1
|
Raehtz KD, Pandrea I, Apetrei C. It's all in the gut: the central role of the gut and microbiome in preventing disease progression in simian immunodeficiency viruses infected African nonhuman primates. Curr Opin HIV AIDS 2025; 20:124-132. [PMID: 39774258 PMCID: PMC11802300 DOI: 10.1097/coh.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW Typically, both HIV-infected humans and simian immunodeficiency virus (SIV)-infected Asian nonhuman primates (NHPs) eventually progress to AIDS, while African NHPs that are natural hosts of SIV do not, in spite of life-long, high levels of viral replication. Lack of disease progression in African NHPs is not due to some adaptation by the virus, but rather to host adaptations to the virus. Central to these adaptations is maintenance of the gut integrity during acute viral replication and inflammation, which allows natural hosts to avoid the chronic inflammation characteristic to pathogenic HIV/SIV infection. RECENT FINDINGS It has been recently shown that natural hosts of SIVs, such as the African green monkey (AGM), avoid damage to the mucosal epithelium through wound healing mechanisms, possibly with the contribution of a unique anti-inflammatory microbiome. Furthermore, these mechanisms are independent of viral replication, and CD4 + T-cell activation or depletion. SUMMARY Future SIV research on natural hosts should focus on further elucidating the anti-inflammatory state of their gut, and the role of microbiome/dysbiosis in the pathogenesis of SIV infection, with the goal of development new regiments or treatments to reduce or even halt the vicious cycle of gut damage and inflammation triggered by pathogenic HIV/SIV infection.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Department of Pathology, School of Medicine
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Bayón-Gil Á, Hernández I, Dalmau J, Nieto JC, Urrea V, Garrido-Sanz L, Caratú G, García-Guerrero MC, Gálvez C, Salgado M, Erkizia I, Laguía F, Resa-Infante P, Massanella M, Tonda R, Morata J, Hong KY, Koshy J, Goldman AR, Giron L, Abdel-Mohsen M, Heyn H, Martinez-Picado J, Puertas MC. Host genetic and immune factors drive evasion of HIV-1 pathogenesis in viremic non-progressors. MED 2025; 6:100518. [PMID: 39413785 PMCID: PMC11830539 DOI: 10.1016/j.medj.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Viremic non-progressors (VNPs) represent an exceptional and uncommon subset of people with HIV-1, characterized by the remarkable preservation of normal CD4+ T cell counts despite uncontrolled viral replication-a trait reminiscent of natural hosts of simian immunodeficiency virus. The mechanisms orchestrating evasion from HIV-1 pathogenesis in human VNPs remain elusive, primarily due to the absence of integrative studies. METHODS We implemented a novel single-cell and multiomics approach to comprehensively characterize viral, genomic, transcriptomic, and metabolomic factors driving this exceedingly rare disease phenotype in 16 VNPs and 29 HIV+ progressors. FINDINGS Genetic predisposition to the VNP phenotype was evidenced by a higher prevalence of CCR5Δ32 heterozygosity, which was associated with lower levels of CCR5 expression and a lower frequency of infected cells in peripheral circulation. We also observed reduced levels of plasma markers of intestinal disruption and attenuated interferon responses in VNPs. These factors potentially drive the other phenotypic traits of immune preservation in this population, including the unaltered tryptophan metabolic profile, reduced activation of cytotoxic lymphocytes, and reduced bystander CD4+ T cell apoptosis. CONCLUSIONS In summary, our comprehensive analysis identified intricate factors collectively associated with the unique immunovirological equilibrium in VNPs, shedding light on potential avenues for therapeutic exploration in managing HIV pathogenesis. FUNDING The work was supported by funding from the Spanish Ministry of Science and Innovation and the National Institutes of Health (NIH).
Collapse
Affiliation(s)
| | - Inmaculada Hernández
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | - Juan C Nieto
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | | | - Ginevra Caratú
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | | | - María Salgado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain
| | - Marta Massanella
- IrsiCaixa, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Tonda
- CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Jordi Morata
- CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | | | - Jane Koshy
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | | | - Holger Heyn
- Single Cell Genomics Group, CNAG-CRG, National Centre for Genomic Analysis (CNAG), Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases and Immunity Department, University of Vic-Central University of Catalonia, Vic, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Clain JA, Picard M, Rabezanahary H, André S, Boutrais S, Goma Matsetse E, Dewatines J, Dueymes Q, Thiboutot E, Racine G, Soundaramourty C, Mammano F, Corbeau P, Zghidi-Abouzid O, Estaquier J. Immune Alterations and Viral Reservoir Atlas in SIV-Infected Chinese Rhesus Macaques. Infect Dis Rep 2025; 17:12. [PMID: 39997464 PMCID: PMC11855486 DOI: 10.3390/idr17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Over the last decades, our projects have been dedicated to clarifying immunopathological and virological events associated with Human Immunodeficiency Virus (HIV) infection. METHODS By using non-human primate models of pathogenic and non-pathogenic lentiviral infections, we aimed at identifying the cells and tissues in which the virus persists, despite antiretroviral therapy (ART). Indeed, the eradication of viral reservoirs is a major challenge for HIV cure. RESULTS We present a series of results performed in rhesus macaques of Chinese origin deciphering the virological and immunological events associated with ART that can be of interest for people living with HIV. CONCLUSIONS This model could be of interest for understanding in whole body the clinical alteration that persist despite ART.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Morgane Picard
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Henintsoa Rabezanahary
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Sonia André
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Steven Boutrais
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Ella Goma Matsetse
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Juliette Dewatines
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Quentin Dueymes
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Elise Thiboutot
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Calaiselvy Soundaramourty
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| | - Fabrizio Mammano
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
- Institut national de la santé et de la recherche médicale (Inserm) U1259 MAVIVHe, Université de Tours, 37032 Tours, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34094 Montpellier, France;
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (H.R.); (S.B.); (E.G.M.); (J.D.); (Q.D.); (E.T.); (G.R.); (O.Z.-A.)
- Institut national de la santé et de la recherche médicale (INSERM) U1124, Université Paris Cité, 75006 Paris, France; (M.P.); (S.A.); (C.S.); (F.M.)
| |
Collapse
|
4
|
Bayón-Gil Á, Martinez-Picado J, Puertas MC. Viremic non-progression in HIV/SIV infection: A tied game between virus and host. Cell Rep Med 2025; 6:101921. [PMID: 39842407 PMCID: PMC11866547 DOI: 10.1016/j.xcrm.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
High-efficacy antiretroviral treatment (ART) has been a game-changer for HIV/AIDS pandemic, but incomplete CD4+ T cell recovery and persistent chronic immune activation still affect HIV-suppressed people. Exceptional cases of HIV infection that naturally exhibit delayed disease progression provide invaluable insights into protective biological mechanisms with potential clinical application. Viremic non-progressors (VNPs) represent an extremely rare population of individuals with HIV, characterized by preservation of the CD4+ T cell compartment despite persistent high levels of viral load (>10,000 copies/mL). While only a few studies have investigated the immunovirological characteristics of adult and pediatric VNPs, most of our knowledge about this phenotype stems from its non-human-primate counterpart, the natural simian immunodeficiency virus (SIV) hosts. In this review, we synthesize the insights gained from recent studies of natural SIV hosts and VNPs and evaluate the potential similarities and differences in the mechanisms that underlie the absence of pathogenesis, with special focus on the control of immune activation.
Collapse
Affiliation(s)
- Ángel Bayón-Gil
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Raehtz KD, Xu C, Deleage C, Ma D, Policicchio BB, Brocca-Cofano E, Piccolo D, Weaver K, Keele BF, Estes JD, Apetrei C, Pandrea I. Rapid systemic spread and minimal immune responses following SIVsab intrarectal transmission in African green monkeys. JCI Insight 2024; 9:e183751. [PMID: 39641272 PMCID: PMC11623940 DOI: 10.1172/jci.insight.183751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
African green monkeys (AGMs) are natural hosts of SIV whose infection does not progress to AIDS. Since early events of infection may be critical to pathogenesis in nonnatural hosts, we investigated early SIV infection in 29 adult male AGMs intrarectally inoculated with SIVsab92018 (SIVsab) and serially sacrificed throughout acute into early chronic infection to understand patterns of viral establishment, dissemination, and their effect on disease progression. Using this model, we showed that foci of virus replication could be detected at the site of inoculation and in the draining lymphatics as early as 1-3 days postinfection (dpi). Furthermore, testing with ultrasensitive assays showed rapid onset of viremia (2-4 dpi). After systemic spread, virus was detected in all tissues surveyed. Multiple transmitted/founder viruses were identified, confirming an optimal challenge dose, while demonstrating a moderate mucosal genetic bottleneck. Resident CD4+ T cells were the initial target cells; other immune cell populations were not significantly altered at the site of entry. Thus, intrarectal SIVsab infection is characterized by swift dissemination of the virus, a lack of major target cell recruitment, and no window of opportunity for interventions to prevent virus dissemination during the earliest stages of infection, similar to intrarectal transmission but different from vaginal transmission in macaques.
Collapse
Affiliation(s)
| | - Cuiling Xu
- Department of Pathology and
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology and
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Heredia A, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. EBioMedicine 2024; 109:105410. [PMID: 39427414 PMCID: PMC11533037 DOI: 10.1016/j.ebiom.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, virus detection and characterization were not at the earliest stages of acute infection. METHODS We identified an X4-tropic T/F HIV-1 in a participant (40700) in the RV217 acute infection cohort. Coreceptor usage was determined in TZM-bl cell line, NP-2 cell lines, and primary CD4+ T cells using pseudovirus and infectious molecular clones. CD4 subset dynamics were analyzed using flow cytometry. Viral load in each CD4 subset was quantified using cell-associated HIV RNA assay and total and integrated HIV DNA assay. FINDINGS Participant 40700 was infected by an X4 tropic HIV-1 without CCR5 using ability. This participant experienced significantly faster CD4 depletion compared to R5 virus infected individuals in the same cohort. Naïve and central memory (CM) CD4 subsets declined faster than effector memory (EM) and transitional memory (TM) subsets. All CD4 subsets, including the naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions, while most of the R5 T/F viruses in the same cohort are sensitive to the same panel of bNAbs. INTERPRETATION X4-tropic HIV-1 is transmissible through mucosal route in people with wild-type CCR5 genotype. The CD4 subset tropism of HIV-1 may be an important determinant for HIV-1 transmissibility and virulence. FUNDING Institute of Human Virology, National Institutes of Health, Henry M. Jackson Foundation for the Advancement of Military Medicine.
Collapse
Affiliation(s)
| | - Saini Setua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Felisa Diaz-Mendez
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Rasmi Thomas
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hongshuo Song
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Zhao J, Zhou X, Qiu Y, Jia R. Characterization of the gut butyrate-producing bacteria and lipid metabolism in African green monkey as a natural host of simian immunodeficiency virus infection. AIDS 2024; 38:1617-1626. [PMID: 38819818 DOI: 10.1097/qad.0000000000003944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. DESIGN AND METHODS Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. RESULTS Compared with CMs and RMs, significant decreases in the abundances of Streptococcus , Alistipes , Treponema , Bacteroides , and Methanobrevibacter ( P < 0.01), and significant increases in the abundances of Clostridium , Eubacterium , Blautia , Roseburia , Faecalibacterium , and Dialister ( P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM ( P < 0.05). CONCLUSIONS Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Infectious Disease and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University
| | - Xiaojun Zhou
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences
| | - Rui Jia
- Department of biosafety, China Biotechnology Co. Ltd, Beijing, China
| |
Collapse
|
8
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Le Hingrat Q, Sette P, Xu C, Rahmberg AR, Tarnus L, Annapureddy H, Kleinman A, Brocca-Cofano E, Sivanandham R, Sivanandham S, He T, Capreri DJ, Ma D, Estes JD, Brenchley JM, Apetrei C, Pandrea I. Prolonged experimental CD4 + T-cell depletion does not cause disease progression in SIV-infected African green monkeys. Nat Commun 2023; 14:979. [PMID: 36813761 PMCID: PMC9946951 DOI: 10.1038/s41467-023-36379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Lilas Tarnus
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haritha Annapureddy
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Capreri
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
De La Torre-Tarazona E, Ayala-Suárez R, Díez-Fuertes F, Alcamí J. Omic Technologies in HIV: Searching Transcriptional Signatures Involved in Long-Term Non-Progressor and HIV Controller Phenotypes. Front Immunol 2022; 13:926499. [PMID: 35844607 PMCID: PMC9284212 DOI: 10.3389/fimmu.2022.926499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
This article reviews the main discoveries achieved by transcriptomic approaches on HIV controller (HIC) and long-term non-progressor (LTNP) individuals, who are able to suppress HIV replication and maintain high CD4+ T cell levels, respectively, in the absence of antiretroviral therapy. Different studies using high throughput techniques have elucidated multifactorial causes implied in natural control of HIV infection. Genes related to IFN response, calcium metabolism, ribosome biogenesis, among others, are commonly differentially expressed in LTNP/HIC individuals. Additionally, pathways related with activation, survival, proliferation, apoptosis and inflammation, can be deregulated in these individuals. Likewise, recent transcriptomic studies include high-throughput sequencing in specific immune cell subpopulations, finding additional gene expression patterns associated to viral control and/or non-progression in immune cell subsets. Herein, we provide an overview of the main differentially expressed genes and biological routes commonly observed on immune cells involved in HIV infection from HIC and LTNP individuals, analyzing also different technical aspects that could affect the data analysis and the future perspectives and gaps to be addressed in this field.
Collapse
Affiliation(s)
- Erick De La Torre-Tarazona
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rubén Ayala-Suárez
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Francisco Díez-Fuertes
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco Díez-Fuertes,
| | - José Alcamí
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Human Immunodeficiency Virus (HIV) Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022; 13:835994. [PMID: 35154162 PMCID: PMC8829453 DOI: 10.3389/fimmu.2022.835994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Eye on Primates, Los Angeles, CA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
14
|
Chang XL, Wu HL, Webb GM, Tiwary M, Hughes C, Reed JS, Hwang J, Waytashek C, Boyle C, Pessoa C, Sylwester AW, Morrow D, Belica K, Fischer M, Kelly S, Pourhassan N, Bochart RM, Smedley J, Recknor CP, Hansen SG, Sacha JB. CCR5 Receptor Occupancy Analysis Reveals Increased Peripheral Blood CCR5+CD4+ T Cells Following Treatment With the Anti-CCR5 Antibody Leronlimab. Front Immunol 2021; 12:794638. [PMID: 34868084 PMCID: PMC8640501 DOI: 10.3389/fimmu.2021.794638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
CCR5 plays a central role in infectious disease, host defense, and cancer progression, thereby making it an ideal target for therapeutic development. Notably, CCR5 is the major HIV entry co-receptor, where its surface density correlates with HIV plasma viremia. The level of CCR5 receptor occupancy (RO) achieved by a CCR5-targeting therapeutic is therefore a critical predictor of its efficacy. However, current methods to measure CCR5 RO lack sensitivity, resulting in high background and overcalculation. Here, we report on two independent, flow cytometric methods of calculating CCR5 RO using the anti-CCR5 antibody, Leronlimab. We show that both methods led to comparable CCR5 RO values, with low background on untreated CCR5+CD4+ T cells and sensitive measurements of occupancy on both blood and tissue-resident CD4+ T cells that correlated longitudinally with plasma concentrations in Leronlimab-treated macaques. Using these assays, we found that Leronlimab stabilized cell surface CCR5, leading to an increase in the levels of circulating and tissue-resident CCR5+CD4+ T cells in vivo in Leronlimab-treated macaques. Weekly Leronlimab treatment in a chronically SIV-infected macaque led to increased CCR5+CD4+ T cells levels and fully suppressed plasma viremia, both concomitant with full CCR5 RO on peripheral blood CD4+ T cells, demonstrating that CCR5+CD4+ T cells were protected from viral replication by Leronlimab binding. Finally, we extended these results to Leronlimab-treated humans and found that weekly 700 mg Leronlimab led to complete CCR5 RO on peripheral blood CD4+ T cells and a statistically significant increase in CCR5+CD4+ T cells in peripheral blood. Collectively, these results establish two RO calculation methods for longitudinal monitoring of anti-CCR5 therapeutic antibody blockade efficacy in both macaques and humans, demonstrate that CCR5+CD4+ T cell levels temporarily increase with Leronlimab treatment, and facilitate future detailed investigations into the immunological impacts of CCR5 inhibition in multiple pathophysiological processes.
Collapse
Affiliation(s)
- Xiao L. Chang
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Helen L. Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Gabriela M. Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Meenakshi Tiwary
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Colette Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Joseph Hwang
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Courtney Waytashek
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Carla Boyle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Cleiton Pessoa
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Andrew W. Sylwester
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - David Morrow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Karina Belica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | | | | | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | | | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
15
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Mudd JC, Lai S, Shah S, Rahmberg A, Flynn JK, Starke CE, Perkins MR, Ransier A, Darko S, Douek DC, Hirsch VM, Cameron M, Brenchley JM. Epigenetic silencing of CD4 expression in nonpathogenic SIV infection in African green monkeys. JCI Insight 2020; 5:139043. [PMID: 32841214 PMCID: PMC7526541 DOI: 10.1172/jci.insight.139043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/13/2020] [Indexed: 01/19/2023] Open
Abstract
African green monkeys (AGMs) are natural hosts of SIV that postthymically downregulate CD4 to maintain a large population of CD4-CD8aa+ virus-resistant cells with Th functionality, which can result in AGMs becoming apparently cured of SIVagm infection. To understand the mechanisms of this process, we performed genome-wide transcriptional analysis on T cells induced to downregulate CD4 in vitro from AGMs and closely related patas monkeys and T cells that maintain CD4 expression from rhesus macaques. In T cells that downregulated CD4, pathway analysis revealed an atypical regulation of the DNA methylation machinery, which was reversible when pharmacologically targeted with 5-aza-2 deoxycytidine. This signature was driven largely by the dioxygenase TET3, which became downregulated with loss of CD4 expression. CpG motifs within the AGM CD4 promoter region became methylated during CD4 downregulation in vitro and were stably imprinted in AGM CD4-CD8aa+ T cells sorted directly ex vivo. These results suggest that AGMs use epigenetic mechanisms to durably silence the CD4 gene. Manipulation of these mechanisms could provide avenues for modulating SIV and HIV-1 entry receptor expression in hosts that become progressively infected with SIV, which could lead to novel therapeutic interventions aimed to reduce HIV viremia in vivo.
Collapse
Affiliation(s)
- Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Stephen Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Sanjana Shah
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Molly R Perkins
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, and
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, and
| | | | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| |
Collapse
|
17
|
Kilapandal Venkatraman SM, Sivanandham R, Pandrea I, Apetrei C. BCG Vaccination and Mother-to-Infant Transmission of HIV. J Infect Dis 2020; 222:1-3. [PMID: 31605531 DOI: 10.1093/infdis/jiz385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sindhuja Murali Kilapandal Venkatraman
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Ranjit Sivanandham
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Ivona Pandrea
- Department of Pathology, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Coleman SL, Neff CP, Li SX, Armstrong AJ, Schneider JM, Sen S, Fennimore B, Campbell TB, Lozupone CA, Palmer BE. Can gut microbiota of men who have sex with men influence HIV transmission? Gut Microbes 2020; 11:610-619. [PMID: 32036739 PMCID: PMC7524317 DOI: 10.1080/19490976.2019.1700756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gaining a complete understanding of transmission risk factors will assist in efforts to reduce new HIV infections, especially within the disproportionally affected population of men who have sex with men (MSM). We recently reported that the fecal microbiota of MSM elevates immune activation in gnotobiotic mice and enhances HIV infection in vitro over that of fecal microbiota from men who have sex with women. We also demonstrated elevation of the gut homing marker CD103 (integrin αE) on CD4+ T cells by MSM-microbiota. Here we provide additional evidence that the gut microbiota is a risk factor for HIV transmission in MSM by showing elevated frequencies of the HIV co-receptor CCR5 on CD4+ T cells in human rectosigmoid colon biopsies. We discuss our interest in specific MSM-associated bacteria and propose the influx of CD103+ and CCR5+ CD4+ T cells into the colon as a potential link between the MSM microbiota and HIV transmission.
Collapse
Affiliation(s)
- Sara L. Coleman
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - C. Preston Neff
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sam X. Li
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Abigail J.S. Armstrong
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer M. Schneider
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sharon Sen
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Blair Fennimore
- Division of Gastroenterology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas B. Campbell
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine A. Lozupone
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,CONTACT Brent E. Palmer Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
19
|
Roy A, Basak S. HIV long-term non-progressors share similar features with simian immunodeficiency virus infection of chimpanzees. J Biomol Struct Dyn 2020; 39:2447-2454. [PMID: 32223527 DOI: 10.1080/07391102.2020.1749129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV-1 infection in human beings has been an outcome of cross-species transmission event of simian immunodeficiency virus from chimpanzees (SIVcpz). Present study reveals differential features of envelope genes representing different categories of HIV-1 disease progression in human beings, namely, rapid progressors (RP), slow progressors (SP) and long-term non-progressors (LTNP) with respect to SIVcpz, based on their amino acid usage patterns. It was evident that SP, LTNP and SIVcpz envelope genes displayed similar patterns of amino acid usage which strongly contrasted with the features exhibited by the envelope genes representing RP category. Robust analysis revealed that selection constraint of human host on SP and LTNP associated envelope genes and chimpanzee host on SIVcpz envelope genes were more severe compared to selection pressure operational on RP associated envelope genes. Evolutionary forces of selection appeared to be comparatively more relaxed on the RP envelope genes in contrast to SP, LTNP and SIVcpz types. Better binding of RP envelope glycoprotein 120 (gp120) compared to envelope gp120 representing SP, LTNP and SIVcpz with host cellular receptor CD4, as inferred employing molecular docking approaches, promises to confer meaningful insights into the event of speedy progression of HIV in rapid progressors. It was interesting to note that envelope glycoprotein exhibited a tendency of hindering proper interaction of host (human/chimpanzee) CD4 and major histocompatibility complex II (MHC II), with a better efficacy in rapid progressors, thus, facilitating highest degrees of immune suppression. Proper identification of the contrasting features might confer a scope to modulate rapid progression of HIV to a long-term non-progressive controlled case, as observed in LTNP and SIVcpz infection, simultaneously aiding therapeutic research against AIDS targeted at drug and vaccine development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ayan Roy
- Department of Bioinformatics, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
20
|
Raehtz KD, Barrenäs F, Xu C, Busman-Sahay K, Valentine A, Law L, Ma D, Policicchio BB, Wijewardana V, Brocca-Cofano E, Trichel A, Gale M, Keele BF, Estes JD, Apetrei C, Pandrea I. African green monkeys avoid SIV disease progression by preventing intestinal dysfunction and maintaining mucosal barrier integrity. PLoS Pathog 2020; 16:e1008333. [PMID: 32119719 PMCID: PMC7077871 DOI: 10.1371/journal.ppat.1008333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/17/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike HIV infection, SIV infection is generally nonpathogenic in natural hosts, such as African green monkeys (AGMs), despite life-long high viral replication. Lack of disease progression was reportedly based on the ability of SIV-infected AGMs to prevent gut dysfunction, avoiding microbial translocation and the associated systemic immune activation and chronic inflammation. Yet, the maintenance of gut integrity has never been documented, and the mechanism(s) by which gut integrity is preserved are unknown. We sought to investigate the early events of SIV infection in AGMs, specifically examining the impact of SIVsab infection on the gut mucosa. Twenty-nine adult male AGMs were intrarectally infected with SIVsab92018 and serially sacrificed at well-defined stages of SIV infection, preramp-up (1-3 days post-infection (dpi)), ramp-up (4-6 dpi), peak viremia (9-12 dpi), and early chronic SIV infection (46-55 dpi), to assess the levels of immune activation, apoptosis, epithelial damage and microbial translocation in the GI tract and peripheral lymph nodes. Tissue viral loads, plasma cytokines and plasma markers of gut dysfunction were also measured throughout the course of early infection. While a strong, but transient, interferon-based inflammatory response was observed, the levels of plasma markers linked to enteropathy did not increase. Accordingly, no significant increases in apoptosis of either mucosal enterocytes or lymphocytes, and no damage to the mucosal epithelium were documented during early SIVsab infection of AGMs. These findings were supported by RNAseq of the gut tissue, which found no significant alterations in gene expression that would indicate microbial translocation. Thus, for the first time, we confirmed that gut epithelial integrity is preserved, with no evidence of microbial translocation, in AGMs throughout early SIVsab infection. This might protect AGMs from developing intestinal dysfunction and the subsequent chronic inflammation that drives both HIV disease progression and HIV-associated comorbidities.
Collapse
Affiliation(s)
- Kevin D. Raehtz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fredrik Barrenäs
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Cuiling Xu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Audrey Valentine
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Viskam Wijewardana
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Egidio Brocca-Cofano
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Diseases, University of Washington, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Barrenas F, Raehtz K, Xu C, Law L, Green RR, Silvestri G, Bosinger SE, Nishida A, Li Q, Lu W, Zhang J, Thomas MJ, Chang J, Smith E, Weiss JM, Dawoud RA, Richter GH, Trichel A, Ma D, Peng X, Komorowski J, Apetrei C, Pandrea I, Gale M. Macrophage-associated wound healing contributes to African green monkey SIV pathogenesis control. Nat Commun 2019; 10:5101. [PMID: 31704931 PMCID: PMC6841668 DOI: 10.1038/s41467-019-12987-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/08/2019] [Indexed: 01/13/2023] Open
Abstract
Natural hosts of simian immunodeficiency virus (SIV) avoid AIDS despite lifelong infection. Here, we examined how this outcome is achieved by comparing a natural SIV host, African green monkey (AGM) to an AIDS susceptible species, rhesus macaque (RM). To asses gene expression profiles from acutely SIV infected AGMs and RMs, we developed a systems biology approach termed Conserved Gene Signature Analysis (CGSA), which compared RNA sequencing data from rectal AGM and RM tissues to various other species. We found that AGMs rapidly activate, and then maintain, evolutionarily conserved regenerative wound healing mechanisms in mucosal tissue. The wound healing protein fibronectin shows distinct tissue distribution and abundance kinetics in AGMs. Furthermore, AGM monocytes exhibit an embryonic development and repair/regeneration signature featuring TGF-β and concomitant reduced expression of inflammatory genes compared to RMs. This regenerative wound healing process likely preserves mucosal integrity and prevents inflammatory insults that underlie immune exhaustion in RMs.
Collapse
Affiliation(s)
- Fredrik Barrenas
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kevin Raehtz
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Richard R Green
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Guido Silvestri
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wuxun Lu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jianshui Zhang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew J Thomas
- Department of Immunology, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Jean Chang
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Jeffrey M Weiss
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Reem A Dawoud
- Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - George H Richter
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita Trichel
- Divison of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, PAN, Warsaw, Poland
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Wetzel KS, Elliott STC, Collman RG. SIV Coreceptor Specificity in Natural and Non-Natural Host Infection: Implications for Cell Targeting and Differential Outcomes from Infection. Curr HIV Res 2019; 16:41-51. [PMID: 29173179 DOI: 10.2174/1570162x15666171124121805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Pathogenic HIV-1 infection of humans and SIVmac infection of macaques are the result of zoonotic transfer of primate immunodeficiency viruses from their natural hosts into non-natural host species. Natural host infections do not result in pathogenesis despite high levels of virus replication, and evidence suggests that differences in anatomical location and specific subsets of CD4+ T cells infected may underlie distinct outcomes from infection. The coreceptor CCR5 has long been considered the sole pathway for SIV entry and the key determinant of CD4+ cell targeting, but it has also been known that natural hosts express exceedingly low levels of CCR5 despite maintaining high levels of virus replication. This review details emerging data indicating that in multiple natural host species, CCR5 is dispensable for SIV infection ex vivo and/or in vivo and, contrary to the established dogma, alternative coreceptors, particularly CXCR6, play a central role in infection and cell targeting. Infections of non-natural hosts, however, are characterized by CCR5-exclusive entry. These findings suggest that alternative coreceptor-mediated cell targeting in natural hosts, combined with low CCR5 expression, may direct the virus to distinct populations of cells that are dispensable for immune homeostasis, particularly extralymphoid and more differentiated CD4+ T cells. In contrast, CCR5-mediated entry in non-natural hosts results in targeting of CD4+ T cells that are located in lymphoid tissues, critical for immune homeostasis, or necessary for gut barrier integrity. Thus, fundamental differences in viral entry coreceptor use may be central determinants of infection outcome. These findings redefine the normal SIV/host relationship in natural host species, shed new light on key features linked to zoonotic immunodeficiency virus transfer, and highlight important questions regarding how and why this coreceptor bottleneck occurs and the coevolutionary equilibrium is lost following cross-species transfer that results in AIDS.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sarah T C Elliott
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald G Collman
- Department of Medicine and Penn Center for AIDS Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Multivariate profiling of African green monkey and rhesus macaque T lymphocytes. Sci Rep 2019; 9:4834. [PMID: 30886198 PMCID: PMC6423277 DOI: 10.1038/s41598-019-41209-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
The complexity of immune responses limits the usefulness of univariate methods in answering complex immunology questions. To demonstrate the utility of a multivariate approach, we employ such approach to compare T cells of African green monkeys (AGMs) and rhesus macaques (RMs). Among the most prominent distinguishing features we found were lower CD3 and higher CD28 surface expression in AGMs compared to RMs. After in vitro stimulation, a larger proportion of AGM T cells secreted cytokines, especially those producing more than one cytokine (i.e. multifunctional cells). To find out whether multifunctional responses associate with protection in other species, we compared T cells of cynomolgus macaques (CMs) infected with wild-type Simian Immunodeficiency Virus (SIV) to those of CMs infected (vaccinated) with a replication-defective virus. Wild-type SIV infection in macaques leads to simian Acquired Immunodeficiency Syndrome (AIDS), which does not happen in animals previously vaccinated with a replication-defective virus. Interestingly, after in vitro stimulation, multifunctional cells were more abundant among T cells of vaccinated CMs. Our results propose T-cell multifunctionality as a potentially useful marker of immunity, although additional verification is needed. Finally, we hope our multivariate model and its associated validation methods will inform future studies in the field of immunology.
Collapse
|
24
|
Bibollet-Ruche F, Russell RM, Liu W, Stewart-Jones GBE, Sherrill-Mix S, Li Y, Learn GH, Smith AG, Gondim MVP, Plenderleith LJ, Decker JM, Easlick JL, Wetzel KS, Collman RG, Ding S, Finzi A, Ayouba A, Peeters M, Leendertz FH, van Schijndel J, Goedmakers A, Ton E, Boesch C, Kuehl H, Arandjelovic M, Dieguez P, Murai M, Colin C, Koops K, Speede S, Gonder MK, Muller MN, Sanz CM, Morgan DB, Atencia R, Cox D, Piel AK, Stewart FA, Ndjango JBN, Mjungu D, Lonsdorf EV, Pusey AE, Kwong PD, Sharp PM, Shaw GM, Hahn BH. CD4 receptor diversity in chimpanzees protects against SIV infection. Proc Natl Acad Sci U S A 2019; 116:3229-3238. [PMID: 30718403 PMCID: PMC6386711 DOI: 10.1073/pnas.1821197116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.
Collapse
Affiliation(s)
| | - Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew G Smith
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Julie M Decker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Juliet L Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Katherine S Wetzel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shilei Ding
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de L'Université de Montréal, Montréal, QC H2X0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de L'Université de Montréal, Montréal, QC H2X0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Fabian H Leendertz
- Research Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany
| | - Joost van Schijndel
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Chimbo Foundation, 1011 PW Amsterdam, The Netherlands
| | | | - Els Ton
- Chimbo Foundation, 1011 PW Amsterdam, The Netherlands
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Hjalmar Kuehl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Paula Dieguez
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mizuki Murai
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christelle Colin
- Projet Primates France, Centre de Conservation pour Chimpanzés, BP 36 Faranah, Republic of Guinea
| | - Kathelijne Koops
- Department of Anthropology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, In Defense of Animals-Africa, Portland, OR 97204
| | - Mary K Gonder
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO 63130
- Congo Program, Wildlife Conservation Society, BP 14537 Brazzaville, Republic of the Congo
| | - David B Morgan
- Congo Program, Wildlife Conservation Society, BP 14537 Brazzaville, Republic of the Congo
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614
| | - Rebecca Atencia
- Tchimpounga Chimpanzee Rehabilitation Center, The Jane Goodall Institute-Congo, BP 1206 Pointe Noire, Republic of Congo
| | - Debby Cox
- Tchimpounga Chimpanzee Rehabilitation Center, The Jane Goodall Institute-Congo, BP 1206 Pointe Noire, Republic of Congo
- Africa Programs, The Jane Goodall Institute, Vienna, VA 22182
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012 Kisangani, Democratic Republic of the Congo
| | - Deus Mjungu
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania
| | | | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Obregon-Perko V, Hodara VL, Parodi LM, Giavedoni LD. Baboon CD8 T cells suppress SIVmac infection in CD4 T cells through contact-dependent production of MIP-1α, MIP-1β, and RANTES. Cytokine 2018; 111:408-419. [PMID: 29807688 PMCID: PMC6261791 DOI: 10.1016/j.cyto.2018.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 11/15/2022]
Abstract
Simian immunodeficiency virus (SIV) infection in rhesus macaques is often characterized by high viremia and CD4 T cell depletion. By contrast, SIV infection in African nonhuman primate natural hosts is typically nonpathogenic despite active viral replication. Baboons are abundant in Africa and have a geographical distribution that overlaps with natural hosts, but they do not harbor SIVs. Previous work has demonstrated baboons are resistant to chronic SIV infection and/or disease in vivo but the underlying mechanisms remain unknown. Using in vitro SIVmac infections, we sought to identify SIV restriction factors in baboons by comparing observations to the pathogenic rhesus macaque model. SIVmac replicated in baboon PBMC but had delayed kinetics compared to rhesus PBMC. However, SIVmac replication in baboon and rhesus isolated CD4 cells were similar to the kinetics seen for rhesus PBMC, demonstrating intracellular restriction factors do not play a strong role in baboon inhibition of SIVmac replication. Here, we show CD8 T cells contribute to the innate SIV-suppressive activity seen in naïve baboon PBMC. As one mechanism of restriction, we identified higher production of MIP-1α, MIP-1β, and RANTES by baboon PBMC. Contact between CD4 and CD8 T cells resulted in maximum production of these chemokines and suppression of viral replication, whereas neutralization of CCR5-binding chemokines in baboon PBMC increased viral loads. Our studies indicate baboon natural restriction of SIVmac replication is largely dependent on CD4-extrinsinc mechanisms mediated, in part, by CD8 T cells.
Collapse
Affiliation(s)
- Veronica Obregon-Perko
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health, Long School of Medicine, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Vida L Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Laura M Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | - Luis D Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
26
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
27
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
28
|
Wetzel KS, Yi Y, Yadav A, Bauer AM, Bello EA, Romero DC, Bibollet-Ruche F, Hahn BH, Paiardini M, Silvestri G, Peeters M, Collman RG. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses. PLoS Pathog 2018; 14:e1007003. [PMID: 29659623 PMCID: PMC5919676 DOI: 10.1371/journal.ppat.1007003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/26/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
Abstract
Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells with pathogenic consequences.
Collapse
Affiliation(s)
- Katherine S. Wetzel
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Yanjie Yi
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anjana Yadav
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anya M. Bauer
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Ezekiel A. Bello
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Dino C. Romero
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Martine Peeters
- UMI233-TransVIHMI/INSERM U1175, Institut de Recherche pour le Développement (IRD) and University of Montpellier, Montpellier, France
| | - Ronald G. Collman
- Departments of Medicine and Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Veazey RS, Lackner AA. Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR J 2017; 58:160-171. [PMID: 29228218 PMCID: PMC5886333 DOI: 10.1093/ilar/ilx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022] Open
Abstract
Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to "dogma changing" discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
Collapse
Affiliation(s)
- Ronald S Veazey
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| | - Andrew A Lackner
- Ronald S. Veazey, DVM, PhD, is chair of the Division of Comparative Pathology at the Tulane National Primate Research Center and professor in the Department of Pathology and Laboratory Medicine at the Tulane University School of Medicine. Dr. Andrew Lackner, DVM, PhD is director of the Tulane National Primate Research Center and professor of the Department of Microbiology and Pathology and Laboratory Medicine at the Tulane University School of Medicine
| |
Collapse
|
30
|
Garg H, Joshi A. Host and Viral Factors in HIV-Mediated Bystander Apoptosis. Viruses 2017; 9:v9080237. [PMID: 28829402 PMCID: PMC5579491 DOI: 10.3390/v9080237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr., El Paso, TX 79905, USA.
| | - Anjali Joshi
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr., El Paso, TX 79905, USA.
| |
Collapse
|
31
|
Bell SM, Bedford T. Modern-day SIV viral diversity generated by extensive recombination and cross-species transmission. PLoS Pathog 2017; 13:e1006466. [PMID: 28672035 PMCID: PMC5510905 DOI: 10.1371/journal.ppat.1006466] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 06/12/2017] [Indexed: 02/04/2023] Open
Abstract
Cross-species transmission (CST) has led to many devastating epidemics, but is still a poorly understood phenomenon. HIV-1 and HIV-2 (human immunodeficiency virus 1 and 2), which have collectively caused over 35 million deaths, are the result of multiple CSTs from chimpanzees, gorillas, and sooty mangabeys. While the immediate history of HIV is known, there are over 45 lentiviruses that infect specific species of primates, and patterns of host switching are not well characterized. We thus took a phylogenetic approach to better understand the natural history of SIV recombination and CST. We modeled host species as a discrete character trait on the viral phylogeny and inferred historical host switches and the pairwise transmission rates between each pair of 24 primate hosts. We identify 14 novel, well-supported, ancient cross-species transmission events. We also find that lentiviral lineages vary widely in their ability to infect new host species: SIVcol (from colobus monkeys) is evolutionarily isolated, while SIVagms (from African green monkeys) frequently move between host subspecies. We also examine the origins of SIVcpz (the predecessor of HIV-1) in greater detail than previous studies, and find that there are still large portions of the genome with unknown origins. Observed patterns of CST are likely driven by a combination of ecological circumstance and innate immune factors.
Collapse
Affiliation(s)
- Sidney M. Bell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
32
|
McGary CS, Alvarez X, Harrington S, Cervasi B, Ryan ES, Iriele RI, Paganini S, Harper J, Easley K, Silvestri G, Ansari AA, Lichterfeld M, Micci L, Paiardini M. The loss of CCR6 + and CD161 + CD4 + T-cell homeostasis contributes to disease progression in SIV-infected rhesus macaques. Mucosal Immunol 2017; 10:1082-1096. [PMID: 28051083 PMCID: PMC5474141 DOI: 10.1038/mi.2016.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Although previous studies have shown that CD4+ T cells expressing CCR6 and CD161 are depleted from blood during HIV infection, the mechanisms underlying their loss remain unclear. In this study, we investigated how the homeostasis of CCR6+ and CD161+ CD4+ T cells contributes to SIV disease progression and the mechanisms responsible for their loss from circulation. By comparing SIV infection in rhesus macaques (RMs) and natural host sooty mangabeys (SMs), we found that the loss of CCR6+ and CD161+ CD4+ T cells from circulation is a distinguishing feature of progressive SIV infection in RMs. Furthermore, while viral infection critically contributes to the loss of CD161+CCR6-CD4+ T cells, a redistribution of CCR6+CD161- and CCR6+CD161+CD4+ T cells from the blood to the rectal mucosa is a chief mechanism for their loss during SIV infection. Finally, we provide evidence that the accumulation of CCR6+CD4+ T cells in the mucosa is damaging to the host by demonstrating their reduction from this site following initiation of antiretroviral therapy in SIV-infected RMs and their lack of accumulation in SIV-infected SMs. These data emphasize the importance of maintaining CCR6+ and CD161+ CD4+ T-cell homeostasis, particularly in the mucosa, to prevent disease progression during pathogenic HIV/SIV infection.
Collapse
Affiliation(s)
- Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA
| | - Sean Harrington
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA
| | - Barbara Cervasi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Emily S. Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Robin I. Iriele
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Sara Paganini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, GA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
33
|
Jaumdally SZ, Picton A, Tiemessen CT, Paximadis M, Jaspan HB, Gamieldien H, Masson L, Coetzee D, Williamson AL, Little F, Gumbi PP, Passmore JAS. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships. Immunology 2017; 151:464-473. [PMID: 28398593 DOI: 10.1111/imm.12743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022] Open
Abstract
Several host factors have been implicated in resistance to HIV infection in individuals who remain HIV-seronegative despite exposure. In a cohort of HIV-serodiscordant heterosexual couples, we investigated interactions between systemic inflammation and T-cell activation in resistance to HIV infection. Males and females in stable long-term relationships with either HIV-infected or uninfected partners were recruited, blood T-cell activation (CD38, HLA-DR, CCR5 and Ki67) and plasma cytokine concentrations were evaluated. The HIV-negative exposed individuals had significantly lower frequencies of CCR5+ CD4+ and CD8+ T cells than unexposed individuals. Mean fluorescence intensity of CCR5 expression on CD4+ T cells was significantly lower in HIV-negative exposed than unexposed individuals. Protective CCR5 haplotypes (HHA/HHF*2, HHF*2/HHF*2, HHC/HHF*2, HHA/HHA, HHA/HHC and HHA/HHD) tended to be over-represented in exposed compared with unexposed individuals (38% versus 28%, P = 0·58) whereas deleterious genotypes (HHC/HHD, HHC/HHE, HHD/HHE, HHD/HHD and HHE/HHE) were under-represented (26% versus 44%; P = 0·16). Plasma concentrations of interleukin-2 (P = 0·02), interferon-γ (P = 0·05) and granulocyte-macrophage colony-stimulating factor (P = 0·006) were lower in exposed compared with unexposed individuals. Activation marker expression and systemic cytokine concentrations were not influenced by gender. We conclude that the dominant signature of resistance to HIV infection in this cohort of exposed but uninfected individuals was lower T-cell CCR5 expression and plasma cytokine concentrations.
Collapse
Affiliation(s)
- Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Anabela Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - David Coetzee
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Pamela P Gumbi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
34
|
CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green Monkey Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections. J Virol 2017; 91:JVI.01626-16. [PMID: 27903799 DOI: 10.1128/jvi.01626-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
African green monkeys (AGM) and sooty mangabeys (SM) are well-studied natural hosts of simian immunodeficiency virus (SIV) that do not progress to AIDS when infected with their species-specific viruses. Natural hosts of SIV express very low levels of the canonical entry coreceptor CCR5, and recent studies have shown that CCR5 is dispensable for SIV infection of SM in vivo and that blocking of CCR5 does not prevent ex vivo infection of peripheral blood mononuclear cells (PBMC) from SM or vervet AGM. In both hosts, CXCR6 is an efficient entry pathway in vitro Here we investigated the use of species-matched CXCR6 and other alternative coreceptors by SIVagmSab, which infects sabaeus AGM. We cloned sabaeus CD4 and 10 candidate coreceptors. Species-matched CXCR6, CCR5, and GPR15 mediated robust entry into transfected cells by pseudotypes carrying SIVagmSab92018ivTF Env, with lower-level entry through GPR1 and APJ. We cloned genetically divergent env genes from the plasma of two wild-infected sabaeus AGM and found similar patterns of coreceptor use. Titration experiments showed that CXCR6 and CCR5 were more efficient than other coreceptors when tested at limiting CD4/coreceptor levels. Finally, blocking of CXCR6 with its ligand CXCL16 significantly inhibited SIVagmSab replication in sabaeus PBMC and had a greater impact than did the CCR5 blocker maraviroc, confirming the use of CXCR6 in primary lymphocyte infection. These data suggest a new paradigm for SIV infection of natural host species, whereby a shared outcome of virus-host coevolution is the use of CXCR6 or other alternative coreceptors for entry, which may direct SIV toward CD4+ T cell subsets and anatomical sites that support viral replication without disrupting immune homeostasis and function. IMPORTANCE Natural hosts of SIV do not progress to AIDS, in stark contrast to pathogenic human immunodeficiency virus type 1 (HIV-1)-human and SIVmac-macaque infections. Identifying how natural hosts avoid immunodeficiency can elucidate key mechanisms of pathogenesis. It is known that despite high viral loads, natural hosts have a low frequency of CD4+ cells expressing the SIV coreceptor CCR5. In this study, we demonstrate the efficient use of the coreceptor CXCR6 by SIVagmSab to infect sabaeus African green monkey lymphocytes. In conjunction with studies of SIVsmm, which infects sooty mangabeys, and SIVagmVer, which infects vervet monkeys, our data suggest a unifying model whereby in natural hosts, in which the CCR5 expression level is low, the use of CXCR6 or other coreceptors to mediate infection may target SIV toward distinct cell populations that are able to support high-level viral replication without causing a loss of CD4+ T cell homeostasis and lymphoid tissue damage that lead to AIDS in HIV-1 and SIVmac infections.
Collapse
|
35
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
36
|
Swanstrom AE, Haggarty B, Jordan APO, Romano J, Leslie GJ, Aye PP, Marx PA, Lackner AA, Del Prete GQ, Robinson JE, Betts MR, Montefiori DC, LaBranche CC, Hoxie JA. Derivation and Characterization of a CD4-Independent, Non-CD4-Tropic Simian Immunodeficiency Virus. J Virol 2016; 90:4966-4980. [PMID: 26937037 PMCID: PMC4859711 DOI: 10.1128/jvi.02851-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED CD4 tropism is conserved among all primate lentiviruses and likely contributes to viral pathogenesis by targeting cells that are critical for adaptive antiviral immune responses. Although CD4-independent variants of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have been described that can utilize the coreceptor CCR5 or CXCR4 in the absence of CD4, these viruses typically retain their CD4 binding sites and still can interact with CD4. We describe the derivation of a novel CD4-independent variant of pathogenic SIVmac239, termed iMac239, that was used to derive an infectious R5-tropic SIV lacking a CD4 binding site. Of the seven mutations that differentiate iMac239 from wild-type SIVmac239, a single change (D178G) in the V1/V2 region was sufficient to confer CD4 independence in cell-cell fusion assays, although other mutations were required for replication competence. Like other CD4-independent viruses, iMac239 was highly neutralization sensitive, although mutations were identified that could confer CD4-independent infection without increasing its neutralization sensitivity. Strikingly, iMac239 retained the ability to replicate in cell lines and primary cells even when its CD4 binding site had been ablated by deletion of a highly conserved aspartic acid at position 385, which, for HIV-1, plays a critical role in CD4 binding. iMac239, with and without the D385 deletion, exhibited an expanded host range in primary rhesus peripheral blood mononuclear cells that included CCR5(+) CD8(+) T cells. As the first non-CD4-tropic SIV, iMac239-ΔD385 will afford the opportunity to directly assess the in vivo role of CD4 targeting on pathogenesis and host immune responses. IMPORTANCE CD4 tropism is an invariant feature of primate lentiviruses and likely plays a key role in pathogenesis by focusing viral infection onto cells that mediate adaptive immune responses and in protecting virions attached to cells from neutralizing antibodies. Although CD4-independent viruses are well described for HIV and SIV, these viruses characteristically retain their CD4 binding site and can engage CD4 if available. We derived a novel CD4-independent, CCR5-tropic variant of the pathogenic molecular clone SIVmac239, termed iMac239. The genetic determinants of iMac239's CD4 independence provide new insights into mechanisms that underlie this phenotype. This virus remained replication competent even after its CD4 binding site had been ablated by mutagenesis. As the first truly non-CD4-tropic SIV, lacking the capacity to interact with CD4, iMac239 will provide the unique opportunity to evaluate SIV pathogenesis and host immune responses in the absence of the immunomodulatory effects of CD4(+) T cell targeting and infection.
Collapse
Affiliation(s)
- Adrienne E Swanstrom
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beth Haggarty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Josephine Romano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George J Leslie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Preston A Marx
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michael R Betts
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Chahroudi A, Silvestri G, Lichterfeld M. T memory stem cells and HIV: a long-term relationship. Curr HIV/AIDS Rep 2016; 12:33-40. [PMID: 25578055 DOI: 10.1007/s11904-014-0246-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In analogy to many tissues in which mature, terminally differentiated cells are continuously replenished by the progeny of less differentiated, long-lasting stem cells, it has been suspected that memory T lymphocytes might contain small numbers of stem cell-like cells. However, only recently have such cells been physically identified and isolated from humans, mice, and nonhuman primates. These cells, termed "T memory stem cells" (TSCM), represent approximately 2-4 % of all circulating T lymphocytes, seem to be extremely durable, and can rapidly differentiate into more mature central memory, effector memory, and effector T cells, while maintaining their own pool size through homeostatic self-renewal. Although it is becoming increasingly evident that that these cells have critical roles for T cell homeostasis and maintaining life-long cellular immunity against microbial pathogens during physiological conditions, they also seem intrinsically involved in many key aspects of HIV/SIV disease pathogenesis. Current data suggest that CD4+ TSCM cells represent a core element of the HIV-1 reservoir in patients treated with suppressive antiretroviral therapy (ART) and that relative resistance of CD4+ TSCM cells to SIV represents a distinguishing feature of non-pathogenic SIV infection in natural hosts. This article summarizes recent studies investigating the role of TSCM in HIV/SIV infection.
Collapse
Affiliation(s)
- Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,
| | | | | |
Collapse
|
38
|
Joshi A, Sedano M, Beauchamp B, Punke EB, Mulla ZD, Meza A, Alozie OK, Mukherjee D, Garg H. HIV-1 Env Glycoprotein Phenotype along with Immune Activation Determines CD4 T Cell Loss in HIV Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:1768-79. [PMID: 26764036 DOI: 10.4049/jimmunol.1501588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
The mechanism behind the selective depletion of CD4(+) cells in HIV infections remains undetermined. Although HIV selectively infects CD4(+) cells, the relatively few infected cells in vivo cannot account for the extent of CD4(+) T cell depletion, suggesting indirect or bystander mechanisms. The role of virus replication, Env glycoprotein phenotype, and immune activation (IA) in this bystander phenomenon remains controversial. Using samples derived from HIV-infected patients, we demonstrate that, although IA in both CD4(+) and CD8(+) subsets correlates with CD4 decline, apoptosis in CD4(+) and not CD8(+) cells is associated with disease progression. Because HIV-1 Env glycoprotein has been implicated in bystander apoptosis, we cloned full-length Envs from plasma of viremic patients and tested their apoptosis-inducing potential (AIP). Interestingly, AIP of HIV-1 Env glycoproteins were found to correlate inversely with CD4:CD8 ratios, suggesting a role of Env phenotype in disease progression. In vitro mitogenic stimulation of PBMCs resulted in upregulation of IA markers but failed to alter the CD4:CD8 ratio. However, coculture of normal PBMCs with Env-expressing cells resulted in selective CD4 loss that was significantly enhanced by IA. Our study demonstrates that AIP of HIV-1 Env and IA collectively determine CD4 loss in HIV infection.
Collapse
Affiliation(s)
- Anjali Joshi
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Melina Sedano
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Bethany Beauchamp
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Erin B Punke
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Zuber D Mulla
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, El Paso, TX 79905; and
| | - Armando Meza
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Ogechika K Alozie
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Himanshu Garg
- Center of Excellence for Infectious Diseases, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905;
| |
Collapse
|
39
|
Simian Immunodeficiency Virus SIVagm Efficiently Utilizes Non-CCR5 Entry Pathways in African Green Monkey Lymphocytes: Potential Role for GPR15 and CXCR6 as Viral Coreceptors. J Virol 2015; 90:2316-31. [PMID: 26656714 DOI: 10.1128/jvi.02529-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African green monkeys (AGM) are natural hosts of simian immunodeficiency virus (SIV), and infection in these animals is generally nonpathogenic, whereas infection of nonnatural hosts, such as rhesus macaques (RM), is commonly pathogenic. CCR5 has been described as the primary entry coreceptor for SIV in vivo, while human-derived CXCR6 and GPR15 also appear to be used in vitro. However, sooty mangabeys that are genetically deficient in CCR5 due to an out-of-frame deletion are infectible with SIVsmm, indicating that SIVsmm can use alternative coreceptors in vivo. In this study, we examined the CCR5 dependence of SIV strains derived from vervet AGM (SIVagmVer) and the ability of AGM-derived GPR15 and CXCR6 to serve as potential entry coreceptors. We found that SIVagmVer replicated efficiently in AGM and RM peripheral blood mononuclear cells (PBMC) in the presence of the CCR5 antagonist maraviroc, despite the fact that maraviroc was capable of blocking the CCR5-tropic strains SIVmac239, SIVsmE543-3, and simian-human immunodeficiency virus SHIV-AD8 in RM PBMC. We also found that AGM CXCR6 and AGM GPR15, to a lesser extent, supported entry of pseudotype viruses bearing SIVagm envelopes, including SIVagm transmitted/founder envelopes. Lastly, we found that CCR5, GPR15, and CXCR6 mRNAs were detected in AGM and RM memory CD4(+) T cells. These results suggest that GPR15 and CXCR6 are expressed on AGM CD4(+) T cells and are potential alternative coreceptors for SIVagm use in vivo. These data suggest that the use of non-CCR5 entry pathways may be a common feature of SIV replication in natural host species, with the potential to contribute to nonpathogenicity in these animals. IMPORTANCE African green monkeys (AGM) are natural hosts of SIV, and infection in these animals generally does not cause AIDS, whereas SIV-infected rhesus macaques (RM) typically develop AIDS. Although it has been reported that SIV generally uses CD4 and CCR5 to enter target cells in vivo, other molecules, such as GPR15 and CXCR6, also function as SIV coreceptors in vitro. In this study, we investigated whether SIV from vervet AGM can use non-CCR5 entry pathways, as has been observed in sooty mangabeys. We found that SIVagmVer efficiently replicated in AGM and RM peripheral blood mononuclear cells in the presence of the CCR5 antagonist maraviroc, suggesting that non-CCR5 entry pathways can support SIVagm entry. We found that AGM-derived GPR15 and CXCR6 support SIVagmVer entry in vitro and may serve as entry coreceptors for SIVagm in vivo, since their mRNAs were detected in AGM memory CD4(+) T cells, the preferred target cells of SIV.
Collapse
|
40
|
HIV Replication Is Not Controlled by CD8+ T Cells during the Acute Phase of the Infection in Humanized Mice. PLoS One 2015; 10:e0138420. [PMID: 26407077 PMCID: PMC4583499 DOI: 10.1371/journal.pone.0138420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
HIV replication follows a well-defined pattern during the acute phase of the infection in humans. After reaching a peak during the first few weeks after infection, viral replication resolves to a set-point thereafter. There are still uncertainties regarding the contribution of CD8+ T cells in establishing this set-point. An alternative explanation, supported by in silico modeling, would imply that viral replication is limited by the number of available targets for infection, i.e. CD4+CCR5+ T cells. Here, we used NOD.SCID.gc-/- mice bearing human CD4+CCR5+ and CD8+ T cells derived from CD34+ progenitors to investigate the relative contribution of both in viral control after the peak. Using low dose of a CCR5-tropic HIV virus, we observed an increase in viral replication followed by “spontaneous” resolution of the peak, similar to humans. To rule out any possible role for CD8+ T cells in viral control, we infected mice in which CD8+ T cells had been removed by a depleting antibody. Globally, viral replication was not affected by the absence of CD8+ T cells. Strikingly, resolution of the viral peak was equally observed in mice with or without CD8+ T cells, showing that CD8+ T cells were not involved in viral control in the early phase of the infection. In contrast, a marked and specific loss of CCR5-expressing CD4+ T cells was observed in the spleen and in the bone marrow, but not in the blood, of infected animals. Our results strongly suggest that viral replication during the acute phase of the infection in humanized mice is mainly constrained by the number of available targets in lymphoid tissues rather than by CD8+ T cells.
Collapse
|
41
|
Peterson CW, Haworth KG, Polacino P, Huang ML, Sykes C, Obenza WM, Repetto AC, Kashuba A, Bumgarner R, DeRosa SC, Woolfrey AE, Jerome KR, Mullins JI, Hu SL, Kiem HP. Lack of viral control and development of combination antiretroviral therapy escape mutations in macaques after bone marrow transplantation. AIDS 2015; 29:1597-606. [PMID: 26372270 PMCID: PMC4572605 DOI: 10.1097/qad.0000000000000702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We have previously demonstrated robust control of simian/human immunodeficiency virus (SHIV1157-ipd3N4) viremia following administration of combination antiretroviral therapy (cART) in pigtailed macaques. Here, we sought to determine the safety of hematopoietic stem cell transplantation (HSCT) in cART-suppressed and unsuppressed animals. DESIGN We compared disease progression in animals challenged with SHIV 100 days post-transplant, to controls that underwent transplant following SHIV challenge and stable cART-dependent viral suppression. METHODS SHIV viral load, cART levels, and anti-SHIV antibodies were measured longitudinally from plasma/serum from each animal. Flow cytometry was used to assess T-cell subset frequencies in peripheral blood and the gastrointestinal tract. Deep sequencing was used to identify cART resistance mutations. RESULTS In control animals, virus challenge induced transient peak viremia, viral set point, and durable suppression by cART. Subsequent HSCT was not associated with adverse events in these animals. Post-transplant animals were challenged during acute recovery following HSCT, and displayed sustained peak viremia and cART resistance. Although post-transplant animals had comparable plasma levels of antiretroviral drugs and showed no evidence of enhanced infection of myeloid subsets in the periphery, they exhibited a drastic reduction in virus-specific antibody production and decreased T-cell counts. CONCLUSIONS These results suggest that virus challenge prior to complete transplant recovery impairs viral control and may promote drug resistance. These findings may also have implications for scheduled treatment interruption studies in patients on cART during post-HSCT recovery: premature scheduled treatment interruption could similarly result in lack of viral control and cART resistance.
Collapse
Affiliation(s)
- Christopher W Peterson
- aClinical Research Division, Fred Hutchinson Cancer Research Center bWashington National Primate Research Center, Seattle cVaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington dDivision of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, North Carolina eDepartment of Microbiology fDepartment of Pediatrics gDepartment of Laboratory Medicine hDepartment of Medicine iDepartment of Pharmaceutics jDepartment of Pathology, University of Washington, Seattle, Washington, USA. *Christopher W. Peterson and Kevin G. Haworth contributed equally to the writing of this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reduced Simian Immunodeficiency Virus Replication in Macrophages of Sooty Mangabeys Is Associated with Increased Expression of Host Restriction Factors. J Virol 2015. [PMID: 26202248 DOI: 10.1128/jvi.00710-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Macrophages are target cells of HIV/SIV infection that may play a role in AIDS pathogenesis and contribute to the long-lived reservoir of latently infected cells during antiretroviral therapy (ART). In previous work, we and others have shown that during pathogenic SIV infection of rhesus macaques (RMs), rapid disease progression is associated with high levels of in vivo macrophage infection. In contrast, during nonpathogenic SIV infection of sooty mangabeys (SMs), neither spontaneous nor experimental CD4(+) T cell depletion results in substantial levels of in vivo macrophage infection. To test the hypothesis that SM macrophages are intrinsically more resistant to SIV infection than RM macrophages, we undertook an in vitro comparative assessment of monocyte-derived macrophages (MDMs) from both nonhuman primate species. Using the primary isolate SIVM949, which replicates well in lymphocytes from both RMs and SMs, we found that infection of RM macrophages resulted in persistent SIV-RNA production while SIV-RNA levels in SM macrophage cultures decreased 10- to 100-fold over a similar temporal course of in vitro infection. To explore potential mechanisms responsible for the lower levels of SIV replication and/or production in macrophages from SMs we comparatively assessed, in the two studied species, the expression of the SIV coreceptor as well as the expression of a number of host restriction factors. While previous studies showed that SM monocytes express lower levels of CCR5 (but not CD4) than RM monocytes, the level of CCR5 expression in MDMs was similar in the two species. Interestingly, we found that SM macrophages exhibited a significantly greater increase in the expression of tetherin (P = 0.003) and TRIM22 (P = 0.0006) in response to alpha interferon stimulation and increased expression of multiple host restriction factors in response to lipopolysaccharide stimulation and exposure to SIV. Overall, these findings confirm, in an in vitro infection system, that SM macrophages are relatively more resistant to SIV infection compared to RM macrophages, and suggest that a combination of entry and postentry restriction mechanisms may protect these cells from productive SIV infection. IMPORTANCE This manuscript represents the first in vivo comparative analysis of monocyte-derived macrophages (MDMs) between rhesus macaques, i.e., experimental SIV hosts in which the infection is pathogenic and macrophages can be infected, and sooty mangabeys, i.e., natural SIV hosts in which the infection is nonpathogenic and macrophages are virtually never infected in vivo. This study demonstrates that mangabey-derived MDMs are more resistant to SIV infection in vitro compared to macaque-derived MDMs, and provides a potential explanation for this observation by showing increased expression of specific retrovirus restriction factors in mangabey-derived macrophages. Overall, this study is important as it contributes to our understanding of why SIV infection is nonpathogenic in sooty mangabeys while it is pathogenic in macaques, and is consistent with a pathogenic role for in vivo macrophage infection during pathogenic lentiviral infection.
Collapse
|
43
|
Dualtropic CXCR6/CCR5 Simian Immunodeficiency Virus (SIV) Infection of Sooty Mangabey Primary Lymphocytes: Distinct Coreceptor Use in Natural versus Pathogenic Hosts of SIV. J Virol 2015; 89:9252-61. [PMID: 26109719 DOI: 10.1128/jvi.01236-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/20/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. IMPORTANCE Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection.
Collapse
|
44
|
Puissant-Lubrano B, Apoil PA, Gleizes A, Forestier L, Julien R, Winterton P, Pasquier C, Izopet J, Blancher A. Modulation of gene expression in CD4+ T lymphocytes following in vitro HIV infection: a comparison between human and chimpanzee. Virusdisease 2015; 26:62-69. [PMID: 26436123 DOI: 10.1007/s13337-015-0252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
Chimpanzees are susceptible to experimental infection by human deficiency virus (HIV)-1, but unlike humans, they exceptionally develop an immunodeficiency syndrome after HIV-1 inoculation. To explore the difference between human and chimpanzee, we analyzed the expression of 1547 genes of various functions in human or chimpanzee CD4+ lymphoblasts inoculated in vitro with HIV-1. We observed that, 1 day after HIV inoculation, fifty-eight genes were up-regulated in lymphoblasts of the three humans while their expression remained unchanged in lymphoblasts of the three chimpanzees. One gene is involved in adhesion of HIV (catenin-alpha), three in the immune response (semaphorin 4D, placental growth factor, IL-6), three in apoptosis (deleted in colorectal carcinoma, caspase 9 and FOXO1A). No difference between species was revealed for the expression of 373 genes related to glycosylation pathways. The in vitro human/chimpanzee comparison reveals new candidate genes up-regulated after inoculation with HIV-1 only in human lymphoblasts and which could be related to the higher sensitivity of human to HIV-induced AIDS.
Collapse
Affiliation(s)
- Bénédicte Puissant-Lubrano
- Laboratoire d'Immunogénétique Moléculaire (EA3034), Faculté de médecine Toulouse- Rangueil, Université Paul Sabatier, Bâtiment A2, 133 Route de Narbonne, 31062 Toulouse Cedex 04, France.,Laboratoire d'Immunologie, CHU de Toulouse, Hôpital Rangueil, 1 Avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Pol-André Apoil
- Laboratoire d'Immunogénétique Moléculaire (EA3034), Faculté de médecine Toulouse- Rangueil, Université Paul Sabatier, Bâtiment A2, 133 Route de Narbonne, 31062 Toulouse Cedex 04, France.,Laboratoire d'Immunologie, CHU de Toulouse, Hôpital Rangueil, 1 Avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| | - Arnaud Gleizes
- Laboratoire d'Immunogénétique Moléculaire (EA3034), Faculté de médecine Toulouse- Rangueil, Université Paul Sabatier, Bâtiment A2, 133 Route de Narbonne, 31062 Toulouse Cedex 04, France
| | - Lionel Forestier
- Institut des Sciences de la Vie et de la Santé, Université de Limoges (EA3 176), Limoges, France
| | - Raymond Julien
- Institut des Sciences de la Vie et de la Santé, Université de Limoges (EA3 176), Limoges, France
| | - Peter Winterton
- Université de Toulouse-Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Pasquier
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Jacques Izopet
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Antoine Blancher
- Laboratoire d'Immunogénétique Moléculaire (EA3034), Faculté de médecine Toulouse- Rangueil, Université Paul Sabatier, Bâtiment A2, 133 Route de Narbonne, 31062 Toulouse Cedex 04, France.,Laboratoire d'Immunologie, CHU de Toulouse, Hôpital Rangueil, 1 Avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9, France
| |
Collapse
|
45
|
Smith GR, Bauer L, Crane MM, Johnson ZP. Immunogenetic characterization of a captive colony of sooty mangabeys (Cercocebus atys) used for SIV research. J Med Primatol 2015; 44:76-88. [PMID: 25645218 DOI: 10.1111/jmp.12161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND African non-human primates are SIV natural hosts and do not develop disease following infection. Understanding disease avoidance mechanisms in these species is important for HIV vaccine development. The largest captive population of sooty mangabeys, a SIV natural host species, resides at the Yerkes National Primate Research Center. METHODS Thirteen primer sets that amplify polymorphic microsatellite loci within the MHC region were used to genotype 144 animals. Immunogenetic Management Software (IMS) was used to identify MHC haplotypes and organize data. RESULTS Seventy-three haplotypes were identified. Limited haplotype diversity was observed in this population with 88.2% of included animals carrying one of 18 haplotypes. Differences in haplotype frequency were observed between SIV (+) and SIV (-) populations. CONCLUSIONS We have developed a novel tool for others to use in the analysis of the role of the MHC in a natural host non-human primate model species used for SIV research.
Collapse
Affiliation(s)
- Geary R Smith
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
46
|
Epple HJ, Schneider T, Zeitz M. Microbial Translocation and the Effects of HIV/SIV Infection on Mucosal Barrier Function. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Wilson NL, Vance DE, Moneyham LD, Raper JL, Mugavero MJ, Heath SL, Kempf MC. Connecting the dots: could microbial translocation explain commonly reported symptoms in HIV disease? J Assoc Nurses AIDS Care 2014; 25:483-95. [PMID: 25305025 DOI: 10.1016/j.jana.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
Abstract
Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients.
Collapse
|
49
|
Couturier J, Hutchison AT, Medina MA, Gingaras C, Urvil P, Yu X, Nguyen C, Mahale P, Lin L, Kozinetz CA, Schmitz JE, Kimata JT, Savidge TC, Lewis DE. HIV replication in conjunction with granzyme B production by CCR5+ memory CD4 T cells: Implications for bystander cell and tissue pathologies. Virology 2014; 462-463:175-88. [PMID: 24999042 DOI: 10.1016/j.virol.2014.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022]
Abstract
Granzyme B (GrzB) is expressed by activated T cells and mediates cellular apoptosis. GrzB also acts as an extracellular protease involved in tissue degradation. We hypothesized that GrzB production from activated memory CD4 T cells may be associated with HIV pathogenesis. We found that stimulated memory CD4 T cells (via costimulation, cytokines, and TLR ligands) concomitantly produced GrzB and HIV. Both GrzB and HIV expression were mainly restricted to CCR5-expressing memory CD4+CD45RO+ T cells, including Th1 and Th17 subsets. Activated memory CD4 T cells also mediated tissue damage, such as disruption of intestinal epithelial monolayers. In non-human primates, CD4 T cells of rhesus macaques (pathogenic SIV hosts) expressed higher GrzB compared to African green monkeys (non-pathogenic SIV hosts). These results suggest that GrzB from CCR5+ memory CD4 T cells may have a role in cellular and tissue pathologies during HIV infection.
Collapse
Affiliation(s)
- Jacob Couturier
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander T Hutchison
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Miguel A Medina
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cosmina Gingaras
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Petri Urvil
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoying Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chi Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Parag Mahale
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lin Lin
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joern E Schmitz
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jason T Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Tor C Savidge
- Texas Children׳s Microbiome Center, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
50
|
Mandell DT, Kristoff J, Gaufin T, Gautam R, Ma D, Sandler N, Haret-Richter G, Xu C, Aamer H, Dufour J, Trichel A, Douek DC, Keele BF, Apetrei C, Pandrea I. Pathogenic features associated with increased virulence upon Simian immunodeficiency virus cross-species transmission from natural hosts. J Virol 2014; 88:6778-92. [PMID: 24696477 PMCID: PMC4054382 DOI: 10.1128/jvi.03785-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/27/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED While simian immunodeficiency viruses (SIVs) are generally nonpathogenic in their natural hosts, dramatic increases in pathogenicity may occur upon cross-species transmission to new hosts. Deciphering the drivers of these increases in virulence is of major interest for understanding the emergence of new human immunodeficiency viruses (HIVs). We transmitted SIVsab from the sabaeus species of African green monkeys (AGMs) to pigtailed macaques (PTMs). High acute viral replication occurred in all SIVsab-infected PTMs, yet the outcome of chronic infection was highly variable, ranging from rapid progression to controlled infection, which was independent of the dynamics of acute viral replication, CD4(+) T cell depletion, or preinfection levels of microbial translocation. Infection of seven PTMs with plasma collected at necropsy from a rapid-progressor PTM was consistently highly pathogenic, with high acute and chronic viral replication, massive depletion of memory CD4(+) T cells, and disease progression in all PTMs. The plasma inoculum used for the serial passage did not contain adventitious bacterial or viral contaminants. Single-genome amplification showed that this inoculum was significantly more homogenous than the inoculum directly derived from AGMs, pointing to a strain selection in PTMs. In spite of similar peak plasma viral loads between the monkeys in the two passages, immune activation/inflammation levels dramatically increased in PTMs infected with the passaged virus. These results suggest that strain selection and a massive cytokine storm are major factors behind increased pathogenicity of SIV upon serial passage and adaptation of SIVs to new hosts following cross-species transmission. IMPORTANCE We report here that upon cross-species transmission and serial passage of SIVsab from its natural host, the sabaeus African green monkey (AGM), to a new host, the pigtailed macaque (PTM), viral adaptation and increased pathogenicity involve strain selection and a massive cytokine storm. These results permit the design of strategies aimed at preventing cross-species transmission from natural hosts of SIVs to humans in areas of endemicity. Furthermore, our study describes a new animal model for SIV infection. As the outcomes of SIVsab infection in PTMs, African green monkeys, and rhesus macaques are different, the use of these systems enables comparative studies between pathogenic, nonpathogenic, and elite-controlled infections, to gain insight into the mechanisms of SIV immunodeficiency and comorbidities.
Collapse
Affiliation(s)
- Daniel T Mandell
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Rajeev Gautam
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Netanya Sandler
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - George Haret-Richter
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cuiling Xu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hadega Aamer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA
| | - Anita Trichel
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Cristian Apetrei
- Division of Microbiology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Departments of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA Division of Comparative Pathology, Tulane National Primate Research Center (TNPRC), Covington, Louisiana, USA Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|