1
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
2
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
3
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
7
|
Mozhgani SH, Zarei Ghobadi M, Norouzi M, Rahimi H, Valizadeh N, Teymoori-Rad M, Tarokhian H, Ostadali M, Farajifard H, Rezaee SA. Signaling factors potentially associated to the pathogenesis of Adult T-cell leukemia /lymphoma: A network-analysis and novel findings assessment. Virus Res 2022; 319:198875. [PMID: 35868352 DOI: 10.1016/j.virusres.2022.198875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a human T-cell leukemia virus (HTLV) type 1-associated disease of TCD4+ cell transformation. Despite extensive studies on ATLL development and progression, the fundamental processes of HTLV-1 oncogenicity are yet to be understood. This study aimed to integrate high-throughput microarray datasets to find novel genes involved in the mechanism of ATLL progression. For this purpose, five microarray datasets were downloaded from the Gene Expression Omnibus database and then profoundly analyzed. Differentially expressed genes and miRNAs were determined using the MetaDE package in the R software and the GEO2R web tool. The STRING database was utilized to construct the protein-protein interaction network and explore hub genes. Gene ontology and pathway enrichment analysis were carried out by employing the EnrichR web tool. Furthermore, flow cytometry was employed to assess the CD4/CD8 ratio, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to confirm the high-throughput data analysis results. Four miRNAs, including hsa-mir-146, hsa-mir-451, hsa-mir-31, and hsa-mir-125, were among the statistically significant differentially expressed miRNAs between healthy individuals and ATLL patients. Moreover, 924 differentially expressed genes were identified between normal and ATLL samples. Further network analysis highlighted 59 hub genes mainly regulating pathways implicated in viral interferences, immunological processes, cancer, and apoptosis pathways. Among the identified hub genes, RhoA and PRKACB were most considerable in the high-throughput analysis and were further validated by qRT-PCR. The RhoA and PRKACB expression were significantly down-regulated in ATLL patients compared to asymptomatic carriers (p<0.0001 and p=0.004) and healthy subjects (p=0.043 and p=0.002). Therefore, these corresponding miRNAs and proteins could be targeted for diagnosis purposes and designing effective treatments.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rahimi
- Hematology and Oncology Ward, Internal Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Tarokhian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Ostadali
- Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Farajifard
- Pediatric cell and gene therapy research center, Tehran university of medical sciences, Tehran, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Upparahalli Venkateshaiah S, Yadavalli CS, Kandikattu HK, Kumar S, Oruganti L, Mishra A. Molecules involved in the development of Barrett's esophagus phenotype in chronic eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G31-G43. [PMID: 35437997 PMCID: PMC9190763 DOI: 10.1152/ajpgi.00321.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 01/31/2023]
Abstract
This paper aims to investigate the molecules involved in development of Barrett's esophagus (BE) in human eosinophilic esophagitis (EoE). Histopathological, immunohistochemical, real-time PCR Immuno blot, and ELISA analyses are performed to identify the signature genes and proteins involved in the progression of BE in EoE. We detected characteristic features of BE like intermediate columnar-type epithelial cells, induced BE signature genes like ErbB3, CDX1, ErbB2IP in the esophageal mucosa of patients with EoE. In addition, we had observed several BE-associated proteins such as TFF3, p53 and the progression markers like EGFR, p16, MICA, MICB, and MHC molecules in esophageal biopsies of patients with chronic EoE. Interestingly, we also detected mucin-producing columnar cells and MUC-2, MUC-4, and MUC5AC genes and proteins along with induced IL-9 in patients with chronic EoE. A strong correlation of IL-9 with mucin genes is observed that implicated a possible role for IL-9 in the transformation of esophageal squamous epithelial cells to columnar epithelial cells in patients with EoE. These findings indicate that IL-9 may have an important role in BE development in patients with chronic EoE. We also discovered that IL-9 stimulates mucin-producing and barrier cell transcripts and proteins such CK8/18, GATA4, SOX9, TFF1, MUC5AC, and tight junction proteins in primary esophageal epithelial cells when exposed to IL-9. Taken together, these findings provide evidence that indeed IL-9 has a role in the initiation and progression of BE characteristics like development of mucin-producing columnar epithelial cells in patients with chronic EoE.NEW & NOTEWORTHY Intermediate columnar-type epithelial cells are observed in biopsies of patients with EoE. Induced BE signature genes (CK8/18, CDX1 GATA4, SOX9, and Occludin) were observed in patients with chronic EoE. Induction of IL-9 and its correlation with eosinophils mucin-producing genes and proteins was observed in patients with EoE. Induced IL-9 may be responsible for the development of BE in patients with chronic EoE.
Collapse
Affiliation(s)
- Sathisha Upparahalli Venkateshaiah
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Chandra Sekhar Yadavalli
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Hemanth Kumar Kandikattu
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Sandeep Kumar
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Lokanatha Oruganti
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| | - Anil Mishra
- Section of Pulmonary Diseases, John W. Deming Department of Medicine, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
9
|
Genome-wide CRISPR screen identifies CDK6 as a therapeutic target in adult T-cell leukemia/lymphoma. Blood 2022; 139:1541-1556. [PMID: 34818414 PMCID: PMC8914179 DOI: 10.1182/blood.2021012734] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poor prognosis with current therapy. Here we report genome-wide CRISPR-Cas9 screening of ATLL models, which identified CDK6, CCND2, BATF3, JUNB, STAT3, and IL10RB as genes that are essential for the proliferation and/or survival of ATLL cells. As a single agent, the CDK6 inhibitor palbociclib induced cell cycle arrest and apoptosis in ATLL models with wild-type TP53. ATLL models that had inactivated TP53 genetically were relatively resistant to palbociclib owing to compensatory CDK2 activity, and this resistance could be reversed by APR-246, a small molecule activator of mutant TP53. The CRISPR-Cas9 screen further highlighted the dependence of ATLL cells on mTORC1 signaling. Treatment of ATLL cells with palbociclib in combination with mTORC1 inhibitors was synergistically toxic irrespective of the TP53 status. This work defines CDK6 as a novel therapeutic target for ATLL and supports the clinical evaluation of palbociclib in combination with mTORC1 inhibitors in this recalcitrant malignancy.
Collapse
|
10
|
Cai M, Chen N. The Roles of IRF-8 in Regulating IL-9-Mediated Immunologic Mechanisms in the Development of DLBCL: A State-of-the-Art Literature Review. Front Oncol 2022; 12:817069. [PMID: 35211408 PMCID: PMC8860898 DOI: 10.3389/fonc.2022.817069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Interferon regulatory factor 8 (IRF-8) is a transcription suppressor that functions through associations with other transcription factors, contributing to the growth and differentiation of bone marrow cells and the activation of macrophages. IRF-8 expression profoundly affects pathogenic processes ranging from infections to blood diseases. Interleukin-9 (IL-9) is a multipotent cytokine that acts on a variety of immune cells by binding to the IL-9 receptor (IL-9R) and is involved in a variety of diseases such as cancer, autoimmune diseases, and other pathogen-mediated immune regulatory diseases. Studies have shown that IL-9 levels are significantly increased in the serum of patients with diffuse large B-cell lymphoma (DLBCL), and IL-9 levels are correlated with the DLBCL prognostic index. The activator protein-1 (AP-1) complex is a dimeric transcription factor that plays a critical role in cellular proliferation, apoptosis, angiogenesis, oncogene-induced transformation, and invasion by controlling basic and induced transcription of several genes containing the AP-1 locus. The AP-1 complex is involved in many cancers, including hematological tumors. In this report, we systematically review the precise roles of IL-9, IRF-8, and AP-1 in tumor development, particularly with regard to DLBCL. Finally, the recent progress in IRF-8 and IL-9 research is presented; the possible relationship among IRF-8, IL-9, and AP-1 family members is analyzed; and future research prospects are discussed.
Collapse
Affiliation(s)
- Mingyue Cai
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China
| | - Na Chen
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Benencio P, Ducasa N, Arruvito L, Irurzun I, Praino L, Lamberti M, Beraza M, Berini C, Biglione M. Case Report: Relevance of an Accurate Diagnosis and Monitoring of Infective Dermatitis Associated With Human T-Lymphotropic Virus Type 1 in Childhood. Front Med (Lausanne) 2021; 8:758352. [PMID: 34901072 PMCID: PMC8660090 DOI: 10.3389/fmed.2021.758352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a neglected retrovirus distributed worldwide and the ethiological agent of several pathologies, such as adult T-cell leukemia/lymphoma (ATLL), a chronic myelopathy known as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and infective dermatitis associated with HTLV-1 (IDH). HTLV-1 presents tropism for CD4+ T cells and induces deregulation of the cytokine profile. IDH is a severe, chronic superinfected eczema generally associated with Staphylococcus aureus and/or Streptococcus beta haemolyticus infection that responds partially to antibiotic therapy but prompt recurrence develops upon treatment withdrawal. IDH could be a risk factor for progression toward both HAM/TSP and ATLL and, similarly to other diseases associated with HTLV-1, it is sub-diagnosed particularly in non-endemic areas. Here, we present a case of IDH in a young boy living in Buenos Aires with symptoms since 2010, at the age of 5. HTLV-1 infection was suspected and confirmed in 2016. The patient exhibited chronic dermatosis with exudative eruption involving mainly the scalp, retroauricular regions, neck and abdomen. Clinical evaluations, routine laboratory tests, full blood count, and HTLV-1 diagnosis for this case are included.
Collapse
Affiliation(s)
- Paula Benencio
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Ducasa
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Inés Irurzun
- Unidad de Dermatología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Laura Praino
- Unidad de Infectología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Magdalena Lamberti
- Unidad de Dermatología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Beraza
- Unidad de Dermatología, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Carolina Berini
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirna Biglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 2020; 21:37-48. [PMID: 32788707 DOI: 10.1038/s41577-020-0396-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.
Collapse
|
13
|
Waldmann TA, Miljkovic MD, Conlon KC. Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. J Exp Med 2020; 217:132622. [PMID: 31821442 PMCID: PMC7037239 DOI: 10.1084/jem.20191062] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
IL-15 supports NK, NK-T, γδ, ILC1, and memory CD8 T cell function, and dysregulated IL-15 is associated with many autoimmune diseases. Striking IL-15–driven increases in NK and CD8 T cells in patients highlight the potential for combination therapy of cancers. IL-15, a pleiotropic cytokine, stimulates generation of NK, NK-T, γδ, ILC1, and memory CD8 T cells. IL-15 disorders play pathogenetic roles in organ-specific autoimmune diseases including celiac disease. Diverse approaches are developed to block IL-15 action. IL-15 administered to patients with malignancy yielded dramatic increases in NK numbers and modest increases in CD8 T cells. Due to immunological checkpoints, to achieve major cancer therapeutic efficacy, IL-15 will be used in combination therapy, and combination trials with checkpoint inhibitors, with anti-CD40 to yield tumor-specific CD8 T cells, and with anticancer monoclonal antibodies to increase ADCC and antitumor efficacy, have been initiated.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Milos D Miljkovic
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kevin C Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Wan J, Wu Y, Ji X, Huang L, Cai W, Su Z, Wang S, Xu H. IL-9 and IL-9-producing cells in tumor immunity. Cell Commun Signal 2020; 18:50. [PMID: 32228589 PMCID: PMC7104514 DOI: 10.1186/s12964-020-00538-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract Interleukin (IL)-9 belongs to the IL-2Rγc chain family and is a multifunctional cytokine that can regulate the function of many kinds of cells. It was originally identified as a growth factor of T cells and mast cells. In previous studies, IL-9 was mainly involved in the development of allergic diseases, autoimmune diseases and parasite infections. Recently, IL-9, as a double-edged sword in the development of cancers, has attracted extensive attention. Since T-helper 9 (Th9) cell-derived IL-9 was verified to play a powerful antitumor role in solid tumors, an increasing number of researchers have started to pay attention to the role of IL-9-skewed CD8+ T (Tc9) cells, mast cells and Vδ2 T cell-derived IL-9 in tumor immunity. Here, we review recent studies on IL-9 and several kinds of IL-9-producing cells in tumor immunity to provide useful insight into tumorigenesis and treatment. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Yinqiu Wu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,China International Genomics Research Center (IGRC), Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.,Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
15
|
Reisser T, Halbgebauer D, Scheurer J, Wolf L, Leithäuser F, Beyersdorf N, Fischer-Posovszky P, Debatin KM, Strauss G. In vitro-generated alloantigen-specific Th9 cells mediate antileukemia cytotoxicity in the absence of graft-versus-host disease. Leukemia 2020; 34:1943-1948. [PMID: 32034284 PMCID: PMC7326704 DOI: 10.1038/s41375-020-0731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/03/2019] [Accepted: 01/29/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tanja Reisser
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Daniel Halbgebauer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jasmin Scheurer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Linda Wolf
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Niklas Beyersdorf
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
16
|
Kumar S, Dhamija B, Marathe S, Ghosh S, Dwivedi A, Karulkar A, Sharma N, Sengar M, Sridhar E, Bonda A, Thorat J, Tembhare P, Shet T, Gujral S, Bagal B, Laskar S, Jain H, Purwar R. The Th9 Axis Reduces the Oxidative Stress and Promotes the Survival of Malignant T Cells in Cutaneous T-Cell Lymphoma Patients. Mol Cancer Res 2020; 18:657-668. [PMID: 31996468 DOI: 10.1158/1541-7786.mcr-19-0894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
Immune dysfunction is critical in pathogenesis of cutaneous T-cell lymphoma (CTCL). Few studies have reported abnormal cytokine profile and dysregulated T-cell functions during the onset and progression of certain types of lymphoma. However, the presence of IL9-producing Th9 cells and their role in tumor cell metabolism and survival remain unexplored. With this clinical study, we performed multidimensional blood endotyping of CTCL patients before and after standard photo/chemotherapy and revealed distinct immune hallmarks of the disease. Importantly, there was a higher frequency of "skin homing" Th9 cells in CTCL patients with early (T1 and T2) and advanced-stage disease (T3 and T4). However, advanced-stage CTCL patients had severely impaired frequency of skin-homing Th1 and Th17 cells, indicating attenuated immunity. Treatment of CTCL patients with standard photo/chemotherapy decreased the skin-homing Th9 cells and increased the Th1 and Th17 cells. Interestingly, T cells of CTCL patients express IL9 receptor (IL9R), and there was negligible IL9R expression on T cells of healthy donors. Mechanistically, IL9/IL9R interaction on CD3+ T cells of CTCL patients and Jurkat cells reduced oxidative stress, lactic acidosis, and apoptosis and ultimately increased their survival. In conclusion, coexpression of IL9 and IL9R on T cells in CTCL patients indicates the autocrine-positive feedback loop of Th9 axis in promoting the survival of malignant T cells by reducing the oxidative stress. IMPLICATIONS: The critical role of Th9 axis in CTCL pathogenesis indicates that strategies targeting Th9 cells might harbor significant potential in developing robust CTCL therapy.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Soumitra Marathe
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sarbari Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Alka Dwivedi
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neha Sharma
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Manju Sengar
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Epari Sridhar
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Avinash Bonda
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Jayashree Thorat
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Tanuja Shet
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Bhausaheb Bagal
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Siddhartha Laskar
- Radiation Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Hasmukh Jain
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
17
|
Abstract
Cytokines that control the immune response were shown to have efficacy in preclinical murine cancer models. Interferon (IFN)-α is approved for treatment of hairy cell leukemia, and interleukin (IL)-2 for the treatment of advanced melanoma and metastatic renal cancer. In addition, IL-12, IL-15, IL-21, and granulocyte macrophage colony-stimulating factor (GM-CSF) have been evaluated in clinical trials. However, the cytokines as monotherapy have not fulfilled their early promise because cytokines administered parenterally do not achieve sufficient concentrations in the tumor, are often associated with severe toxicities, and induce humoral or cellular checkpoints. To circumvent these impediments, cytokines are being investigated clinically in combination therapy with checkpoint inhibitors, anticancer monoclonal antibodies to increase the antibody-dependent cellular cytotoxicity (ADCC) of these antibodies, antibody cytokine fusion proteins, and anti-CD40 to facilitate tumor-specific immune responses.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Clinical Center, Bethesda, Maryland 20892-1374
| |
Collapse
|
18
|
Nakagawa M, Shaffer AL, Ceribelli M, Zhang M, Wright G, Huang DW, Xiao W, Powell J, Petrus MN, Yang Y, Phelan JD, Kohlhammer H, Dubois SP, Yoo HM, Bachy E, Webster DE, Yang Y, Xu W, Yu X, Zhao H, Bryant BR, Shimono J, Ishio T, Maeda M, Green PL, Waldmann TA, Staudt LM. Targeting the HTLV-I-Regulated BATF3/IRF4 Transcriptional Network in Adult T Cell Leukemia/Lymphoma. Cancer Cell 2018; 34:286-297.e10. [PMID: 30057145 PMCID: PMC8078141 DOI: 10.1016/j.ccell.2018.06.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Adult T cell leukemia/lymphoma (ATLL) is a frequently incurable disease associated with the human lymphotropic virus type I (HTLV-I). RNAi screening of ATLL lines revealed that their proliferation depends on BATF3 and IRF4, which cooperatively drive ATLL-specific gene expression. HBZ, the only HTLV-I encoded transcription factor that is expressed in all ATLL cases, binds to an ATLL-specific BATF3 super-enhancer and thereby regulates the expression of BATF3 and its downstream targets, including MYC. Inhibitors of bromodomain-and-extra-terminal-domain (BET) chromatin proteins collapsed the transcriptional network directed by HBZ and BATF3, and were consequently toxic for ATLL cell lines, patient samples, and xenografts. Our study demonstrates that the HTLV-I oncogenic retrovirus exploits a regulatory module that can be attacked therapeutically with BET inhibitors.
Collapse
Affiliation(s)
- Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Pre-Clinical Innovation, NCATS, NIH, Bethesda, MD 20892, USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Wright
- Biometric Research Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Wenming Xiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Bioinformatics and Biostatistics, NCTR/FDA, Jefferson, AR 72079, USA
| | - John Powell
- Bioinformatics and Molecular Analysis Section, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael N Petrus
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yibin Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Holger Kohlhammer
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sigrid P Dubois
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hee Min Yoo
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emmanuel Bachy
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Daniel E Webster
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bonita R Bryant
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Joji Shimono
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takashi Ishio
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Cherian MA, Olson S, Sundaramoorthi H, Cates K, Cheng X, Harding J, Martens A, Challen GA, Tyagi M, Ratner L, Rauch D. An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 2018. [PMID: 29540473 DOI: 10.1074/jbc.ra117.000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human T-cell leukemia virus-1 (HTLV-1) oncoprotein Tax drives cell proliferation and resistance to apoptosis early in the pathogenesis of adult T-cell leukemia (ATL). Subsequently, probably as a result of specific immunoediting, Tax expression is down-regulated and functionally replaced by somatic driver mutations of the host genome. Both amplification and point mutations of interferon regulatory factor 4 (IRF4) have been previously detected in ATL., K59R is the most common single-nucleotide variation of IRF4 and is found exclusively in ATL. High-throughput whole-exome sequencing revealed recurrent activating genetic alterations in the T-cell receptor, CD28, and NF-κB pathways. We found that IRF4, which is transcriptionally activated downstream of these pathways, is frequently mutated in ATL. IRF4 RNA, protein, and IRF4 transcriptional targets are uniformly elevated in HTLV-1-transformed cells and ATL cell lines, and IRF4 was bound to genomic regulatory DNA of many of these transcriptional targets in HTLV-1-transformed cell lines. We further noted that the K59R IRF4 mutant is expressed at higher levels in the nucleus than WT IRF4 and is transcriptionally more active. Expression of both WT and the K59R mutant of IRF4 from a constitutive promoter in retrovirally transduced murine bone marrow cells increased the abundance of T lymphocytes but not myeloid cells or B lymphocytes in mice. IRF4 may represent a therapeutic target in ATL because ATL cells select for a mutant of IRF4 with higher nuclear expression and transcriptional activity, and overexpression of IRF4 induces the expansion of T lymphocytes in vivo.
Collapse
Affiliation(s)
- Mathew A Cherian
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sydney Olson
- the Department of Biology, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Hemalatha Sundaramoorthi
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kitra Cates
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiaogang Cheng
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Harding
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Andrew Martens
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Grant A Challen
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manoj Tyagi
- the Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Lee Ratner
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110,
| | - Daniel Rauch
- From the Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol 2017; 451:66-70. [PMID: 28214593 PMCID: PMC5469693 DOI: 10.1016/j.mce.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Abnormal activation of the γc cytokine JAK/STAT signaling pathway assessed by STAT3 or STAT5b phosphorylation was present in a proportion of many T-cell malignancies. Activating mutations of STAT3/STAT5b and JAK1/3 were present in some but not in all cases with constitutive signaling pathway activation. Using shRNA analysis pSTAT malignant T-cell lines were addicted to JAKs/STATs whether they were mutated or not. Activating JAK/STAT mutations were not sufficient to support leukemic cell proliferation but only augmented upstream pathway signals. Functional cytokine receptors were required for pSTAT expression. Combining a JAK1/2 inhibitor with a Bcl-xL inhibitor navitoclax provided additive/synergistic activity with IL-2 dependent ATLL cell lines and in a mouse model of human IL-2 dependent ATLL. The insight that disorders of the γc/JAK/STAT system are pervasive suggests approaches including those that target gamma cytokines, their receptors or that use JAK kinase inhibitors may be of value in multicomponent therapy for T-cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Waldmann TA, Chen J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol 2017; 35:533-550. [PMID: 28182501 DOI: 10.1146/annurev-immunol-110416-120628] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
22
|
Lee B, Ko E, Lee J, Jo Y, Hwang H, Goh TS, Joo M, Hong C. Soluble common gamma chain exacerbates COPD progress through the regulation of inflammatory T cell response in mice. Int J Chron Obstruct Pulmon Dis 2017; 12:817-827. [PMID: 28331303 PMCID: PMC5352154 DOI: 10.2147/copd.s123405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking (CS) is a major cause of considerable morbidity and mortality by inducing lung cancer and COPD. COPD, a smoking-related disorder, is closely related to the alteration of immune system and inflammatory processes that are specifically mediated by T cells. Soluble common gamma chain (sγc) has recently been identified as a critical regulator of the development and differentiation of T cells. We examined the effects of sγc in a cigarette smoke extract (CSE) mouse model. The sγc level in CSE mice serum is significantly downregulated, and the cellularity of lymph node (LN) is systemically reduced in the CSE group. Overexpression of sγc enhances the cellularity and IFNγ production of CD8 T cells in LN and also enhances Th1 and Th17 differentiation of CD4 T cells in the respiratory tract. Mechanistically, the downregulation of sγc expression mediated by CSE is required to prevent excessive inflammatory T cell responses. Therefore, our data suggest that sγc may be one of the target molecules for the control of immunopathogenic progresses in COPD.
Collapse
Affiliation(s)
- Byunghyuk Lee
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine
| | - Eunhee Ko
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine
| | - Jiyeon Lee
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan
| | - Yuna Jo
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine
| | - Hyunju Hwang
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine
| | - Tae Sik Goh
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine; Department of Orthopedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, South Korea
| | - Myungsoo Joo
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan
| | - Changwan Hong
- Department of Anatomy and Cell Biology, Pusan National University School of Medicine
| |
Collapse
|
23
|
Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. Proc Natl Acad Sci U S A 2015; 112:12480-5. [PMID: 26396258 DOI: 10.1073/pnas.1516208112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1-encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients' PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL.
Collapse
|
24
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
25
|
Common γ-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis. Proc Natl Acad Sci U S A 2015; 112:11030-5. [PMID: 26283355 DOI: 10.1073/pnas.1412626112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive inflammatory myelopathy occurring in a subset of HTLV-1-infected individuals. Despite advances in understanding its immunopathogenesis, an effective treatment remains to be found. IL-2 and IL-15, members of the gamma chain (γc) family of cytokines, are prominently deregulated in HAM/TSP and underlie many of the characteristic immune abnormalities, such as spontaneous lymphocyte proliferation (SP), increased STAT5 phosphorylation in the lymphocytes, and increased frequency and cytotoxicity of virus-specific cytotoxic CD8(+) T lymphocytes (CTLs). In this study, we describe a novel immunomodulatory strategy consisting of selective blockade of certain γc family cytokines, including IL-2 and IL-15, with a γc antagonistic peptide. In vitro, a PEGylated form of the peptide, named BNZ132-1-40, reduced multiple immune activation markers such as SP, STAT5 phosphorylation, spontaneous degranulation of CD8(+) T cells, and the frequency of transactivator protein (Tax)-specific CD8(+) CTLs, thought to be major players in the immunopathogenesis of the disease. This strategy is thus a promising therapeutic approach to HAM/TSP with the potential of being more effective than single monoclonal antibodies targeting either IL-2 or IL-15 receptors and safer than inhibitors of downstream signaling molecules such as JAK1 inhibitors. Finally, selective cytokine blockade with antagonistic peptides might be applicable to multiple other conditions in which cytokines are pathogenic.
Collapse
|
26
|
Nata T, Basheer A, Cocchi F, van Besien R, Massoud R, Jacobson S, Azimi N, Tagaya Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem 2015; 290:22338-51. [PMID: 26183780 DOI: 10.1074/jbc.m115.661074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/04/2023] Open
Abstract
The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.
Collapse
Affiliation(s)
- Toshie Nata
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Fiorenza Cocchi
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard van Besien
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Raya Massoud
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | - Steven Jacobson
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | | | - Yutaka Tagaya
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
27
|
Berkowitz JL, Janik JE, Stewart DM, Jaffe ES, Stetler-Stevenson M, Shih JH, Fleisher TA, Turner M, Urquhart NE, Wharfe GH, Figg WD, Peer CJ, Goldman CK, Waldmann TA, Morris JC. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol 2014; 155:176-87. [PMID: 25267440 PMCID: PMC4306230 DOI: 10.1016/j.clim.2014.09.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 11/25/2022]
Abstract
Interleukin-2 receptor α chain (CD25) is overexpressed in human T-cell leukemia virus 1 associated adult T-cell leukemia/lymphoma (ATL). Daclizumab a humanized monoclonal antibody blocks IL-2 binding by recognizing the interleukin-2 receptor α chain (CD25). We conducted a phase I/II trial of daclizumab in 34 patients with ATL. Saturation of surface CD25 on circulating ATL cells was achieved at all doses; however saturation on ATL cells in lymph nodes required 8 mg/kg. Up to 8 mg/kg of daclizumab administered every 3 weeks was well tolerated. No responses were observed in 18 patients with acute or lymphoma ATL; however, 6 partial responses were observed in 16 chronic and smoldering ATL patients. The pharmacokinetics/pharmacodynamics of daclizumab suggest that high-dose daclizumab would be more effective than low-dose daclizumab in treatment of lymphoid malignancies and autoimmune diseases (e.g., multiple sclerosis) since high-dose daclizumab is required to saturate IL-2R alpha in extravascular sites.
Collapse
Affiliation(s)
- Jonathan L Berkowitz
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John E Janik
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donn M Stewart
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maryalice Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna H Shih
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Fleisher
- Clinical Pathology Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Turner
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole E Urquhart
- Department of Haematology and Pathology, University of the West Indies, Kingston, Jamaica
| | - Gilian H Wharfe
- Department of Haematology and Pathology, University of the West Indies, Kingston, Jamaica
| | - William D Figg
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Morris
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Lavorgna A, Matsuoka M, Harhaj EW. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-κB activation and T-cell transformation. PLoS Pathog 2014; 10:e1004418. [PMID: 25340344 PMCID: PMC4207800 DOI: 10.1371/journal.ppat.1004418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis.
Collapse
Affiliation(s)
- Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
29
|
The biology of IL-15: implications for cancer therapy and the treatment of autoimmune disorders. J Investig Dermatol Symp Proc 2014; 16:S28-30. [PMID: 24326545 DOI: 10.1038/jidsymp.2013.8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-15 has a pivotal role in life and death of natural killer (NK) and CD8 memory T cells. IL-15 signals through a heterotrimeric receptor involving the common gamma chain (γc) shared with IL-2, IL-4, IL-7, IL-9, and IL-21, IL-2/IL-15 receptor β (IL-15Rβ) shared with IL-2 and a private IL-15Rα subunit. IFN- or CD40 ligand-stimulated dendritic cells coordinately express IL-15 and IL-15Rα. Cell surface IL-15Rα presents IL-15 in trans to cells that express IL-2/IL-15Rβ and γc. IL-15 is being used to treat patients with metastatic malignancy. However, IL-15 is an inflammatory cytokine involved in immunological memory including that to self, thereby playing a role in autoimmune diseases. These insights provide the scientific basis for clinical strategies directed toward diminishing IL-15 action. Dysregulated IL-15 expression was demonstrated in patients with rheumatoid arthritis, inflammatory bowel disease, psoriasis, celiac disease, and alopecia areata. The monoclonal antibody Hu-Mik-β-1 targets the cytokine receptor subunit IL-2/IL-15Rβ (CD122), blocks IL-15 transpresentation, and is being used in clinical trials in patients with autoimmune diseases. In parallel, clinical trials have been initiated involving the Jak2/3 (Janus kinase-2/3) inhibitor tofacitinib and Jak1/2 inhibitor ruxolitinib to block IL-15 signaling.
Collapse
|
30
|
Fuzii HT, da Silva Dias GA, de Barros RJS, Falcão LFM, Quaresma JAS. Immunopathogenesis of HTLV-1-assoaciated myelopathy/tropical spastic paraparesis (HAM/TSP). Life Sci 2014; 104:9-14. [DOI: 10.1016/j.lfs.2014.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
|
31
|
Chen N, Lv X, Li P, Lu K, Wang X. Role of high expression of IL-9 in prognosis of CLL. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:716-721. [PMID: 24551294 PMCID: PMC3925918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a common leukemia in adults, but its pathogenesis is still poorly understood. Interleukin-9 (IL-9) is initially described as a growth factor secreted by helper T cells. Recently, the oncogenic activities of IL-9 were reported in some leukemia but not chronic lymphocytic leukemia (CLL). The purpose of the present study is to investigate the expression of IL-9 from patients with CLL and to evaluate its correlation with clinical characteristics. Serum and peripheral blood mononuclear cells (PBMCs) from patients with CLL were analyzed using ELISA, RT-PCR, and western blot. ELISA analysis indicated IL-9 could be detected in 20 of 47 sera from CLL patients while none serum sample from healthy volunteers contained detectable levels of IL-9. There was a higher expression of IL-9 within PBMCs from patients with CLL compared with B cells of healthy blood donors using RT-PCR and western blot. The upregulated IL-9 was correlated to the clinical staging, ZAP-70 expression, β2 microglobulin expression and IgVH status of CLL patients (P<0.05). Our findings suggest that overexpression of IL-9 may contribute to the pathogenesis of CLL and is associated with some adverse prognostic parameters.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Immunoglobulin Heavy Chains
- Immunoglobulin Variable Region
- Interleukin-9/blood
- Interleukin-9/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukocytes, Mononuclear/immunology
- Male
- Middle Aged
- Neoplasm Staging
- RNA, Messenger/blood
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
- ZAP-70 Protein-Tyrosine Kinase/blood
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong UniversityJinan, Shandong, 250021, China
- Institute of Diagnostics, Shandong University, School of MedicineJinan, Shandong, 250012, China
| |
Collapse
|
32
|
Pilotti E, Bianchi MV, De Maria A, Bozzano F, Romanelli MG, Bertazzoni U, Casoli C. HTLV-1/-2 and HIV-1 co-infections: retroviral interference on host immune status. Front Microbiol 2013; 4:372. [PMID: 24391628 PMCID: PMC3870298 DOI: 10.3389/fmicb.2013.00372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 01/03/2023] Open
Abstract
The human retroviruses HIV-1 and HTLV-1/HTLV-2 share similar routes of transmission but cause significantly different diseases. In this review we have outlined the immune mediated mechanisms by which HTLVs affect HIV-1 disease in co-infected hosts. During co-infection with HIV-1, HTLV-2 modulates the cellular microenvironment favoring its own viability and inhibiting HIV-1 progression. This is achieved when the HTLV-2 proviral load is higher than that of HIV-1, and thanks to the ability of HTLV-2 to: (i) up-regulate viral suppressive CCL3L1 chemokine expression; (ii) overcome HIV-1 capacity to activate the JAK/STAT pathway; (iii) reduce the activation of T and NK cells; (iv) modulate the host miRNA profiles. These alterations of immune functions have been mainly attributed to the effects of the HTLV-2 regulatory protein Tax and suggest that HTLV-2 exerts a protective role against HIV-1 infection. Contrary to HIV-1/HTLV-2, the effect of HIV-1/HTLV-1 co-infection on immunological and pathological conditions is still controversial. There is evidence that indicates a worsening of HIV-1 infection, while other evidence does not show clinically relevant effects in HIV-positive people. Possible differences on innate immune mechanisms and a particularly impact on NK cells are becoming evident. The differences between the two HIV-1/HTLV-1 and HIV-1/HTLV-2 co-infections are highlighted and further discussed.
Collapse
Affiliation(s)
- Elisabetta Pilotti
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Maria V Bianchi
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy ; IRCCS AOU San Martino-IST Genova Genova, Italy
| | - Federica Bozzano
- Department of Health Sciences, University of Genova Genova, Italy ; Center of Excellence for Biomedical Research, University of Genova Genova, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Claudio Casoli
- GEMIB Laboratory, Center for Medical Research and Molecular Diagnostics Parma, Italy
| |
Collapse
|
33
|
Chen N, Wang X. Role of IL-9 and STATs in hematological malignancies (Review). Oncol Lett 2013; 7:602-610. [PMID: 24520283 PMCID: PMC3919939 DOI: 10.3892/ol.2013.1761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/09/2013] [Indexed: 02/03/2023] Open
Abstract
Although interleukin-9 (IL-9) exhibits pleiotropic functions in the immune system, it remains a well-known cytokine in hematological malignancies. Previous cell culture and animal model studies have revealed that the Janus kinase-signal transducer and activator of transcription signaling pathway, which may be activated by a number of cytokines including IL-9, is critical in hematological malignancies. The current review summarizes the characterization of the biological activities of IL-9, highlights the clearly defined roles of the cytokine, and outlines questions with regard to the functions of IL-9 that require further exploration and their downstream signaling proteins, signal transducers and activators of transcription.
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Diagnostics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
34
|
Abstract
Although much progress has been made in the treatment of lymphomas, the unclear molecular etiology limits its further development. Interleukin-9 (IL-9) was initially described as a growth factor secreted by activated helper T cells type 2 (Th2). Various observations have demonstrated its diverse actions in immune and inflammatory responses. In recent years, a resurgence of interest in IL-9 has been spurred by the expanded identification of its cellular sources and biological targets. Also, the determination of its growth-proliferative and anti-apoptotic activities on multiple transformed cells implies a potential role of this cytokine in tumorigenesis. In this article we review the biologic properties and signal transduction pathways of IL-9, and furthermore discuss its possible role in lymphomagenesis as well as its impact on non-malignant infiltrating cells which are characteristic of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | |
Collapse
|
35
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
36
|
Enose-Akahata Y, Matsuura E, Tanaka Y, Oh U, Jacobson S. Minocycline modulates antigen-specific CTL activity through inactivation of mononuclear phagocytes in patients with HTLV-I associated neurologic disease. Retrovirology 2012; 9:16. [PMID: 22335964 PMCID: PMC3296610 DOI: 10.1186/1742-4690-9-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/15/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The activation of mononuclear phagocytes (MPs), including monocytes, macrophages and dendritic cells, contributes to central nervous system inflammation in various neurological diseases. In HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), MPs are reservoirs of HTLV-I, and induce proinflammatory cytokines and excess T cell responses. The virus-infected or activated MPs may play a role in immuneregulation and disease progression in patients with HTLV-I-associated neurological diseases. RESULTS Phenotypic analysis of CD14⁺ monocytes in HAM/TSP patients demonstrated high expression of CX3CR1 and HLA-DR in CD14lowCD16⁺ monocytes, compared to healthy normal donors (NDs) and asymptomatic carriers (ACs), and the production of TNF-α and IL-1β in cultured CD14⁺ cells of HAM/TSP patients. CD14⁺ cells of HAM/TSP patients also showed acceleration of HTLV-I Tax expression in CD4⁺ T cells. Minocycline, an inhibitor of activated MPs, decreased TNF-α expression in CD14⁺ cells and IL-1β release in PBMCs of HAM/TSP patients. Minocycline significantly inhibited spontaneous lymphoproliferation and degranulation/IFN-γ expression in CD8⁺ T cells of HAM/TSP patients. Treatment of minocycline also inhibited IFN-γ expression in CD8⁺ T cells of HAM/TSP patients after Tax11-19 stimulation and downregulated MHC class I expression in CD14⁺ cells. CONCLUSION These results demonstrate that minocycline directly inhibits the activated MPs and that the downregulation of MP function can modulate CD8⁺ T cells function in HAM/TSP patients. It is suggested that activated MPs may be a therapeutic target for clinical intervention in HAM/TSP.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Interleukin-9 (IL-9), cloned more than 20 years ago, was initially thought to be a Th2-specific cytokine. This assumption was initially confirmed by functional analyses showing that both IL-9 and Th2 cells play an important role in the pathogenesis of asthma, IgE class switch recombination, and resolution of parasitic infections. However, recently it was shown that IL-9-producing CD4(+) T cells represent the discrete T helper subset Th9 cells. Herein, we will review the cytokines and transcription factors known to promote the development of Th9 cells and their potential functional properties in relation to the biological activities of IL-9. In addition, we will discuss how Th9 cells are related to Th2, Th17, and T(reg) cells, as both an alternative source of IL-9 and in view of the fact that plasticity of CD4(+) T cell differentiation is currently a strong matter of debate in immunologic research.
Collapse
Affiliation(s)
- Michael Stassen
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
38
|
Martelli AM, Tabellini G, Ricci F, Evangelisti C, Chiarini F, Bortul R, McCubrey JA, Manzoli FA. PI3K/AKT/mTORC1 and MEK/ERK signaling in T-cell acute lymphoblastic leukemia: new options for targeted therapy. Adv Biol Regul 2012; 52:214-227. [PMID: 21983557 DOI: 10.1016/j.advenzreg.2011.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Alberto M Martelli
- Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chagan-Yasutan H, Tsukasaki K, Takahashi Y, Oguma S, Harigae H, Ishii N, Zhang J, Fukumoto M, Hattori T. Involvement of osteopontin and its signaling molecule CD44 in clinicopathological features of adult T cell leukemia. Leuk Res 2011; 35:1484-90. [DOI: 10.1016/j.leukres.2011.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
|
40
|
Cell surface markers in HTLV-1 pathogenesis. Viruses 2011; 3:1439-59. [PMID: 21994790 PMCID: PMC3185802 DOI: 10.3390/v3081439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 12/19/2022] Open
Abstract
The phenotype of HTLV-1-transformed CD4+ T lymphocytes largely depends on defined viral effector molecules such as the viral oncoprotein Tax. In this review, we exemplify the expression pattern of characteristic lineage markers, costimulatory receptors and ligands of the tumor necrosis factor superfamily, cytokine receptors, and adhesion molecules on HTLV-1-transformed cells. These molecules may provide survival signals for the transformed cells. Expression of characteristic surface markers might therefore contribute to persistence of HTLV-1-transformed lymphocytes and to the development of HTLV-1-associated disease.
Collapse
|
41
|
FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood 2011; 118:3911-21. [PMID: 21821710 DOI: 10.1182/blood-2010-12-319467] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an incurable disease where most patients succumb within the first year of diagnosis. Both standard chemotherapy regimens and mAbs directed against ATLL tumor markers do not alter this aggressive clinical course. Therapeutic development would be facilitated by the discovery of genes and pathways that drive or initiate ATLL, but so far amenable drug targets have not been forthcoming. Because the IL-2 signaling pathway plays a prominent role in ATLL pathogenesis, mutational analysis of pathway components should yield interesting results. In this study, we focused on JAK3, the nonreceptor tyrosine kinase that signals from the IL-2R, where activating mutations have been found in diverse neoplasms. We screened 36 ATLL patients and 24 ethnically matched controls and found 4 patients with mutations in JAK3. These somatic, missense mutations occurred in the N-terminal FERM (founding members: band 4.1, ezrin, radixin, and moesin) domain and induced gain of function in JAK3. Importantly, we show that these mutant JAK3s are inhibited with a specific kinase inhibitor already in human clinical testing. Our findings underscore the importance of this pathway in ATLL development and offer a therapeutic handle for this incurable cancer.
Collapse
|
42
|
Refaat A, Zhou Y, Suzuki S, Takasaki I, Koizumi K, Yamaoka S, Tabuchi Y, Saiki I, Sakurai H. Distinct roles of transforming growth factor-beta-activated kinase 1 (TAK1)-c-Rel and interferon regulatory factor 4 (IRF4) pathways in human T cell lymphotropic virus 1-transformed T helper 17 cells producing interleukin-9. J Biol Chem 2011; 286:21092-9. [PMID: 21498517 DOI: 10.1074/jbc.m110.200907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Investigation of helper T cell markers in HTLV-1-transformed cell lines demonstrated that HuT-102 has an IL-9-producing Th17 phenotype. We confirmed the vital role of retinoic acid-related orphan receptor C, a Th17 transcription factor, in the expression of IL-17. Interferon regulatory factor 4 (IRF4), a transcription factor overexpressed in all HTLV-1-infected cells, regulated IL-17 and IL-9 concomitantly. We further demonstrated a novel pathway for the regulation of Tax-induced cytokines, IL-9 and IL-6, through TAK1-mediated nuclear accumulation of c-Rel. A microarray analysis for IRF4 knocked down HuT-102 cells showed a significant up-regulation in the set of genes related to Th1, mainly IFN-γ and several transcription factors. T-bet and IRF1, but not STAT1 and IRF9, participated in counteracting the inhibitory effect of IRF4 on the production of IFN-γ. Finally, suppression of both IRF4 and c-Rel resulted in the reduced proliferation. Collectively, these findings indicate that TAK1-c-Rel and IRF4 pathways play distinct roles in the maintenance of IL-9-producing Th17 phenotype of HTLV-1-transformed cells.
Collapse
Affiliation(s)
- Alaa Refaat
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Inhibition of immune activation by a novel nuclear factor-kappa B inhibitor in HTLV-I-associated neurologic disease. Blood 2011; 117:3363-9. [PMID: 21212284 DOI: 10.1182/blood-2010-10-306571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human T-lymphotropic virus type I (HTLV-I) causes a chronic inflammatory disorder of the central nervous system termed HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-I encodes a protein known to activate several host-signaling pathways involved in inflammation, such as the nuclear factor-κB (NF-κB). The contribution of the NF-κB pathway to the pathogenesis of HAM/TSP, however, has not been fully defined. We show evidence of canonical NF-κB activation in short-term cultures of peripheral blood mononuclear cells (PBMCs) from subjects with HAM/TSP. NF-κB activation was closely linked to HTLV-I viral protein expression. The NF-κB activation in HAM/TSP PBMCs was reversed by a novel small-molecule inhibitor that demonstrates potent and selective NF-κB antagonist activity. Inhibition of NF-κB activation led to a reduction in the expression of lymphocyte activation markers and resulted in reduced cytokine signaling in HAM/TSP PBMCs. Furthermore, NF-κB inhibition led to a reduction in spontaneous lymphoproliferation, a key ex vivo correlate of the immune activation associated with HAM/TSP. These results indicate that NF-κB activation plays a critical upstream role in the immune activation of HAM/TSP, and identify the NF-κB pathway as a potential target for immunomodulation in HAM/TSP.
Collapse
|
45
|
CP-690,550, a therapeutic agent, inhibits cytokine-mediated Jak3 activation and proliferation of T cells from patients with ATL and HAM/TSP. Blood 2010; 117:1938-46. [PMID: 21106989 DOI: 10.1182/blood-2010-09-305425] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The retrovirus, human T-cell-lymphotrophic virus-1 (HTLV-I) is the etiologic agent of adult T-cell leukemia (ATL) and the neurological disorder HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-I-encoded protein tax constitutively activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems that in turn activate the Jak3 (Janus kinase 3)/STAT5 (signal transducers and activators of transcription 5) pathway, suggesting a therapeutic strategy that involves targeting Jak3. We evaluated the action of the Jak3 inhibitor CP-690,550 on cytokine dependent ex vivo proliferation that is characteristic of peripheral blood mononuclear cells (PBMCs) from select patients with smoldering or chronic subtypes of ATL, or from those with HAM/TSP whose PBMCs are associated with autocrine/paracrine pathways that involve the production of IL-2, IL-9, IL-15, and their receptors. CP-690,550 at 50 nM inhibited the 6-day ex vivo spontaneous proliferation of PBMCs from ATL and HAM/TSP patients by 67.1% and 86.4%, respectively. Furthermore, CP-690,550 inhibited STAT5 phosphorylation in isolated ATL T cells ex vivo. Finally, in an in vivo test of biological activity, CP-690,550 treatment of mice with a CD8 T-cell IL-15-transgenic leukemia that manifests an autocrine IL-15/IL-15Rα pathway prolonged the survival duration of these tumor-bearing mice. These studies support further evaluation of the Jak3 inhibitor CP-690,550 in the treatment of select patients with HTLV-I-associated ATL and HAM/TSP.
Collapse
|
46
|
Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis. Viruses 2010; 2:2037-2077. [PMID: 21994719 PMCID: PMC3185741 DOI: 10.3390/v2092037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human T lymphotropic viruses (HTLVs) are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1), HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.
Collapse
|
47
|
Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood 2010; 116:5948-56. [PMID: 20858854 DOI: 10.1182/blood-2010-04-277418] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adult T-cell leukemia (ATL), a heterogeneous disease, can be divided into smoldering, chronic, lymphoma, and acute types clinically. In addition to different clinical manifestations, different stages of ATL have different molecular signatures. Here, we demonstrated that smoldering/chronic ATL peripheral blood mononuclear cells spontaneously proliferated ex vivo in a cytokine (interleukin-12 [IL-12]/IL-9/IL-15)-dependent manner, while acute-type ATL peripheral blood mononuclear cells did not proliferate or proliferated independent of cytokines. Smoldering/chronic ATL cells produced IL-2 and IL-9 in 6-day ex vivo cultures. Interestingly, the addition of an anti-IL-2R-α monoclonal antibody profoundly inhibited IL-9 expression, suggesting optimal expression of IL-9 was dependent on IL-2 signaling in these patients. To determine whether there would be autonomous proliferation of ATL leukemic cells, we purified leukemic cells from patients with smoldering/chronic ATL. Purified leukemic cells cultured alone produced IL-2/IL-9, and the downstream Janus kinase/signal transducer and activator of transcription pathway was activated. However, the leukemic cells did not proliferate independently, but required coculture with autologous monocytes to induce proliferation. Moreover, interaction between leukemic cells and monocytes was contact dependent, and major histocompatibility complex class II expression may have contributed to this interaction. In conclusion, our data provide evidence that there is autocrine/paracrine cytokine stimulation of leukemic cell proliferation in patients with smoldering/chronic ATL that could be targeted for treatment.
Collapse
|
48
|
IL-9: basic biology, signaling pathways in CD4+ T cells and implications for autoimmunity. J Neuroimmune Pharmacol 2009; 5:198-209. [PMID: 20020328 DOI: 10.1007/s11481-009-9186-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 11/20/2009] [Indexed: 01/11/2023]
Abstract
CD4(+) T cell subsets play an important role in the adaptive immune response in human autoimmune diseases and in animal models of autoimmunity. In recent years, our knowledge of CD4(+) T cell differentiation has increased significantly, and new subsets continue to be recognized. Of significant importance is the recent discovery of Th9 cells, the CD4 + T cell subset that produces Interleukin-9. IL-9 has largely been regarded as a Th2 cytokine; however, it is now known that under specific conditions, Tregs, Th1, Th17 and the Th9 subset of T cells also produce IL-9. The STAT family of proteins plays a major role in the signaling pathways of these CD4(+)T subsets. Biological actions of IL-9 and the STATs signaling pathways in autoimmune diseases are continuing to be clarified. Investigation of IL-9-producing CD4(+)T cells, and elucidation of the mechanisms of IL-9-induced STATs signaling, in concert with other transcription factors, will provide a better understanding of the pathogenesis of various autoimmune diseases.
Collapse
|
49
|
Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 2009; 6:117. [PMID: 20017952 PMCID: PMC2806368 DOI: 10.1186/1742-4690-6-117] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022] Open
Abstract
While the human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), to date, its close relative HTLV-2 is not associated with ATL or other types of malignancies. Accumulating evidence shows that HTLV-1 Tax1 and HTLV-2 Tax2 have many shared activities, but the two proteins have a limited number of significantly distinct activities, and these distinctions appear to play key roles in HTLV-1 specific pathogenesis. In this review, we summarize the functions of Tax1 associated with cell survival, cell proliferation, persistent infection as well as pathogenesis. We emphasize special attention to distinctions between Tax1 and Tax2.
Collapse
|
50
|
Abstract
Helper CD4(+) T-cell subsets have improved our understanding of adaptive immunity in humans and in animal models of disease. These include T helper type 1 (Th1), Th2 and the interleukin-17 (IL-17) -producing population 'Th17'. Th2 cells have been described as orchestrating the immune response in allergic disease based on studies with patient samples and animal models. The cytokine IL-9 has largely been regarded as a Th2 cytokine that makes multifocal contributions to allergic disease. Recent data suggest that under certain conditions relevant to chronic disease (IL-4 and transforming growth factor-beta), a distinct population of IL-9-producing 'Th9' helper T cells can exist. The contribution of Th9 cells in allergic disease is currently unknown, and this review will propose a model for how these cells may regulate chronic allergic inflammation.
Collapse
Affiliation(s)
- Pejman Soroosh
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|