1
|
Zhao XY, Wilmen A, Wang D, Wang X, Bauzon M, Kim JY, Linden L, Li L, Egner U, Marquardt T, Moosmayer D, Tebbe J, Glück JM, Ellinger P, McLean K, Yuan S, Yegneswaran S, Jiang X, Evans V, Gu JM, Schneider D, Zhu Y, Xu Y, Mallari C, Hesslein A, Wang Y, Schmidt N, Gutberlet K, Ruehl-Fehlert C, Freyberger A, Hermiston T, Patel C, Sim D, Mosnier LO, Laux V. Targeted inhibition of activated protein C by a non-active-site inhibitory antibody to treat hemophilia. Nat Commun 2020; 11:2992. [PMID: 32532974 PMCID: PMC7293249 DOI: 10.1038/s41467-020-16720-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Based on the hypothesis that specific inhibition of APC’s anticoagulant but not its cytoprotective activity can be beneficial for hemophilia therapy, 2 types of inhibitory monoclonal antibodies (mAbs) are tested: A type I active-site binding mAb and a type II mAb binding to an exosite on APC (required for anticoagulant activity) as shown by X-ray crystallography. Both mAbs increase thrombin generation and promote plasma clotting. Type I blocks all APC activities, whereas type II preserves APC’s cytoprotective function. In normal monkeys, type I causes many adverse effects including animal death. In contrast, type II is well-tolerated in normal monkeys and shows both acute and prophylactic dose-dependent efficacy in hemophilic monkeys. Our data show that the type II mAb can specifically inhibit APC’s anticoagulant function without compromising its cytoprotective function and offers superior therapeutic opportunities for hemophilia. Activated protein C (APC) is a plasma serine protease with antithrombotic and cytoprotective functions. Here, the authors develop a monoclonal antibody that specifically inhibits APC’s anticoagulant function without compromising its cytoprotective function, and shows efficacy in animal models.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA.
| | - Andreas Wilmen
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | - Dongli Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinquan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maxine Bauzon
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ji-Yun Kim
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lars Linden
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | - Liang Li
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ursula Egner
- Structural Biology, Bayer AG, 13342, Berlin, Germany
| | | | | | - Jan Tebbe
- Biological Research, Bayer AG, 42113, Wuppertal, Germany
| | | | | | - Kirk McLean
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Shujun Yuan
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | - Xiaoqiao Jiang
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Vince Evans
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Jian-Ming Gu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Doug Schneider
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ying Zhu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Yifan Xu
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Cornell Mallari
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | - Yan Wang
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Nicole Schmidt
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | | | | | | | - Terry Hermiston
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Chandra Patel
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Derek Sim
- US Innovation Center, Bayer, 455 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Laurent O Mosnier
- The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Volker Laux
- TRG-Cardiology/Hematology, Bayer AG, Aprather Weg 18a, 42113, Wuppertal, Germany.
| |
Collapse
|
2
|
Yamashita A, Zhang Y, Sanner MF, Griffin JH, Mosnier LO. C-terminal residues of activated protein C light chain contribute to its anticoagulant and cytoprotective activities. J Thromb Haemost 2020; 18:1027-1038. [PMID: 32017367 PMCID: PMC7380734 DOI: 10.1111/jth.14756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Activated protein C (APC) is an important homeostatic blood coagulation protease that conveys anticoagulant and cytoprotective activities. Proteolytic inactivation of factors Va and VIIIa facilitated by cofactor protein S is responsible for APC's anticoagulant effects, whereas cytoprotective effects of APC involve primarily the endothelial protein C receptor (EPCR), protease activated receptor (PAR)1 and PAR3. OBJECTIVE To date, several binding exosites in the protease domain of APC have been identified that contribute to APC's interaction with its substrates but potential contributions of the C-terminus of the light chain have not been studied in detail. METHODS Site-directed Ala-scanning mutagenesis of six positively charged residues within G142-L155 was used to characterize their contributions to APC's anticoagulant and cytoprotective activities. RESULTS AND CONCLUSIONS K151 was involved in protein S dependent-anticoagulant activity of APC with some contribution of K150. 3D structural analysis supported that these two residues were exposed in an extended protein S binding site on one face of APC. Both K150 and K151 were important for PAR1 and PAR3 cleavage by APC, suggesting that this region may also mediate interactions with PARs. Accordingly, APC's cytoprotective activity as determined by endothelial barrier protection was impaired by Ala substitutions of these residues. Thus, both K150 and K151 are involved in APC's anticoagulant and cytoprotective activities. The differential contribution of K150 relative to K151 for protein S-dependent anticoagulant activity and PAR cleavage highlights that binding exosites for protein S binding and for PAR cleavage in the C-terminal region of APC's light chain overlap.
Collapse
Affiliation(s)
- Atsuki Yamashita
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - Michel F. Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
3
|
Rajput PS, Lamb JA, Fernández JÁ, Bai J, Pereira BR, Lei IF, Leung J, Griffin JH, Lyden PD. Neuroprotection and vasculoprotection using genetically targeted protease-ligands. Brain Res 2019; 1715:13-20. [PMID: 30880117 DOI: 10.1016/j.brainres.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Thrombin and activated protein C (APC) are known coagulation factors that exhibit profound effects in brain by acting on the protease activated receptor (PAR). The wild type (WT) proteases appear to impact cell survival powerfully, and therapeutic forms of APC are under development. Engineered recombinant thrombin or APC were designed to separate their procoagulant or anticoagulant effects from their cytoprotective properties. We measured vascular disruption and neuronal degeneration after a standard rodent filament stroke model. For comparison to a robust anticoagulant, we used a GpIIb/IIIa inhibitor, GR144053. During 2 h MCAo both WT murine APC and its mutant, 5A-APC, significantly decreased neuronal death 30 min after reperfusion. During 4 h MCAo, only 5A-APC significantly protected neurons but both WT-APC and 5A-APC exacerbated vascular disruption during 4 h MCAo. Human APC mutants appeared to reduce 24 h neuronal injury significantly when given after 2 h delay after MCAo. In contrast, 24 h vascular damage was worsened by high doses of WT and mutant APCs, although only statistically significantly for high dose 3K3A-APC. Mutated thrombin worsened vascular damage significantly without affecting neuron damage. GR144053 failed to ameliorate vascular disruption or neuronal injury despite significant anticoagulation. Differential effects on neurons and the vasculature were demonstrated using wild-type and mutated proteases. The mutants murine 3K3A-APC and 5A-APC protected neurons in this rodent model but in high doses worsened vascular leakage. Cytoactive effects of plasma proteases may be separated from their coagulation effects. Further studies should explore impact of dose and timing on cytoactive and vasculoactive properties of these drugs.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jessica A Lamb
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jose Á Fernández
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jilin Bai
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Benedict R Pereira
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - I-Farn Lei
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - Jennifer Leung
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Patrick D Lyden
- Department of Neurology, Cedars Sinai Medical Center, 127 S San Vicente Blvd, Los Angeles, CA 90048, United States.
| |
Collapse
|
4
|
Activated Protein C in Cutaneous Wound Healing: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20040903. [PMID: 30791425 PMCID: PMC6412604 DOI: 10.3390/ijms20040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing-a complex process involving inflammation, proliferation and remodelling. This review will highlight APC's functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.
Collapse
|
5
|
Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018; 132:159-169. [PMID: 29866816 PMCID: PMC6043978 DOI: 10.1182/blood-2018-02-769026] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Protein C is a plasma serine protease zymogen whose active form, activated protein C (APC), exerts potent anticoagulant activity. In addition to its antithrombotic role as a plasma protease, pharmacologic APC is a pleiotropic protease that activates diverse homeostatic cell signaling pathways via multiple receptors on many cells. Engineering of APC by site-directed mutagenesis provided a signaling selective APC mutant with 3 Lys residues replaced by 3 Ala residues, 3K3A-APC, that lacks >90% anticoagulant activity but retains normal cell signaling activities. This 3K3A-APC mutant exerts multiple potent neuroprotective activities, which require the G-protein-coupled receptor, protease activated receptor 1. Potent neuroprotection in murine ischemic stroke models is linked to 3K3A-APC-induced signaling that arises due to APC's cleavage in protease activated receptor 1 at a noncanonical Arg46 site. This cleavage causes biased signaling that provides a major explanation for APC's in vivo mechanism of action for neuroprotective activities. 3K3A-APC appeared to be safe in ischemic stroke patients and reduced bleeding in the brain after tissue plasminogen activator therapy in a recent phase 2 clinical trial. Hence, it merits further clinical testing for its efficacy in ischemic stroke patients. Recent studies using human fetal neural stem and progenitor cells show that 3K3A-APC promotes neurogenesis in vitro as well as in vivo in the murine middle cerebral artery occlusion stroke model. These recent advances should encourage translational research centered on signaling selective APC's for both single-agent therapies and multiagent combination therapies for ischemic stroke and other neuropathologies.
Collapse
Affiliation(s)
- John H Griffin
- The Scripps Research Institute, La Jolla, CA
- Department of Medicine, University of California, San Diego, CA; and
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA
| | | |
Collapse
|
6
|
Healy LD, Rigg RA, Griffin JH, McCarty OJ. Regulation of immune cell signaling by activated protein C. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-338R. [PMID: 29601101 PMCID: PMC6165708 DOI: 10.1002/jlb.3mir0817-338r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells are an essential part of the host defense response, promoting inflammation through release of proinflammatory cytokines or formation of neutrophil extracellular traps. While these processes are important for defense against infectious agents or injury, aberrant activation potentiates pathologic inflammatory disease. Thus, understanding regulatory mechanisms that limit neutrophil extracellular traps formation and cytokine release is of therapeutic interest for targeting pathologic diseases. Activated protein C is an endogenous serine protease with anticoagulant activity as well as anti-inflammatory and cytoprotective functions, the latter of which are mediated through binding cell surface receptors and inducing intracellular signaling. In this review, we discuss certain leukocyte functions, namely neutrophil extracellular traps formation and cytokine release, and the inhibition of these processes by activated protein C.
Collapse
Affiliation(s)
- Laura D. Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rachel A. Rigg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Owen J.T. McCarty
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A 2018; 115:E982-E991. [PMID: 29343648 DOI: 10.1073/pnas.1718600115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stimulation of protease-activated receptor 1 (PAR1) on endothelium by activated protein C (APC) is protective in several animal models of disease, and APC has been used clinically in severe sepsis and wound healing. Clinical use of APC, however, is limited by its immunogenicity and its anticoagulant activity. We show that a class of small molecules termed "parmodulins" that act at the cytosolic face of PAR1 stimulates APC-like cytoprotective signaling in endothelium. Parmodulins block thrombin generation in response to inflammatory mediators and inhibit platelet accumulation on endothelium cultured under flow. Evaluation of the antithrombotic mechanism showed that parmodulins induce cytoprotective signaling through Gβγ, activating a PI3K/Akt pathway and eliciting a genetic program that includes suppression of NF-κB-mediated transcriptional activation and up-regulation of select cytoprotective transcripts. STC1 is among the up-regulated transcripts, and knockdown of stanniocalin-1 blocks the protective effects of both parmodulins and APC. Induction of this signaling pathway in vivo protects against thromboinflammatory injury in blood vessels. Small-molecule activation of endothelial cytoprotection through PAR1 represents an approach for treatment of thromboinflammatory disease and provides proof-of-principle for the strategy of targeting the cytoplasmic surface of GPCRs to achieve pathway selective signaling.
Collapse
|
8
|
Wildhagen K, Lutgens E, Loubele S, Cate HT, Nicolaes G. The structure-function relationship of activated protein C. Thromb Haemost 2017; 106:1034-45. [DOI: 10.1160/th11-08-0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/22/2011] [Indexed: 11/05/2022]
Abstract
SummaryProtein C is the central enzyme of the natural anticoagulant pathway and its activated form APC (activated protein C) is able to proteolyse non-active as well as active coagulation factors V and VIII. Proteolysis renders these cofactors inactive, resulting in an attenuation of thrombin formation and overall down-regulation of coagulation. Presences of the APC cofactor, protein S, thrombomodulin, endothelial protein C receptor and a phospholipid surface are important for the expression of anticoagulant APC activity. Notably, APC also has direct cytoprotective effects on cells: APC is able to protect the endothelial barrier function and expresses anti-inflammatory and anti-apoptotic activities. Exact molecular mechanisms have thus far not been completely described but it has been shown that both the protease activated receptor 1 and EPCR are essential for the cytoprotective activity of APC. Recently it was shown that also other receptors like sphingosine 1 phosphate receptor 1, Cd11b/CD18 and tyrosine kinase with immunoglobulin-like and EGFlike domains 2 are likewise important for APC signalling. Mutagenesis studies are being performed to map the various APC functions and interactions onto its 3D structure and to dissect anticoagulant and cytoprotective properties. The results of these studies have provided a wealth of structure-function information. With this review we describe the state-of-the-art of the intricate structure-function relationships of APC, a protein that harbours several important functions for the maintenance of both humoral and tissue homeostasis.Lessons from natural and engineered mutations
Collapse
|
9
|
van ’t Veer C, Roelofs J, Gerlitz B, Grinnell B, Levi M, der Poll T, Schouten M. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia. Thromb Haemost 2017; 106:1189-96. [DOI: 10.1160/th11-06-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/17/2011] [Indexed: 02/04/2023]
Abstract
SummaryRecombinant human activated protein C (APC), which has both anticoagulant and anti-inflammatory properties, improves survival of patients with severe sepsis. This beneficial effect is especially apparent in patients with pneumococcal pneumonia. Earlier treatment with APC in sepsis has been associated with a better therapeutic response as compared to later treatment. In a mouse model it was recently confirmed that recombinant murine (rm-)APC decreases coagulation activation and improves survival in pneumococcal pneumonia; however, APC did not impact on the inflammatory response. The aim of this study was to determine the effect of APC treatment instigated early in infection on activation of coagulation and inflammation after induction of pneumococcal pneumonia. Mice were infected intranasally with viable S. pneumoniae. Mice were treated with rm-APC (125 μg) or vehicle intraperitoneally 12 hours after infection and were sacrificed after 20 hours, after which blood and organs were harvested for determination of bacterial outgrowth, coagulation activation and inflammatory markers. In this early treatment model, rm-APC treatment inhibited pulmonary and systemic activation of coagulation as reflected by lower levels of throm-bin-antithrombin complexes and D-dimer. Moreover, rm-APC reduced the levels of a large number of cytokines and chemokines in the lung. When administered early in pneumococcal pneumonia, rm-APC inhibits systemic and pulmonary activation of coagulation and moreover exerts various anti-inflammatory effects in the lung.
Collapse
|
10
|
Degirmenci SE, Zobairi F, Berger A, Meyer G, Burban M, Mostefai HA, Levy B, Toti F, Boisramé-Helms J, Delabranche X, Meziani F. Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thromb Haemost 2017; 111:154-64. [DOI: 10.1160/th13-04-0313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/04/2013] [Indexed: 01/02/2023]
Abstract
SummaryCirculating microparticles play a pro-inflammatory and procoagulant detrimental role in the vascular dysfunction of septic shock. It was the objective of this study to investigate mechanisms by which a pharmacological modulation of microparticles could affect vascular dysfunction in a rat model of septic shock. Septic or sham rats were treated by activated protein C (aPC) and resuscitated during 4 hours. Their microparticles were harvested and inoculated to another set of healthy recipient rats. Haemodynamic parameters were monitored, circulating total procoagulant microparticles assessed by prothrombinase assay, and their cell origin characterised. Mesenteric resistance arteries, aorta and heart were harvested for western blotting analysis. We found that a) the amount and phenotype of circulating microparticles were altered in septic rats with an enhanced endothelial, leucocyte and platelet contribution; b) aPC treatment significantly reduced the generation of leucocyte microparticles and norepinephrine requirements to reach the mean arterial pressure target in septic rats; c) Microparticles from untreated septic rats, but not from aPC-treated ones, significantly reduced the healthy recipients’ mean arterial pressure; d) Microparticle thromboxane content and aPC activity were significantly increased in aPC-treated septic rats. In inoculated naïve recipients, microparticles from aPC-treated septic rats prompted reduced NF-κB and cyclooxygenase-2 arterial activation, blunted the generation of pro-inflammatory iNOS and secondarily increased platelet and endothelial microparticles. In conclusion, in this septic shock model, increased circulating levels of procoagulant microparticles led to negative haemodynamic outcomes. Pharmacological treatment by aPC modified the cell origin and levels of circulating microparticles, thereby limiting vascular inflammation and favouring haemodynamic improvement.
Collapse
|
11
|
Gleeson EM, McDonnell CJ, Soule EE, Willis Fox O, Rushe H, Rehill A, Smith OP, O'Donnell JS, Preston RJS. A novel protein C-factor VII chimera provides new insights into the structural requirements for cytoprotective protease-activated receptor 1 signaling. J Thromb Haemost 2017; 15:2198-2207. [PMID: 28834159 DOI: 10.1111/jth.13807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Essentials The basis of cytoprotective protease-activated receptor 1 (PAR1) signaling is not fully understood. Activated protein C chimera (APCFVII-82 ) was used to identify requirements for PAR1 signaling. APCFVII-82 did not initiate PAR1 signaling, but conferred monocyte anti-inflammatory activity. APC-specific light chain residues are required for cytoprotective PAR1 signaling. SUMMARY Background Activated protein C (APC) cell signaling is largely reliant upon its ability to mediate protease-activated receptor (PAR) 1 proteolysis when bound to the endothelial cell (EC) protein C (PC) receptor (EPCR). Furthermore, EPCR-bound PC modulates PAR1 signaling by thrombin to induce APC-like EC cytoprotection. Objective The molecular determinants of EPCR-dependent cytoprotective PAR1 signaling remain poorly defined. To address this, a PC-factor VII chimera (PCFVII-82 ) possessing FVII N-terminal domains and conserved EPCR binding was characterized. Methods Activated PC-FVII chimera (APCFVII-82 ) anticoagulant activity was measured with calibrated automated thrombography and activated FV degradation assays. APCFVII-82 signaling activity was characterized by the use of reporter assays of PAR1 proteolysis and EC barrier integrity. APCFVII-82 anti-inflammatory activity was assessed according to its inhibition of nuclear factor-κB (NF-κB) activation and cytokine secretion from monocytes. Results PCFVII-82 was activated normally by thrombin on ECs, but was unable to inhibit plasma thrombin generation. Surprisingly, APCFVII-82 did not mediate EPCR-dependent PAR1 proteolysis, confer PAR1-dependent protection of thrombin-induced EC barrier disruption, or limit PAR1-dependent attenuation of interleukin-6 release from lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, EPCR occupation by active site-blocked APCFVII-82 was, like FVII, unable to mimic EC barrier stabilization induced by PC upon PAR1 proteolysis by thrombin. APCFVII-82 did, however, diminish LPS-induced NF-κB activation and tumor necrosis factor-α release from monocytes in an apolipoprotein E receptor 2-dependent manner, with similar efficacy as wild-type APC. Conclusions These findings identify a novel role for APC light chain amino acid residues outside the EPCR-binding site in enabling cytoprotective PAR1 signaling.
Collapse
Affiliation(s)
- E M Gleeson
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - C J McDonnell
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - E E Soule
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - O Willis Fox
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - H Rushe
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - A Rehill
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - O P Smith
- Department of Haematology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - J S O'Donnell
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| | - R J S Preston
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Irish Centre of Vascular Biology, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Activated protein C light chain provides an extended binding surface for its anticoagulant cofactor, protein S. Blood Adv 2017; 1:1423-1426. [PMID: 29296783 DOI: 10.1182/bloodadvances.2017007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022] Open
Abstract
Protein S anticoagulant cofactor sensitivity and PAR1 cleavage activity were assayed for 9 recombinant APC mutants.Residues L38, K43, I73, F95, and W115 on one face of the APC light chain define an extended surface containing the protein S binding site.
Collapse
|
13
|
Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH, McCarty OJT. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 2017; 292:8616-8629. [PMID: 28408624 DOI: 10.1074/jbc.m116.768309] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Activated protein C (APC) is a multifunctional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease-activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a nonhuman primate model of Escherichia coli-induced sepsis, pretreatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.
Collapse
Affiliation(s)
- Laura D Healy
- From the Departments of Cell, Developmental & Cancer Biology and
| | - Cristina Puy
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - José A Fernández
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Annachiara Mitrugno
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Ravi S Keshari
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Nyiawung A Taku
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Tiffany T Chu
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Xiao Xu
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - András Gruber
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Florea Lupu
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - John H Griffin
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Owen J T McCarty
- From the Departments of Cell, Developmental & Cancer Biology and.,Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| |
Collapse
|
14
|
Hamilton JR, Trejo J. Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annu Rev Pharmacol Toxicol 2016; 57:349-373. [PMID: 27618736 DOI: 10.1146/annurev-pharmtox-011613-140016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors (GPCRs) that transduce cellular responses to extracellular proteases. PARs have important functions in the vasculature, inflammation, and cancer and are important drug targets. A unique feature of PARs is their irreversible proteolytic mechanism of activation that results in the generation of a tethered ligand that cannot diffuse away. Despite the fact that GPCRs have proved to be the most successful class of druggable targets, the development of agents that target PARs specifically has been challenging. As a consequence, researchers have taken a remarkable diversity of approaches to develop pharmacological entities that modulate PAR function. Here, we present an overview of the diversity of therapeutic agents that have been developed against PARs. We further discuss PAR biased signaling and the influence of receptor compartmentalization, posttranslational modifications, and dimerization, which are important considerations for drug development.
Collapse
Affiliation(s)
- Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
15
|
Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice. Blood 2015; 126:2415-23. [PMID: 26341257 DOI: 10.1182/blood-2015-05-644401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/31/2015] [Indexed: 01/20/2023] Open
Abstract
The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.
Collapse
|
16
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Cell painting with an engineered EPCR to augment the protein C system. Thromb Haemost 2015; 114:1144-55. [PMID: 26272345 DOI: 10.1160/th15-01-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/28/2015] [Indexed: 11/05/2022]
Abstract
The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC's effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR's bioavailability via "cell painting." The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.
Collapse
Affiliation(s)
| | | | - Laurent O Mosnier
- Laurent O. Mosnier, Department of Molecular and Experimental Medicine (MEM-180), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA, Tel.: +1 858 784 8220, Fax: +1 858 784 2243, E-mail:
| |
Collapse
|
17
|
Engineering activated protein C to maximize therapeutic efficacy. Biochem Soc Trans 2015; 43:691-5. [DOI: 10.1042/bst20140312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/17/2022]
Abstract
The anticoagulant-activated protein C (APC) acts not solely as a crucial regulator of thrombus formation following vascular injury, but also as a potent signalling enzyme with important functions in the control of both acute and chronic inflammatory disease. These properties have been exploited to therapeutic effect in diverse animal models of inflammatory disease, wherein recombinant APC administration has proven to effectively limit disease progression. Subsequent clinical trials led to the use of recombinant APC (Xigris) for the treatment of severe sepsis. Although originally deemed successful, Xigris was ultimately withdrawn due to lack of efficacy and an unacceptable bleeding risk. Despite this apparent failure, the problems that beset Xigris usage may be tractable using protein engineering approaches. In this review, we detail the protein engineering approaches that have been utilized to improve the therapeutic characteristics of recombinant APC, from early studies in which the distinct anti-coagulant and signalling activities of APC were separated to reduce bleeding risk, to current attempts to enhance APC cytoprotective signalling output for increased therapeutic efficacy at lower APC dosage. These novel engineered variants represent the next stage in the development of safer, more efficacious APC therapy in disease settings in which APC plays a protective role.
Collapse
|
18
|
Petersen JEV, Bouwens EAM, Tamayo I, Turner L, Wang CW, Stins M, Theander TG, Hermida J, Mosnier LO, Lavstsen T. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb Haemost 2015; 114:1038-48. [PMID: 26155776 DOI: 10.1160/th15-01-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/23/2015] [Indexed: 12/23/2022]
Abstract
The Endothelial Protein C receptor (EPCR) is essential for the anticoagulant and cytoprotective functions of the Protein C (PC) system. Selected variants of the malaria parasite protein, Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) associated with severe malaria, including cerebral malaria, specifically target EPCR on vascular endothelial cells. Here, we examine the cellular response to PfEMP1 engagement to elucidate its role in malaria pathogenesis. Binding of the CIDRα1.1 domain of PfEMP1 to EPCR obstructed activated PC (APC) binding to EPCR and induced a loss of cellular EPCR functions. CIDRα1.1 severely impaired endothelial PC activation and effectively blocked APC-mediated activation of protease-activated receptor-1 (PAR1) and associated barrier protective effects of APC on endothelial cells. A soluble EPCR variant (E86A-sEPCR) bound CIDRα1.1 with high affinity and did not interfere with (A)PC binding to cellular EPCR. E86A-sEPCR used as a decoy to capture PfEMP1, permitted normal PC activation on endothelial cells, normal barrier protective effects of APC, and greatly reduced cytoadhesion of infected erythrocytes to brain endothelial cells. These data imply important contributions of PfEMP1-induced protein C pathway defects in the pathogenesis of severe malaria. Furthermore, the E86A-sEPCR decoy provides a proof-of-principle strategy for the development of novel adjunct therapies for severe malaria.
Collapse
Affiliation(s)
- Jens E V Petersen
- Jens E. V. Petersen, Centre for Medical Parasitology, Dept. of International Health, Immunology & Microbiology, University of Copenhagen and Dept. of Infectious Diseases, Rigshospitalet, 1014 Copenhagen, Denmark, Tel.: +45 35327549, Fax: +45 35327851, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The homeostatic blood protease, activated protein C (APC), can function as (1) an antithrombotic on the basis of inactivation of clotting factors Va and VIIIa; (2) a cytoprotective on the basis of endothelial barrier stabilization and anti-inflammatory and antiapoptotic actions; and (3) a regenerative on the basis of stimulation of neurogenesis, angiogenesis, and wound healing. Pharmacologic therapies using recombinant human and murine APCs indicate that APC provides effective acute or chronic therapies for a strikingly diverse range of preclinical injury models. APC reduces the damage caused by the following: ischemia/reperfusion in brain, heart, and kidney; pulmonary, kidney, and gastrointestinal inflammation; sepsis; Ebola virus; diabetes; and total lethal body radiation. For these beneficial effects, APC alters cell signaling networks and gene expression profiles by activating protease-activated receptors 1 and 3. APC's activation of these G protein-coupled receptors differs completely from thrombin's activation mechanism due to biased signaling via either G proteins or β-arrestin-2. To reduce APC-associated bleeding risk, APC variants were engineered to lack >90% anticoagulant activity but retain normal cell signaling. Such a neuroprotective variant, 3K3A-APC (Lys191-193Ala), has advanced to clinical trials for ischemic stroke. A rich data set of preclinical knowledge provides a solid foundation for potential translation of APC variants to future novel therapies.
Collapse
|
20
|
Wood DC, Pelc LA, Pozzi N, Wallisch M, Verbout NG, Tucker EI, Gruber A, Di Cera E. WEDGE: an anticoagulant thrombin mutant produced by autoactivation. J Thromb Haemost 2015; 13:111-4. [PMID: 25369995 PMCID: PMC4368433 DOI: 10.1111/jth.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The production of therapeutically relevant proteases typically involves activation of a zymogen precursor by external enzymes, which may raise regulatory issues about availability and purity. Recent studies of thrombin precursors have shown how to engineer constructs that spontaneously convert to the mature protease by autoactivation, without the need for external enzymes. OBJECTIVES Autoactivation is an innovative strategy that promises to simplify the production of proteases of therapeutic relevance, but has not been tested in practical applications. The aim of this study was to provide a direct test of this strategy. METHODS An autoactivating version of the thrombin mutant W215A/E217A (WE), which is currently in preclinical development as an anticoagulant, was engineered. RESULTS AND CONCLUSIONS The autoactivating version of WE can be produced in large quantities, like WE made in BHK cells or Escherichia coli, and retains all significant functional properties in vitro and in vivo. The results serve as proof of principle that autoactivation is an innovative and effective strategy for the production of trypsin-like proteases of therapeutic relevance.
Collapse
Affiliation(s)
- D C Wood
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood 2014; 124:3480-9. [PMID: 25320242 DOI: 10.1182/blood-2014-06-582775] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Endothelial barrier protective effects of activated protein C (APC) require the endothelial protein C receptor (EPCR), protease-activated receptor (PAR) 1, and PAR3. In contrast, PAR1 and PAR3 activation by thrombin results in barrier disruption. Noncanonical PAR1 and PAR3 activation by APC vs canonical activation by thrombin provides an explanation for the functional selectivity of these proteases. Here we found that factor Xa (FXa) activated PAR1 at canonical Arg41 similar to thrombin but cleaved PAR3 at noncanonical Arg41 similar to APC. This unique PAR1-PAR3 activation profile permitted the identification of noncanonical PAR3 activation as a novel activation pathway for barrier protective tunica intima endothelial receptor tyrosine kinase 2 (Tie2). APC, FXa, and the noncanonical PAR3 tethered-ligand peptide induced prolonged activation of Tie2, whereas thrombin and the canonical PAR3 tethered-ligand peptide did not. Tie2 activation by FXa required PAR3 and EPCR. FXa and the noncanonical PAR3 tethered-ligand peptide induced Tie2- and PAR3-dependent upregulation of tight-junction-associated protein zona occludens 1 (ZO-1), translocation of ZO-1 to cell-cell borders, and the formation of typical ZO-1 honeycomb patterns that are indicative of tight-junction stabilization. These data provide intriguing novel insights into the diversification of functional selectivity of protease signaling achievable by canonical and noncanonical PAR activation, such as the activation of vascular-protective Tie2 by noncanonical PAR3 activation.
Collapse
|
22
|
Mosnier LO, Zlokovic BV, Griffin JH. Cytoprotective-selective activated protein C therapy for ischaemic stroke. Thromb Haemost 2014; 112:883-92. [PMID: 25230930 DOI: 10.1160/th14-05-0448] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Despite years of research and efforts to translate stroke research to clinical therapy, ischaemic stroke remains a major cause of death, disability, and diminished quality of life. Primary and secondary preventive measures combined with improved quality of care have made significant progress. However, no novel drug for ischaemic stroke therapy has been approved in the past decade. Numerous studies have shown beneficial effects of activated protein C (APC) in rodent stroke models. In addition to its natural anticoagulant functions, APC conveys multiple direct cytoprotective effects on many different cell types that involve multiple receptors including protease activated receptor (PAR) 1, PAR3, and the endothelial protein C receptor (EPCR). Application of molecular engineered APC variants with altered selectivity profiles to rodent stroke models demonstrated that the beneficial effects of APC primarily require its cytoprotective activities but not its anticoagulant activities. Extensive basic, preclinical, and clinical research provided a compelling rationale based on strong evidence for translation of APC therapy that has led to the clinical development of the cytoprotective-selective APC variant, 3K3A-APC, for ischaemic stroke. Recent identification of non-canonical PAR1 and PAR3 activation by APC that give rise to novel tethered-ligands capable of inducing biased cytoprotective signalling as opposed to the canonical signalling provides a mechanistic explanation for how APC-mediated PAR activation can selectively induce cytoprotective signalling pathways. Collectively, these paradigm-shifting discoveries provide detailed insights into the receptor targets and the molecular mechanisms for neuroprotection by cytoprotective-selective 3K3A-APC, which is currently a biologic drug in clinical trials for ischaemic stroke.
Collapse
Affiliation(s)
- Laurent O Mosnier
- Laurent O. Mosnier, PhD, Department of Molecular and Experimental Medicine (MEM-180), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA, Tel.: +1 858 784 2227, Fax: +1 858 784 2243, E-mail:
| | | | | |
Collapse
|
23
|
Comparative response of platelet fV and plasma fV to activated protein C and relevance to a model of acute traumatic coagulopathy. PLoS One 2014; 9:e99181. [PMID: 24921658 PMCID: PMC4055642 DOI: 10.1371/journal.pone.0099181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/12/2014] [Indexed: 12/31/2022] Open
Abstract
Background Acute traumatic coagulopathy (ATC) has been linked to an increase in activated protein C (aPC) from 40 pM in healthy individuals to 175 pM. aPC exerts its activity primarily through cleavage of active coagulation factor Va (fVa). Platelets reportedly possess fVa which is more resistant to aPC cleavage than plasma fVa; this work examines the hypothesis that normal platelets are sufficient to maintain coagulation in the presence of elevated aPC. Methods Coagulation responses of normal plasma, fV deficient plasma (fVdp), and isolated normal platelets in fVdp were conducted: prothrombin (PT) tests, turbidimetry, and thromboelastography (TEG), including the dose response of aPC on the samples. Results PT and turbidimetric assays demonstrate that normal plasma is resistant to aPC at doses much higher than those found in ATC. Additionally, an average physiological number of washed normal platelets (200,000 platelets/mm3) was sufficient to eliminate the anti-coagulant effects of aPC up to 10 nM, nearly two orders of magnitude above the ATC concentration and even the steady-state pharmacological concentration of human recombinant aPC, as measured by TEG. aPC also demonstrated no significant effect on clot lysis in normal plasma samples with or without platelets. Conclusions Although platelet fVa shows slightly superior resistance to aPC's effects compared to plasma fVa in static models, neither fVa is sufficiently cleaved in simulations of ATC or pharmacologically-delivered aPC to diminish coagulation parameters. aPC is likely a correlative indicator of ATC or may play a cooperative role with other activity altering products generated in ATC.
Collapse
|
24
|
Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3. Blood 2013; 122:807-16. [PMID: 23788139 DOI: 10.1182/blood-2013-03-488957] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC's cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC's cytoprotective versus thrombin's proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects.
Collapse
|
25
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Wang Y, Sinha RK, Mosnier LO, Griffin JH, Zlokovic BV. Neurotoxicity of the anticoagulant-selective E149A-activated protein C variant after focal ischemic stroke in mice. Blood Cells Mol Dis 2013; 51:104-8. [PMID: 23541526 DOI: 10.1016/j.bcmd.2013.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 11/19/2022]
Abstract
Wild type (WT) activated protein C (APC) and cytoprotective-selective APC variants such as 3K3A-APC (<10% anticoagulant but normal cytoprotective activity) are neuroprotective in murine focal ischemic stroke models. Here we compared the neuroprotective effects of the anticoagulant-selective E149A-APC variant (>3-fold increased anticoagulant activity but defective cytoprotective activities) to those of the cytoprotective-selective 5A-APC variant (<10% anticoagulant activity). After transient distal middle cerebral artery occlusion, mice received a vehicle, E149A-APC or 5A-APC at 0.2mg/kg at 4h after stroke. Treatment with 5A-APC was neuroprotective, as it improved performance on forelimb use asymmetry test and foot fault test (P<0.05), reduced by 48% and 50% the infarct and edema volumes, respectively (P<0.05), and was not associated with an increased risk of bleeding as indicated by normal hemoglobin levels in the ischemic brain at day 7. In contrast, E149A-APC treatment worsened neurological outcome determined by foot fault tests and forelimb use asymmetry tests, and increased significantly by 44% and 60% infarct and edema volume, respectively (P<0.05). At 7days after treatment, E149A-APC compared to vehicle or 5A-APC notably increased by ~5-fold the hemoglobin level in the ischemic hemisphere suggesting it provoked significant intracerebral bleeding. Thus, the enhanced anticoagulant activity of E149A-APC increased post-ischemic accumulation of neurotoxic erythrocyte-derived hemoglobin which likely worsened the neurological and neuropathological outcomes after stroke. Our data emphasize that APC's cytoprotective activities, but not its anticoagulant activity, are key for APC neuroprotection after transient ischemic stroke.
Collapse
Affiliation(s)
- Yaoming Wang
- Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Ding Q, Yang L, Hassanian SM, Rezaie AR. Expression and functional characterisation of natural R147W and K150del variants of protein C in the Chinese population. Thromb Haemost 2013; 109:614-24. [PMID: 23389250 DOI: 10.1160/th12-10-0760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/06/2013] [Indexed: 01/19/2023]
Abstract
Protein C is a vitamin K-dependent serine protease zymogen in plasma which upon activation to activated protein C (APC) by thrombin down-regulates the clotting cascade by limited proteolysis of the procoagulant cofactors Va and VIIIa. In addition to its anticoagulant activity, APC also exhibits potent cytoprotective and anti-inflammatory activities. While the anticoagulant activity of APC is enhanced by the cofactor function of protein S on membrane phospholipids, the cytoprotective intracellular signalling activity of APC requires complex formation with endothelial protein C receptor (EPCR) expressed on the vascular endothelium. Two natural variants of APC [Arg-147 to Trp substitution (R147W) and Lys-150 deletion (K150del)] have been identified in the Chinese population as hotspot mutants occurring with high frequencies of 27.8% and 13.9%, respectively, among 36 protein C-deficient subjects. The affected individuals exhibit variable thrombotic tendencies. To understand the underlying cause of the thrombotic phenotype in these patients, we expressed these two protein C variants in mammalian cells and characterised their anticoagulant and anti-inflammatory properties using established in vitro and cellular assays. Our results suggest that both R147W and K150del variants have normal amidolytic and proteolytic activities in the absence of cofactors. However, the R147W mutant exhibits ~3 times lower affinity for binding to EPCR and the K150del variant has ~2-3-fold impaired anticoagulant activity in the presence of protein S. These results provide some insight into the possible pathogenic mechanism of protein C deficiency in Chinese patients carrying these mutations.
Collapse
Affiliation(s)
- Qiulan Ding
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
28
|
von Drygalski A, Furlan-Freguia C, Ruf W, Griffin JH, Mosnier LO. Organ-specific protection against lipopolysaccharide-induced vascular leak is dependent on the endothelial protein C receptor. Arterioscler Thromb Vasc Biol 2013; 33:769-76. [PMID: 23393392 DOI: 10.1161/atvbaha.112.301082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study the role of the endothelial protein C receptor (EPCR) in the modulation of susceptibility to inflammation-induced vascular leak in vivo. APPROACH AND RESULTS Genetically modified mice with low, <10% EPCR expression (EPCR(low)) and control mice were challenged with lipopolysaccharides in a mouse model of endotoxemia. Infrared fluorescence and quantification of albumin-bound Evans Blue in tissues and intravascular plasma volumes were used to assess plasma extravasation. Pair-wise analysis of EPCR(low) and control mice matched for sex, age, and weight allowed determination of EPCR-dependent vascular leak. Kidney, lung, and brain were the organs with highest discriminative increased Evans Blue accumulation in EPCR(low) versus control mice in response to lipopolysaccharides. Histology of kidney and lung confirmed the EPCR-specific pathology. In addition to severe kidney injury in response to lipopolysaccharides, EPCR(low) and anti-EPCR-treated wild-type mice suffered from enhanced albuminuria and profound renal hemorrhage versus controls. Intravascular volume loss at the same extent of weight loss in EPCR(low) mice compared with control mice provided proof that plasma leak was the predominant cause of Evans Blue tissue accumulation. CONCLUSIONS This study demonstrates an important protective role for EPCR in vivo against vascular leakage during inflammation and suggests that EPCR-dependent vascular protection is organ-specific.
Collapse
Affiliation(s)
- Annette von Drygalski
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, MEM 180, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
29
|
Stavenuiter F, Bouwens EAM, Mosnier LO. Down-regulation of the clotting cascade by the protein C pathway. HEMATOLOGY EDUCATION. EUROPEAN HEMATOLOGY ASSOCIATION. CONGRESS. EDUCATION PROGRAM 2013; 7:365-374. [PMID: 24741378 PMCID: PMC3985519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The protein C pathway provides important biological activities to maintain the fluidity of the circulation, prevent thrombosis, and protect the integrity of the vasculature in response to injury. Activated protein C (APC), in concert with its cofactors and cell receptors, assembles in specific macromolecular complexes to provide efficient proteolysis of multiple substrates that result in anticoagulant and cytoprotective activities. Numerous studies on APC's structure-function relation with its cofactors, cell receptors, and substrates provide valuable insights into the molecular mechanisms and presumed assembly of the macromolecular complexes that are responsible for APC's activities. These insights allow for molecular engineering approaches specifically targeting the interaction of APC with one of its substrates or cofactors. Thus far, these approaches resulted in several anticoagulant-selective and cytoprotective-selective APC mutants, which provide unique insights into the relative contributions of APC's anticoagulant or cytoprotective activities to the beneficial effects of APC in various murine injury and disease models. Because of its multiple physiological and pharmacological activities, the anticoagulant and cytoprotective protein C pathway have important implications for the (patho)physiology of vascular disease and for translational research exploring novel therapeutic strategies to combat complex medical disorders such as thrombosis, inflammation, ischemic stroke and neurodegenerative disease.
Collapse
|
30
|
Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 2012; 120:5237-46. [PMID: 23149848 DOI: 10.1182/blood-2012-08-452169] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated protein C (APC) exerts endothelial cytoprotective actions that require protease-activated receptor 1 (PAR1), whereas thrombin acting via PAR1 causes endothelial disruptive, proinflammatory actions. APC's activities, but not thrombin's, require PAR1 located in caveolae. PAR1 is a biased 7-transmembrane receptor because G proteins mediate thrombin's signaling, whereas β-arrestin 2 mediates APC's signaling. Here we elucidate novel mechanisms for APC's initiation of signaling. Biochemical studies of APC's protease specificity showed that APC cleaved PAR1 sequences at both Arg41 and Arg46. That PAR1 cleavage at Arg46 can occur on cells was supported by APC's cleavage of N-terminal-SEAP-tagged R41Q-PAR1 but not R41Q/R46Q-PAR1 mutants transfected into cells and by anti-PAR1 epitope mapping of APC-treated endothelial cells. A synthetic peptide composing PAR1 residues 47-66, TR47, stimulated protective signaling in endothelial cells as reflected in Akt and glycogen synthase kinase 3β phosphorylation, Ras-related C3 botulinum toxin substrate 1 activation, and barrier stabilization effects. In mice, the TR47 peptide reduced VEGF-induced vascular leakage. These in vitro and in vivo data imply that the novel PAR1 N-terminus beginning at residue Asn47, which is generated by APC cleavage at Arg46, mediates APC's cytoprotective signaling and that this unique APC-generated N-terminal peptide tail is a novel biased agonist for PAR1.
Collapse
|
31
|
Pharmacological targeting of the thrombomodulin-activated protein C pathway mitigates radiation toxicity. Nat Med 2012; 18:1123-9. [PMID: 22729286 PMCID: PMC3491776 DOI: 10.1038/nm.2813] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 12/27/2022]
Abstract
Tissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)-activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality. Although the effects of the endogenous Thbd-aPC pathway were largely confined to the local microenvironment of Thbd-expressing cells, systemic administration of soluble Thbd or aPC could reproduce and augment the radioprotective effect of the endogenous Thbd-aPC pathway. Therapeutic administration of recombinant, soluble Thbd or aPC to lethally irradiated wild-type mice resulted in an accelerated recovery of hematopoietic progenitor activity in bone marrow and a mitigation of lethal TBI. Starting infusion of aPC as late as 24 h after exposure to radiation was sufficient to mitigate radiation-induced mortality in these mice. These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd or aPC might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation.
Collapse
|
32
|
Lu X, Tang L, Xu K, Ma J, Guo T, Mei H, Yang R, Yu J, Wang Q, Yang Y, Jian X, Hu Y. Novel association of a PROC variant with ischemic stroke in a Chinese Han population. Hum Genet 2012; 132:69-77. [PMID: 22976599 DOI: 10.1007/s00439-012-1225-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/30/2012] [Indexed: 12/25/2022]
Abstract
Protein C (PC) is a well-characterized anticoagulant enzyme. However, the association between PC and ischemic stroke (IS) remains controversial. The aim of the present study was to investigate whether any genetic variant in the human protein C gene (PROC) was associated with susceptibility to IS in the Chinese Han population. All exons and the 5'- and 3'-untranslated regions of PROC were initially sequenced to identify informative variants. Potential abnormal variants were analyzed in a population of 788 IS patients and 1,200 healthy controls. The analysis was stratified by stroke etiology, and the results were replicated in 262 IS patients and 288 healthy controls. Finally, functional studies were performed to evaluate the effects of the variant. A three-nucleotide duplication/deletion variant (c.574_576del) was identified and found to be significantly associated with IS (OR 2.56, 95 % CI 1.45-4.52, P = 0.001). Stratification by stroke etiology after adjustment for IS risk factors showed that this association persisted in the lacunar and cardioembolic subtypes (P < 0.001 and P = 0.008, respectively) but not in the atherothrombotic and undetermined subtypes (P = 0.070 and P = 0.998, respectively). The functional studies showed a significant difference in the anticoagulant activity of PC in c.574_576del carriers and non-carriers (P < 0.001). Our results suggested that the novel PROC c.574_576del variant is a possible genetic determinant of an increased risk of IS and diminished anticoagulant activity of PC.
Collapse
Affiliation(s)
- Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Protein C anticoagulant and cytoprotective pathways. Int J Hematol 2012; 95:333-45. [PMID: 22477541 DOI: 10.1007/s12185-012-1059-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Plasma protein C is a serine protease zymogen that is transformed into the active, trypsin-like protease, activated protein C (APC), which can exert multiple activities. For its anticoagulant action, APC causes inactivation of the procoagulant cofactors, factors Va and VIIIa, by limited proteolysis, and APC's anticoagulant activity is promoted by protein S, various lipids, high-density lipoprotein, and factor V. Hereditary heterozygous deficiency of protein C or protein S is linked to moderately increased risk for venous thrombosis, while a severe or total deficiency of either protein is linked to neonatal purpura fulminans. In recent years, the beneficial direct effects of APC on cells which are mediated by several specific receptors have become the focus of much attention. APC-induced signaling can promote multiple cytoprotective actions which can minimize injuries in various preclinical animal injury models. Remarkably, pharmacologic therapy using APC demonstrates substantial neuroprotective effects in various murine injury models, including ischemic stroke. This review summarizes the molecules that are central to the protein C pathways, the relationship of pathway deficiencies to venous thrombosis risk, and mechanisms for the beneficial effects of APC.
Collapse
|
34
|
Wang J, Yang L, Rezaie AR, Li J. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling. J Thromb Haemost 2011; 9:1308-17. [PMID: 21535395 PMCID: PMC3129410 DOI: 10.1111/j.1538-7836.2011.04331.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated protein C (APC) is a vitamin K-dependent plasma serine protease that down-regulates clotting and inflammatory pathways. It is known that APC exerts a cardioprotective effect by decreasing apoptosis of cardiomyocytes and inhibiting expression of inflammatory mediators after myocardial ischemia. OBJECTIVES The objective of this study was to understand the mechanism of the APC-mediated cardioprotection against ischemic injury. METHODS Cardioprotective activities of wild-type APC and two derivatives, having either dramatically reduced anticoagulant activity or lacking signaling activity, were monitored in an acute ischemia/reperfusion injury model in which the left anterior descending coronary artery (LAD) was occluded. RESULTS APC reduced the myocardial infarct size by a mechanism that was largely independent of its anticoagulant activity. Thus, the non-anticoagulant APC-2Cys mutant, but not the non-signaling APC-E170A mutant, attenuated myocardial infarct size by EPCR and PAR-1-dependent mechanisms. Further studies revealed that APC acts directly on cardiomyocytes to stimulate the AMP-activated protein kinase (AMPK) signaling pathway. The activation of AMPK by APC ameliorated the post-ischemic cardiac dysfunction in isolated perfused mouse hearts. Moreover, both APC and APC-2Cys inhibited production of TNFα and IL-6 in vivo by attenuating the ischemia/reperfusion-induced JNK and NF-κB signaling pathways. CONCLUSIONS APC exerts a cardioprotective function in ischemic/reperfusion injury through modulation of AMPK, NF-κB and JNK signaling pathways.
Collapse
Affiliation(s)
- J Wang
- Department of Pharmacology and Toxicology, University at Buffalo-SUNY, Buffalo, NY, USA
| | | | | | | |
Collapse
|
35
|
Zlokovic BV, Griffin JH. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci 2011; 34:198-209. [PMID: 21353711 PMCID: PMC3491752 DOI: 10.1016/j.tins.2011.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that single-action-single-target agents are unlikely to cure CNS disorders sharing a pathogenic triad consisting of vascular damage, neuronal injury/neurodegeneration and neuroinflammation. Here we focus on a recent example of a multiple-action-multiple-target approach for CNS disorders based on newly discovered biological properties of activated protein C (APC), an endogenous plasma protease with antithrombotic, cytoprotective and anti-inflammatory activities in the CNS. We propose that APC-mediated signaling through the protease activated receptor-1 (PAR1) can favorably regulate multiple pathways within the neurovascular unit in non-neuronal cells and neurons during acute or chronic CNS insults, leading to stabilization of the blood-brain barrier (BBB), neuroprotection and control of neuroinflammation. Although much remains to be understood regarding the biology of APC, preclinical studies suggest that APC has promising applications as disease-modifying therapy for ischemic stroke and other neuropathologies whose underlying pathology involves deficits in the vasculo-neuronal-inflammatory triad.
Collapse
Affiliation(s)
- Berislav V Zlokovic
- Center for Neurodegenerative and Vascular Brain Disorders, Department of Neurological Surgery, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
36
|
Switching cation-binding loops paves the way for redesigning allosteric activation. Proc Natl Acad Sci U S A 2011; 108:5145-6. [DOI: 10.1073/pnas.1102132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Bir N, Lafargue M, Howard M, Goolaerts A, Roux J, Carles M, Cohen MJ, Iles KE, Fernández JA, Griffin JH, Pittet JF. Cytoprotective-selective activated protein C attenuates Pseudomonas aeruginosa-induced lung injury in mice. Am J Respir Cell Mol Biol 2011; 45:632-41. [PMID: 21257925 DOI: 10.1165/rcmb.2010-0397oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inhibition of the small GTPase RhoA attenuates the development of pulmonary edema and restores positive alveolar fluid clearance in a murine model of Pseudomonas aeruginosa pneumonia. Activated protein C (aPC) blocks the development of an unfavorably low ratio of small GTPase Rac1/RhoA activity in lung endothelium through endothelial protein C receptor (EPCR)/protease-activated receptor-1 (PAR-1)-dependent signaling mechanisms that include transactivating the sphingosine-1-phosphate (S1P) pathway. However, whether aPC's cytoprotective effects can attenuate the development of pulmonary edema and death associated with P. aeruginosa pneumonia in mice remains unknown. Thus, we determined whether the normalization of a depressed ratio of activated Rac1/RhoA by aPC would attenuate the P. aeruginosa-mediated increase in protein permeability across lung endothelial and alveolar epithelial barriers. Pretreatment with aPC significantly reduced P. aeruginosa-induced increases in paracellular permeability across pulmonary endothelial cell and alveolar epithelial monolayers via an inhibition of RhoA activation and a promotion of Rac1 activation that required the EPCR-PAR-1 and S1P pathways. Furthermore, pretreatment with aPC attenuated the development of pulmonary edema in a murine model of P. aeruginosa pneumonia. Finally, a cytoprotective-selective aPC mutant, aPC-5A, which lacks most of aPC's anticoagulant activity, reproduced the protective effect of wild-type aPC by attenuating the development of pulmonary edema and decreasing mortality in a murine model of P. aeruginosa pneumonia. Taken together, these results demonstrate a critical role for the cytoprotective activities of aPC in attenuating P. aeruginosa-induced lung vascular permeability and mortality, suggesting that cytoprotective-selective aPC-5A with diminished bleeding risks could attenuate the lung damage caused by P. aeruginosa in critically ill patients.
Collapse
Affiliation(s)
- Nastasha Bir
- Cardiovascular Research Institute and Institute of Molecular Medicine, Department of Anesthesia, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem 2010; 17:2059-69. [PMID: 20423310 DOI: 10.2174/092986710791233706] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/19/2010] [Indexed: 12/23/2022]
Abstract
Protein C is a vitamin K-dependent anticoagulant serine protease zymogen in plasma which upon activation by the thrombin-thrombomodulin complex down-regulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. In addition to its anticoagulant function, activated protein C (APC) also binds to endothelial protein C receptor (EPCR) in lipid-rafts/caveolar compartments to activate protease- activated receptor 1 (PAR-1) thereby eliciting antiinflammatory and cytoprotective signaling responses in endothelial cells. These properties have led to FDA approval of recombinant APC as a therapeutic drug for severe sepsis. The mechanism by which APC selects its substrates in the anticoagulant and antiinflammatory pathways is not well understood. Recent structural and mutagenesis data have indicated that basic residues of three exposed surface loops known as 39-loop (Lys-37, Lys-38, and Lys-39), 60-loop (Lys-62, Lys- 63, and Arg-67), and 70-80-loop (Arg-74, Arg-75, and Lys-78) (chymotrypsin numbering) constitute an anion binding exosite in APC that interacts with the procoagulant cofactors Va and VIIIa in the anticoagulant pathway. Furthermore, two negatively charged residues on the opposite side of the active-site of APC on a helical structure have been demonstrated to determine the specificity of the PAR-1 recognition in the cytoprotective pathway. This article will review the mechanism by which APC exerts its proteolytic function in two physiologically inter-related pathways and how the structure- function insights into determinants of the specificity of APC interaction with its substrates in two pathways can be utilized to tinker with the structure of the molecule to obtain APC derivatives with potentially improved therapeutic profiles.
Collapse
Affiliation(s)
- A R Rezaie
- Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
39
|
Qu Z, Chaikof EL. Interface between hemostasis and adaptive immunity. Curr Opin Immunol 2010; 22:634-42. [PMID: 20932735 DOI: 10.1016/j.coi.2010.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 08/31/2010] [Indexed: 12/15/2022]
Abstract
Stress induced activation or denudation of the endothelium elicits arrest and activation of platelets with attendant triggering of coagulation, culminating in a physical barrier to limit blood loss. Recently, coagulation-activated osteopontin, chemerin, and protease-activated receptor signaling, as well as platelet-derived molecules including platelet factor 4, serotonin, P-selectin, and CD154 (CD40L) have been revealed as new links between hemostasis and adaptive immunity. The initiation of hemostasis establishes a local state of inflammation that serves as an adjuvant system for antigen presentation, consequently influencing the onset and functional characteristics of an evolving adaptive immune response. In this context, the hemostatic system and its associated signaling pathways warrant further study as novel therapeutic targets that may enhance, abrogate, or otherwise selectively direct the adaptive immune response.
Collapse
Affiliation(s)
- Zheng Qu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | |
Collapse
|
40
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
41
|
Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest 2010; 120:3084-7. [PMID: 20714106 DOI: 10.1172/jci44266] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recombinant activated protein C (aPC) improves the survival of patients with severe sepsis, but the precise molecular and cellular targets through which it mediates this effect remain incompletely understood. In this issue of the JCI, Kerschen et al. show that endothelial cell protein C receptor (EPCR) is specifically expressed by mouse CD8+ dendritic cells and that these coordinators of host responses to systemic infection are required for aPC to provide protection against the lethality of sepsis. An additional study, by Cao and colleagues, recently published in the JCI, implicates the leukocyte integrin CD11b in the pathways by which aPC mediates antiinflammatory effects in the context of lethal sepsis in mice, suggesting a common thread of synergistic control of innate immune responses by life-saving aPC therapy.
Collapse
Affiliation(s)
- Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
42
|
Kerschen E, Hernandez I, Zogg M, Jia S, Hessner MJ, Fernandez JA, Griffin JH, Huettner CS, Castellino FJ, Weiler H. Activated protein C targets CD8+ dendritic cells to reduce the mortality of endotoxemia in mice. J Clin Invest 2010; 120:3167-78. [PMID: 20714108 DOI: 10.1172/jci42629] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/02/2010] [Indexed: 12/17/2022] Open
Abstract
Activated protein C (aPC) therapy reduces mortality in adult patients with severe sepsis. In mouse endotoxemia and sepsis models, mortality reduction requires the cell signaling function of aPC, mediated through protease-activated receptor-1 (PAR1) and endothelial protein C receptor (EPCR; also known as Procr). Candidate cellular targets of aPC include vascular endothelial cells and leukocytes. Here, we show that expression of EPCR and PAR1 on hematopoietic cells is required in mice for an aPC variant that mediates full cell signaling activity but only minimal anticoagulant function (5A-aPC) to reduce the mortality of endotoxemia. Expression of EPCR in mature murine immune cells was limited to a subset of CD8+ conventional dendritic cells. Adoptive transfer of splenic CD11chiPDCA-1- dendritic cells from wild-type mice into animals with hematopoietic EPCR deficiency restored the therapeutic efficacy of aPC, whereas transfer of EPCR-deficient CD11chi dendritic cells or wild-type CD11chi dendritic cells depleted of EPCR+ cells did not. In addition, 5A-aPC inhibited the inflammatory response of conventional dendritic cells independent of EPCR and suppressed IFN-gamma production by natural killer-like dendritic cells. These data reveal an essential role for EPCR and PAR1 on hematopoietic cells, identify EPCR-expressing dendritic immune cells as a critical target of aPC therapy, and document EPCR-independent antiinflammatory effects of aPC on innate immune cells.
Collapse
Affiliation(s)
- Edward Kerschen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cao C, Gao Y, Li Y, Antalis TM, Castellino FJ, Zhang L. The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Invest 2010; 120:1971-80. [PMID: 20458145 PMCID: PMC2877939 DOI: 10.1172/jci40380] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 03/17/2010] [Indexed: 12/16/2022] Open
Abstract
Activated protein C (APC), the only FDA-approved biotherapeutic drug for sepsis, possesses anticoagulant, antiinflammatory, and barrier-protective activities. However, the mechanisms underlying its anti-inflammatory functions are not well defined. Here, we report that the antiinflammatory activity of APC on macrophages is dependent on integrin CD11b/CD18, but not on endothelial protein C receptor (EPCR). We showed that CD11b/CD18 bound APC within specialized membrane microdomains/lipid rafts and facilitated APC cleavage and activation of protease-activated receptor-1 (PAR1), leading to enhanced production of sphingosine-1-phosphate (S1P) and suppression of the proinflammatory response of activated macrophages. Deletion of the gamma-carboxyglutamic acid domain of APC, a region critical for its anticoagulant activity and EPCR-dependent barrier protection, had no effect on its antiinflammatory function. Genetic inactivation of CD11b, PAR1, or sphingosine kinase-1, but not EPCR, abolished the ability of APC to suppress the macrophage inflammatory response in vitro. Using an LPS-induced mouse model of lethal endotoxemia, we showed that APC administration reduced the mortality of wild-type mice, but not CD11b-deficient mice. These data establish what we believe to be a novel mechanism underlying the antiinflammatory activity of APC in the setting of endotoxemia and provide clear evidence that the antiinflammatory function of APC is distinct from its barrier-protective function and anticoagulant activities.
Collapse
Affiliation(s)
- Chunzhang Cao
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yamei Gao
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yang Li
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J. Castellino
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Li Zhang
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
44
|
Marino F, Pelc LA, Vogt A, Gandhi PS, Di Cera E. Engineering thrombin for selective specificity toward protein C and PAR1. J Biol Chem 2010; 285:19145-52. [PMID: 20404340 DOI: 10.1074/jbc.m110.119875] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin elicits functional responses critical to blood homeostasis by interacting with diverse physiological substrates. Ala-scanning mutagenesis of 97 residues covering 53% of the solvent accessible surface area of the enzyme identifies Trp(215) as the single most important determinant of thrombin specificity. Saturation mutagenesis of Trp(215) produces constructs featuring k(cat)/K(m) values for the hydrolysis of fibrinogen, protease-activated receptor PAR1, and protein C that span five orders of magnitude. Importantly, the effect of Trp(215) replacement is context dependent. Mutant W215E is 10-fold more specific for protein C than fibrinogen and PAR1, which represents a striking shift in specificity relative to wild-type that is 100-fold more specific for fibrinogen and PAR1 than protein C. However, when the W215E mutation is combined with deletion of nine residues in the autolysis loop, which by itself shifts the specificity of the enzyme from fibrinogen and PAR1 to protein C, the resulting construct features significant activity only toward PAR1. These findings demonstrate that thrombin can be re-engineered for selective specificity toward protein C and PAR1. Mutations of Trp(215) provide important reagents for dissecting the multiple functional roles of thrombin in the blood and for clinical applications.
Collapse
Affiliation(s)
- Francesca Marino
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
45
|
Schouten M, Sluijs KFVD, Gerlitz B, Grinnell BW, Roelofs JJTH, Levi MM, van 't Veer C, van der Poll T. Activated protein C ameliorates coagulopathy but does not influence outcome in lethal H1N1 influenza: a controlled laboratory study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R65. [PMID: 20398279 PMCID: PMC2887187 DOI: 10.1186/cc8964] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/25/2010] [Accepted: 04/14/2010] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Influenza accounts for 5 to 10% of community-acquired pneumonias and is a major cause of mortality. Sterile and bacterial lung injuries are associated with procoagulant and inflammatory derangements in the lungs. Activated protein C (APC) is an anticoagulant with anti-inflammatory properties that exert beneficial effects in models of lung injury. We determined the impact of lethal influenza A (H1N1) infection on systemic and pulmonary coagulation and inflammation, and the effect of recombinant mouse (rm-) APC here on. METHODS Male C57BL/6 mice were intranasally infected with a lethal dose of a mouse adapted influenza A (H1N1) strain. Treatment with rm-APC (125 microg intraperitoneally every eight hours for a maximum of three days) or vehicle was initiated 24 hours after infection. Mice were euthanized 48 or 96 hours after infection, or observed for up to nine days. RESULTS Lethal H1N1 influenza resulted in systemic and pulmonary activation of coagulation, as reflected by elevated plasma and lung levels of thrombin-antithrombin complexes and fibrin degradation products. These procoagulant changes were accompanied by inhibition of the fibrinolytic response due to enhanced release of plasminogen activator inhibitor type-1. Rm-APC strongly inhibited coagulation activation in both plasma and lungs, and partially reversed the inhibition of fibrinolysis. Rm-APC temporarily reduced pulmonary viral loads, but did not impact on lung inflammation or survival. CONCLUSIONS Lethal influenza induces procoagulant and antifibrinolytic changes in the lung which can be partially prevented by rm-APC treatment.
Collapse
Affiliation(s)
- Marcel Schouten
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Activated protein C (APC) is a natural anticoagulant that plays an important role in coagulation homeostasis by inactivating the procoagulation factor Va and VIIIa. In addition to its anticoagulation functions, APC also has cytoprotective effects such as anti-inflammatory, anti-apoptotic, and endothelial barrier protection. Recently, a recombinant form of human APC (rhAPC or drotrecogin alfa activated; known commercially as 'Xigris') was approved by the US Federal Drug Administration for treatment of severe sepsis associated with a high risk of mortality. Sepsis, also known as systemic inflammatory response syndrome (SIRS) resulting from infection, is a serious medical condition in critical care patients. In sepsis, hyperactive and dysregulated inflammatory responses lead to secretion of pro- and anti-inflammatory cytokines, activation and migration of leucocytes, activation of coagulation, inhibition of fibrinolysis, and increased apoptosis. Although initial hypotheses focused on antithrombotic and profibrinolytic functions of APC in sepsis, other agents with more potent anticoagulation functions were not effective in treating severe sepsis. Furthermore, APC therapy is also associated with the risk of severe bleeding in treated patients. Therefore, the cytoprotective effects, rather than the anticoagulant effect of APC are postulated to be responsible for the therapeutic benefit of APC in the treatment of severe sepsis.
Collapse
Affiliation(s)
- Pranita P Sarangi
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
47
|
Abstract
OBJECTIVE To review new findings about the function of the protein C system during inflammation and coagulation. MAIN FINDINGS Coagulation proteases and their cofactors modify the outcome of severe inflammation by engaging signaling-competent cell surface receptors. The central effector protease of the protein C pathway, activated protein C, interacts with the endothelial cell protein C receptor, protease-activated receptors, and other receptors to exert multiple effects on hemostasis and immune cell function. Thrombomodulin controls the complement arm of the innate immune system in a thrombin-dependent manner through activation of the thrombin activatable inhibitor of fibrinolysis, and in a thrombin-independent, constitutive manner via its lectin-like extracellular domain; and inhibits the inflammatory effects of high-mobility box group 1 protein. Protein S not only suppresses coagulation as an enhancing cofactor for the coagulation inhibitors activated protein C and tissue factor pathway inhibitor but also is also a physiologic ligand for the Tyro/axl/Mer-family of receptor tyrosine kinases that mediate an anti-inflammatory regulatory loop of dendritic cell and monocyte inflammatory function. CONCLUSIONS The immune-regulatory capacity of the protein C pathway and its individual components emerge as the dominant action of this pathway in the setting of severe inflammation.
Collapse
|
48
|
Gorbacheva L, Pinelis V, Ishiwata S, Strukova S, Reiser G. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience 2010; 165:1138-46. [PMID: 19931359 DOI: 10.1016/j.neuroscience.2009.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/29/2022]
Abstract
Brain injury is associated with neuroinflammation, neurodegeneration, and also blood coagulation with thrombin formation and generation of activated protein C (APC). We have previously shown that APC, a serine protease of hemostasis, at very low concentrations has protective effects in rat hippocampal and cortical neurons at glutamate-induced excitotoxicity through protease-activated receptor-1 (PAR-1) or endothelial receptor of protein C (EPCR)/PAR-1. The transcription factor nuclear factor kappaB (NF-kappaB) takes part in regulating neuronal survival in several pathological conditions. To elucidate the impact of NF-kappaB in APC-mediated cell survival, we investigated nuclear translocation of NF-kappaB p65 at glutamate- or thrombin-induced toxicity in hippocampal neurons. We used immunoassay and immunostaining with confocal microscopy with anti-NF-kappaBp65 antibody. We show that APC at concentrations as low as 1-2 nM inhibits translocation of NF-kappaB p65 into the nucleus of cultured rat hippocampal neurons, induced by 100 muM glutamate or 50 nM thrombin (but not 10 nM). The blocking effect of APC on NF-kappaB p65 translocation was observed at 1 and 4 h after treatment of neurons with glutamate, when the NF-kappaBp 65 level in the nucleus was significantly above the basal level. Then we investigated whether the binding of APC to EPCR/PAR-1 is required to control NF-kappaB activation. Antibodies blocking PAR-1 (ATAP2) or EPCR (P-20) abolished the APC-induced decrease of nuclear level of NF-kappaB p65 at glutamate-induced toxicity, whereas control antibodies to PAR-1 (S-19) and EPCR (IgG) exerted no effect. Thus, we suggest that the activation of NF-kappaB in rat hippocampal neurons mediates the glutamate- and thrombin-activated cell death program, which is reduced by exposure of cells to APC. APC induces the reduction of the nuclear level of NF-kappaB p65 in hippocampal neurons at glutamate-induced excitotoxicity via binding to EPCR and subsequent PAR-1 activation and signaling.
Collapse
Affiliation(s)
- L Gorbacheva
- Lomonosov Moscow State University, Department of Human and Animal Physiology, Moscow, Russia
| | | | | | | | | |
Collapse
|
49
|
Schuepbach RA, Riewald M. Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 2010; 8:379-88. [PMID: 19895674 PMCID: PMC3103137 DOI: 10.1111/j.1538-7836.2009.03682.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Coagulation is intrinsically tied to inflammation, and both proinflammatory and anti-inflammatory responses are modulated by coagulation protease signaling through protease-activated receptor-1 (PAR1). Activated factor X (FXa) can elicit cellular signaling through PAR1, but little is known about the role of cofactors in this pathway. Endothelial protein C receptor (EPCR) supports PAR1 signaling by the protein C pathway, and in the present study we tested whether EPCR mediates surface recruitment and signaling of FXa. METHODS AND RESULTS Here, we show that FXa binds to overexpressed as well as native endothelial EPCR. PAR1 cleavage by FXa as analyzed with conformation-sensitive antibodies and a tagged PAR1 reporter construct was strongly enhanced if EPCR was available. Anti-EPCR failed to affect the tissue factor-dependent activation of FX, but high concentrations of FXa decreased EPCR-dependent protein C activation. Most importantly, the FXa-mediated induction of Erk1/2 activation, expression of the transcript for connective tissue growth factor and barrier protection in endothelial cells required binding to EPCR. CONCLUSIONS Our results demonstrate that EPCR plays an unexpected role in supporting cell surface recruitment, PAR1 activation, and signaling by FXa.
Collapse
Affiliation(s)
- R A Schuepbach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Fernández JA, Heeb MJ, Xu X, Singh I, Zlokovic BV, Griffin JH. Species-specific anticoagulant and mitogenic activities of murine protein S. Haematologica 2009; 94:1721-31. [PMID: 19815836 DOI: 10.3324/haematol.2009.009233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The protein C pathway down-regulates thrombin generation and promotes cytoprotection during inflammation and stress. In preclinical studies using models of murine injury (e.g., sepsis and ischemic stroke), murine protein S may be required because of restrictive species specificity. DESIGN AND METHODS We prepared and characterized recombinant murine protein S using novel coagulation assays, immunoassays, and cell proliferation assays. RESULTS Purified murine protein S had good anticoagulant co-factor activity for murine activated protein C, but not for human activated protein C, in mouse or rat plasma. In human plasma, murine protein S was a poor co-factor for murine activated protein C and had no anticoagulant effect with human activated protein C, suggesting protein S species specificity for factor V in addition to activated protein C. We estimated that mouse plasma contains 22+/-1 microg/mL protein S and developed assays to measure activated protein C co-factor activity of the protein S in murine plasma. Activated protein C-independent anticoagulant activity of murine protein S was demonstrable and quantifiable in mouse plasma, and this activity was enhanced by exogenous murine protein S. Murine protein S promoted the proliferation of mouse and human smooth muscle cells. The potency of murine protein S was higher for mouse cells than for human cells and similarly, human protein S was more potent for human cells than for mouse cells. CONCLUSIONS The spectrum of bioactivities of recombinant murine protein S with mouse plasma and smooth muscle cells is similar to that of human protein S. However, in vitro and in vivo studies of the protein C pathway in murine disease models are more appropriately performed using murine protein S. This study extends previous observations regarding the remarkable species specificity of protein S to the mouse.
Collapse
Affiliation(s)
- José A Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|