1
|
Mikkelsen SU, Safavi S, Dimopoulos K, O'Rourke CJ, Andersen MK, Holm MS, Marcher CW, Andersen JB, Hansen JW, Grønbæk K. Structural aberrations are associated with poor survival in patients with clonal cytopenia of undetermined significance. Haematologica 2021; 106:1762-1766. [PMID: 33179473 PMCID: PMC8168501 DOI: 10.3324/haematol.2020.263319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stine U Mikkelsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Setareh Safavi
- Department of Clinical Genetics, Rigshospitalet, Copenhagen
| | | | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | | | - Mette S Holm
- Department of Hematology, Aarhus University Hospital, Aarhus
| | - Claus W Marcher
- Department of Hematology, Odense University Hospital, Odense
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen
| | - Jakob W Hansen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; DanStem, University of Copenhagen, Copenhagen
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; DanStem, University of Copenhagen, Copenhagen.
| |
Collapse
|
2
|
Kim YJ, Jung SH, Hur EH, Choi EJ, Lee KH, Park HC, Kim HJ, Kwon YR, Park S, Lee SH, Chung YJ, Lee JH. Clinical implications of copy number alteration detection using panel-based next-generation sequencing data in myelodysplastic syndrome. Leuk Res 2021; 103:106540. [PMID: 33667811 DOI: 10.1016/j.leukres.2021.106540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 01/24/2023]
Abstract
Recent advancements in next-generation sequencing (NGS) technologies allow the simultaneous identification of targeted copy number alterations (CNAs) as well as somatic mutations using the same panel-based NGS data. We investigated whether CNAs detected by the targeted NGS data provided additional clinical implications, over somatic mutations, in myelodysplastic syndrome (MDS). Targeted deep sequencing of 28 well-known MDS-related genes was performed for 266 patients with MDS. Overall, 215 (80.8 %) patients were found to have at least one somatic mutation; 67 (25.2 %) had at least one CNA; 227 (85.3 %) had either a somatic mutation or CNA; and 12 had CNA without somatic mutations. Considering the clinical variables and somatic mutations alone, multivariate analysis demonstrated that sex, revised International Prognostic Scoring System (IPSS-R), and NRAS and TP53 mutations were independent prognostic factors for overall survival. For AML-free survival, these factors were sex, IPSS-R, and mutations in NRAS, DNMT3A, and complex karyotype/TP53 mutations. When we consider clinical variables along with somatic mutations and CNAs, genetic alterations in TET2, LAMB4, U2AF1, and CBL showed additional significant impact on the survivals. In conclusion, our study suggests that the concurrent detection of somatic mutations and targeted CNAs may provide clinically useful information for the prognosis of MDS patients.
Collapse
Affiliation(s)
- Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Joung Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Rim Kwon
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ronaghy A, Yang RK, Khoury JD, Kanagal-Shamanna R. Clinical Applications of Chromosomal Microarray Testing in Myeloid Malignancies. Curr Hematol Malig Rep 2020; 15:194-202. [PMID: 32382988 DOI: 10.1007/s11899-020-00578-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Knowledge of both somatic mutations and copy number aberrations are important for the understanding of cancer pathogenesis and management of myeloid neoplasms. The currently available standard of care technologies for copy number assessment such as conventional karyotype and FISH are either limited by low resolution or restriction to targeted assessment. RECENT FINDINGS Chromosomal microarray (CMA) is effective in characterization of chromosomal and gene aberrations of diagnostic, prognostic, and therapeutic significance at a higher resolution than conventional karyotyping. These results are complementary to NGS mutation studies. Copy-neutral loss of heterozygosity (CN-LOH), which is prognostic in AML, is currently only identified by CMA. Yet, despite the widespread availability, CMA testing is not routinely performed in diagnostic laboratories due to lack of knowledge on best-testing practices for clinical work-up of myeloid neoplasms. In this review, we provide an overview of the clinical significance of CMA in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). We will also elaborate the specific clinical scenarios where CMA can provide additional information essential for management and could potentially alter treatment. Chromosomal microarray (CMA) is an effective technology for characterizing chromosomal copy number changes and copy-neutral loss of heterozygosity of diagnostic, prognostic, and therapeutic significance at a high resolution in myeloid malignancies.
Collapse
MESH Headings
- Chromosome Aberrations
- Chromosomes, Human
- Comparative Genomic Hybridization
- DNA Copy Number Variations
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/genetics
- Loss of Heterozygosity
- Microarray Analysis
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Polymorphism, Single Nucleotide
- Predictive Value of Tests
- Prognosis
- Reproducibility of Results
Collapse
Affiliation(s)
- Arash Ronaghy
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Richard K Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Venugopal M, Nambiar J, Nair BG. Anacardic acid-mediated regulation of osteoblast differentiation involves mitigation of inflammasome activation pathways. Mol Cell Biochem 2020; 476:819-829. [PMID: 33090336 DOI: 10.1007/s11010-020-03947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1β and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.
Collapse
Affiliation(s)
- Meera Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Jyotsna Nambiar
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, India, 690525.
| |
Collapse
|
5
|
Choi SM, Van Norman SB, Bixby DL, Shao L. Cytogenomic array detects a subset of myelodysplastic syndrome with increased risk that is invisible to conventional karyotype. Genes Chromosomes Cancer 2019; 58:756-774. [PMID: 31334569 DOI: 10.1002/gcc.22783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/06/2022] Open
Abstract
Conventional karyotyping is essential standard practice in the initial evaluation of myelodysplastic syndrome (MDS) and is the most impactful single component of the Revised International Prognostic Scoring System (IPSS-R). While single nucleotide polymorphism array (SNP-A) has demonstrated the ability to detect chromosomal defects with greater sensitivity than conventional karyotype, widespread adoption is limited by the unknown additional prognostic impact of SNP-A analysis. Here, we investigate the significance of additional SNP-A abnormalities in the setting of MDS and demonstrate differences in survival of patients with additional abnormalities, even those initially characterized as relatively lower risk either by cytogenetic score or IPSS-R. Our findings identify specific abnormalities, particularly KMT2A partial tandem duplication, that are invisible to conventional karyotype and potentially contribute to the poor prognosis of MDS patients. Furthermore, these results demonstrate the added value of SNP-A analysis in identifying patients who may benefit from more aggressive therapy, particularly those who would otherwise be classified into lower risk categories.
Collapse
Affiliation(s)
- Sarah M Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Dale L Bixby
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lina Shao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Kanagal-Shamanna R, Hodge JC, Tucker T, Shetty S, Yenamandra A, Dixon-McIver A, Bryke C, Huxley E, Lennon PA, Raca G, Xu X, Jeffries S, Quintero-Rivera F, Greipp PT, Slovak ML, Iqbal MA, Fang M. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms. Cancer Genet 2018; 228-229:197-217. [PMID: 30377088 DOI: 10.1016/j.cancergen.2018.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow).
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston TX, USA.
| | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tracy Tucker
- Department of Pathology and Laboratory Medicine, Cancer Genetics Laboratory, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Shashi Shetty
- Department of Pathology, UHCMC, University Hospitals and Case Western Reserve University, Cleveland, OH, USA
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Christine Bryke
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emma Huxley
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | | | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Xinjie Xu
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Sally Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Marilyn L Slovak
- TriCore Reference Laboratories, University of New Mexico, Albuquerque, NM, USA
| | - M Anwar Iqbal
- University of Rochester Medical Center, Rochester, NY, USA
| | - Min Fang
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia 2018; 32:1679-1696. [PMID: 29946191 DOI: 10.1038/s41375-018-0173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a "real-world" context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an "integrated" diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
Collapse
|
8
|
Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells. Oncotarget 2018; 8:36383-36398. [PMID: 28422741 PMCID: PMC5482662 DOI: 10.18632/oncotarget.16756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
The hominoid oncoprotein TBC1D3 enhances growth factor (GF) signaling and GF signaling, conversely, induces the ubiquitination and subsequent degradation of TBC1D3. However, little is known regarding the regulation of this degradation, and the role of TBC1D3 in the progression of tumors has also not been defined. In the present study, we demonstrated that calmodulin (CaM), a ubiquitous cellular calcium sensor, specifically interacted with TBC1D3 in a Ca2+-dependent manner and inhibited GF signaling-induced ubiquitination and degradation of the oncoprotein in both cytoplasm and nucleus of human breast cancer cells. The CaM-interacting site of TBC1D3 was mapped to amino acids 157~171, which comprises two 1–14 hydrophobic motifs and one lysine residue (K166). Deletion of these motifs was shown to abolish interaction between TBC1D3 and CaM. Surprisingly, this deletion mutation caused inability of GF signaling to induce the ubiquitination and subsequent degradation of TBC1D3. In agreement with this, we identified lysine residue 166 within the CaM-interacting motifs of TBC1D3 as the actual site for the GF signaling-induced ubiquitination using mutational analysis. Point mutation of this lysine residue exhibited the same effect on TBC1D3 as the deletion mutant, suggesting that CaM inhibits GF signaling-induced degradation of TBC1D3 by occluding its ubiquitination at K166. Notably, we found that TBC1D3 promoted the expression and activation of MMP-9 and the migration of MCF-7 cells. Furthermore, interaction with CaM considerably enhanced such effect of TBC1D3. Taken together, our work reveals a novel model by which CaM promotes cell migration through inhibiting the ubiquitination and degradation of TBC1D3.
Collapse
|
9
|
Up-regulation of OLR1 expression by TBC1D3 through activation of TNFα/NF-κB pathway promotes the migration of human breast cancer cells. Cancer Lett 2017; 408:60-70. [PMID: 28844714 DOI: 10.1016/j.canlet.2017.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022]
Abstract
Metastatic spread of cancer cells is the most life-threatening aspect of breast cancer and involves multiple steps including cell migration. We recently found that the TBC1D3 oncogene promotes the migration of breast cancer cells, and its interaction with CaM enhances the effects of TBC1D3. However, little is known regarding the mechanism by which TBC1D3 induces the migration of cancer cells. Here, we demonstrated that TBC1D3 stimulated the expression of oxidized low density lipoprotein receptor 1 (OLR1), a stimulator of cell migration, in breast cancer cells at the transcriptional level. Depletion of OLR1 by siRNAs or down-regulation of OLR1 expression using pomalidomide, a TNFα inhibitor, significantly decreased TBC1D3-induced migration of these cells. Notably, TBC1D3 overexpression activated NF-κB, a major effector of TNFα signaling, while inhibition of TNFα signaling suppressed the effects of TBC1D3. Consistent with this, NF-κB inhibition using its specific inhibitor caffeic acid phenethyl ester decreased both TBC1D3-induced OLR1 expression and cell migration, suggesting a critical role for TNFα/NF-κB signaling in TBC1D3-induced migration of breast cancer cells. Mechanistically, TBC1D3 induced activation of this signaling pathway on multiple levels, including by increasing the release of TNFα, elevating the transcription of TNFR1, TRAF1, TRAF5 and TRAF6, and decreasing the degradation of TNFR1. In summary, these studies identify the TBC1D3 oncogene as a novel regulator of TNFα/NF-κB signaling that mediates this oncogene-induced migration of human breast cancer cells by up-regulating OLR1.
Collapse
|
10
|
Bhagat TD, Chen S, Bartenstein M, Barlowe AT, Von Ahrens D, Choudhary GS, Tivnan P, Amin E, Marcondes AM, Sanders MA, Hoogenboezem RM, Kambhampati S, Ramachandra N, Mantzaris I, Sukrithan V, Laurence R, Lopez R, Bhagat P, Giricz O, Sohal D, Wickrema A, Yeung C, Gritsman K, Aplan P, Hochedlinger K, Yu Y, Pradhan K, Zhang J, Greally JM, Mukherjee S, Pellagatti A, Boultwood J, Will B, Steidl U, Raaijmakers MHGP, Deeg HJ, Kharas MG, Verma A. Epigenetically Aberrant Stroma in MDS Propagates Disease via Wnt/β-Catenin Activation. Cancer Res 2017; 77:4846-4857. [PMID: 28684528 DOI: 10.1158/0008-5472.can-17-0282] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022]
Abstract
The bone marrow microenvironment influences malignant hematopoiesis, but how it promotes leukemogenesis has not been elucidated. In addition, the role of the bone marrow stroma in regulating clinical responses to DNA methyltransferase inhibitors (DNMTi) is also poorly understood. In this study, we conducted a DNA methylome analysis of bone marrow-derived stromal cells from myelodysplastic syndrome (MDS) patients and observed widespread aberrant cytosine hypermethylation occurring preferentially outside CpG islands. Stroma derived from 5-azacytidine-treated patients lacked aberrant methylation and DNMTi treatment of primary MDS stroma enhanced its ability to support erythroid differentiation. An integrative expression analysis revealed that the WNT pathway antagonist FRZB was aberrantly hypermethylated and underexpressed in MDS stroma. This result was confirmed in an independent set of sorted, primary MDS-derived mesenchymal cells. We documented a WNT/β-catenin activation signature in CD34+ cells from advanced cases of MDS, where it associated with adverse prognosis. Constitutive activation of β-catenin in hematopoietic cells yielded lethal myeloid disease in a NUP98-HOXD13 mouse model of MDS, confirming its role in disease progression. Our results define novel epigenetic changes in the bone marrow microenvironment, which lead to β-catenin activation and disease progression of MDS. Cancer Res; 77(18); 4846-57. ©2017 AACR.
Collapse
Affiliation(s)
- Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Si Chen
- Erasmus Medical Center Cancer Institute, Department of Hematology and Erasmus Stem Cell Institute, Rotterdam, the Netherlands
| | | | | | - Dagny Von Ahrens
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Gaurav S Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Patrick Tivnan
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elianna Amin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Mario Marcondes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Oncology, University of Washington, Seattle, Washington
| | - Mathijs A Sanders
- Erasmus Medical Center Cancer Institute, Department of Hematology and Erasmus Stem Cell Institute, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Erasmus Medical Center Cancer Institute, Department of Hematology and Erasmus Stem Cell Institute, Rotterdam, the Netherlands
| | | | - Nandini Ramachandra
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Iaonnis Mantzaris
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Vineeth Sukrithan
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Remi Laurence
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Robert Lopez
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Prafullla Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Orsi Giricz
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Davendra Sohal
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Cecilia Yeung
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kira Gritsman
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Peter Aplan
- National Institutes of Health, Bethesda, Maryland
| | | | - Yiting Yu
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Kith Pradhan
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Jinghang Zhang
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - John M Greally
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | | | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, NDCLS, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, NDCLS, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Britta Will
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Ulrich Steidl
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Marc H G P Raaijmakers
- Erasmus Medical Center Cancer Institute, Department of Hematology and Erasmus Stem Cell Institute, Rotterdam, the Netherlands.
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Oncology, University of Washington, Seattle, Washington
| | | | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York.
| |
Collapse
|
11
|
Cull AH, Rauh MJ. Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. J Leukoc Biol 2017; 102:209-219. [DOI: 10.1189/jlb.5ri0317-083r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
|
12
|
Stevens-Kroef MJ, Olde Weghuis D, ElIdrissi-Zaynoun N, van der Reijden B, Cremers EMP, Alhan C, Westers TM, Visser-Wisselaar HA, Chitu DA, Cunha SM, Vellenga E, Klein SK, Wijermans P, de Greef GE, Schaafsma MR, Muus P, Ossenkoppele GJ, van de Loosdrecht AA, Jansen JH. Genomic array as compared to karyotyping in myelodysplastic syndromes in a prospective clinical trial. Genes Chromosomes Cancer 2017; 56:524-534. [DOI: 10.1002/gcc.22455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Daniel Olde Weghuis
- Department of Human Genetics; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Bert van der Reijden
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| | - Eline M. P. Cremers
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Canan Alhan
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Theresia M. Westers
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Heleen A. Visser-Wisselaar
- Department of Hematology; Erasmus MC Cancer Institute, HOVON Data Center, Erasmus University Medical Center-Daniel den Hoed; Rotterdam The Netherlands
| | - Dana A. Chitu
- Department of Hematology; Erasmus MC Cancer Institute, HOVON Data Center, Erasmus University Medical Center-Daniel den Hoed; Rotterdam The Netherlands
| | - Sonia M. Cunha
- Department of Hematology; Erasmus MC Cancer Institute, HOVON Data Center, Erasmus University Medical Center-Daniel den Hoed; Rotterdam The Netherlands
| | - Edo Vellenga
- Department of Experimental Hematology; University Medical Center Groningen; Groningen The Netherlands
| | - Saskia K. Klein
- Department of Internal Medicine; Meander Medisch Centrum; Amersfoort The Netherlands
| | - Pierre Wijermans
- Department of Internal Medicine; Haga Ziekenhuis; The Hague The Netherlands
| | - Georgine E. de Greef
- Department of Hematology; Erasmus University Medical Center-Daniel den Hoed; Rotterdam The Netherlands
| | - M. Ron Schaafsma
- Department of Internal Medicine; Medisch Centrum Twente; Enschede The Netherlands
| | - Petra Muus
- Department of Hematology; Radboud University Medical Center; Nijmegen The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Joop H. Jansen
- Department of Laboratory Medicine; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
13
|
Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol 2016; 29:1183-99. [PMID: 27389314 DOI: 10.1038/modpathol.2016.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/28/2022]
Abstract
The diagnosis of myelodysplastic syndrome (MDS) can be challenging, and may be facilitated by correlation with cytogenetic testing. Microarray analysis using comparative genomic hybridization and/or single-nucleotide polymorphism array can detect chromosomal abnormalities not seen by standard metaphase cytogenetics. We examined the ability of combined comparative genomic hybridization and single-nucleotide polymorphism analysis (hereafter referred to as 'combined array') to detect changes among 83 patients with unexplained cytopenias undergoing pathologic evaluation for MDS and compared results with 18 normal bone marrow controls. Thirty-seven patients (45%) were diagnosed with MDS, 12 patients (14%) were demonstrated to have 'indeterminate dyspoiesis' (insufficient for classification of MDS), 27 (33%) were essentially normal, and 7 patients (8%) had alternative pathologic diagnoses. Twenty-one MDS patients (57% of diagnoses) had effectively normal metaphase cytogenetics, but combined array showed that 5 of these (13% of MDS patients) harbored major cryptic chromosomal aberrations. Furthermore, nearly half of patients with 'indeterminate dyspoiesis' and 1 with normal morphology had clonal cytopenia(s) of undetermined significance by combined array analysis. Cryptic array findings among MDS patients and those with clonal cytopenias(s) included large-scale copy-neutral loss of heterozygosity (up to 118 Mb) and genomic deletion of loci implicated in MDS pathogenesis (eg, TET2 (4q22) and NUP98 (11p15)). By comparison, in MDS patients with abnormal metaphase cytogenetics, microarray mostly recapitulated findings seen by routine karyotype. Combined array analysis has considerable diagnostic yield in detecting cryptic chromosomal aberrations in MDS and in demonstrating aberrant clonal hematopoiesis in cytopenic patients with indeterminate morphologic dysplasia.
Collapse
Affiliation(s)
- Andrew G Evans
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ausaf Ahmad
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
14
|
Mohanty P, Korgaonkar S, Shanmukhaiah C, Ghosh K, Vundinti BR. Cytogenetic abnormalities and genomic copy number variations in EPO (7q22) and SEC-61(7p11) genes in primary myelodysplastic syndromes. Blood Cells Mol Dis 2016; 59:52-7. [PMID: 27282568 DOI: 10.1016/j.bcmd.2016.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Myelodysplastic syndromes (MDSs) are heterogeneous clonal haematopoeitic stem cell disorders characterized by ineffective haematopoeisis, cytopenias and risk of progression to AML. We studied 150 MDS patients for cytogenetic aberrations and 60 patients with normal karyotype and 40 patients harboring cytogenetic abnormalities for copy number variations (CNVs). Cytogenetic abnormalities were detected in 46% of patients with a majority of patients harboring abnormalities of chromosome 7 and del (20q) at frequencies of 16% and 12% respectively. We explored the potential of quantitative multiplex PCR assay of short fluorescent fragments (QMPSF) to identify CNVs and correlated the findings with cytogenetic data and disease prognosis. CNVs (n=31) were detected in 28.3% of karyotypically normal and 23% patients with abnormal karyotype. Genetic losses or deletions (n=26) were more frequent than duplications (n=5). EPO (7q22) and SEC-61(7p11) emerged as new candidate genes susceptible to genetic losses with 57.7% deletions identified in regions on chromosome 7. The CNVs correlated with International Prognostic Scoring System (IPSS) intermediate disease risk group. Our integrative cytogenetic and copy number variation study suggests that abnormalities of chromosome 7 are predominant in Indian population and that they may play a secondary role in disease progression and should be evaluated further for asserting their clinical significance and influence on disease prognosis.
Collapse
Affiliation(s)
- Purvi Mohanty
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Seema Korgaonkar
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Chandrakala Shanmukhaiah
- Department of Haematology, 10th Floor, New Multistoried Building, KEM Hospital, Parel, Mumbai 400012, India
| | - Kanjaksha Ghosh
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology, 13th Floor, New Multistoried Building, KEM Hospital Campus, Parel, Mumbai 400012, India.
| |
Collapse
|
15
|
Lee EJ, Podoltsev N, Gore SD, Zeidan AM. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions. Blood Rev 2016; 30:1-10. [DOI: 10.1016/j.blre.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023]
|
16
|
Li MM, Monzon FA, Biegel JA, Jobanputra V, Laffin JJ, Levy B, Leon A, Miron P, Rossi MR, Toruner G, Alvarez K, Doho G, Dougherty MJ, Hu X, Kash S, Streck D, Znoyko I, Hagenkord JM, Wolff DJ. A multicenter, cross-platform clinical validation study of cancer cytogenomic arrays. Cancer Genet 2015; 208:525-36. [DOI: 10.1016/j.cancergen.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
|
17
|
Zhang R, Kim YM, Wang X, Li Y, Lu X, Sternenberger AR, Li S, Lee JY. Genomic Copy Number Variations in the Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients with del(5q) and/or -7/del(7q). Int J Med Sci 2015; 12:719-26. [PMID: 26392809 PMCID: PMC4571549 DOI: 10.7150/ijms.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
The most common chromosomal abnormalities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are -5/del(5q) and -7/del(7q). When -5/del(5q) and -7/del(7q) coexist in patients, a poor prognosis is typically associated. Given that -5/del(5q) and/or -7/del(7q) often are accompanied with additional recurrent chromosomal alterations, genetic change(s) on the accompanying chromosome(s) other than chromosomes 5 and 7 may be important factor(s) affecting leukemogenesis and disease prognosis. Using an integrated analysis of karyotype, FISH and array CGH results in this study, we evaluated the smallest region of overlap (SRO) of chromosomes 5 and 7 as well as copy number alterations (CNAs) on the other chromosomes. Moreover, the relationship between the CNAs and del(5q) and -7/del(7q) was investigated by categorizing the cases into three groups based on the abnormalities of chromosomes 5 and 7 [group I: cases only with del(5q), group II: cases only with -7/del(7q) and group III: concurrent del(5q) and del(7q) cases]. The overlapping SRO of chromosome 5 from groups I and III was 5q31.1-33.1 and of chromosome 7 from groups II and III was 7q31.31-q36.1. A total of 318 CNAs were observed; ~ 78.3% of them were identified on chromosomes other than chromosomes 5 and 7, which were defined as 'other CNAs'. Group III was a distinctive group carrying the most high number (HN) CNAs, cryptic CNAs and 'other CNAs'. The loss of TP53 was highly associated with del(5q). The loss of ETV6 was specifically associated with group III. These CNAs or genes may play a secondary role in disease progression and should be further evaluated for their clinical significance and influence on therapeutic approaches in patients with MDS/AML carrying del(5q) and/or -7/del(7q) in large-scale, patient population study.
Collapse
Affiliation(s)
- Rui Zhang
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- 2. Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Young-Mi Kim
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xianfu Wang
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yan Li
- 2. Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xianglan Lu
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andrea R. Sternenberger
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shibo Li
- 1. Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ji-Yun Lee
- 3. Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
18
|
Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Front Med 2015; 9:288-303. [DOI: 10.1007/s11684-015-0412-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 02/07/2023]
|
19
|
Stevens-Kroef MJ, Hebeda KM, Verwiel ET, Kamping EJ, van Cleef PH, Kuiper RP, Groenen PJ. Microarray-based genomic profiling and in situ hybridization on fibrotic bone marrow biopsies for the identification of numerical chromosomal abnormalities in myelodysplastic syndrome. Mol Cytogenet 2015; 8:33. [PMID: 26023320 PMCID: PMC4447009 DOI: 10.1186/s13039-015-0136-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/16/2015] [Indexed: 11/21/2022] Open
Abstract
Background Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological malignancies. In MDS patients with a fibrotic bone marrow the aspiration of cells often fails (dry-tap), which hampers standard karyotyping. Obtaining genetic data from these fibrotic marrows is therefore challenging, and up till now in situ hybridization applied to bone marrow biopsies is the only option. The microarray-based genomic profiling technology has already proven its value for bone marrow aspirates and peripheral blood samples, but has never been applied to the technically challenging bone marrow biopsies. We describe an approach for microarray-based genomic profiling on bone marrow biopsies and demonstrate its ability to obtain clinically relevant cytogenetic aberrations. In addition the data were compared with those obtained by in situ hybridization and karyotyping. Results We have evaluated the success rate of microarray-based genomic profiling by studying twenty-one bone marrow biopsies (7 fibrotic MDS, 12 non-fibrotic MDS and 2 reactive), by microarray-based genomic profiling and in situ hybridization (12 of 21 cases). The data obtained with these techniques were compared with conventional karyotyping data on corresponding bone marrow aspirates. Of the 15 copy number aberrations that were detected by in situ hybridization, 13 were concordant with microarray-based genomic profiling and karyotyping, whereas two hybridizations were misinterpreted. In 20 of 21 patients, the data obtained by microarray-based genomic profiling and karyotyping were identical or differences could be explained by the presence of marker chromosomes, complex karyotypes, clonal heterogeneity or disease progression. Conclusions We demonstrate that genome wide microarray-based genomic profiling performed on bone marrow biopsies has a similar success rate compared to in situ hybridization, and prevents misinterpretation of chromosomal losses as observed by FISH. In addition, equal to even higher resolutions were obtained with genomic profiling compared to conventional karyotyping. Our findings indicate that microarray-based profiling, even on bone marrow biopsies, is a valid approach for the identification of genetic abnormalities. This is a valuable substitution in cases of fibrotic MDS lacking cytogenetic results.
Collapse
Affiliation(s)
- Marian Jpl Stevens-Kroef
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Eugène T Verwiel
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Eveline J Kamping
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Patricia H van Cleef
- Department of Pathology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
20
|
Yang L, Qian Y, Eksioglu E, Epling-Burnette PK, Wei S. The inflammatory microenvironment in MDS. Cell Mol Life Sci 2015; 72:1959-66. [PMID: 25662443 PMCID: PMC11113192 DOI: 10.1007/s00018-015-1846-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/23/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Myelodysplastic syndromes (MDS) are a collection of pre-malignancies characterized by impaired proliferation and differentiation of hematopoietic stem cells and a tendency to evolve into leukemia. Among MDS's pathogenic mechanisms are genetic, epigenetic, apoptotic, differentiation, and cytokine milieu abnormalities. Inflammatory changes are a prominent morphologic feature in some cases, with increased populations of plasma cells, mast cells, and lymphocytes in bone marrow aspirates. Accumulating evidence suggests that the bone marrow microenvironment contributes to MDS disease pathology, with microenvironment alterations and abnormality preceding, and facilitating clonal evolution in MDS patients. In this review, we focus on the inflammatory changes involved in the pathology of MDS, with an emphasis on immune dysfunction, stromal microenvironment, and cytokine imbalance in the microenvironment as well as activation of innate immune signaling in MDS patients. A better understanding of the mechanism of MDS pathophysiology will be beneficial to the development of molecular-targeted therapies in the future.
Collapse
Affiliation(s)
- Lili Yang
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin, China
| | - Yaqin Qian
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin, China
| | - Erika Eksioglu
- Immunology Program at the H Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612 USA
| | | | - Sheng Wei
- Department of Immunology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, National Clinical Research Center of Cancer, Tianjin, China
- Immunology Program at the H Lee Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612 USA
| |
Collapse
|
21
|
Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015; 126:9-16. [PMID: 25931582 DOI: 10.1182/blood-2015-03-631747] [Citation(s) in RCA: 1393] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/26/2015] [Indexed: 12/12/2022] Open
Abstract
Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies.
Collapse
|
22
|
Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 2015; 29:1458-69. [PMID: 25761935 DOI: 10.1038/leu.2015.69] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 12/18/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients' BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications.
Collapse
|
23
|
Jonas BA, Greenberg PL. MDS prognostic scoring systems – past, present, and future. Best Pract Res Clin Haematol 2014; 28:3-13. [PMID: 25659725 DOI: 10.1016/j.beha.2014.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal myeloid haemopathies characterized by defective differentiation of haematopoietic cells and expansion of the abnormal clone. This leads to bone marrow failure with the resulting peripheral blood cytopenias and evolution to or toward acute myeloid leukaemia that characterize MDS clinically. The clinical heterogeneity of MDS has led several groups to analyze patient and clinical characteristics to develop prognostic scoring systems yielding estimates of overall and leukaemia-free survival to guide clinical decision-making. These models have evolved over time as our understanding of the pathogenesis, natural history, and treatment of MDS has improved. Rapid advances in flow cytometric analysis, adjuncts to standard metaphase cytogenetics, and gene mutation analysis are revolutionizing our understanding of MDS pathogenesis and prognosis. Despite the existence of multiple well-validated prognostic scoring systems, further refinements of current models with these new sources of prognostic data are needed and are described herein.
Collapse
Affiliation(s)
- Brian A Jonas
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, UC Davis Comprehensive Cancer Center, 4501 X Street, Suite 3016, Sacramento, CA 95817, United States.
| | - Peter L Greenberg
- Department of Internal Medicine, Division of Hematology, Stanford University School of Medicine, Stanford Comprehensive Cancer Center, 875 Blake Wilbur Drive, Stanford, CA 94305, United States.
| |
Collapse
|
24
|
Vercauteren SM, Starczynowski DT, Sung S, McNeil K, Salski C, Jensen CL, Bruyere H, Lam WL, Karsan A. T cells of patients with myelodysplastic syndrome are frequently derived from the malignant clone. Br J Haematol 2014; 156:409-12. [PMID: 25289412 DOI: 10.1111/j.1365-2141.2011.08872.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suzanne M Vercauteren
- Pathology and Laboratory Medicine of British Columbia Children's Hospital; Bristish Columbia Genome Sciences Centre, BC Cancer Agency; Pathology and Laboratory Medicine, University of British Columbia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
CONTEXT Hematopathology is a dynamic field that has always been on the frontier of clinical research within the scope of pathology. Several recent developments in hematopathology will likely affect its practice clinically. OBJECTIVE To review 5 important recent advances in hematopathology: (1) detection and prognostic implication of MYC in diffuse large B-cell lymphomas, (2) determining origin and prognosis through immunoglobulin gene usage in mature B-cell neoplasms, (3)detecting minimal residual disease in multiple myeloma, (4) using genome-wide analysis in myelodysplastic syndromes, and (5) employing whole-genome sequencing in acute myeloid leukemias. DATA SOURCES Literature review and the authors' experiences in an academic center. CONCLUSIONS These advances will bring hematopathology into a new molecular era and help us to better understand the molecular, pathologic mechanisms of lymphomas, leukemias, myelomas, and myelodysplastic syndromes. They will help us to identify diagnostic and prognostic markers and eventually provide new therapeutic targets and treatments for these diseases.
Collapse
Affiliation(s)
- Min Shi
- From the Department of Pathology, UMass Memorial Medical Center, Worcester, Massachusetts
| | | | | | | |
Collapse
|
26
|
Zhang R, Lee JY, Wang X, Xu W, Hu X, Lu X, Niu Y, Tang R, Li S, Li Y. Identification of novel genomic aberrations in AML-M5 in a level of array CGH. PLoS One 2014; 9:e87637. [PMID: 24727659 PMCID: PMC3984075 DOI: 10.1371/journal.pone.0087637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/29/2013] [Indexed: 01/18/2023] Open
Abstract
To assess the possible existence of unbalanced chromosomal abnormalities and delineate the characterization of copy number alterations (CNAs) of acute myeloid leukemia-M5 (AML-M5), R-banding karyotype, oligonucelotide array CGH and FISH were performed in 24 patients with AML-M5. A total of 117 CNAs with size ranging from 0.004 to 146.263 Mb was recognized in 12 of 24 cases, involving all chromosomes other than chromosome 1, 4, X and Y. Cryptic CNAs with size less than 5 Mb accounted for 59.8% of all the CNAs. 12 recurrent chromosomal alterations were mapped. Seven out of them were described in the previous AML studies and five were new candidate AML-M5 associated CNAs, including gains of 3q26.2-qter and 13q31.3 as well as losses of 2q24.2, 8p12 and 14q32. Amplication of 3q26.2-qter was the sole large recurrent chromosomal anomaly and the pathogenic mechanism in AML-M5 was possibly different from the classical recurrent 3q21q26 abnormality in AML. As a tumor suppressor gene, FOXN3, was singled out from the small recurrent CNA of 14q32, however, it is proved that deletion of FOXN3 is a common marker of myeloid leukemia rather than a specific marker for AML-M5 subtype. Moreover, the concurrent amplication of MLL and deletion of CDKN2A were noted and it might be associated with AML-M5. The number of CNA did not show a significant association with clinico-biological parameters and CR number of the 22 patients received chemotherapy. This study provided the evidence that array CGH served as a complementary platform for routine cytogenetic analysis to identify those cryptic alterations in the patients with AML-M5. As a subtype of AML, AML-M5 carries both common recurrent CNAs and unique CNAs, which may harbor novel oncogenes or tumor suppressor genes. Clarifying the role of these genes will contribute to the understanding of leukemogenic network of AML-M5.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ji-Yun Lee
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| | - Xianfu Wang
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Weihong Xu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Xiaoxia Hu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Xianglan Lu
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yimeng Niu
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Rurong Tang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, P.R. China
- * E-mail:
| |
Collapse
|
27
|
Zeidan AM, Prebet T, Saad Aldin E, Gore SD. Risk stratification in myelodysplastic syndromes: is there a role for gene expression profiling? Expert Rev Hematol 2014; 7:191-4. [PMID: 24559255 DOI: 10.1586/17474086.2014.891437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Evaluation of: Pellagatti A, Benner A, Mills KI et al. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J. Clin. Oncol. 31(28), 3557-3564 (2013). Patients with myelodysplastic syndromes (MDS) exhibit wide heterogeneity in clinical outcomes making accurate risk-stratification an integral part of the risk-adaptive management paradigm. Current prognostic schemes for MDS rely on clinicopathological parameters. Despite the increasing knowledge of the genetic landscape of MDS and the prognostic impact of many newly discovered molecular aberrations, none to date has been incorporated formally into the major risk models. Efforts are ongoing to use data generated from genome-wide high-throughput techniques to improve the 'individualized' outcome prediction for patients. We here discuss an important paper in which gene expression profiling (GEP) technology was applied to marrow CD34(+) cells from 125 MDS patients to generate and validate a standardized GEP-based prognostic signature.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
28
|
Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2014; 123:4595-611. [PMID: 24216507 DOI: 10.1172/jci67580] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 08/15/2013] [Indexed: 01/08/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
Collapse
|
29
|
Nybakken GE, Bagg A. The genetic basis and expanding role of molecular analysis in the diagnosis, prognosis, and therapeutic design for myelodysplastic syndromes. J Mol Diagn 2014; 16:145-58. [PMID: 24457119 DOI: 10.1016/j.jmoldx.2013.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/09/2013] [Accepted: 11/21/2013] [Indexed: 12/31/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders of ineffective hematopoiesis that characteristically demonstrate peripheral blood cytopenia, bone marrow hypercellularity, and morphologically defined dysplasia of one or more hematopoietic lineages. Classical metaphase cytogenetics and judicious use of fluorescence in situ hybridization play central roles in the contemporary diagnosis and classification of MDS. An abundance of recent molecular studies are beginning to delineate additional genetic and epigenetic aberrations associated with these disorders. These alterations affect diagnosis, prognosis, and therapy, and with this understanding classification systems are evolving from a primarily hematological and morphological basis toward a multifactorial appreciation that includes histomorphology, metaphase cytogenetics, and directed molecular studies. In the present health-care environment, it is critical to develop a cost-effective, efficient testing strategy that maximizes the diagnostic potential of even limited specimens. Here, we briefly review the classical genetic approach to MDS, outline exciting new advances in the molecular understanding of this heterogeneous group of hematological neoplasms, and discuss how these advances are driving the evolution of classification and prognostic systems. Rapidly growing understanding of the genetic basis of MDS holds much promise for testing, and here we provide a frame of reference for discussion of current testing protocols and for addressing testing modalities likely to enter clinical practice in the near future.
Collapse
Affiliation(s)
- Grant E Nybakken
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
30
|
Idris SF, Ahmad SS, Scott MA, Vassiliou GS, Hadfield J. The role of high-throughput technologies in clinical cancer genomics. Expert Rev Mol Diagn 2014; 13:167-81. [DOI: 10.1586/erm.13.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Valli R, Pressato B, Marletta C, Mare L, Montalbano G, Curto FL, Pasquali F, Maserati E. Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms. Mol Cytogenet 2013; 6:56. [PMID: 24330778 PMCID: PMC3914702 DOI: 10.1186/1755-8166-6-56] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022] Open
Abstract
Background An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML. Results We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature. Conclusions The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with other patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emanuela Maserati
- Dipartimento di Medicina Clinica e Sperimentale, Università dell'Insubria, Via J, H, Dunant, 5, I 21100 Varese, Italy.
| |
Collapse
|
32
|
Zeidan AM, Komrokji RS. There's risk, and then there's risk: The latest clinical prognostic risk stratification models in myelodysplastic syndromes. Curr Hematol Malig Rep 2013; 8:351-60. [PMID: 23979829 PMCID: PMC4133773 DOI: 10.1007/s11899-013-0172-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myelodysplastic syndromes (MDS) include a diverse group of clonal hematopoietic disorders characterized by progressive cytopenias and propensity for leukemic progression. The biologic heterogeneity that underlies MDS translates clinically in wide variations of clinical outcomes. Several prognostic schemes were developed to predict the natural course of MDS, counsel patients, and allow evidence-based, risk-adaptive implementation of therapeutic strategies. The prognostic schemes divide patients into subgroups with similar prognosis, but the extent to which the prognostic prediction applies to any individual patient is more variable. None of these instruments was designed to predict the clinical benefit in relation to any specific MDS therapy. The prognostic impact of molecular mutations is being more recognized and attempts at incorporating it into the current prognostic schemes are ongoing.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, CRB1 building, room 186, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
33
|
Total genomic alteration as measured by SNP-array-based molecular karyotyping is predictive of overall survival in a cohort of MDS or AML patients treated with azacitidine. Blood Cancer J 2013; 3:e155. [PMID: 24185502 PMCID: PMC3880435 DOI: 10.1038/bcj.2013.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 11/08/2022] Open
Abstract
Metaphase cytogenetics (MC) has a major role in the risk stratification of patients with myelodysplastic syndromes (MDSs) and can affect the choice of therapies. Azacitidine (AZA) has changed the outcome of patients with MDS or acute myeloid leukemia (AML) unfit for intensive chemotherapy. Identification of patients without the benefit of AZA would allow AZA combination or other drugs in first-line treatments. New whole-genome scanning technologies such as single nucleotide polymorphism microarray (SNP-A)-based molecular karyotyping (MK) improve the risk stratification in MDS and AML. Maintenance of genomic integrity is less than three megabases (Mbs) total disruption of the genome correlated with better overall survival (OS) in patients with lower-risk MDS. In this SNP-A study, we aimed at defining a cutoff value for total genomic copy number (CN) alterations (TGA) influencing the median OS in a cohort of 51 higher-risk MDS/AML patients treated with AZA. We observed that the relative risk of worse OS increased >100 Mb of TGA, as detected by SNP-A-based MK (8 and 15 months respectively, P=0.02). Our data suggest that precise measurement of TGA could provide predictive information in poor and very poor revised International Prognostic Scoring system (IPSS-R) patients treated with AZA.
Collapse
|
34
|
Otrock ZK, Tiu RV, Maciejewski JP, Sekeres MA. The need for additional genetic markers for myelodysplastic syndrome stratification: what does the future hold for prognostication? Expert Rev Hematol 2013; 6:59-68. [PMID: 23373781 DOI: 10.1586/ehm.12.67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myelodysplastic syndromes (MDS) constitute a heterogeneous group of clonal hematopoietic disorders. Metaphase cytogenetics has been the gold standard for genetic testing in MDS, but it detects clonal cytogenetic abnormalities in only 50% of cases. New karyotyping tests include FISH, array-based comparative genomic hybridization and single-nucleotide polymorphism arrays. These techniques have increased the detected genetic abnormalities in MDS, many of which confer prognostic significance to overall and leukemia-free survival. This has eventually increased our understanding of MDS genetics. With the help of new technologies, we anticipate that the existing prognostic scoring systems will incorporate mutational data into their parameters. This review discusses the progress in MDS diagnosis through the use of array-based technologies. The authors also discuss the recently investigated genetic mutations in MDS and revisit the MDS classification and prognostic scoring systems.
Collapse
Affiliation(s)
- Zaher K Otrock
- Leukemia Program, Cleveland Clinic Taussig Cancer Institute, OH 44195, USA
| | | | | | | |
Collapse
|
35
|
Erdogan B, Bosompem A, Peng D, Han L, Smith E, Kennedy ME, Alford CE, Wu H, Zhao Z, Mosse CA, El-Rifai W, Kim AS. Methylation of promoters of microRNAs and their host genes in myelodysplastic syndromes. Leuk Lymphoma 2013; 54:2720-7. [PMID: 23547841 DOI: 10.3109/10428194.2013.790542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myelodysplastic syndromes (MDS) are a group of hematopoietic malignancies characterized by ineffective hematopoiesis. Recently, we identified MDS-associated microRNAs (miRNAs) that are down-regulated in MDS. This study examines possible explanations for that observed down-regulation of miRNA expression in MDS. Since genomic losses are insufficient to explain the down-regulation of all our MDS-associated miRNAs, we explored other avenues. We demonstrate that these miRNAs are predominantly intragenic, and that, in many cases, they and their host genes are expressed in a similar pattern during myeloid maturation, suggesting their co-regulation. This co-regulation is further supported by the down-regulation of several of the host genes in MDS and increased methylation of the shared promoters of several miRNAs and their respective host genes. These studies identify a role of hypermethylation of miRNA promoters in the down-regulation of MDS-associated miRNAs, unifying research on miRNAs in MDS and epigenetic regulation in MDS into a common pathway.
Collapse
Affiliation(s)
- Begum Erdogan
- Department of Pathology, Immunology, and Microbiology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S, Stahl PD. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun 2013; 434:388-93. [PMID: 23578663 DOI: 10.1016/j.bbrc.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
de Oliveira FM, Miguel CE, Lucena-Araujo AR, de Lima ASG, Falcão RP, Rego EM. FISH analysis for TET2 deletion in a cohort of 362 Brazilian myeloid malignancies: correlation with karyotype abnormalities. Med Oncol 2013; 30:483. [PMID: 23389918 DOI: 10.1007/s12032-013-0483-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
We investigated the prevalence of TET2 deletion by using a new FISH probe in a cohort of 362 Brazilian patients with myeloid neoplasms and their association with cytogenetic information (G-banding analysis). Normal karyotype was observed in 45.8 % of MDS (n = 44), 43.8 % of AML (n = 39) and 46.3 % of MPN (n = 82). Abnormalities of 4q24 (deletions, translocations or inversions) were associated with another chromosomal abnormality in four patients by G-banding analysis (2 MDS, 1 AML and 1 MPN). Interphase FISH analysis revealed deletion of TET2 in 21 patients (6 patients with abnormal karyotype and in 15 patients with normal karyotype). arrayCGH analysis revealed a cryptic deletion of the region 4q24 in all eight patients selected with myeloid malignancies (3 MDS, 1 AML and 4 MPN). Considering the significantly high cost of determining the mutational status of TET2 in patient samples by using conventional sequencing methods and sometimes the lack of regular use of SNP/aCGH array methodologies, FISH for the detection of TET2 abnormalities may become a potentially useful clinical tool. The search for alterations in TET2 gene may be important for the prediction of prognosis in normal/altered AML patients' karyotype or in the disease evolution of patients with MNP and MDS.
Collapse
Affiliation(s)
- Fábio Morato de Oliveira
- Department of Internal Medicine, Division of Hematology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
38
|
Shaffer LG, Ballif BC, Schultz RA. The use of cytogenetic microarrays in myelodysplastic syndrome characterization. Methods Mol Biol 2013; 973:69-85. [PMID: 23412784 DOI: 10.1007/978-1-62703-281-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Various microarray platforms, including BAC, oligonucleotide, and SNP arrays, have been shown to -provide clinically useful diagnostic and prognostic information for patients with myelodysplastic syndromes (MDS). Clinically useful arrays are designed with specific purposes in mind and with attention to genomic content and probe density. All array types have been shown to detect genomic copy gains and losses, with SNP arrays having the added advantage of detecting copy neutral loss of heterozygosity (CNLOH). The finding of CNLOH has led to the identification of certain disease genes implicated in the initiation or progression of myeloid diseases. In addition, SNP karyotyping alone, or in conjunction with routine cytogenetics, can affect the outcome prediction and improve prognostic stratification of patients with MDS. Patients who were reclassified after array testing as having adverse-risk chromosomal findings correlated with poor survival. Results of over 25 published studies support the use of arrays in MDS testing. Because few balanced translocations are found in MDS, this disease is particularly amenable to microarray testing, and studies have shown better disease classification, identification of cryptic changes, and prognostication in this heterogeneous group of disorders. Novel genomic alterations identified by array testing may lead to better targeted therapies for treating patients with MDS.
Collapse
Affiliation(s)
- Lisa G Shaffer
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, WA, USA.
| | | | | |
Collapse
|
39
|
Abstract
Myelodysplastic syndromes (MDS) are malignant clonal disorders of haematopoietic stem cells and their microenvironment, affecting older individuals (median age ∼70 years). Unique features that are associated with MDS - but which are not necessarily present in every patient with MDS - include excessive apoptosis in maturing clonal cells, a pro-inflammatory bone marrow microenvironment, specific chromosomal abnormalities, abnormal ribosomal protein biogenesis, the presence of uniparental disomy, and mutations affecting genes involved in proliferation, methylation and epigenetic modifications. Although emerging insights establish an association between molecular abnormalities and the phenotypic heterogeneity of MDS, their origin and progression remain enigmatic.
Collapse
Affiliation(s)
- Azra Raza
- Myelodysplastic Syndromes Center, Columbia University Medical Center, Milstein Hospital Building, 6N-435, 177 Fort Washington Avenue, New York, New York 10032, USA.
| | | |
Collapse
|
40
|
Kong C, Samovski D, Srikanth P, Wainszelbaum MJ, Charron AJ, Liu J, Lange JJ, Chen PI, Pan ZQ, Su X, Stahl PD. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is mediated by CUL7 E3 ligase. PLoS One 2012; 7:e46485. [PMID: 23029530 PMCID: PMC3459922 DOI: 10.1371/journal.pone.0046485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022] Open
Abstract
Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dmitri Samovski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Priya Srikanth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marisa J. Wainszelbaum
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Audra J. Charron
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jialiu Liu
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey J. Lange
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pin-I Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn Medical Institute, New York, New York, United States of America
| | - Xiong Su
- Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XS); (PDS)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XS); (PDS)
| |
Collapse
|
41
|
Jacoby MA, Walter MJ. Detection of copy number alterations in acute myeloid leukemia and myelodysplastic syndromes. Expert Rev Mol Diagn 2012; 12:253-64. [PMID: 22468816 DOI: 10.1586/erm.12.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosomal deletions and amplifications that occur in affected cells from patients with myelodysplastic syndromes and acute myeloid leukemia often contain genes that contribute to disease pathogenesis. Identification of copy number alterations (deletions and amplifications) and regions of copy neutral loss of heterozygosity using array-based platforms has led to the identification of genes that are commonly mutated in myeloid malignancies. In this article, we review the literature and highlight the array-based studies that directly compare matched normal and tumor samples from the same individual to identify somatic alterations. We also discuss the use of next-generation sequencing to identify all types of structural variants, including copy number alterations and copy neutral loss of heterozygosity, and provide an outlook for how this technology may be used to interrogate cancer genomes.
Collapse
Affiliation(s)
- Meagan A Jacoby
- Department of Internal Medicine, Washington University School of Medicine, Division of Oncology, Stem Cell Biology Section, Campus Box 8007, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Dambruoso I, Boni M, Rossi M, Zappasodi P, Calvello C, Zappatore R, Cavigliano PM, Giardini I, Rocca B, Caresana M, Astori C, Cazzola M, Castagnola C, Bernasconi P. Detection of TET2 abnormalities by fluorescence in situ hybridization in 41 patients with myelodysplastic syndrome. Cancer Genet 2012; 205:285-94. [PMID: 22749034 DOI: 10.1016/j.cancergen.2012.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
TET2 haplo-insufficiency occurs through different molecular mechanisms and is promptly revealed by array comparative genomic hybridization, single nucleotide polymorphism (SNP) array, and next-generation sequencing (NGS). Fluorescence in situ hybridization (FISH) can effectively demonstrate TET2 deletions and is often used to validate molecular results. In the present study 41 MDS patients with and without 4q abnormalities were analyzed with a series of bacterial artificial chromosome (BAC) probes spanning the 4q22.3-q25 region. On conventional cytogenetic (CC) studies, a structural defect of the long arm of chromosome 4 (4q) was observed in seven patients. In three, one each with a t(1;4)(p21;q24), an ins(5;4)(q23;q24qter), and a t(4;17)(q31;p13) as the sole chromosomal abnormality, FISH with the RP11-356L5 and RP11-16G16 probes, which cover the TET2 locus, produced one signal only. Unexpectedly, this same result was achieved in 3 of the remaining 34 patients. Thus, a TET2 deletion was observed in a total of six patients (14.6%). TET2 deletion was not correlated with any particular clinical findings or outcome. These findings demonstrate that 1) FISH is an effective and economical method to reveal cryptic abnormalities of band 4q22-q24 resulting in TET2 deletions; 2) in these patients, TET2 deletion is the unifying genetic event; and 3) the different breakpoints within the 4q22-q25 region suggest that deletions are not mediated by repetitive sequences.
Collapse
Affiliation(s)
- Irene Dambruoso
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Will a peripheral blood (PB) sample yield the same diagnostic and prognostic cytogenetic data as the concomitant bone marrow (BM) in myelodysplasia? Leuk Res 2012; 36:832-40. [PMID: 22537394 DOI: 10.1016/j.leukres.2012.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/04/2023]
Abstract
In patients with myelodysplastic syndromes (MDS), chromosome anomalies are detected by conventional cytogenetic studies (CCS) and/or interphase fluorescence in situ hybridization (FISH) of bone marrow (BM) samples and provide prognostic and diagnostic information, which can direct therapy. Whether peripheral blood (PB) can be substituted for bone marrow in these cases and can provide the same information remains unknown. Concurrent BM and PB specimens collected from 100 patients with recently diagnosed MDS were studied using both CCS and FISH. While 68% of BM samples showed an abnormal karyotype by CCS, only 31% of PB samples were abnormal by CCS. In 12% of patients, FISH and CCS were discordant due to the inability of the FISH panel to detect all possible abnormalities. However, only one case (1%) had a cryptic abnormality detected by FISH. BM and PB FISH were discordant in 3% of cases, most likely due to the smaller clone size in PB vs. BM. While PB should not be substituted for BM at diagnosis, it is a viable alternative for monitoring patients using the appropriate FISH probe(s).
Collapse
|
44
|
Abstract
Until recently, myeloid neoplasms have been attributed to genomic and genetic instability leading to clonal outgrowth. However, it is now increasingly evident that epigenetic abnormalities also play a fundamental role in development of these malignancies. A growing body of evidence has underlined the involvement of epigenetic machinery in the malignant transformation of hematopoietic cells. Epigenetic dysfunction can lead to genetic alterations, including microsatellite instability, nucleotide changes, and chromosomal alterations. Conversely, putative epigenetic instability may be related to mutations of genes involved in epigenetic regulation. Therefore, this review focuses on epigenetic processes, including DNA methylation, post-translational histone modifications, and RNA interference via small noncoding RNAs, which play a critical role in controlling gene expression and are targets of dysregulation in many hematologic malignancies. Further, recent literature identified somatic mutations in several epigenetic regulators with a high frequency in myeloid malignancies.
Collapse
Affiliation(s)
- Anna M Jankowska
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
45
|
Tang W, Cao H, Duan J, Wang YP. A compressed sensing based approach for subtyping of leukemia from gene expression data. J Bioinform Comput Biol 2012; 9:631-45. [PMID: 21976380 DOI: 10.1142/s0219720011005689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
With the development of genomic techniques, the demand for new methods that can handle high-throughput genome-wide data effectively is becoming stronger than ever before. Compressed sensing (CS) is an emerging approach in statistics and signal processing. With the CS theory, a signal can be uniquely reconstructed or approximated from its sparse representations, which can therefore better distinguish different types of signals. However, the application of CS approach to genome-wide data analysis has been rarely investigated. We propose a novel CS-based approach for genomic data classification and test its performance in the subtyping of leukemia through gene expression analysis. The detection of subtypes of cancers such as leukemia according to different genetic markups is significant, which holds promise for the individualization of therapies and improvement of treatments. In our work, four statistical features were employed to select significant genes for the classification. With our selected genes out of 7,129 ones, the proposed CS method achieved a classification accuracy of 97.4% when evaluated with the cross validation and 94.3% when evaluated with another independent data set. The robustness of the method to noise was also tested, giving good performance. Therefore, this work demonstrates that the CS method can effectively detect subtypes of leukemia, implying improved accuracy of diagnosis of leukemia.
Collapse
Affiliation(s)
- Wenlong Tang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.
Collapse
|
47
|
Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13:67-73. [PMID: 22251903 DOI: 10.1038/nrm3267] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs) are characterized by the presence of highly conserved TBC domains and act as negative regulators of RABs. The importance of TBC/RABGAPs in the regulation of specific intracellular trafficking routes is now emerging, as is their role in different diseases. Importantly, TBC/RABGAPs act as key regulatory nodes, integrating signalling between RABs and other small GTPases and ensuring the appropriate retrieval, transport and delivery of different intracellular vesicles.
Collapse
|
48
|
Abstract
Developed countries, such as the United Kingdom, are experiencing a change in demographics resulting in the largest proportion of adults over 65 years of age that our health systems have ever experienced. As such, haematologists must be prepared to evaluate and treat anaemia in a more complicated patient population, but sufficient evidence-based guidelines are lacking. Critical next steps that must be taken to ensure the best care of this population include the determination of appropriate haemoglobin concentrations for older adults in light of age, gender, race, and comorbidities; the development of interventional trials that address physical performance outcomes in addition to haemoglobin targets; and translational studies which address the molecular pathogenesis of anaemia in older adults with the most advanced scientific approaches.
Collapse
Affiliation(s)
- Akil A. Merchant
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cindy N. Roy
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Starczynowski DT, Lockwood WW, Deléhouzée S, Chari R, Wegrzyn J, Fuller M, Tsao MS, Lam S, Gazdar AF, Lam WL, Karsan A. TRAF6 is an amplified oncogene bridging the RAS and NF-κB pathways in human lung cancer. J Clin Invest 2011; 121:4095-105. [PMID: 21911935 DOI: 10.1172/jci58818] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022] Open
Abstract
Somatic mutations and copy number alterations (as a result of deletion or amplification of large portions of a chromosome) are major drivers of human lung cancers. Detailed analysis of lung cancer-associated chromosomal amplifications could identify novel oncogenes. By performing an integrative cytogenetic and gene expression analysis of non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) cell lines and tumors, we report here the identification of a frequently recurring amplification at chromosome 11 band p13. Within this region, only TNF receptor-associated factor 6 (TRAF6) exhibited concomitant mRNA overexpression and gene amplification in lung cancers. Inhibition of TRAF6 in human lung cancer cell lines suppressed NF-κB activation, anchorage-independent growth, and tumor formation. In these lung cancer cell lines, RAS required TRAF6 for its oncogenic capabilities. Furthermore, TRAF6 overexpression in NIH3T3 cells resulted in NF-κB activation, anchorage-independent growth, and tumor formation. Our findings show that TRAF6 is an oncogene that is important for RAS-mediated oncogenesis and provide a mechanistic explanation for the previously apparent importance of constitutive NF-κB activation in RAS-driven lung cancers.
Collapse
|
50
|
van der Veken LT, Buijs A. Array CGH in human leukemia: from somatics to genetics. Cytogenet Genome Res 2011; 135:260-70. [PMID: 21893961 DOI: 10.1159/000330629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the past decade, array CGH has been applied to study copy number alterations in the genome in human leukemia in relation to prediction of prognosis or responsiveness to therapy. In the first segment of this review, we will focus on the identification of acquired mutations by array CGH, followed by studies on the pathogenesis of leukemia associated with germline genetic variants, phenotypic presentation and response to treatment. In the last section, we will discuss constitutional genomic aberrations causally related to myeloid leukemogenesis.
Collapse
Affiliation(s)
- L T van der Veken
- Section of Genome Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|