistani
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | | | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| |
Collapse
|
14
|
Zhang C, Wang WS, Yao G, Zhu Y, Lin Y, Lu J, Sun K, Sun Y. Attenuation of palmitic acid-induced lysyl oxidase overexpression in the ovary contributes to the improvement of ovulation in obesity by metformin. Hum Reprod Open 2024; 2024:hoae002. [PMID: 38333108 PMCID: PMC10850847 DOI: 10.1093/hropen/hoae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
STUDY QUESTION Does palmitic acid (PA), the most common saturated free fatty acid (FFA) in individuals with obesity, contribute to anovulation through upregulation of the collagen-crosslinking enzyme lysyl oxidase (LOX) in the ovary? SUMMARY ANSWER Increased PA in individuals with obesity can cause LOX upregulation via the activation of hypoxia-inducible factor-1α (HIF-1α), resulting in abnormal collagen deposition in the ovary and anovulation, which can be ameliorated by metformin therapy. WHAT IS KNOWN ALREADY The underlying cause of anovulation in individuals with obesity is poorly defined, and accumulating evidence indicates that hormonal disturbance, insulin resistance, and inflammation may all play a role in the development of ovulation disorders in individuals with obesity. However, it remains to be determined whether PA plays a role in the regulation of LOX expression, thus disrupting ovarian extracellular matrix (ECM) remodelling in the ovary and resulting in impaired ovulation in individuals with obesity. STUDY DESIGN SIZE DURATION PA concentration and LOX protein abundance and activity in follicular fluid and ovarian tissue were compared between control (n = 21) subjects, patients with obesity with ovulation (n = 22), and patients with obesity with anovulation (n = 16). The effect of PA on LOX protein expression, and the underlying mechanism, was examined in primary human granulosa cells in vitro. The improvements in obesity conditions induced by LOX inhibition combined with metformin were investigated in a high-fat diet-induced obese rat model. PARTICIPANTS/MATERIALS SETTING METHODS The abundance of PA concentration and LOX activity was measured via a LOX activity assay and ELISA, respectively. The effect of PA on LOX protein expression was examined in the presence or absence of inhibitors of signalling molecules and siRNA-mediated knockdown of the putative transcription factor. Chromatin immunoprecipitation assays were subsequently conducted to further identify the responsible transcription factor. The role of metformin in the treatment of anovulation by LOX inhibition was investigated in a high-fat diet (HFD)-induced obese rat model. The numbers of retrieved total oocytes and metaphase II oocytes were recorded upon ovarian stimulation. Masson's trichrome staining was used to measure the total collagen content, and immunohistochemical staining and western blotting were used to measure LOX, HIF-1α, and collagen I and IV in the ovary. MAIN RESULTS AND THE ROLE OF CHANCE Significantly increased FFA, LOX, and collagen abundance were observed in the ovaries of obese women with anovulation, compared to healthy controls or obese women with ovulation. In a HFD-induced obese rat model, metformin corrected the distortion of ovarian morphology by decreasing LOX and collagen protein abundance in the ovary and improving oestrous cyclicity and ovulation. PA increased LOX expression via the activation of HIF-1α in human granulosa cells, which was attenuated by metformin. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Several other saturated and polyunsaturated FFAs, such as stearic acid and arachidonic acid, are also increased in the blood of individuals with obesity, and increased levels of other FFAs may also contribute to the development of anovulation in individuals with obesity, which needs to be further verified in the future. WIDER IMPLICATIONS OF THE FINDINGS Elevated PA in individuals with obesity can cause LOX dysregulation via activation of HIF-1α, resulting in abnormal collagen deposition in the ovary and anovulation. This dysregulation can be ameliorated by metformin therapy through its local effect on ECM remodelling in the ovary, which is independent of its systemic effect on insulin sensitivity and chronic inflammation. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (grant numbers 82101730, 82130046, and 31900598) and Innovative Research Team of High-level local Universities in Shanghai (SHSMU-ZLCX20210201). All the authors declare no conflicts of interest in relation to this work.
Collapse
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanan Zhu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China
| | - Yikai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiangwen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
15
|
Silva BR, Costa FC, De Lima Neto MF, Caetano Filho FF, de Assis EIT, Aguiar FLN, Silva AWB, Martins SD, Araújo VR, Matos MHT, Costa JJN, Silva JRV. Melatonin acts through different mechanisms to control oxidative stress and primordial follicle activation and survival during in vitro culture of bovine ovarian tissue. Domest Anim Endocrinol 2024; 86:106824. [PMID: 37976887 DOI: 10.1016/j.domaniend.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
This study aims to evaluate the effects of melatonin and its mechanisms of action on preantral follicle activation and survival, stromal cell density and collagen distribution in extracellular matrix (ECM). The involvement of melatonin receptors and mTORC1 pathway in these procedures were also investigated. To this end, ovarian fragments were cultured for six days in α-MEM+ alone or supplemented with 1000 pM melatonin, 1000 pM melatonin with 1000 pM luzindole (inhibitor of melatonin receptors), or 1000 pM melatonin with 0.16 µg/ml rapamycin (mTORC1 inhibitor). At the end of culture period, tissues were processed for classical histology, and the follicles were classified as normal or degenerated, as well as in primordial or growing follicles. The ovarian stromal cell density and ECM collagen distribution were also evaluated. Samples of ovarian tissues were also destined to measure the levels of thiol and mRNA for CAT, SOD, GPX1 and PRDX1, as well as the activity of antioxidant enzymes CAT, SOD, and GPX1. The results demonstrated that ovarian tissues cultured with melatonin, melatonin with luzindole or melatonin with rapamycin had significantly higher percentage of morphologically normal follicles than those cultured in control medium (α-MEM+). However, the presence of either luzindole or rapamycin, did not block the positive effects of melatonin on follicle survival (P > 0.05). Although the presence of melatonin in culture medium reduced the percentage of primordial follicles and increased the percentage of development follicles, these positive effects of melatonin were blocked by either luzindole or rapamycin (P < 0.05). Melatonin, melatonin with luzindole or melatonin with rapamycin did not influence the number of ovarian stromal cells. In contrast, melatonin significantly increased the percentages of collagen in ovarian tissues, but the positive effects of melatonin were blocked by either luzindole or rapamycin. Tissues cultured with melatonin and rapamycin had higher levels of mRNA for CAT and lower GPx activity when compared to those cultured in control medium. In conclusion, melatonin promotes primordial follicle activation, increases collagen fiber in ECM of in vitro cultured bovine ovarian tissue through its membrane-coupled receptors and mTORC1. Oppositely, melatonin increase follicles survival by acting through other pathways, since it can pass through cell membranes and directly regulate oxidative stress.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco F Caetano Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Solano D Martins
- Laboratory of Biochemistry and Gene Expression, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Valdevane R Araújo
- Laboratory of Biochemistry and Gene Expression, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Maria H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - José J N Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil.
| |
Collapse
|
16
|
Park EY, Park JH, Mai NTQ, Moon BS, Choi JK. Control of the growth and development of murine preantral follicles in a biomimetic ovary using a decellularized porcine scaffold. Mater Today Bio 2023; 23:100824. [PMID: 37868950 PMCID: PMC10587716 DOI: 10.1016/j.mtbio.2023.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
This study aimed to derive mature oocytes from murine preantral follicles cultured in a biomimetic ovary with a porcine scaffold using decellularization technology. We evaluated the DNA content and the presence of cell and extracellular matrix (ECM) components, including collagen, elastin, and glycosaminoglycans (GAGs), in decellularized (decell) porcine ovaries. The DNA content inthe decell ovarian tissues was approximately 94 % less than that in native tissues (66 ± 9.8 ng/mg vs. 1139 ± 269 ng/mg). Furthermore, the ECM component integrity was maintained in the decell ovarian tissue. The soluble collagen concentration of native ovarian tissue (native) was 195.34 ± 15.13 μg/mg (dry wt.), which was less than 878.6 ± 8.24 μg/mg for the decell ovarian tissue due to the loss of cellular mass. Hydrogels derived from decell porcine ovaries were prepared to develop an in vitro biomimetic ovary with appropriate ECM concentration (2-6 mg/mL). Scanning electron microscope (SEM) imagining revealed that the complex fiber network and porous structure were maintained in all groups treated with varying ECM concentration (2-6 mg/mL). Furthermore, rheometer analysis indicated that mechanical strength increased with ECM concentration in a dose-dependently. The preantral follicles cultured with 4 mg/mL ECM showed high rates of antral follicle (66 %) and mature oocyte (metaphase II) development (47 %). The preantral follicles cultured in a biomimetic ovary with a decell porcine scaffold showed a higher rate of antral follicle and mature oocytes than those cultured in other biomaterials such as collagen and Matrigel. In mature oocytes derived from antral follicles, meiotic spindles and nuclei were stained using a tubulin antibody and Hoechst, respectively. Two-cell embryos were developed from MII oocytes following parthenogenetic activation. Preantral follicles were cultured in a biomimetic ovary derived from the ECM of a decell porcine ovary, and embryos were generated from MII oocytes. This biomimetic ovary could contribute to restoring fertility in infertile women with reduced ovarian function, benefit mating efforts for endangered species, and maintain animals with valuable genetic traits.
Collapse
Affiliation(s)
- Eun young Park
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jin hee Park
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nhu Thi Quynh Mai
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
17
|
Dipali SS, King CD, Rose JP, Burdette JE, Campisi J, Schilling B, Duncan FE. Proteomic quantification of native and ECM-enriched mouse ovaries reveals an age-dependent fibro-inflammatory signature. Aging (Albany NY) 2023; 15:10821-10855. [PMID: 37899138 PMCID: PMC10637783 DOI: 10.18632/aging.205190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The ovarian microenvironment becomes fibrotic and stiff with age, in part due to increased collagen and decreased hyaluronan. However, the extracellular matrix (ECM) is a complex network of hundreds of proteins, glycoproteins, and glycans which are highly tissue specific and undergo pronounced changes with age. To obtain an unbiased and comprehensive profile of age-associated alterations to the murine ovarian proteome and ECM, we used a label-free quantitative proteomic methodology. We validated conditions to enrich for the ECM prior to proteomic analysis. Following analysis by data-independent acquisition (DIA) and quantitative data processing, we observed that both native and ECM-enriched ovaries clustered separately based on age, indicating distinct age-dependent proteomic signatures. We identified a total of 4,721 proteins from both native and ECM-enriched ovaries, of which 383 proteins were significantly altered with advanced age, including 58 ECM proteins. Several ECM proteins upregulated with age have been associated with fibrosis in other organs, but to date their roles in ovarian fibrosis are unknown. Pathways regulating DNA metabolism and translation were downregulated with age, whereas pathways involved in ECM remodeling and immune response were upregulated. Interestingly, immune-related pathways were upregulated with age even in ECM-enriched ovaries, suggesting a novel interplay between the ECM and the immune system. Moreover, we identified putative markers of unique immune cell populations present in the ovary with age. These findings provide evidence from a proteomic perspective that the aging ovary provides a fibroinflammatory milieu, and our study suggests target proteins which may drive these age-associated phenotypes for future investigation.
Collapse
Affiliation(s)
- Shweta S. Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
18
|
Silvestris E, Minoia C, De Palma G, Popescu O, Altavilla A, Guarini A, Pavone F, Loizzi V, Cormio G, Depalo R. Optimizing the Ovarian Tissue Cryopreservation in the 'Oncofertility' Institutional Program at an Italian National Cancer Institute. Healthcare (Basel) 2023; 11:2727. [PMID: 37893801 PMCID: PMC10606252 DOI: 10.3390/healthcare11202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The majority of female cancer patients undergoing anticancer treatments are at risk of experiencing 'cancer treatment-related infertility', which can result in permanent damage to their reproductive prospects. Among the fertility preservation methods, ovarian tissue cryopreservation (OTC) has emerged as an alternative for these patients. The Cancer Institute of Bari initiated a research program to assess the feasibility of OTC. This study compares the viability of ovarian cortical fragments cryopreserved using slow freezing (SF) and ultra-rapid freezing (URF) methods. METHODS Ovarian cortex biopsies were obtained from 11 fertile women enrolled in our oncofertility service between June 2022 and January 2023. After tissue collection, a histological assessment was performed before cryopreservation. OTC was carried out using both SF and URF methods. Six months later, thawed samples were evaluated for follicle counts and histological integrity. RESULTS No statistically significant difference was observed in the proportion of intact follicles (means of 31.5% and 73.0% in the SF and URF groups, respectively; p = 0.064). However, there was a significant difference in the number of follicles between the SF group (n = 149) and the URF group (n = 37) (p = 0.046). CONCLUSIONS We assessed the viability of ovarian cortex after freezing and thawing, focusing on the structural integrity of follicles. Our findings suggest that there are no significant differences between the SF and URF methods.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (V.L.); (G.C.)
| | - Carla Minoia
- Hematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (C.M.); (A.G.); (F.P.)
| | - Giuseppe De Palma
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy;
| | - Ondina Popescu
- Pathological Anatomy Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (O.P.); (A.A.)
| | - Anna Altavilla
- Pathological Anatomy Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (O.P.); (A.A.)
| | - Attilio Guarini
- Hematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (C.M.); (A.G.); (F.P.)
| | - Fabio Pavone
- Hematology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (C.M.); (A.G.); (F.P.)
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (V.L.); (G.C.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (V.L.); (G.C.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Raffaella Depalo
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy;
| |
Collapse
|
19
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
20
|
Stewart S, Ou W, Aranda-Espinoza H, Rahaman SO, He X. Micromechanical characterizations and viscoelastic modeling reveal elastic and viscoelastic heterogeneities in ovarian tissue and the significant viscoelastic contribution to the apparent elastic modulus determined by AFM indentation. Acta Biomater 2023; 168:286-297. [PMID: 37451661 PMCID: PMC10529990 DOI: 10.1016/j.actbio.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ovarian follicles develop in a highly regulated mechanical microenvironment and disruptions to the microenvironment may cause infertility. However, the viscoelastic properties of the ovarian tissue are not well studied. Here, we characterize both the elastic and viscoelastic properties of ovarian tissue from both reproductively older and younger domestic cats using atomic force microscopy (AFM) indentation and viscoelastic models of stress relaxation. Importantly, our analyses reveal the apparent elastic modulus obtained from the conventional AFM indentation measurement is significantly higher than the intrinsic elastic modulus and insignificantly different from the equivalent elastic modulus that is the summation of the intrinsic elastic modulus and the viscoelastic contribution to modulus at time 0. Interestingly, the ovarian cortex of both reproductive age groups has a higher apparent/intrinsic modulus than that of the medulla. Furthermore, two different kinetics of stress relaxation are identified with rate constants of ∼1 s and ∼20-40 s, respectively. Moreover, the rate constant of the slow kinetics is significantly different between the cortex and medulla in the reproductively older ovaries. Finally, these mechanical heterogeneities appear to follow the heterogeneous distribution of hyaluronic acid (HA) in the ovary. These findings may be invaluable to the development of biomimetic follicle culture for treating infertility. STATEMENT OF SIGNIFICANCE: This study investigates not only elastic but also the viscoelastic heterogeneity in both reproductively younger and older ovarian tissues for the first time. Further, by combining AFM indentation measurement and viscoelastic modeling, we show the apparent elastic modulus conventionally reported in the literature for AFM indentation measurement is the summation of the intrinsic elastic modulus and a significant viscoelastic contribution to the modulus at time 0. This is an important consideration for others who use this method to quantify biomaterial properties. In addition, the possible connection between the mechanical and compositional heterogeneities is explored. These findings may be invaluable for designing biomaterials to recapitulate the mechanical environment of the ovary and possibly many other organs for biomimetic tissue engineering.
Collapse
Affiliation(s)
- Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
21
|
Shuyuan Y, Meimei W, Fenghua L, Huishan Z, Min C, Hongchu B, Xuemei L. hUMSC transplantation restores follicle development in ovary damaged mice via re-establish extracellular matrix (ECM) components. J Ovarian Res 2023; 16:172. [PMID: 37620943 PMCID: PMC10464307 DOI: 10.1186/s13048-023-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES Explore the therapeutic role of human umbilical mesenchymal stem cells (hUMSCs) transplantation for regeneration of ECM components and restoration of follicular development in mice. BACKGROUND The extracellular matrix (ECM) is crucial to maintain ovary function and regulate follicular development, as it participates in important cell signaling and provides physical support to the cells. However, it is unknown how hUMSCs affect the expression of ECM-related genes in ovaries treated with cyclophosphamide (CTX) and busulfan (BUS). METHODS In the present study, we used 64 six- to eight-week-old ICR female mice to established mouse model. The mice were randomly divided into four groups (n = 16/group): control, POI, POI + hUMSCs, and POI + PBS group. The premature ovarian insufficiency (POI) mouse model was established by intraperitoneal injection of CTX and BUS for 7days, then, hUMSCs or PBS were respectively injected via the tail vein in POI + hUMSCs or POI + PBS group. Another 7days after injection, the mice were sacrificed to harvest the ovary tissue. The ovaries were immediately frozen with liquid nitrogen or fixed with 4% PFA for subsequent experiments. To screen differentially expressed genes (DEGs), we performed transcriptome sequencing of ovaries. Thereafter, a Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the related biological functions. Retrieval of interacting genes for ECM-related DEGs was performed using the function of STRINGdb (version 2.6.5) to evaluate potential protein-protein interaction (PPI) networks. Furthermore, qRT-PCR and IHC were performed to assess the differential expression of selected DEGs in control, damaged, hUMSCs-transplanted and non-transplanted ovaries. RESULTS Chemotherapy caused mouse ovarian follicular reserve depletion, and hUMSCs transplantation partially restored follicular development. Our results revealed that ECM-receptor interaction and ECM organization were both downregulated in the damaged ovaries. Further investigation showed that ECM-related genes were downregulated in the CTX and BUS treatment group and partially rescued in hUMSCs injection group but not in the PBS group. qRT-PCR and IHC verified the results: collagen IV and laminin gamma 3 were both expressed around follicle regions in normal ovaries, chemotherapy treatment disrupted their expression, and hUMSCs transplantation rescued their localization and expression to some extent. CONCLUSION Our data demonstrated that ECM-related genes participate in the regulation of ovarian reserve, hUMSCs treatment rescued abnormal expression and localization of collagen IV and laminin gamma 3 in the damaged ovaries. The results suggest that hUMSCs transplantation can maintain ECM-stable microenvironments, which is beneficial to follicular development.
Collapse
Affiliation(s)
- Yin Shuyuan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Wang Meimei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Li Fenghua
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Zhao Huishan
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Chu Min
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Bao Hongchu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| | - Liu Xuemei
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
22
|
Sheikh S, Lo BKM, Kaune H, Bansal J, Deleva A, Williams SA. Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI. Front Cell Dev Biol 2023; 11:1202411. [PMID: 37614224 PMCID: PMC10443433 DOI: 10.3389/fcell.2023.1202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (C1galt1 F/F Mgat1 F/F:ZP3Cre) and Control (C1galt1 F/F Mgat1 F/F) mice. Second, we investigated if transplantation of DM ovaries into a "normal" endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a 'normal' endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzannah A. Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
24
|
Han S, Wang S, Fan X, Chen M, Wang X, Huang Y, Zhang H, Ma Y, Wang J, Zhang C. Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice. Biomedicines 2023; 11:1927. [PMID: 37509566 PMCID: PMC10377061 DOI: 10.3390/biomedicines11071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.
Collapse
Affiliation(s)
- Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Center for Drug Inspection of Guizhou Medical Products Administration, Guizhou Medical Products Administration, Guiyang 550081, China
| | - Shimeng Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiang Fan
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mengchi Chen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaojie Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yingtong Huang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yinyin Ma
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
25
|
Francés-Herrero E, Lopez R, Campo H, de Miguel-Gómez L, Rodríguez-Eguren A, Faus A, Pellicer A, Cervelló I. Advances of xenogeneic ovarian extracellular matrix hydrogels for in vitro follicle development and oocyte maturation. BIOMATERIALS ADVANCES 2023; 151:213480. [PMID: 37267748 DOI: 10.1016/j.bioadv.2023.213480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Research aimed at preserving female fertility is increasingly using bioengineering techniques to develop new platforms capable of supporting ovarian cell function in vitro and in vivo. Natural hydrogels (alginate, collagen, and fibrin) have been the most exploited approaches; however they are biologically inert and/or biochemically simple. Thus, establishing a suitable biomimetic hydrogel from decellularized ovarian cortex (OC) extracellular matrix (OvaECM) could provide a complex native biomaterial for follicle development and oocyte maturation. The objectives of this work were (i) to establish an optimal protocol to decellularize and solubilize bovine OC, (ii) to characterize the histological, molecular, ultrastructural, and proteomic properties of the resulting tissue and hydrogel, and (iii) to assess its biocompatibility and adequacy for murine in vitro follicle growth (IVFG). Sodium dodecyl sulfate was identified as the best detergent to develop bovine OvaECM hydrogels. Hydrogels added into standard media or used as plate coatings were employed for IVFG and oocyte maturation. Follicle growth, survival, hormone production, and oocyte maturation and developmental competence were evaluated. OvaECM hydrogel-supplemented media best supported follicle survival, expansion, and hormone production, while the coatings provided more mature and competent oocytes. Overall, the findings support the xenogeneic use of OvaECM hydrogels for future human female reproductive bioengineering.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rosalba Lopez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVI Roma Parioli, IVI-RMA Global, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
26
|
Almeida GHDR, Iglesia RP, Rinaldi JDC, Murai MK, Calomeno CVAQ, da Silva Junior LN, Horvath-Pereira BDO, Pinho LBM, Miglino MA, Carreira ACO. Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36355603 DOI: 10.1089/ten.teb.2022.0171] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ovarian tissue has a unique microarchitecture and a complex cellular and molecular dynamics that are essential for follicular survival and development. Due to this great complexity, several factors may lead to ovarian insufficiency, and therefore to systemic metabolic disorders and female infertility. Techniques currently used in the reproductive clinic such as oocyte cryopreservation or even ovarian tissue transplant, although effective, have several limitations, which impair their wide application. In this scenario, mimetic ovarian tissue reconstruction comes as an innovative alternative to develop new methodologies for germ cells preservation and ovarian functions restoration. The ovarian extracellular matrix (ECM) is crucial for oocyte viability maintenance, once it acts actively in folliculogenesis. One of the key components of ovarian bioengineering is biomaterials application that mimics ECM and provides conditions for cell anchorage, proliferation, and differentiation. Therefore, this review aims at describing ovarian tissue engineering approaches and listing the main limitations of current methods for preservation and reestablishment of ovarian fertility. In addition, we describe the main elements that structure this study field, highlighting the main advances and the challenges to overcome to develop innovative methodologies to be applied in reproductive medicine. Impact Statement This review presents the main advances in the application of tissue bioengineering in the ovarian tissue reconstruction to develop innovative solutions for ovarian fertility reestablishment.
Collapse
Affiliation(s)
| | - Rebeca Piatniczka Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Mikaelly Kiemy Murai
- Department of Morphological Sciences, State University of Maringa, Maringá, Brazil
| | | | | | | | - Letícia Beatriz Mazo Pinho
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,Center of Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
27
|
Fuertes-Recuero M, González-Gil A, Pérez JCF, Ariati IGC, Picazo RA. Determination of the appropriate concentration of sodium alginate used for in vitro culture of cat preantral follicles in a serum-free medium containing FSH, EGF and IGF-I. Reprod Domest Anim 2023; 58:670-678. [PMID: 36862062 DOI: 10.1111/rda.14336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Culture of domestic cat preantral follicles can be a suitable technology to assist oocyte conservation strategies in the family Felidae. This research was aimed to comparatively analyse cat preantral follicular development of follicles directly seeded on growth surface or encapsulated in 0.5 or 1% of sodium alginate in a serum-free medium containing FSH, EGF and IGF-I. Preantral follicles were isolated from cat ovarian cortical tissue after ovariectomy. Alginate was dissolved at 0.5 or 1% in PBS. Follicles, 4 per well, with 0% (G-0%), 0.5% (G-0.5%) or 1% (G-1%) of sodium alginate were cultured in M199 with FSH (100 ng/mL), EGF (100 ng/mL) and IGF-I (100 ng/mL) for 7 days at 37°C, 5% CO2 and 99% humidity. Culture medium was replaced every 48 h and samples were stored at -20°C until ELISA of steroid hormones. Morphometric evaluation of follicles was performed every 24 h. G-0% follicles showed granulosa cell migration away from the oocyte and disrupted morphology, whereby they reached apparently larger diameters (203.70 ± 5.82 μm; p < .05) than G-0.5% and G-1% follicles (157.89 ± 8.47 μm and 95.23 ± 1.67 μm, respectively) which maintained three-dimensional organization, being larger in G-0.5% than in G-1% (p < .05). G-0.5% follicles attained the multi-layer preantral follicle stage on day 7 of culture, whereas G-1% follicles underwent progressive atresia. On day 6, steroid concentrations were higher (p < .05) in G-0% than in G-1%: 60 ± 19 vs 0.88 ± 0.32 pg/mL oestradiol; 2.6 ± 0.84 vs 0.04 ± 0.02 ng/mL progesterone; 1.3 ± 0.22 vs 0.61 ± 0.04 ng/mL testosterone and 1.6 ± 0.54 vs 0.22 ± 0.07 ng/mL androstenedione respectively. Steroid concentrations in G-0.5% were comprised between those of G-0% and G-1% (p > .05). In conclusion, two-layer cat preantral follicles encapsulated in 0.5% alginate cultured in medium containing FSH, EGF and IGF-I can develop up to the multi-layer preantral stage in 7 days of culture, whereas follicles directly seeded on growth surface or encapsulated in 1% alginate lost their three-dimensional organization, and experienced regression with compromised steroidogenesis, respectively.
Collapse
Affiliation(s)
- M Fuertes-Recuero
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - A González-Gil
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - J C Fontanillas Pérez
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - I García-Cuenca Ariati
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - R A Picazo
- Department of Physiology, College of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
28
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
29
|
Gokce S, Herkiloglu D, Cevik O, Turan V. Evaluation of Intrafollicular Syndecan 1, Glypican 3, and Spermidine Levels in Women with Diminished Ovarian Reserve. Reprod Sci 2023; 30:569-575. [PMID: 36131221 DOI: 10.1007/s43032-022-01085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
We aimed to evaluate the levels of Spermidine, Syndecan 1, and Glypican 3 (GPC3) in the follicle fluid of women with diminished ovarian reserve (DOR) and to examine the relationship of these markers with the number of embryos and clinical pregnancy. A total of 27 women with DOR and 34 women with normal ovarian reserve who underwent in vitro fertilization procedure were included in this prospectively designed study. Spermidine, Syndecan 1, and GPC3 levels were studied in the follicle fluid samples taken from the women at the time of oocyte retrieval by ELISA method, and their relations with the cycle outcomes were examined. The mean age was found as 38.1 ± 7.4 years in the DOR group and 35.1 ± 5.2 years in the control group (p = 0.027). When adjusted for age and body mass index, while the median Spermidine level was significantly higher (p < 0.001), both Syndecan 1 (p < 0.001) and GPC3 (p = 0.006) were significantly lower in the DOR group compared with control group. The cut-off value of Spermidine for clinical pregnancy prediction was found as 74.08 ng/mL with 78.9% sensitivity and 57.1% specificity [OR: 5 (95% CI: 1.4-17.6); AUC: 0.621; p = 0.138], while it was 0.96 ng/mL with 84.2% sensitivity and 59.5% specificity [OR: 7.8 (95% CI: 2-31.1); AUC: 0.701; p = 0.004] for GP3 and 1.15 ng/mL with 78.9 sensitivity and 57.1% specificity [OR: 5 (95% CI: 1.4-17.6); AUC: 0.680; p = 0.009] for Syndecan 1. Intrafollicular spermidine, Syndecan 1, and GPC3 levels may have a role in ovarian aging. Further randomized controlled studies in a larger population are needed for the relationship of these markers with cycle and pregnancy outcomes.
Collapse
Affiliation(s)
- Sefik Gokce
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyil University, Istanbul, Turkey.
| | - Dilsad Herkiloglu
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyil University, Istanbul, Turkey
| | - Ozge Cevik
- Department of Biochemistry, Aydin Adnan Menderes University, Aydin, Turkey
| | - Volkan Turan
- Istanbul Health and Technology University School of Medicine, İstanbul, Turkey
| |
Collapse
|
30
|
Ferrarini MG, Vallier A, Dell’Aglio E, Balmand S, Vincent-Monégat C, Debbache M, Maire J, Parisot N, Zaidman-Rémy A, Heddi A, Rebollo R. Endosymbiont-containing germarium transcriptional survey in a cereal weevil depicts downregulation of immune effectors at the onset of sexual maturity. Front Physiol 2023; 14:1142513. [PMID: 37035680 PMCID: PMC10073668 DOI: 10.3389/fphys.2023.1142513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Insects often establish long-term relationships with intracellular symbiotic bacteria, i.e., endosymbionts, that provide them with essential nutrients such as amino acids and vitamins. Endosymbionts are typically confined within specialized host cells called bacteriocytes that may form an organ, the bacteriome. Compartmentalization within host cells is paramount for protecting the endosymbionts and also avoiding chronic activation of the host immune system. In the cereal weevil Sitophilus oryzae, bacteriomes are present as a single organ at the larval foregut-midgut junction, and in adults, at the apex of midgut mesenteric caeca and at the apex of the four ovarioles. While the adult midgut endosymbionts experience a drastic proliferation during early adulthood followed by complete elimination through apoptosis and autophagy, ovarian endosymbionts are maintained throughout the weevil lifetime by unknown mechanisms. Bacteria present in ovarian bacteriomes are thought to be involved in the maternal transmission of endosymbionts through infection of the female germline, but the exact mode of transmission is not fully understood. Here, we show that endosymbionts are able to colonize the germarium in one-week-old females, pinpointing a potential infection route of oocytes. To identify potential immune regulators of ovarian endosymbionts, we have analyzed the transcriptomes of the ovarian bacteriomes through young adult development, from one-day-old adults to sexually mature ones. In contrast with midgut bacteriomes, immune effectors are downregulated in ovarian bacteriomes at the onset of sexual maturation. We hypothesize that relaxation of endosymbiont control by antimicrobial peptides might allow bacterial migration and potential oocyte infection, ensuring endosymbiont transmission.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Agnès Vallier
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Elisa Dell’Aglio
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Séverine Balmand
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | | | - Mériem Debbache
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Justin Maire
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Nicolas Parisot
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Rita Rebollo
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
- *Correspondence: Rita Rebollo,
| |
Collapse
|
31
|
Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN. A bioengineered in situ ovary (ISO) supports follicle engraftment and live-births post-chemotherapy. J Tissue Eng 2023; 14:20417314231197282. [PMID: 38029018 PMCID: PMC10656812 DOI: 10.1177/20417314231197282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aimon Iftikhar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis L Nolfi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziyu Xian
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srujan Dadi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary W Case
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah R Steimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Fondazione RiMED, Palermo, Italy
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022; 10:1038107. [PMID: 36531957 PMCID: PMC9756970 DOI: 10.3389/fcell.2022.1038107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 08/25/2023] Open
Abstract
The formation of functional eggs (oocyte) in ovarian follicles is arguably one of the most important events in early mammalian development since the oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. While past studies have identified many genes that are critical to normal ovarian development and function, recent studies have highlighted the role of mechanical force in shaping folliculogenesis. In this review, we discuss the underlying mechanobiological principles and the force-generating cellular structures and extracellular matrix that control the various stages of follicle development. We also highlight emerging techniques that allow for the quantification of mechanical interactions and follicular dynamics during development, and propose new directions for future studies in the field. We hope this review will provide a timely and useful framework for future understanding of mechano-signalling pathways in reproductive biology and diseases.
Collapse
Affiliation(s)
- Arikta Biswas
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Beltran AS, King KE, La J, Reipolska A, Young KA. Short communication: Photoperiod impacts ovarian extracellular matrix and metabolic gene expression in Siberian hamsters. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111302. [PMID: 36041709 PMCID: PMC11285357 DOI: 10.1016/j.cbpa.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cyclicity is variable in adult Siberian hamsters (Phodopus sungorus), who respond to long breeding season photoperiods with follicle development and ovulation, while short photoperiods typical of the non-breeding season induce gonadal atrophy. Recent RNAseq results identified ovarian matrix components and regulators of metabolism as differentially regulated by photoperiod; however, the impact of photoperiod across a full cycle of ovarian regression and recrudescence had not been explored for additional regulators of ovarian metabolism and extracellular matrix components. We hypothesized that matrix and metabolism-related genes would be expressed differentially across photoperiods that mimic breeding and non-breeding season daylengths. Hamsters were housed in one of four photoperiod groups: long day (16 h of light per day: 8 h of dark; LD, controls), short day regressed (8 L:16D; SD, regressed), and females exposed to SD then transferred to LD to stimulate return of ovarian function for 2 (early recrudescence), or 8 (late recrudescence) weeks. Plasma leptin concentrations along with expression of ovarian versican and liver-receptor homolog-1/Nr582 mRNA decreased in SD compared to LD and late recrudescence, while vimentin mRNA expression peaked in early and late recrudescence. Ovarian expression of fibronectin and extracellular matrix protein-1 was low in LD ovaries and increased in regressed and recrudescing groups. Expression of hyaluronidase-2, nectin-2, liver-X receptors-α and-β, and adiponectin mRNA peaked in late recrudescence, with no changes noted for adiponectin receptor-1 and -2. The results offer a first look at the parallels between expression of these genes and the dynamic remodeling that occurs during ovarian regression and recrudescence.
Collapse
Affiliation(s)
- Arianna S Beltran
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Kristen E King
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Josephine La
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Anastasiia Reipolska
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States of America.
| |
Collapse
|
34
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
35
|
Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, Urban N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Advanced bioengineering of female germ cells to preserve fertility. Biol Reprod 2022; 107:1177-1204. [PMID: 35947985 PMCID: PMC10144627 DOI: 10.1093/biolre/ioac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Oogenesis and folliculogenesis are considered as complex and species-specific cellular differentiation processes, which depend on the in vivo ovarian follicular environment and endocrine cues. Considerable efforts have been devoted to driving the differentiation of female primordial germ cells toward mature oocytes outside of the body. The recent experimental attempts have laid stress on offering a suitable microenvironment to assist the in vitro folliculogenesis and oogenesis. Despite developing a variety of bioengineering techniques and generating functional mature gametes through in vitro oogenesis in earlier studies, we still lack knowledge of appropriate microenvironment conditions for building biomimetic culture systems for female fertility preservation. Therefore, this review paper can provide a source for a large body of scientists developing cutting-edge in vitro culture systems for female germ cells or setting up the next generation of reproductive medicine as feasible options for female infertility treatment. The focal point of this review outlines advanced bioengineering technologies such as 3D biofabricated hydrogels/scaffolds and microfluidic systems utilized with female germlines for fertility preservation through in vitro folliculogenesis and oogenesis.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Hadi Norahan
- School of Engineering and Sciences, Tecnologico de Monterrey Unviersity, Monterrey, NL, Mexico
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Nadine Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
RNA-seq identifies differentially expressed genes involved in csal1 overexpression in granulosa cells of prehierarchical follicles in Chinese Dagu hens. Poult Sci 2022; 102:102310. [PMID: 36442307 PMCID: PMC9706644 DOI: 10.1016/j.psj.2022.102310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The transcription factor csal1 is an important molecule that plays a critical regulatory function in ovarian follicle development, as confirmed by our previous data. However, the candidate genes of csal1 and its regulatory mechanism remain poorly understood in the granulosa cells (GCs) of chicken prehierarchical follicles (PFs). Six transcriptomes of csal1 and empty vector were analyzed in Chinese Dagu hens by RNA sequencing. Six cDNA libraries were constructed, with more than 42 million clean reads and 16,779 unigenes. Of these 16,779 unigenes, 2,762 differentially expressed genes (DEGs) were found in GCs, including 1,605 upregulated and 1,157 downregulated unigenes. Fourteen genes, including BMP5, TACR2, AMH, PLAG1, MYOD1, BOP1, SIPA1, NOTCH1, BCL2L1, SOX9, ADGRA2, WNT5A, SLC7A11, and GATAD2B, were related to GC proliferation and differentiation, hormone production, ovarian follicular development, regulation of reproductive processes, and signaling pathways in the PFs. Further analysis demonstrated the DEGs in GCs of ovarian follicles were enriched in neuroactive ligand-receptor interaction, cell adhesion molecules, and pathways related to cytochrome P450, indicating a critical function for csal1 in the generation of egg-laying features by controlling ovarian follicle development. For the first time, the current study represents the transcriptome analysis with ectopic csal1 expression. These findings provide significant evidence for investigating the molecular mechanism by which csal1 controls PF development in the hen ovary.
Collapse
|
37
|
Biomaterials as regenerative medicine in Poly Cystic Ovarian Syndrome (PCOS) treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Transcriptomics and Metabolomics Analysis of the Ovaries of High and Low Egg Production Chickens. Animals (Basel) 2022; 12:ani12162010. [PMID: 36009602 PMCID: PMC9404446 DOI: 10.3390/ani12162010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The ovarian tissues of different breeds of hens during egg production were investigated through transcriptomics and metabolomics to provide a more comprehensive understanding of the molecular mechanisms of the ovary during egg production. Four genes involved in egg production were predicted by the transcriptome, including P2RX1, INHBB, VIPR2, and FABP3, and several close metabolites associated with reproduction were identified in the metabolome, including 17α-hydroxyprogesterone, iloprost, spermidine and adenosine. Correlation analysis of specific differential genes and differential metabolites identified important gene-metabolite pairs VIPR2–Spermidine and P2RX1–Spermidine in the reproductive process. Abstract Egg production is a pivotal indicator for evaluating the fertility of poultry, and the ovary is an essential organ for egg production and plays an indispensable role in poultry production and reproduction. In order to investigate different aspects of egg production mechanisms in different poultry, in this study we performed a metabolomic analysis of the transcriptomic combination of the ovaries of two chicken breeds, the high-production Ninghai indigenous chickens and the low-production Wuliangshan black-boned chickens, to analyze the biosynthesis and potential key genes and metabolic pathways in the ovaries during egg production. We predicted four genes in the transcriptomic that are associated with egg production, namely P2RX1, INHBB, VIPR2, and FABP3, and identified three important pathways during egg production, “Calcium signaling pathway”, “Neuroactive ligand–receptor interaction” and “Cytokine–cytokine receptor interaction”, respectively. In the metabolomic 149 significantly differential metabolites were identified, 99 in the negative model and 50 in the positive model, of which 17α-hydroxyprogesterone, iloprost, spermidine, and adenosine are important metabolites involved in reproduction. By integrating transcriptomics and metabolomics, the correlation between specific differential genes and differential metabolites identified important gene-metabolite pairs “VIPR2-Spermidine” and “P2RX1-Spermidine” in egg production. In conclusion, these data provide a better understanding of the molecular differences between the ovaries of low- and high-production hens and provide a theoretical basis for further studies on the mechanics of poultry egg production.
Collapse
|
39
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
40
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
41
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
42
|
Chang CL, Chin TH, Hsu YC, Hsueh AJ. Whole ovary laparoscopic incisions improve hormonal response and fertility in extremely poor ovarian response patients. J Minim Invasive Gynecol 2022; 29:905-914. [PMID: 35489579 DOI: 10.1016/j.jmig.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
STUDY OBJECTIVE Recent findings have shown mechanical fragmentation of ovarian cortex and ovarian drilling could promote follicle growth in patients with premature ovarian insufficiency (POI) and polycystic ovarian syndrome, respectively. A common element shared by these treatments is the mechanical disturbance of ovarian extracellular matrix (ECM) tissues. We thus hypothesized a simplified whole ovary laparoscopic incision (WOLI) procedure may provide the intrinsic stimuli needed to activate resting follicles in extremely poor ovarian response (EPOR) patients who had negligible chance of becoming pregnant with their own oocytes via modern IVF practice. DESIGN Retrospective pilot study SETTING: The study was conducted in a research medical center in Taiwan. PATIENTS Women who had multiple canceled ovarian stimulation cycles due to the lack of follicle growth were recruited. A total of 6 EPOR patients received the WOLI procedure, which covers the whole surface of ovaries, in 2015-2017. INTERVENTIONS After receiving an outpatient WOLI procedure, ovarian response and follicle growth were monitored for 90 days with or without gonadotropin stimulation. Embryo quality and clinical outcomes were analyzed. MEASUREMENTS AND MAIN RESULTS Following the WOLI treatment, 5 out of 6 patients had significant increases in serum estradiol level and improved follicle growth (p = 0.000537). Multiple oocytes were retrieved from each of these patients, and it led to thawed embryo transfer cycles in four patients (p = 0.010). On average, the duration from the WOLI procedure to the first ovum pickup was 24 days (11-58 days). Following embryo transfer, two patients became pregnant and delivered healthy babies. Two other patients received embryo transfer, and one led to a chemical pregnancy. One patient had cryopreserved embryos with pending transfer. CONCLUSION The standardizable WOLI procedure restored hormonal responses in a majority of EPOR patients. Further validation of this novel and yet simple laparoscopic procedure, which requires only one laparoscopic surgery, may provide a practical option to reactivate the aging ovarian environment in EPOR and POI patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan.
| | - Tzu Hsuan Chin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan
| | - Ya Chiung Hsu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, 5 Fu-Shin Street, Kweishan, Taoyuan, Taiwan
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
43
|
Ovarian Transcriptomic Analysis of Ninghai Indigenous Chickens at Different Egg-Laying Periods. Genes (Basel) 2022; 13:genes13040595. [PMID: 35456401 PMCID: PMC9027236 DOI: 10.3390/genes13040595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Egg production is an essential indicator of poultry fertility. The ovary is a crucial organ involved in egg production; however, little is known about the key genes and signaling pathways involved in the whole egg-laying cycle of hens. In order to explore the mechanism of egg production at different stages of the egg-laying process, ovarian tissues from four chickens were randomly selected for transcriptome analysis at each of the three ages (145 d, 204 d, and 300 d in the early, peak, and late stages of egg laying). A total of 12 gene libraries were constructed, and a total of 8433 differential genes were identified from NH145d vs. NH204d, NH145d vs. NH300d and NH300d vs. NH204d (Ninghai 145-day-old, Ninghai 204-day-old, and Ninghai 300-day-old), with 1176, 1653 and 1868 up-regulated genes, and 621, 1955 and 1160 down-regulated genes, respectively. In each of the two comparison groups, 73, 1004, and 1030 differentially expressed genes were found to be co-expressed. We analyzed the differentially expressed genes and predicted nine genes involved in egg production regulation, including LRP8, BMP6, ZP4, COL4A1, VCAN, INHBA, LOX, PTX3, and IHH, as well as several essential egg production pathways, such as regulation adhesion molecules (CAMs), calcium signaling pathways, neuroactive ligand–receptor interaction, and cytokine–cytokine receptor interaction. Transcriptional analysis of the chicken ovary during different phases of egg-lay will provide a useful molecular basis for study of the development of the egg-laying ovary.
Collapse
|
44
|
Ouni E, Nedbal V, Da Pian M, Cao H, Haas KT, Peaucelle A, Van Kerk O, Herinckx G, Marbaix E, Dolmans MM, Tuuri T, Otala M, Amorim CA, Vertommen D. Proteome-wide and matrisome-specific atlas of the human ovary computes fertility biomarker candidates and open the way for precision oncofertility. Matrix Biol 2022; 109:91-120. [PMID: 35341935 DOI: 10.1016/j.matbio.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Our modern era is witnessing an increasing infertility rate worldwide. Although some of the causes can be attributed to our modern lifestyle (e.g., persistent organic pollutants, late pregnancy), our knowledge of the human ovarian tissue has remained limited and insufficient to reverse the infertility statistics. Indeed, all efforts have been focused on the endocrine and cellular function in support of the cell theory that dates back to the 18th century, while the human ovarian matrisome is still under-described. Hereby, we unveil the extracellular side of the story during different periods of the ovary life, demonstrating that follicle survival and development, and ultimately fertility, would not be possible without its involvement. We examined the human ovarian matrisome and described its remodeling from prepuberty until menopause, creating the first ovarian proteomic codex. Here, we confidently identified and quantified 98 matrisome proteins present in the three ovary groups. Among them, 26 were expressed differently among age groups, delineating a peculiar matrisomal fingerprint at each stage. Such proteins could be potential biomarkers phenotyping ovarian ECM at each age phase of female reproductive life. Beyond proteomics, our study presents a unique approach to understanding the data and depicting the spatiotemporal ECM-intracellular signaling networks and remodeling with age through imaging, advanced text-mining based on natural language processing technology, machine learning, and data sonification. Our findings provide essential context for healthy ovarian physiology, identifying and characterizing disease states, and recapitulating physiological tissues or development in vitro. This comprehensive proteomics analysis represents the ovarian proteomic codex and contributes to an improved understanding of the critical roles that ECM plays throughout the ovarian life span.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Valerie Nedbal
- Global Technical Enablement, SAS Institute GmbH, 69118 Heidelberg, Germany
| | | | | | - Kalina T Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Olivier Van Kerk
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Gaetan Herinckx
- PHOS Unit & MASSPROT platform de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Etienne Marbaix
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | - Marjut Otala
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Didier Vertommen
- PHOS Unit & MASSPROT platform de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
45
|
Wadood AA, Pu L, Shahzad Q, Waqas M, Yu L, Liao Y, Rehman SU, Chen D, Huang Z, Lu Y. Proteomic analysis identifies potential markers in small white and small yellow follicle development in chickens. Reprod Fertil Dev 2022; 34:516-525. [PMID: 35296374 DOI: 10.1071/rd21184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Extensive knowledge of follicular development is imperative for improving egg production in chickens. The functional role of follicles to produce oocytes (eggs) is well recognised; however, specific markers associated with follicle development have been poorly explored. Therefore, a tandem mass tag based proteomic technique was used to identify the status of the proteome of small white follicles (1-4mm) and small yellow follicles (6-8mm). Analysis of differentially expressed proteins (DEP, Fold Change>1.2, P -value<0.05) demonstrated a total of 92 proteins (n =92), of which 35 (n =35) were upregulated and 57 were downregulated. DEP were further used for gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathways. The GO analysis found that DEP were mainly associated with the RNA metabolic process, cellular component organisation, peptide biosynthetic process and protein folding, thereby suggesting a key role in the follicle development process. Kyoto Encyclopedia of Genes and Genomes enrichment pathway analysis of the DEP substantiated the findings of GO analysis and described that DEP are involved in regulation of the cytoskeleton, carbon metabolism and amino acid biosynthesis. The validation of proteomic data through real-time quantitative polymerase chain reaction suggested HSPA8, HSPA2, SOD1 and FKPB3 as potential markers of small white and small yellow follicle development. This study demonstrates an understanding of proteome dynamics and represents the most comprehensive information on the entire Guangxi Ma chicken follicular proteome.
Collapse
Affiliation(s)
- Armughan Ahmed Wadood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Waqas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lintian Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dongyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zhenwen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
46
|
Zheng X, Zheng Y, Qin D, Yao Y, Zhang X, Zhao Y, Zheng C. Regulatory Role and Potential Importance of GDF-8 in Ovarian Reproductive Activity. Front Endocrinol (Lausanne) 2022; 13:878069. [PMID: 35692411 PMCID: PMC9178251 DOI: 10.3389/fendo.2022.878069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Growth differentiation factor-8 (GDF-8) is a member of the transforming growth factor-beta superfamily. Studies in vitro and in vivo have shown GDF-8 to be involved in the physiology and pathology of ovarian reproductive functions. In vitro experiments using a granulosa-cell model have demonstrated steroidogenesis, gonadotrophin responsiveness, glucose metabolism, cell proliferation as well as expression of lysyl oxidase and pentraxin 3 to be regulated by GDF-8 via the mothers against decapentaplegic homolog signaling pathway. Clinical data have shown that GDF-8 is expressed widely in the human ovary and has high expression in serum of obese women with polycystic ovary syndrome. GDF-8 expression in serum changes dynamically in patients undergoing controlled ovarian hyperstimulation. GDF-8 expression in serum and follicular fluid is correlated with the ovarian response and pregnancy outcome during in vitro fertilization. Blocking the GDF-8 signaling pathway is a potential therapeutic for ovarian hyperstimulation syndrome and ovulation disorders in polycystic ovary syndrome. GDF-8 has a regulatory role and potential importance in ovarian reproductive activity and may be involved in folliculogenesis, ovulation, and early embryo implantation.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongxu Qin
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Caihong Zheng, ; Yunchun Zhao,
| |
Collapse
|
47
|
Guo J, Mo J, Qi Q, Peng J, Qi G, Kanerva M, Iwata H, Li Q. Prediction of adverse effects of effluents containing phenolic compounds in the Ba River on the ovary of fish (Hemiculter leucisculus) using transcriptomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149554. [PMID: 34467927 DOI: 10.1016/j.scitotenv.2021.149554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to evaluate the endocrine disrupting effects on the ovarian development of sharpbelly (Hemiculter leucisculus) caused by effluents containing phenolic compounds. This was achieved using integrated transcriptomic and metabolomic analyses, along with histopathological examinations. Sharpbelly, an indigenous freshwater fish widely distributed in East Asia, were collected by pole fishing from three sampling sites in the Ba River. These sampling sites include a mid-stream site near a wastewater outfall and a reference site located upstream and a far field comparison site located downstream. In sharpbelly collected near the wastewater discharge, the oocyte development was activated, compared to the other two sites. Histopathological alterations in the fish ovaries were likely due to the upregulated steroid hormone biosynthesis process, as suggested by the differentially expressed genes (e.g., hsd3b, hsd17b1) and differentially accumulated metabolites (e.g., pregnenolone). Additionally, under the stress of effluents containing phenolic compounds, genes related to the signaling pathways for oxidative phosphorylation and leukocyte transendothelial migration were dysregulated, suggesting the potential induction of inflammation and several ovarian diseases. Overall, these findings suggest that effluents containing phenolic compounds influence ovary development and reproductive function of female sharpbelly. Whether there is any resulting dysfunction of folliculogenesis, abnormality of ovulation, production of premature eggs and/or potential induction of ovarian cancers remains to be determined by further studies, for a better evaluation on effluents containing phenolic compounds to the fish fertility and the health of their offspring, and even the stability of the wild fish population. Notably, the integration of transcriptomics and metabolomics can complement the routine chemical analysis to comprehensively monitor the effects of wastewater treatment plant effluents on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Qianju Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Guizeng Qi
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Ehime prefecture, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
48
|
Sun X, Chen X, Zhao J, Ma C, Yan C, Liswaniso S, Xu R, Qin N. Transcriptome comparative analysis of ovarian follicles reveals the key genes and signaling pathways implicated in hen egg production. BMC Genomics 2021; 22:899. [PMID: 34911438 PMCID: PMC8672471 DOI: 10.1186/s12864-021-08213-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023] Open
Abstract
Background Ovarian follicle development plays an important role in determination of poultry egg production. The follicles at the various developmental stages possess their own distinct molecular genetic characteristics and have different biological roles in chicken ovary development and function. In the each stage, several genes of follicle-specific expression and biological pathways are involved in the vary-sized follicular development and physiological events. Identification of the pivotal genes and signaling pathways that control the follicular development is helpful for understanding their exact regulatory functions and molecular mechanisms underlying egg-laying traits of laying hens. Results The comparative mRNA transcriptomic analysis of ovarian follicles at three key developmental stages including slow growing white follicles (GWF), small yellow follicles (SYF) of recruitment into the hierarchy, and differentiated large yellow follicles (LYF), was accomplished in the layers with lower and higher egg production. Totally, 137, 447, and 229 of up-regulated differentially expressed genes (DEGs), and 99, 97, and 157 of down-regulated DEGs in the GWF, SYF and LYF follicles, including VIPR1, VIPR2, ADRB2, and HSD17B1 were identified, respectively. Moreover, NDUFAB1 and GABRA1 genes, two most promising candidates potentially associated with egg-laying performance were screened out from the 13 co-expressed DEGs in the GWF, SYF and LYF samples. We further investigated the biological effects of NDUFAB1 and GABRA1 on ovarian follicular development and found that NDUFAB1 promotes follicle development by stimulating granulosa cell (GC) proliferation and decreasing cell apoptosis, increases the expression of CCND1 and BCL-2 but attenuates the expression of caspase-3, and facilitates steroidogenesis by enhancing the expression of STAR and CYP11A1. In contrast, GABRA1 inhibits GC proliferation and stimulates cell apoptosis, decreases the expression of CCND1, BCL-2, STAR, and CYP11A1 but elevates the expression of caspase-3. Furthermore, the three crucial signaling pathways such as PPAR signaling pathway, cAMP signaling pathway and neuroactive ligand-receptor interaction were significantly enriched, which may play essential roles in ovarian follicle growth, differentiation, follicle selection, and maturation. Conclusions The current study provided new molecular data for insight into the regulatory mechanism underlying ovarian follicle development associated with egg production in chicken. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08213-w.
Collapse
Affiliation(s)
- Xue Sun
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxia Chen
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Ma
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chunchi Yan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Simushi Liswaniso
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. .,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ning Qin
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. .,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
49
|
Aloe vera increases collagen fibres in extracellular matrix and mRNA expression of peroxiredoxin-6 in bovine ovarian cortical tissues cultured in vitro. ZYGOTE 2021; 30:365-372. [PMID: 34851249 DOI: 10.1017/s0967199421000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro culture of ovarian tissue containing primordial follicles is an important tool to study the initiation of follicular populations and to develop efficient culture systems to support in vitro follicle growth. Considering that in vitro culture favours oxidative stress, it is very important to supplement culture medium with antioxidant substances such as Aloe vera extract. This study aims to evaluate the effects of different concentrations of Aloe vera on the distribution of collagen fibres in the extracellular matrix, follicular activation, development and survival in bovine ovarian cortical tissues cultured in vitro, as well as on expression of mRNAs for antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 6 (PRDX6) and glutathione peroxidase 1 (GPX1)]. To this end, ovarian cortical tissues were cultured for 6 days in α-MEM alone or supplemented with different concentrations of Aloe vera extract (1.0, 5.0, 10.0 or 50.0%). After culture, fragments were fixed and processed histologically to evaluate follicular morphology and activation, as well as the extracellular matrix by staining with picrosirius red. The levels of mRNA for SOD, CAT, PRDX6 and GPX1 in cultured ovarian tissues were evaluated by real-time polymerase chain reaction (PCR). Ovarian tissues cultured with 10.0 or 50.0% Aloe vera had higher percentages of collagen fibres than tissues cultured in control medium. A significant increase in developing follicles was observed in ovarian tissues cultured in α-MEM alone or supplemented with 10% Aloe vera when compared with fresh control or tissues cultured with 1.0% Aloe vera. Presence of Aloe vera did not influence the percentage of morphologically normal follicles when compared with control medium. Ovarian tissues cultured with 50.0% Aloe vera had higher percentages of morphologically normal follicles than those cultured with 10.0% Aloe vera. Furthermore, 10% Aloe vera significantly increased mRNA levels for PRDX6. In conclusion, 10.0% Aloe vera improves extracellular matrix distribution in cultured tissues and increases the expression of mRNA for PRDX6 after 6 days in vitro.
Collapse
|
50
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|