1
|
Ríos Colombo NS, Paul Ross R, Hill C. Synergistic and off-target effects of bacteriocins in a simplified human intestinal microbiome: implications for Clostridioides difficile infection control. Gut Microbes 2025; 17:2451081. [PMID: 39817466 PMCID: PMC11740676 DOI: 10.1080/19490976.2025.2451081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Clostridioides difficile is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against C. difficile. We engineered Lactococcus lactis strains to produce these bacteriocins individually or in combination, aiming to enhance their activity against C. difficile. Our results show that lacticin 3147 and pediocin PA-1 display synergy, resulting in higher anti-C. difficile activity. We then evaluated the effects of these L. lactis strains in a Simplified Human Intestinal Microbiome (SIHUMI-C) model, a bacterial consortium of eight diverse human gut species that includes C. difficile. After introducing the bacteriocin-producing L. lactis strains into SIHUMI-C, samples were collected over 24 hours, and the genome copies of each species were assessed using qPCR. Contrary to expectations, the combined bacteriocins increased C. difficile levels in the consortium despite showing synergy against C. difficile in agar-based screening. This can be rationally explained by antagonistic inter-species interactions within SIHUMI-C, providing new insights into how broad-spectrum antimicrobials might fail to control targeted species in complex gut microbial communities. These findings highlight the need to mitigate off-target effects in complex gut microbiomes when developing bacteriocin-based therapies with potential clinical implications for infectious disease treatment.
Collapse
Affiliation(s)
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Gajic I, Tomic N, Lukovic B, Jovicevic M, Kekic D, Petrovic M, Jankovic M, Trudic A, Mitic Culafic D, Milenkovic M, Opavski N. A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics (Basel) 2025; 14:221. [PMID: 40149033 PMCID: PMC11939824 DOI: 10.3390/antibiotics14030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, 11000 Belgrade, Serbia;
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, 11040 Belgrade, Serbia;
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Anika Trudic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, 21204 Novi Sad, Serbia
| | | | - Marina Milenkovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| |
Collapse
|
3
|
Hoxha T, Youssef M, Huang V, Tandon P. Inflammatory Bowel Disease and Breastfeeding: A Narrative Review. Inflamm Bowel Dis 2025; 31:210-219. [PMID: 38439613 DOI: 10.1093/ibd/izae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 03/06/2024]
Abstract
Inflammatory bowel disease (IBD) frequently affects women of childbearing age who may consider breastfeeding. Although breastfeeding has numerous benefits, there remain concerns regarding the safety of breastfeeding among women with IBD. Breastfeeding is important in developing the immune system of infants and has been shown to protect against the development of IBD. The risk of developing an increase in disease activity postpartum is the same regardless of breastfeeding status. Most IBD medications are also considered safe in breastfeeding and have no major risks to infants. Despite this, breastfeeding rates remain low among women with IBD, mostly due to concerns about the safety of IBD therapy with breastfeeding. Many women self-discontinue their IBD medications to breastfeed, and there is often uncertainty among health professionals to make recommendations about therapy. Dedicated IBD clinics can greatly support mothers during pregnancy and breastfeeding periods to enhance their knowledge, optimize their medication adherence, and improve their postpartum outcomes. This review aims to provide the most recent evidence-based literature regarding the safety of breastfeeding in women with IBD and the current recommendations about medical therapies with breastfeeding.
Collapse
Affiliation(s)
- Tedi Hoxha
- Division of Internal Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Youssef
- Division of Internal Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vivian Huang
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Parul Tandon
- Division of Gastroenterology and Hepatology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Sipos D, Varga A, Kappéter Á, Halda-Kiss B, Kása P, Pál S, Kocsis B, Péterfi Z. Encapsulation protocol for fecal microbiota transplantation. Front Cell Infect Microbiol 2024; 14:1424376. [PMID: 38988813 PMCID: PMC11233434 DOI: 10.3389/fcimb.2024.1424376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Clostridioides difficile infections (CDI) continue to pose a challenge for clinicians. Fecal microbiota transplantation (FMT) is an effective treatment option in CDI. Furthermore, recent and ongoing studies suggest potential benefits of FMT in other diseases as well. Methods We would like to present a novel protocol for encapsulation of lyophilized fecal material. Our method provides with better compliance as well as improved flexibility, storage and safety. Results FMT was conducted in 28 patients with an overall success rate of 82,14% using apsules containing lyophilized stool. 16 of patients were given capsules with lessened bacteria counts. The success rate in this group was 93,75%. Discussion The results highlight the still unanswered questions about the mechanism of action and contribute to a wider use of FMT in the clinical praxis and in research.
Collapse
Affiliation(s)
- Dávid Sipos
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Ágnes Kappéter
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Bernadett Halda-Kiss
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Péter Kása
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Szilárd Pál
- Institute of Pharmaceutical Technology and Biopharmacy, University of Pécs Faculty of Pharmacy, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Zoltán Péterfi
- 1st Department of Internal Medicine - Department of Infectology, University of Pécs Clinical Centre, Pécs, Hungary
| |
Collapse
|
5
|
Tanhaei MD, Demashkieh L, Noori O, Eupierre P. Complex Management of a Geriatric Patient With Multimorbidity: A Case Study. Cureus 2024; 16:e54604. [PMID: 38384866 PMCID: PMC10880871 DOI: 10.7759/cureus.54604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 02/23/2024] Open
Abstract
Geriatric patients' distinct physiological responses to diseases and treatments, combined with multimorbidity and polypharmacy, make their care highly challenging. This case study examines the complex management of a 77-year-old female with multiple comorbidities, focusing on the primary issue of splenic hematoma leading to anemia. It highlights the importance of a multidisciplinary approach in geriatric care. The care she received underscores the necessity of ongoing supervision through the Bridge Model of Transitional Care, family engagement in the care process, and a customized, interdisciplinary approach to care. The conclusion of this case has implications for geriatric medicine, primary care, and specialty care, and it also influences strategies to help older adults maintain their functional status and quality of life.
Collapse
Affiliation(s)
- Martin D Tanhaei
- Biomedical Engineering, University of California, Irvine, Irvine, USA
- Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- School of Medicine, St. George's University, True Blue, GRD
| | | | | | - Peter Eupierre
- Internal Medicine, Loyola University Medical Center/Gottlieb Memorial Hospital, River Forest, USA
| |
Collapse
|
6
|
Raeisi H, Azimirad M, Asadi-Sanam S, Asadzadeh Aghdaei H, Yadegar A, Zali MR. The anti-inflammatory and anti-apoptotic effects of Achillea millefolium L. extracts on Clostridioides difficile ribotype 001 in human intestinal epithelial cells. BMC Complement Med Ther 2024; 24:37. [PMID: 38218845 PMCID: PMC10790267 DOI: 10.1186/s12906-024-04335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is one of the most common health care-acquired infections. The dramatic increase in antimicrobial resistance of C. difficile isolates has led to growing demand to seek new alternative medicines against CDI. Achillea millefolium L. extracts exhibit strong biological activity to be considered as potential therapeutic agents. In this work, the inhibitory effects of A. millefolium, its decoction (DEC) and ethanol (ETOH) extracts, were investigated on the growth of C. difficile RT001 and its toxigenic cell-free supernatant (Tox-S) induced inflammation and apoptosis. METHODS Phytochemical analysis of extracts was performed by HPLC and GC analysis. The antimicrobial properties of extracts were evaluated against C. difficile RT001. Cell viability and cytotoxicity of Caco-2 and Vero cells treated with various concentrations of extracts and Tox-S were examined by MTT assay and microscopy, respectively. Anti-inflammatory and anti-apoptotic effects of extracts were assessed in Tox-S stimulated Caco-2 cells by RT-qPCR. RESULTS Analysis of the phytochemical profile of extracts revealed that the main component identified in both extracts was chlorogenic acid. Both extracts displayed significant antimicrobial activity against C. difficile RT001. Moreover, both extracts at concentration 50 µg/mL had no significant effect on cell viability compared to untreated cells. Pre-treatment of cells with extracts (50 µg/mL) significantly reduced the percentage of Vero cells rounding induced by Tox-S. Also, both pre-treatment and co-treatment of Tox-S stimulated Caco-2 cells with extracts significantly downregulated the gene expression level of IL-8, IL-1β, TNF-α, TGF-β, iNOS, Bax, caspase-9 and caspase-3 and upregulated the expression level of Bcl-2. CONCLUSION The results of the present study for the first time demonstrate the antimicrobial activity and protective effects of A. millefolium extracts on inflammatory response and apoptosis induced by Tox-S from C. difficile RT001 clinical strain in vitro. Further research is needed to evaluate the potential application of A. millefolium extracts as supplementary medicine for CDI prevention and treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Asadi-Sanam
- Medicinal Plants Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education & Extension Organization (AREEO), Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Walsh L, Lavelle A, O’Connor PM, Hill C, Ross RP. Comparison of fidaxomicin, thuricin CD, vancomycin and nisin highlights the narrow spectrum nature of thuricin CD. Gut Microbes 2024; 16:2342583. [PMID: 38722061 PMCID: PMC11085969 DOI: 10.1080/19490976.2024.2342583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.
Collapse
Affiliation(s)
- L. Walsh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - A. Lavelle
- School of Microbiology, University College Cork, Cork, Ireland
| | - PM O’Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Qian Y, Birhanu BT, Yang J, Ding D, Janardhanan J, Mobashery S, Chang M. A Potent and Narrow-Spectrum Antibacterial against Clostridioides difficile Infection. J Med Chem 2023; 66:13891-13899. [PMID: 37732641 PMCID: PMC11681498 DOI: 10.1021/acs.jmedchem.3c01249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Clostridioides difficile is an anaerobic Gram-positive bacterium that colonizes the gut of patients treated with broad-spectrum antibiotics. The normal gut microflora prevents C. difficile colonization; however, dysbiosis by treatment with broad-spectrum antibiotics causes recurrent C. difficile infection (CDI) in 25% of patients. There are no fully effective antibiotics for multiple recurrent CDIs. We report herein that oxadiazole antibiotics exhibit bactericidal activity against C. difficile vegetative cells. We screened a library of 75 oxadiazoles against C. difficile ATCC 43255. The findings from this collection served as the basis for the syntheses of an additional 58 analogs, which were tested against the same strain. We report a potent (MIC50 = 0.5 μg/mL and MIC90 = 1 μg/mL values for 101 C. difficile strains) and narrow-spectrum oxadiazole (3-(4-(cyclopentyloxy)phenyl)-5-(4-nitro-1H-imidazol-2-yl)-1,2,4-oxadiazole; compound 57), which is not active against common gut bacteria or other tested organisms. Compound 57 is selectively bactericidal against C. difficile and targets cell-wall synthesis.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Biruk T Birhanu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Rubio-Mendoza D, Martínez-Meléndez A, Maldonado-Garza HJ, Córdova-Fletes C, Garza-González E. Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:2525. [PMID: 37894183 PMCID: PMC10609348 DOI: 10.3390/microorganisms11102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10-30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm.
Collapse
Affiliation(s)
- Daira Rubio-Mendoza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Adrián Martínez-Meléndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico;
| | - Héctor Jesús Maldonado-Garza
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Carlos Córdova-Fletes
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| | - Elvira Garza-González
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (D.R.-M.); (H.J.M.-G.); (C.C.-F.)
| |
Collapse
|
10
|
Doar NW, Samuthiram SD. Qualitative Analysis of the Efficacy of Probiotic Strains in the Prevention of Antibiotic-Associated Diarrhea. Cureus 2023; 15:e40261. [PMID: 37440799 PMCID: PMC10335840 DOI: 10.7759/cureus.40261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/15/2023] Open
Abstract
Antibiotic-associated diarrhea is often managed by the withdrawal of the culprit antibiotics or the administration of alternative antibiotics when a Clostridium difficile infection (CDI) is suspected, an infection that tends to be the most common causative agent of the disease. Probiotics are also gaining popularity as alternative therapies, and it was hypothesized in this article that a Lactobacillus strain is the most efficacious probiotic for the prevention of antibiotic-associated diarrhea. This article conducted a literature review investigating the relative efficacy of the Lactobacillus, Bifidobacterium, and Saccharomyces probiotic strains as effective alternative therapies for antibiotic-associated diarrhea. The literature searched was from the PubMed database. The inclusion filters were: random control trials (RCTs), clinical trials, meta-analysis, last 10 years, full-text articles available in English, and all articles published in peer-reviewed journals. All three probiotic genera had strains that demonstrated significant efficacy in the prevention of antibiotic-associated diarrhea. However, Saccharomyces boulardii I-745 tends to outperform all the strains as the most effective and the one with the fewest, if any, adverse effects. Whenever probiotics are considered for the prevention of antibiotic-associated diarrhea (AAD) in both pediatric and adult patients, S. boulardii I-745 should probably be prioritized.
Collapse
Affiliation(s)
- Nyier W Doar
- Medicine, Interfaith Medical Center, New York, USA
| | | |
Collapse
|
11
|
Hu X, Dong R, Huang S, Zeng Y, Zhan W, Gao X, Tian D, Peng J, Xu J, Wang T, Zhang Y, Wang X, Zhang X, Liu J, Guang B, Yang T. CDBN-YGXZ, a Novel Small-Molecule Drug, Shows Efficacy against Clostridioides difficile Infection and Recurrence in Mouse and Hamster Infection Models. Antimicrob Agents Chemother 2023; 67:e0170422. [PMID: 37052498 PMCID: PMC10190532 DOI: 10.1128/aac.01704-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
Clostridioides difficile infection (CDI) causes severe diarrhea and colitis, leading to significant morbidity, mortality, and high medical costs worldwide. Oral vancomycin, a first-line treatment for CDI, is associated with a high risk of recurrence, necessitating novel therapies for primary and recurrent CDI. A novel small-molecule compound, CDBN-YGXZ, was synthesized by modifying the benzene ring of nitazoxanide with lauric acid. The mechanism of action of CDBN-YGXZ was validated using a pyruvate:ferredoxin/flavodoxin oxidoreductase (PFOR) inhibition assay. The efficacy of CDBN-YGXZ was evaluated using the MIC test and CDI infection model in mice and hamsters. Furthermore, metagenomics was used to reveal the underlying reasons for the effective reduction or prevention of CDI after CDBN-YGXZ treatment. The inhibitory activity against PFOR induced by CDBN-YGXZ. MIC tests showed that the in vitro activity of CDBN-YGXZ against C. difficile ranging from 0.1 to 1.5 μg/mL. In the mouse and hamster CDI models, CDBN-YGXZ provided protection during both treatment and relapse, while vancomycin treatment resulted in severe relapse and significant clinical scores. Compared with global effects on the indigenous gut microbiota induced by vancomycin, CDBN-YGXZ treatment had a mild influence on gut microbes, thus resulting in the disappearance or reduction of CDI recurrence. CDBN-YGXZ displayed potent activity against C. difficile in vitro and in vivo, reducing or preventing relapse in infected animals, which could merit further development as a potential drug candidate for treating CDI.
Collapse
Affiliation(s)
- Xiaojun Hu
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Renhan Dong
- Chengdu Biobel Biotechnology Co., Ltd., Chengdu, Sichuan Province, China
| | - Sheng Huang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yisheng Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Wei Zhan
- Chengdu Biobel Biotechnology Co., Ltd., Chengdu, Sichuan Province, China
| | - Xiaofang Gao
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Dong Tian
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Jian Peng
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Jiewei Xu
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Ting Wang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yaying Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiaohui Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoxia Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jin Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Bing Guang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
- Chengdu Biobel Biotechnology Co., Ltd., Chengdu, Sichuan Province, China
| | - Tai Yang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
12
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
13
|
Real-world comparison of fidaxomicin versus vancomycin or metronidazole in the treatment of Clostridium difficile infection: a systematic review and meta-analysis. Eur J Clin Pharmacol 2022; 78:1727-1737. [PMID: 36057672 DOI: 10.1007/s00228-022-03376-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE There is a lack of real-world evidence of the comparative effectiveness of fidaxomicin versus vancomycin or metronidazole for treating patients with Clostridium difficile (CDI) infection. No systematic evidence comparing these treatment regimens using real-world observational studies was published up to date. The goal of this study is to compare the fidaxomicin and vancomycin/metronidazole regimens in terms of treatment outcomes in CDI patients. METHODS Systematic and comprehensive search was carried out in the following databases and search engines: EMBASE, Cochrane, MEDLINE, ScienceDirect, and Google Scholar from 1954 until January 2022. Newcastle-Ottawa (NO) scale was used to assess the risk of bias. Meta-analysis was carried out using random effects model, and pooled odds ratios (OR) with 95% confidence interval (CI) were reported. RESULTS A total of 10 studies satisfied the inclusion criteria, most of them were with poorer quality. The pooled OR was 0.40 (95% CI: 0.09-1.68; I2 = 82.4%) for clinical cure and 2.02 (95% CI: 0.36-11.39; I2 = 88.4%) for sustained cure. We reported pooled OR of 0.69 (95% CI: 0.40-1.20; I2 = 65.7%) for the recurrence rate, 2.81 (95% CI: 1.08-7.29; I2 = 70.6%) for the treatment failure, and 0.73 (95% CI: 0.50-1.07; I2 = 0%) for all-cause mortality between patients that received fidaxomicin and vancomycin. The pooled OR was 0.71 (95% CI: 0.05-9.47; I2 = 69.6%) in terms of recurrence between patients receiving fidaxomicin and metronidazole. CONCLUSION Fidaxomicin and vancomycin/metronidazole regimens did not have significant difference in terms of treatment outcomes, such as clinical cure, sustained cure, recurrence, and all-cause mortality. However, there was significantly higher risk of treatment failure in CDI patients taking fidaxomicin.
Collapse
|
14
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Chen CC, Chiu CH. Current and future applications of fecal microbiota transplantation for children. Biomed J 2021; 45:11-18. [PMID: 34781002 PMCID: PMC9133305 DOI: 10.1016/j.bj.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a new and adequate route to modify the microbial ecosystem in gastrointestinal tract of the hosts. Intestinal microbiota is highly associated with human health and disease. According to the reports of human clinical trials or case series, the application of FMT ranged from Clostridiodes difficile infection (CDI), inflammatory bowel disease (IBD), irritable bowel syndrome, refractory diarrhea, diabetes mellitus, metabolic syndrome, and even neurologic diseases, including Parkinson disease, and neuropsychiatric disorder (autism spectrum disorder, ASD). Although the current allowed indication of FMT is CDI in Taiwan, more application and development are expectable in the future. There is a relative rare data available for children in application of fecal microbiota transplantation. Thus, we review previous published research inspecting FMT in children, and address particular considerations when conducting FMT in pediatric patients.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
17
|
O'Reilly C, O'Connor PM, O'Sullivan Ó, Rea MC, Hill C, Ross RP. Impact of nisin on Clostridioides difficile and microbiota composition in a faecal fermentation model of the human colon. J Appl Microbiol 2021; 132:1397-1408. [PMID: 34370377 DOI: 10.1111/jam.15250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
AIMS Nisin is a bacteriocin with a broad spectrum of activity against Gram-positive bacteria. The aims were to assess nisin activity against Clostridioides difficile in a complex microbial environment and determine the minimum inhibitory concentration at which C. difficile growth is suppressed whilst having minimal impact on the faecal microbiota. METHODS AND RESULTS Faecal slurries were prepared from fresh faecal samples and spiked with C. difficile (106 CFU per ml). Nisin was added to each fermentation at a range of concentrations from 0 to 500 µM. Following 24 h, 16S rRNA gene sequencing was performed, and the presence of viable C. difficile was assessed. There was no viable C. difficile detected in the presence of 50-500 µM nisin. There was a decrease in the diversity of the microbiota in a nisin dose-dependent manner. Nisin predominantly depleted the relative abundance of the Gram-positive bacteria whilst the relative abundance of Gram-negative bacteria such as Escherichia Shigella and Bacteroides increased. CONCLUSIONS Using an ex vivo model of the colon, this study demonstrates the ability of purified nisin to selectively deplete C. difficile in a faecal microbial environment and establishes the minimum concentration at which this occurs whilst having a minimal impact on the composition of the microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study opens up the potential to use nisin as a therapeutic for clostridial gut infections.
Collapse
Affiliation(s)
- Catherine O'Reilly
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Órla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Wickramage I, Spigaglia P, Sun X. Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 2021; 76:3077-3090. [PMID: 34297842 DOI: 10.1093/jac/dkab231] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (CD) is one of the top five urgent antibiotic resistance threats in USA. There is a worldwide increase in MDR of CD, with emergence of novel strains which are often more virulent and MDR. Antibiotic resistance in CD is constantly evolving with acquisition of novel resistance mechanisms, which can be transferred between different species of bacteria and among different CD strains present in the clinical setting, community, and environment. Therefore, understanding the antibiotic resistance mechanisms of CD is important to guide optimal antibiotic stewardship policies and to identify novel therapeutic targets to combat CD as well as other bacteria. Epidemiology of CD is driven by the evolution of antibiotic resistance. Prevalence of different CD strains and their characteristic resistomes show distinct global geographical patterns. Understanding epidemiologically driven and strain-specific characteristics of antibiotic resistance is important for effective epidemiological surveillance of antibiotic resistance and to curb the inter-strain and -species spread of the CD resistome. CD has developed resistance to antibiotics with diverse mechanisms such as drug alteration, modification of the antibiotic target site and extrusion of drugs via efflux pumps. In this review, we summarized the most recent advancements in the understanding of mechanisms of antibiotic resistance in CD and analysed the antibiotic resistance factors present in genomes of a few representative well known, epidemic and MDR CD strains found predominantly in different regions of the world.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Roberts AK, Harris HC, Smith M, Giles J, Polak O, Buckley AM, Clark E, Ewin D, Moura IB, Spitall W, Shone CC, Wilcox M, Chilton C, Donev R. A Novel, Orally Delivered Antibody Therapy and Its Potential to Prevent Clostridioides difficile Infection in Pre-clinical Models. Front Microbiol 2020; 11:578903. [PMID: 33072047 PMCID: PMC7537341 DOI: 10.3389/fmicb.2020.578903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a toxin-mediated infection in the gut and a major burden on healthcare facilities worldwide. We rationalized that it would be beneficial to design an antibody therapy that is delivered to, and is active at the site of toxin production, rather than neutralizing the circulating and luminal toxins after significant damage of the layers of the intestines has occurred. Here we describe a highly potent therapeutic, OraCAb, with high antibody titers and a formulation that protects the antibodies from digestion/inactivation in the gastrointestinal tract. The potential of OraCAb to prevent CDI in an in vivo hamster model and an in vitro human colon model was assessed. In the hamster model we optimized the ratio of the antibodies against each of the toxins produced by C. difficile (Toxins A and B). The concentration of immunoglobulins that is effective in a hamster model of CDI was determined. A highly significant difference in animal survival for those given an optimized OraCAb formulation versus an untreated control group was observed. This is the first study testing the effect of oral antibodies for treatment of CDI in an in vitro gut model seeded with a human fecal inoculum. Treatment with OraCAb successfully neutralized toxin production and did not interfere with the colonic microbiota in this model. Also, treatment with a combination of vancomycin and OraCAb prevented simulated CDI recurrence, unlike vancomycin therapy alone. These data demonstrate the efficacy of OraCAb formulation for the treatment of CDI in pre-clinical models.
Collapse
Affiliation(s)
- April K Roberts
- Toxins Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Hannah C Harris
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Michael Smith
- Toxins Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Joanna Giles
- MicroPharm Ltd., Newcastle Emlyn, United Kingdom
| | | | - Anthony M Buckley
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Emma Clark
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Duncan Ewin
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Ines B Moura
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - William Spitall
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Clifford C Shone
- Toxins Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Mark Wilcox
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom.,Department of Microbiology, Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Leeds, United Kingdom
| | - Caroline Chilton
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Rossen Donev
- MicroPharm Ltd., Newcastle Emlyn, United Kingdom
| |
Collapse
|
20
|
Inhibitory effect of fidaxomicin on biofilm formation in Clostridioides difficile. J Infect Chemother 2020; 26:685-692. [PMID: 32224190 DOI: 10.1016/j.jiac.2020.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Clostridioides difficile infection results from a disturbance of the normal microbial flora of the colon, allowing proliferation of C. difficile and toxin production by toxigenic strains. Fidaxomicin, a macrocyclic antibiotic that prevents RNA synthesis in C. difficile and inhibits spore formation, toxin production, and cell proliferation, is clinically effective in treating C. difficile infection. As recent studies have suggested that biofilm formation influences C. difficile colonization and infection in the colon, we undertook the present study to determine the effects of fidaxomicin on C. difficile biofilm formation. Sub-minimum inhibitory concentrations (MICs) of fidaxomicin inhibited biofilm formation by C. difficile UK027 and delayed planktonic growth. Sub-MICs of vancomycin did not inhibit biofilm formation or affect planktonic growth. In C. difficile UK027 exposed to sub-MICs of fidaxomicin, mRNA expression of biofilm-related flagellin gene fliC was slightly increased compared with that of other biofilm-related genes (pilA1, cwp84, luxS, dccA, and spo0A). In conclusion, this study indicates that sub-MICs of fidaxomicin inhibit C. difficile UK027 biofilm formation by influencing cell growth and fliC transcription.
Collapse
|
21
|
Shao X, AbdelKhalek A, Abutaleb NS, Velagapudi UK, Yoganathan S, Seleem MN, Talele TT. Chemical Space Exploration around Thieno[3,2- d]pyrimidin-4(3 H)-one Scaffold Led to a Novel Class of Highly Active Clostridium difficile Inhibitors. J Med Chem 2019; 62:9772-9791. [PMID: 31584822 DOI: 10.1021/acs.jmedchem.9b01198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clostridium difficile infection (CDI) is the leading cause of healthcare-associated infection in the United States. Therefore, development of novel treatments for CDI is a high priority. Toward this goal, we began in vitro screening of a structurally diverse in-house library of 67 compounds against two pathogenic C. difficile strains (ATCC BAA 1870 and ATCC 43255), which yielded a hit compound, 2-methyl-8-nitroquinazolin-4(3H)-one (2) with moderate potency (MIC = 312/156 μM). Optimization of 2 gave lead compound 6a (2-methyl-7-nitrothieno[3,2-d]pyrimidin-4(3H)-one) with improved potency (MIC = 19/38 μM), selectivity over normal gut microflora, CC50s > 606 μM against mammalian cell lines, and acceptable stability in simulated gastric and intestinal fluid. Further optimization of 6a at C2-, N3-, C4-, and C7-positions resulted in a library of >50 compounds with MICs ranging from 3 to 800 μM against clinical isolates of C. difficile. Compound 8f (MIC = 3/6 μM) was identified as a promising lead for further optimization.
Collapse
Affiliation(s)
- Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Ahmed AbdelKhalek
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Nader S Abutaleb
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology , Purdue University College of Veterinary Medicine , West Lafayette , Indiana 47907-2027 , United States.,Purdue Institute of Inflammation, Immunology, and Infectious Disease , West Lafayette , Indiana 47907-2027 , United States
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences , St. John's University , Queens , New York 11439-0001 , United States
| |
Collapse
|
22
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
23
|
Legenza LM, Barnett SG, Rose WE. Vaccines in development for the primary prevention of Clostridium difficile infection. J Am Pharm Assoc (2003) 2019; 57:547-549. [PMID: 28712463 DOI: 10.1016/j.japh.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ünal CM, Karagöz MS, Berges M, Priebe C, Borrero de Acuña JM, Wissing J, Jänsch L, Jahn D, Steinert M. Pleiotropic Clostridioides difficile Cyclophilin PpiB Controls Cysteine-Tolerance, Toxin Production, the Central Metabolism and Multiple Stress Responses. Front Pharmacol 2019; 10:340. [PMID: 31024308 PMCID: PMC6459899 DOI: 10.3389/fphar.2019.00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
The Gram-positive pathogen Clostridioides difficile is the main bacterial agent of nosocomial antibiotic associated diarrhea. Bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) are well established modulators of virulence that influence the outcome of human pathologies during infections. Here, we present the first interactomic network of the sole cyclophilin-type PPIase of C. difficile (CdPpiB) and show that it has diverse interaction partners including major enzymes of the amino acid-dependent energy (LdhA, EtfAB, Had, Acd) and the glucose-derived (Fba, GapA, Pfo, Pyk, Pyc) central metabolism. Proteins of the general (UspA), oxidative (Rbr1,2,3, Dsr), alkaline (YloU, YphY) and cold shock (CspB) response were found bound to CdPpiB. The transcriptional (Lrp), translational (InfC, RFF) and folding (GroS, DnaK) control proteins were also found attached. For a crucial enzyme of cysteine metabolism, O-acetylserine sulfhydrylase (CysK), the global transcription regulator Lrp and the flagellar subunit FliC, these interactions were independently confirmed using a bacterial two hybrid system. The active site residues F50, F109, and F110 of CdPpiB were shown to be important for the interaction with the residue P87 of Lrp. CysK activity after heat denaturation was restored by interaction with CdPpiB. In accordance, tolerance toward cell wall stress caused by the exposure to amoxicillin was reduced. In the absence of CdPpiB, C. difficile was more susceptible toward L-cysteine. At the same time, the cysteine-mediated suppression of toxin production ceased resulting in higher cytotoxicity. In summary, the cyclophilin-type PPIase of C. difficile (CdPpiB) coordinates major cellular processes via its interaction with major regulators of transcription, translation, protein folding, stress response and the central metabolism.
Collapse
Affiliation(s)
- Can Murat Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Moleküler Biyoteknoloji Bölümü, Türk-Alman Üniversitesi, Istanbul, Turkey
| | | | - Mareike Berges
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Christina Priebe
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Josef Wissing
- Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Cellular Proteomics Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Cellular Proteomics Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dieter Jahn
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
25
|
Hvas CL, Dahl Jørgensen SM, Jørgensen SP, Storgaard M, Lemming L, Hansen MM, Erikstrup C, Dahlerup JF. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019; 156:1324-1332.e3. [PMID: 30610862 DOI: 10.1053/j.gastro.2018.12.019] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) is recommended for treatment of recurrent Clostridium difficile infection (rCDI). We performed a single-center randomized trial to compare the effects of FMT with those of fidaxomicin and vancomycin. METHODS We studied consecutive adults with rCDI seen at a gastroenterology clinic in Denmark from April 5, 2016 through June 10, 2018. Patients were randomly assigned to a group that received FMT, applied by colonoscopy or nasojejunal tube, after 4-10 days of vancomycin (125 mg 4 times daily; FMTv; n = 24), 10 days of fidaxomicin (200 mg twice daily; n = 24), or 10 days of vancomycin (125 mg 4 times daily; n = 16). Patients who had rCDI after this course of treatment and patients who could not be randomly assigned to groups were offered rescue FMTv. The primary outcome was combined clinical resolution and a negative result from a polymerase chain reaction test for Clostridium difficile (CD) toxin 8 weeks after the allocated treatment. Secondary end points included clinical resolution at week 8. RESULTS All 64 patients received their assigned treatment. The combination of clinical resolution and negative results from the test for CD were observed in 17 patients given FMTv (71%), 8 patients given fidaxomicin (33%), and 3 patients given vancomycin (19%; P = .009 for FMTv vs fidaxomicin; P = .001 for FMTv vs vancomycin; P = .31 for fidaxomicin vs vancomycin). Clinical resolution was observed in 22 patients given FMTv (92%), 10 patients given fidaxomicin (42%), and 3 patients given vancomycin (19%; P = .0002; P < .0001; P = .13). Results did not differ significantly between patients who received FMTv as their initial therapy and patients who received rescue FMTv. There was 1 serious adverse event that might have been related to FMTv. CONCLUSIONS In a randomized trial of patients with rCDI, we found the FMTv combination superior to fidaxomicin or vancomycin based on end points of clinical and microbiological resolution or clinical resolution alone. ClinicalTrials.gov, number NCT02743234; EudraCT, j.no 2015-003004-24.
Collapse
Affiliation(s)
- Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Søren Peter Jørgensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Lemming
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|
27
|
Vehreschild MJGT, Taori S, Goldenberg SD, Thalhammer F, Bouza E, van Oene J, Wetherill G, Georgopali A. Fidaxomicin for the treatment of Clostridium difficile infection (CDI) in at-risk patients with inflammatory bowel disease, fulminant CDI, renal impairment or hepatic impairment: a retrospective study of routine clinical use (ANEMONE). Eur J Clin Microbiol Infect Dis 2018; 37:2097-2106. [PMID: 30099637 PMCID: PMC6315004 DOI: 10.1007/s10096-018-3344-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
Abstract
Information is limited or lacking on fidaxomicin treatment of Clostridium difficile infection (CDI) in patients with inflammatory bowel disease, fulminant or life-threatening CDI, severe renal impairment, moderate-to-severe hepatic impairment and pregnancy. The ANEMONE study investigated fidaxomicin use in a routine clinical setting, focusing on these medical conditions of specific interest (MCSIs). This retrospective, post-authorisation study reviewed hospital records from Austria, Germany, Spain and the UK (June 2012–June 2015), collecting data from hospital admission to 30 days after last fidaxomicin dose. The primary objective was to identify the proportion of fidaxomicin-treated patients with MCSIs. Secondary objectives were to describe 30-day mortality, changes in ECG and laboratory parameters, fidaxomicin exposure and CDI response (resolution of diarrhoea; 30-day recurrence). 45.3% (261/576) of patients had ≥ 1 MCSI. Thirty-day mortality (post-first dose) was 17.0% (98/576) in the total population and slightly higher (24.6–27.6%) in patients with fulminant CDI or severe renal impairment. 29.6% (24/81) deaths of known cause were attributable to CDI. Of changes in laboratory parameters or ECG findings, only a decrease in leucocyte counts appeared associated with fidaxomicin, consistent with a positive treatment response. Diarrhoea resolved in 78.0% (404/518) of treatment episodes; diarrhoea resolution was lowest in patients with fulminant CDI (investigator-defined, 67.5%, 56/88) and severe renal impairment (68.0%, 68/100). Thirty-day recurrence (18.8%, 79/420) was similar across MCSI subgroups. Although almost half of fidaxomicin-treated patients had ≥ 1 MCSI, the majority of patients in all subgroups had positive responses to treatment, and no particular safety concerns were identified.
Collapse
Affiliation(s)
- Maria J G T Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne and German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany.
| | - Surabhi Taori
- King's College Hospital NHS Foundation Trust, London, UK
| | - Simon D Goldenberg
- King's College London & Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Florian Thalhammer
- Department of Infectious Diseases and Tropical Medicine, Division of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases, Hospital Gregorio Marañón, Madrid, Spain
- Department of Medicine, Ciber de Enfermedades Respiratorias (CIBERES), Complutense University, Madrid, Spain
| | - Joop van Oene
- Astellas Pharma Europe B.V., Leiden, The Netherlands
| | | | | |
Collapse
|
28
|
Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep 2018; 8:5091. [PMID: 29572482 PMCID: PMC5865146 DOI: 10.1038/s41598-018-23418-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
Bacteriophage therapeutic development will clearly benefit from understanding the fundamental dynamics of in vivo phage-bacteria interactions. Such information can inform animal and human trials, and much can be ascertained from human cell-line work. We have developed a human cell-based system using Clostridium difficile, a pernicious hospital pathogen with limited treatment options, and the phage phiCDHS1 that effectively kills this bacterium in liquid culture. The human colon tumorigenic cell line HT-29 was used because it simulates the colon environment where C. difficile infection occurs. Studies on the dynamics of phage-bacteria interactions revealed novel facets of phage biology, showing that phage can reduce C. difficile numbers more effectively in the presence of HT-29 cells than in vitro. Both planktonic and adhered Clostridial cell numbers were successfully reduced. We hypothesise and demonstrate that this observation is due to strong phage adsorption to the HT-29 cells, which likely promotes phage-bacteria interactions. The data also showed that the phage phiCDHS1 was not toxic to HT-29 cells, and phage-mediated bacterial lysis did not cause toxin release and cytotoxic effects. The use of human cell lines to understand phage-bacterial dynamics offers valuable insights into phage biology in vivo, and can provide informative data for human trials.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| | - Ananthi Ramachandran
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Anisha M Thanki
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Fatima B I Vukusic
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Martha R J Clokie
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
29
|
Eze P, Balsells E, Kyaw MH, Nair H. Risk factors for Clostridium difficile infections - an overview of the evidence base and challenges in data synthesis. J Glob Health 2018; 7:010417. [PMID: 28607673 PMCID: PMC5460399 DOI: 10.7189/jogh.07.010417] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Recognition of a broad spectrum of disease and development of Clostridium difficile infection (CDI) and recurrent CDI (rCDI) in populations previously considered to be at low risk has renewed attention on differences in the risk profile of patients. In the absence of primary prevention for CDI and limited treatment options, it is important to achieve a deep understanding of the multiple factors that influence the risk of developing CDI and rCDI. Methods We conducted a review of systematic reviews and meta–analyses on risk factors for CDI and rCDI published between 1990 and October 2016. Results 22 systematic reviews assessing risk factors for CDI (n = 19) and rCDI (n = 6) were included. Meta–analyses were conducted in 17 of the systematic reviews. Over 40 risk factors have been associated with CDI and rCDI and can be classified into three categories: pharmacological risk factors, host–related risk factors, and clinical characteristics or interventions. Most systematic reviews and meta–analyses have focused on antibiotic use (n = 8 for CDI, 3 for rCDI), proton pump inhibitors (n = 8 for CDI, 4 for rCDI), and histamine 2 receptor antagonists (n = 4 for CDI) and chronic kidney disease (n = 4 for rCDI). However, other risk factors have been assessed. We discuss the state of the evidence, methods, and challenges for data synthesis. Conclusion Several studies, synthesized in different systematic review, provide valuable insights into the role of different risk factors for CDI. Meta–analytic evidence of association has been reported for factors such as antibiotics, gastric acid suppressants, non–selective NSAID, and some co–morbidities. However, despite statistical significance, issues of high heterogeneity, bias and confounding remain to be addressed effectively to improve overall risk estimates. Large, prospective primary studies on risk factors for CDI with standardised case definitions and stratified analyses are required to develop more accurate and robust estimates of risk effects that can inform targeted–CDI clinical management procedures, prevention, and research.
Collapse
Affiliation(s)
- Paul Eze
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK.,Joint first authorship
| | - Evelyn Balsells
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK.,Joint first authorship
| | - Moe H Kyaw
- Sanofi Pasteur, Swiftwater, Pennsylvania, USA
| | - Harish Nair
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
30
|
Roshan N, Hammer KA, Riley TV. Non-conventional antimicrobial and alternative therapies for the treatment of Clostridium difficile infection. Anaerobe 2018; 49:103-111. [DOI: 10.1016/j.anaerobe.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
|
31
|
Hillreiner M, Schmautz C, Ballweg I, Korenkova V, Pfaffl MW, Kliem H. Gene expression profiling in pbMEC - in search of molecular biomarkers to predict immunoglobulin production in bovine milk. BMC Vet Res 2017; 13:369. [PMID: 29187202 PMCID: PMC5707921 DOI: 10.1186/s12917-017-1293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
Background Optimization of the immunoglobulin (Ig) yield in bovine milk used as therapeutic immune milk or whey for the prevention of Clostridium difficile-associated diarrhea in humans is of great importance to improve the economic efficiency of production. Individual dairy cows have diverse immune responses upon vaccination, resulting in a variable Ig yield in blood and milk. Therefore, it is advisable to pre-select cows with the best ability to produce and secrete high yields of specific Igs. Results The gene expression profile of pbMEC (primary bovine mammary epithelial cells), challenged with the gram-positive, non-mastitis, pathogen Clostridium difficile showed distinct and significant differences in the gene expression of effector molecules of the innate immune system. A number of genes were identified that could possibly serve as molecular biomarkers to differentiate high responder cows from low responder cows. These identified genes play key roles in the promotion of innate immunity. Conclusion Using a gene expression profiling approach, we showed that upon others, especially the gene expression of the pro-inflammatory cytokines was altered between the high and low responder cows. Those genes are indicated as potential molecular biomarkers in the pre-selection of cows that are able to secrete high immunoglobulin yields in milk. Electronic supplementary material The online version of this article (10.1186/s12917-017-1293-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Hillreiner
- Chair of Animal Physiology and Immunology, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - C Schmautz
- Chair of Animal Physiology and Immunology, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - I Ballweg
- Chair of Animal Physiology and Immunology, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - V Korenkova
- Quantitative and Digital PCR Core Facility, Institute of Biotechnology CAS, v. v. i. BIOCEV Center, Vestec, 252 50, Prague, Czech Republic
| | - M W Pfaffl
- Chair of Animal Physiology and Immunology, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - H Kliem
- Chair of Animal Physiology and Immunology, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
32
|
Burton HE, Mitchell SA, Watt M. A Systematic Literature Review of Economic Evaluations of Antibiotic Treatments for Clostridium difficile Infection. PHARMACOECONOMICS 2017; 35:1123-1140. [PMID: 28875314 PMCID: PMC5656734 DOI: 10.1007/s40273-017-0540-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Clostridium difficile infection (CDI) is associated with high management costs, particularly in recurrent cases. Fidaxomicin treatment results in lower recurrence rates than vancomycin and metronidazole, but has higher acquisition costs in Europe and the USA. This systematic literature review summarises economic evaluations (EEs) of fidaxomicin, vancomycin and metronidazole for treatment of CDI. METHODS Electronic databases (MEDLINE®, Embase, Cochrane Library) and conference proceedings (ISPOR, ECCMID, ICAAC and IDWeek) were searched for publications reporting EEs of fidaxomicin, vancomycin and/or metronidazole in the treatment of CDI. Reference bibliographies of identified manuscripts were also reviewed. Cost-effectiveness was evaluated according to the overall population of patients with CDI, as well as in subgroups with severe CDI or recurrent CDI, or those at higher risk of recurrence or mortality. RESULTS Overall, 27 relevant EEs, conducted from the perspective of 12 different countries, were identified. Fidaxomicin was cost-effective versus vancomycin and/or metronidazole in 14 of 24 EEs (58.3%), vancomycin was cost-effective versus fidaxomicin and/or metronidazole in five of 27 EEs (18.5%) and metronidazole was cost-effective versus fidaxomicin and/or vancomycin in two of 13 EEs (15.4%). Fidaxomicin was cost-effective versus vancomycin in most of the EEs evaluating specific patient subgroups. Key cost-effectiveness drivers were cure rate, recurrence rate, time horizon, drug costs and length and cost of hospitalisation. CONCLUSIONS In most EEs, fidaxomicin was demonstrated to be cost-effective versus metronidazole and vancomycin in patients with CDI. These results have relevance to clinical practice, given the high budgetary impact of managing CDI and increasing restrictions on healthcare budgets. OTHER This analysis was initiated and funded by Astellas Pharma Inc.
Collapse
Affiliation(s)
| | | | - Maureen Watt
- Astellas Pharma Inc., 2000 Hillswood Drive, Chertsey, KT16 0RS UK
| |
Collapse
|
33
|
Asempa TE, Nicolau DP. Clostridium difficile infection in the elderly: an update on management. Clin Interv Aging 2017; 12:1799-1809. [PMID: 29123385 PMCID: PMC5661493 DOI: 10.2147/cia.s149089] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The burden of Clostridium difficile infection (CDI) is profound and growing. CDI now represents a common cause of health care–associated diarrhea, and is associated with significant morbidity, mortality, and health care costs. CDI disproportionally affects the elderly, possibly explained by the following risk factors: age-related impairment of the immune system, increasing antibiotic utilization, and frequent health care exposure. In the USA, recent epidemiological studies estimate that two out of every three health care–associated CDIs occur in patients 65 years or older. Additionally, the elderly are at higher risk for recurrent CDI. Existing therapeutic options include metronidazole, oral vancomycin, and fidaxomicin. Choice of agent depends on disease severity, history of recurrence, and, increasingly, the drug cost. Bezlotoxumab, a recently approved monoclonal antibody targeting C. difficile toxin B, offers an exciting advancement into immunologic therapies. Similarly, fecal microbiota transplantation is gaining popularity as an effective option mainly for recurrent CDI. The challenge of decreasing CDI burden in the elderly involves adopting preventative strategies, optimizing initial treatment, and decreasing the risk of recurrence. Expanded strategies are certainly needed to improve outcomes in this high-risk population. This review considers available data from prospective and retrospective studies as well as case reports to illustrate the merits and gaps in care related to the management of CDI in the elderly.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
34
|
Wyche TP, Ramos Alvarenga RF, Piotrowski JS, Duster MN, Warrack SR, Cornilescu G, De Wolfe TJ, Hou Y, Braun DR, Ellis GA, Simpkins SW, Nelson J, Myers CL, Steele J, Mori H, Safdar N, Markley JL, Rajski SR, Bugni TS. Chemical Genomics, Structure Elucidation, and in Vivo Studies of the Marine-Derived Anticlostridial Ecteinamycin. ACS Chem Biol 2017; 12:2287-2295. [PMID: 28708379 PMCID: PMC5697710 DOI: 10.1021/acschembio.7b00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A polyether antibiotic, ecteinamycin (1), was isolated from a marine Actinomadura sp., cultivated from the ascidian Ecteinascidia turbinata. 13C enrichment, high resolution NMR spectroscopy, and molecular modeling enabled elucidation of the structure of 1, which was validated on the basis of comparisons with its recently reported crystal structure. Importantly, ecteinamycin demonstrated potent activity against the toxigenic strain of Clostridium difficile NAP1/B1/027 (MIC = 59 ng/μL), as well as other toxigenic and nontoxigenic C. difficile isolates both in vitro and in vivo. Additionally, chemical genomics studies using Escherichia coli barcoded deletion mutants led to the identification of sensitive mutants such as trkA and kdpD involved in potassium cation transport and homeostasis supporting a mechanistic proposal that ecteinamycin acts as an ionophore antibiotic. This is the first antibacterial agent whose mechanism of action has been studied using E. coli chemical genomics. On the basis of these data, we propose ecteinamycin as an ionophore antibiotic that causes C. difficile detoxification and cell death via potassium transport dysregulation.
Collapse
Affiliation(s)
- Thomas P. Wyche
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - René F. Ramos Alvarenga
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | | | - Megan N. Duster
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Simone R. Warrack
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Travis J. De Wolfe
- Department of Food Science, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Yanpeng Hou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Gregory A. Ellis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Scott W. Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James Steele
- Department of Food Science, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
35
|
Yamagishi Y, Nishiyama N, Koizumi Y, Matsukawa Y, Suematsu H, Hagihara M, Katsumata K, Mikamo H. Antimicrobial activity of fidaxomicin against Clostridium difficile clinical isolates in Aichi area in Japan. J Infect Chemother 2017; 23:724-726. [PMID: 28527649 DOI: 10.1016/j.jiac.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
Abstract
We evaluated the susceptibility of 100 Japanese Clostridium difficile isolates to fidaxomicin, a new macrocyclic antibiotic. The minimum inhibitory concentration (MIC) range of fidaxomicin was 0.03-0.5 μg/mL, with a MIC for inhibition of 50% (MIC50) of 0.12 μg/mL, and for inhibition of 90% (MIC90) of 0.25 μg/mL. We also evaluated the susceptibilities of the same 100 C. difficile isolates to vancomycin, metronidazole, moxifloxacin, clindamycin, meropenem, and ampicillin. Of all the antibiotics tested, fidaxomicin showed the most potent antimicrobial activity against this group of C. difficile isolates. MIC levels against C. difficile isolates, including those producing binary toxin, did not substantially differ from those previously reported in Europe, North America and Taiwan.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan.
| | - Naoya Nishiyama
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Yusuke Koizumi
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Yoko Matsukawa
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Hiroyuki Suematsu
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| |
Collapse
|
36
|
Trubiano JA, Cheng AC, Korman TM, Roder C, Campbell A, May MLA, Blyth CC, Ferguson JK, Blackmore TK, Riley TV, Athan E. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2017; 46:479-93. [PMID: 27062204 DOI: 10.1111/imj.13027] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
The incidence of Clostridium difficile infection (CDI) continues to rise, whilst treatment remains problematic due to recurrent, refractory and potentially severe nature of disease. The treatment of C. difficile is a challenge for community and hospital-based clinicians. With the advent of an expanding therapeutic arsenal against C. difficile since the last published Australasian guidelines, an update on CDI treatment recommendations for Australasian clinicians was required. On behalf of the Australasian Society of Infectious Diseases, we present the updated guidelines for the management of CDI in adults and children.
Collapse
Affiliation(s)
- J A Trubiano
- Infectious Diseases Department, Austin Health, Melbourne, Western Australia.,Infectious Diseases Department, Peter MacCallum Cancer Centre, Melbourne, Western Australia
| | - A C Cheng
- Infectious Diseases Department, Alfred Health, Melbourne, Western Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Western Australia.,Infection Prevention and Healthcare Epidemiology Unit, Alfred Hospital, Melbourne, Western Australia
| | - T M Korman
- Monash Infectious Diseases, Monash Health, Monash University, Melbourne, Western Australia
| | - C Roder
- School of Medicine, Deakin University, Geelong, Victoria, Western Australia.,Geelong Centre for Emerging Infectious Diseases, Barwon Health, Geelong, Victoria, Western Australia
| | - A Campbell
- Infectious Diseases Department, Princess Margaret Hospital for Children, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - M L A May
- Infection Management and Prevention Service, Lady Cilento Children's Hospital and Sullivan Nicolaides Pathology, Brisbane, Queensland
| | - C C Blyth
- Infectious Diseases Department, Princess Margaret Hospital for Children, Queen Elizabeth II Medical Centre, Perth, Western Australia.,School of Paediatrics and Child Health, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Western Australia.,Department of Microbiology, PathWest Laboratory Medicine, Princess Margaret Hospital, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - J K Ferguson
- Pathology North, NSW Pathology, Wellington South, New Zealand.,Immunology and Infectious Diseases Unit, John Hunter Hospital, Wellington South, New Zealand.,Universities of New England and Newcastle, Newcastle, New South Wales, Australia
| | - T K Blackmore
- Laboratory Services, Wellington Regional Hospital, Wellington South, New Zealand
| | - T V Riley
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Western Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - E Athan
- School of Medicine, Deakin University, Geelong, Victoria, Western Australia.,Department of Infectious Disease, Barwon Health, Geelong, Victoria, Western Australia
| |
Collapse
|
37
|
Watt M, McCrea C, Johal S, Posnett J, Nazir J. A cost-effectiveness and budget impact analysis of first-line fidaxomicin for patients with Clostridium difficile infection (CDI) in Germany. Infection 2016; 44:599-606. [PMID: 27062378 PMCID: PMC5042976 DOI: 10.1007/s15010-016-0894-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Clostridium difficile infection (CDI) represents a significant economic healthcare burden, especially the cost of recurrent disease. Fidaxomicin produced significantly lower recurrence rates and higher sustained cure rates in clinical trials. We evaluated the cost-effectiveness and budget impact of fidaxomicin compared with vancomycin in Germany in the first-line treatment of patient subgroups with CDI at increased risk of recurrence. METHODS A semi-Markov model was used to compare the cost-effectiveness and budget impact of fidaxomicin vs. vancomycin from a payer perspective in Germany. The model cycle length was 10 days. The time horizon was 1 year. Model inputs were probability of clinical cure, 30-day probability of recurrence, and 30-day attributable mortality based on evidence from two randomized controlled trials comparing fidaxomicin and vancomycin in patients with CDI. Cost-effectiveness outcomes were cost per quality-adjusted life year gained, cost per bed-day saved, and cost per recurrence avoided. RESULTS Despite higher drug acquisition costs, fidaxomicin was dominant in the cancer subgroup (less costly and more effective) and cost-effective in the other subgroups, with incremental cost-effectiveness ratios vs. vancomycin ranging from €26,900 to €44,500. Hospitalization costs of the first-line treatment of CDI with fidaxomicin vs. vancomycin were lower in every patient subgroup, resulting in budget impacts ranging from -€1325 (in patients ≥65 years) to -€2438 (in cancer patients). Reductions in the cost of treating recurrence with fidaxomicin ranged from -€574.32 per patient in those receiving concomitant antibiotics to -€1500.68 per patient in renally impaired patients. CONCLUSIONS In patient subgroups with CDI at increased recurrence risk, fidaxomicin was cost-effective vs. vancomycin, and less costly and more effective in patients with cancer.
Collapse
Affiliation(s)
- Maureen Watt
- Astellas EMEA, Chertsey, UK.
- Astellas Pharma Europe Ltd., 2000 Hillswood Drive, Chertsey, KT16 0RS, UK.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review.
Collapse
Affiliation(s)
- Greg Hussack
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa
| | - Jamshid Tanha
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa; School of Environmental Sciences, University of Guelph, Guelph; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
39
|
Oral delivery of macromolecular drugs: Where we are after almost 100years of attempts. Adv Drug Deliv Rev 2016; 101:108-121. [PMID: 26826437 DOI: 10.1016/j.addr.2016.01.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/11/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023]
Abstract
Since the first attempt to administer insulin orally in humans more than 90years ago, the oral delivery of macromolecular drugs (>1000g/mol) has been rather disappointing. Although several clinical pilot studies have demonstrated that the oral absorption of macromolecules is possible, the bioavailability remains generally low and variable. This article reviews the formulations and biopharmaceutical aspects of orally administered biomacromolecules on the market and in clinical development for local and systemic delivery. The most successful approaches for systemic delivery often involve a combination of enteric coating, protease inhibitors and permeation enhancers in relatively high amounts. However, some of these excipients have induced local or systemic adverse reactions in preclinical and clinical studies, and long-term studies are often missing. Therefore, strategies aimed at increasing the oral absorption of macromolecular drugs should carefully take into account the benefit-risk ratio. In the absence of specific uptake pathways, small and potent peptides that are resistant to degradation and that present a large therapeutic window certainly represent the best candidates for systemic absorption. While we acknowledge the need for systemically delivering biomacromolecules, it is our opinion that the oral delivery to local gastrointestinal targets is currently more promising because of their accessibility and the lacking requirement for intestinal permeability enhancement.
Collapse
|
40
|
Lees EA, Miyajima F, Pirmohamed M, Carrol ED. The role of Clostridium difficile in the paediatric and neonatal gut - a narrative review. Eur J Clin Microbiol Infect Dis 2016; 35:1047-57. [PMID: 27107991 PMCID: PMC4902830 DOI: 10.1007/s10096-016-2639-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023]
Abstract
Clostridium difficile is an important nosocomial pathogen in adults. Its significance in children is less well defined, but cases of C. difficile infection (CDI) appear to be increasingly prevalent in paediatric patients. This review aims to summarize reported Clostridium difficile carriage rates across children of different age groups, appraise the relationship between CDI and factors such as method of delivery, type of infant feed, antibiotic use, and co-morbidities, and review factors affecting the gut microbiome in children and the host immune response to C. difficile. Searches of PubMed and Google Scholar using the terms 'Clostridium difficile neonates' and 'Clostridium difficile children' were completed, and reference lists of retrieved publications screened for further papers. In total, 88 papers containing relevant data were included. There was large inter-study variation in reported C. difficile carriage rates. There was an association between CDI and recent antibiotic use, and co-morbidities such as immunosuppression and inflammatory bowel disease. C. difficile was also found in stools of children with diarrhoea attributed to other pathogens (e.g. rotavirus). The role of C. difficile in the paediatric gut remains unclear; is it an innocent bystander in diarrhoeal disease caused by other organisms, or a pathogen causing subclinical to severe symptoms? Further investigation of the development of serological and local host response to C. difficile carriage may shed new light on disease mechanisms. Work is underway on defining a framework for diagnosis and management of paediatric CDI.
Collapse
Affiliation(s)
- E A Lees
- University of Liverpool Institute of Translational Medicine, Wolfson Centre, Block A: Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
| | - F Miyajima
- University of Liverpool Institute of Translational Medicine, Wolfson Centre, Block A: Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - M Pirmohamed
- University of Liverpool Institute of Translational Medicine, Wolfson Centre, Block A: Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - E D Carrol
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Ronald Ross Building, West Derby Street, Liverpool, L69 7BE, UK
| |
Collapse
|
41
|
Fidaxomicin: A novel agent for the treatment of Clostridium difficile infection. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 26:305-12. [PMID: 26744587 PMCID: PMC4692299 DOI: 10.1155/2015/934594] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oral vancomycin and oral metronidazole have several limitations with regard to their use in the treatment of Clostridium difficile infections (CDIs); however, oral vancomycin has been considered the gold standard in clinical trials. In June 2012, fidaxomicin received Health Canada approval for the treatment of CDIs. Its chemistry, mechanisms of action and pharmacological properties are discussed, along with its potential role in CDI therapy. BACKGROUND: Due to the limitations of existing treatment options for Clostridium difficile infection (CDI), new therapies are needed. OBJECTIVE: To review the available data on fidaxomicin regarding chemistry, mechanisms of action and resistance, in vitro activity, pharmacokinetic and pharmacodynamic properties, efficacy and safety in clinical trials, and place in therapy. METHODS: A search of PubMed using the terms “fidaxomicin”, “OPT-80”, “PAR-101”, “OP-1118”, “difimicin”, “tiacumicin” and “lipiarmycin” was performed. All English-language articles from January 1983 to November 2014 were reviewed, as well as bibliographies of all articles. RESULTS: Fidaxomicin is the first macrocyclic lactone antibiotic with activity versus C difficile. It inhibits RNA polymerase, therefore, preventing transcription. Fidaxomicin (and its active metabolite OP-1118) is bactericidal against C difficile and exhibits a prolonged postantibiotic effect (approximately 10 h). Other than for C difficile, fidaxomicin demonstrated only moderate inhibitory activity against Gram-positive bacteria and was a poor inhibitor of normal colonic flora, including anaerobes and enteric Gram-negative bacilli. After oral administration (200 mg two times per day for 10 days), fidaxomicin achieved low serum concentration levels but high fecal concentration levels (mean approximately 1400 μg/g stool). Phase 3 clinical trials involving adults with CDI demonstrated that 200 mg fidaxomicin twice daily for 10 days was noninferior to 125 mg oral vancomycin four times daily for 10 days in regard to clinical response at the end of therapy. Fidaxomicin was, however, reported to be superior to oral vancomycin in reducing recurrent CDI and achieving a sustained clinical response (assessed at day 28) for patients infected with non-BI/NAP1/027 strains. CONCLUSION: Fidaxomicin was noninferior to oral vancomycin with regard to clinical response at the end of CDI therapy. Fidaxomicin has been demonstated to be as safe as oral vancomycin, but superior to vancomycin in achieving a sustained clinical response for CDI in patients infected with non-BI/NAP1/027 strains. Caution should be exercised in using fidaxomicin monotherapy for treatment of severe complicated CDI because limited data are available. Whether fidaxomicin is cost effective (due to its significantly higher acquisition cost versus oral vancomycin) depends on the acceptable willingness to pay threshold per quality-adjusted life year as a measure of assessing cost effectiveness.
Collapse
|
42
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|
43
|
Yeung SST, Yeung JK, Lau TTY, Forrester LA, Steiner TS, Bowie WR, Bryce EA. Evaluation of a Clostridium difficile infection management policy with clinical pharmacy and medical microbiology involvement at a major Canadian teaching hospital. J Clin Pharm Ther 2015; 40:655-60. [PMID: 26547905 DOI: 10.1111/jcpt.12329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Clostridium difficile infection (CDI) represents a spectrum of disease and is a significant concern for healthcare institutions. Our study objective was to assess whether implementation of a regional CDI management policy with Clinical Pharmacy and Medical Microbiology and Infection Control involvement would lead to an improvement in concordance in prescribing practices to an evidence-based CDI disease severity assessment and pharmacological treatment algorithm. METHODS Conducted at a tertiary care teaching hospital, this two-phase quality assurance study consisted of a baseline retrospective healthcare record review of patients with CDI prior to the implementation of a regional CDI management policy followed by a prospective evaluation post-implementation. RESULTS AND DISCUSSION One hundred and forty-one CDI episodes in the pre-implementation group were compared to 283 episodes post-implementation. Overall treatment concordance to the CDI treatment algorithm was achieved in 48 of 141 cases (34%) pre-implementation compared with 136 of 283 cases (48·1%) post-implementation (P = 0·01). The median time to treatment with vancomycin was reduced from five days to one day (P < 0·01), with median length of hospital stay decreasing from 30 days to 21 days (P = 0·01) post-implementation. There was no difference in 30-day all-cause mortality. WHAT IS NEW AND CONCLUSION A comprehensive approach with appropriate stakeholder involvement in the development of clinical pathways, education to healthcare workers and prospective audit with intervention and feedback can ensure patients diagnosed with CDI are optimally managed and prescribed the most appropriate therapy based on CDI disease severity.
Collapse
Affiliation(s)
- S S T Yeung
- BC Provincial Academic Detailing Service, Fraser Health Authority, Vancouver, BC, Canada
| | - J K Yeung
- Lower Mainland Pharmacy Services, Fraser Health Authority, Vancouver Coastal, Providence Health Care, Provincial Health Services Authority, Vancouver, BC, Canada.,Pharmaceutical Sciences, Vancouver General Hospital (VGH), Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - T T Y Lau
- Pharmaceutical Sciences, Vancouver General Hospital (VGH), Vancouver, BC, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia (UBC), Vancouver, BC, Canada.,Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, UBC, Vancouver, BC, Canada
| | - L A Forrester
- Infection Control, Vancouver Coastal Health (VCH), Powell River, BC, Canada
| | - T S Steiner
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, UBC, Vancouver, BC, Canada.,Division of Infectious Diseases, VGH, Vancouver, BC, Canada
| | - W R Bowie
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, UBC, Vancouver, BC, Canada.,Division of Infectious Diseases, VGH, Vancouver, BC, Canada
| | - E A Bryce
- Division of Medical Microbiology and Infection Control, VCH, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, Faculty of Medicine, UBC, Vancouver, BC, Canada
| |
Collapse
|
44
|
Péju E, Arcizet J, Fillion A, Chavanet P, Prudent C, Piroth L. Multiple Recurrences of Clostridium difficile Infection Treated With Crushed Fidaxomicin Administered Through a Percutaneous Endoscopic Gastrostomy Tube. Ann Pharmacother 2015; 49:853-4. [PMID: 26089544 DOI: 10.1177/1060028015581010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Sobol S, Baker A, Konrad R, Miniard J. Fecal Microbiota Transplant: Could Your Stool Save a Life? J Nurse Pract 2015. [DOI: 10.1016/j.nurpra.2015.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Optimising gut colonisation resistance against Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 2015; 34:2161-6. [PMID: 26354525 DOI: 10.1007/s10096-015-2479-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/23/2015] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is the dominant cause of pseudomembranous colitis in nosocomial environments. C. difficile infection (CDI) generally affects elderly (≥65 years of age) hospital inpatients who have received broad-spectrum antimicrobial treatment. CDI has a 30 % risk of re-infection and a subsequent 60 % risk of relapse thereafter, leading to a high economic burden of over 7 billion pounds sterling and over 900,000 cases in the USA and Europe per annum. With the long-term consequences of faecal transplantation currently unknown, and limited spectrum of effective antibiotics, there is an urgent requirement for alternative means of preventing and treating CDI in high-risk individuals. Metagenomics has recently improved our understanding of the colonisation resistance barrier and how this could be optimised. pH, oxidation-reduction potentials and short-chain fatty acids have been suggested to inhibit C. difficile growth and toxin production in in vitro and in vivo studies. This review aims to pull together the evidence in support of a colonisation resistance barrier against CDI.
Collapse
|
47
|
Knight DR, Giglio S, Huntington PG, Korman TM, Kotsanas D, Moore CV, Paterson DL, Prendergast L, Huber CA, Robson J, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV. Surveillance for antimicrobial resistance in Australian isolates of Clostridium difficile, 2013-14. J Antimicrob Chemother 2015. [PMID: 26221017 DOI: 10.1093/jac/dkv220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The objective of this study was to determine the activity of fidaxomicin and comparator antimicrobials against Clostridium difficile isolated from patients with C. difficile infection (CDI) in Australian hospitals and in the community. METHODS One private and one public laboratory from five states in Australia submitted a total of 474 isolates/PCR-positive stool samples during three collection periods in August-September 2013 (n = 175), February-March 2014 (n = 134) and August-September 2014 (n = 165). Isolate identification was confirmed by selective culture for C. difficile and a proportion of isolates from each state were characterized by PCR for toxin genes and PCR ribotyping. MICs of fidaxomicin and eight comparator antimicrobials were determined for all isolates using agar methodology. RESULTS Site collection yielded 440 isolates of C. difficile and PCR revealed a heterogeneous strain population comprising 37 different PCR ribotypes (RTs), 95% of which were positive for tcdA and tcdB (A+B+). The most common RTs were 014 (29.8%) and 002 (15.9%). Epidemic RT 027 was not identified; however, small numbers of virulent RTs 078 and 244 were found. Resistance to vancomycin, metronidazole and fidaxomicin was not detected and resistance to moxifloxacin was very low (3.4%). Fidaxomicin showed potent in vitro activity against all 440 isolates (MIC50/MIC90 0.03/0.12 mg/L) and was superior to metronidazole (MIC50/MIC90 0.25/0.5 mg/L) and vancomycin (MIC50/MIC90 1/2 mg/L). CONCLUSIONS These data confirm the potent in vitro activity of fidaxomicin against C. difficile. Moreover, this study provides an important baseline for ongoing long-term surveillance of antimicrobial resistance and prospective tracking of prominent and emerging strain types.
Collapse
Affiliation(s)
- Daniel R Knight
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Steven Giglio
- Healthscope Pathology, Microbiology Department, Wayville, South Australia, Australia
| | - Peter G Huntington
- Department of Microbiology, Pathology North, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Monash University, Clayton, Victoria, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash University, Clayton, Victoria, Australia
| | - Casey V Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | | | - Charlotte A Huber
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jennifer Robson
- Sullivan Nicolaides Pathology, Taringa, Queensland, Australia
| | | | - Michael C Wehrhahn
- Douglass Hanly Moir Pathology, Macquarie Park, New South Wales, Australia
| | - Gerhard F Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - Richard M Wilson
- Healthscope Pathology, Microbiology Department, Wayville, South Australia, Australia
| | - Thomas V Riley
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
48
|
Esposito S, Umbrello G, Castellazzi L, Principi N. Treatment of Clostridium difficile infection in pediatric patients. Expert Rev Gastroenterol Hepatol 2015; 9:747-55. [PMID: 25912469 DOI: 10.1586/17474124.2015.1039988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clostridium difficile causes infections that can either remain asymptomatic or manifest as clinical disease. In this report, problems, possible solutions, and future perspectives on the treatment of C. difficile infections (CDIs) in pediatric patients are discussed. CDI, despite increasing as a consequence of the overuse and misuse of antibiotics, remains relatively uncommon in pediatrics mainly because younger children are poorly susceptible to the action of C. difficile toxins. In most such cases, C. difficile disease is mild to moderate and discontinuation of the administered antibiotics in patients receiving these drugs when CDI develops, or administration of metronidazole, is sufficient to solve this problem. In severe or frequently relapsing cases, vancomycin is the drug of choice. Probiotics do not seem to add significant advantages. Other treatment options must be reserved for severe cases and be considered as a salvage treatment, although potential advantages in pediatric patients remain unclear.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | |
Collapse
|
49
|
|
50
|
Sanhueza CA, Cartmell J, El-Hawiet A, Szpacenko A, Kitova EN, Daneshfar R, Klassen JS, Lang DE, Eugenio L, Ng KKS, Kitov PI, Bundle DR. Evaluation of a focused virtual library of heterobifunctional ligands for Clostridium difficile toxins. Org Biomol Chem 2015; 13:283-98. [DOI: 10.1039/c4ob01838a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Higher activity glycopeptoid ligands for two largeClostridium difficiletoxins TcdA and TcdB were discoveredviamodular fragment-based design and virtual screening.
Collapse
Affiliation(s)
| | | | - Amr El-Hawiet
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Adam Szpacenko
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | | | | - Dean E. Lang
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Luiz Eugenio
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Pavel I. Kitov
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|