1
|
Unterberger S, Terrazzini N, Sacre S. Convalescent COVID-19 monocytes exhibit altered steady-state gene expression and reduced TLR2, TLR4 and RIG-I induced cytokine expression. Hum Immunol 2025; 86:111249. [PMID: 39922089 DOI: 10.1016/j.humimm.2025.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, can induce trained immunity in monocytes. Trained immunity is the result of metabolic and epigenetic reprogramming of progenitor cells leading to an altered inflammatory response to subsequent activation. To investigate the monocyte response 3-6 months post SARS-CoV-2 infection, steady-state gene expression and innate immune receptor stimulation were investigated in monocytes from unvaccinated SARS-CoV-2 naïve individuals and convalescent COVID-19 participants. The differentially expressed genes (DEGs) identified were involved in the regulation of innate immune signalling pathways associated with anti-viral defence. COVID-19 participants who had experienced severe symptoms exhibited a larger number of DEGs than participants that had mild symptoms. Interestingly, genes encoding receptors that recognise SARS-CoV-2 RNA were downregulated. DDX58, encoding retinoic-acid inducible gene I (RIG-I), was downregulated which corresponded with a reduced response to RIG-I activation. Furthermore, toll-like receptor (TLR)1/2 and TLR4 activation also exhibited reduced cytokine secretion from convalescent COVID-19 monocytes. These data suggest that following SARS-CoV-2 infection, monocytes exhibit altered steady-state gene expression and reduced responsiveness to innate immune receptor activation. As both RIG-I and TLRs recognise components of SARS-CoV-2, this may lead to a moderated inflammatory response to SARS-CoV-2 reinfection in the months following the initial infection.
Collapse
Affiliation(s)
- Sarah Unterberger
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadia Terrazzini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
Jin X, Pirenne J, Vos R, Hooft C, Kaes J, Van Slambrouck J, Kortleven P, Vandervelde C, Beeckmans H, Kerckhof P, Carlon MS, Van Raemdonck D, Looney MR, Vanaudenaerde BM, Ceulemans LJ. Donor-Specific Blood Transfusion in Lung Transplantation. Transpl Int 2024; 37:12822. [PMID: 39553536 PMCID: PMC11565953 DOI: 10.3389/ti.2024.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Lung transplantation is still hindered by a high rate of chronic rejection necessitating profound immunosuppression with its associated complications. Donor-specific blood transfusion is a pre-transplant strategy aimed at improving graft acceptance. In contrast with standard stored blood or donor-specific regulatory T cells transfusions, this approach utilizes fresh whole blood from the donor prior to allograft transplantation, encompassing all cell types and plasma. The precise mechanisms underlying donor-specific blood transfusion-induced tolerance remain incompletely understood. Associations with regulatory/helper T cells, modulation of mononuclear phagocytic cells or microchimerism have been suggested. While numerous (pre-)clinical studies have explored its application in solid organ transplants like liver, kidney, and intestine, limited attention has been given to the setting of lung transplantation. This comprehensive review summarizes existing knowledge on the mechanisms and outcomes of donor-specific blood transfusion in solid organ transplants both in preclinical and clinical settings. We also address the potential benefits and risks associated with donor-specific blood transfusion in the field of lung transplantation, offering insights into future research directions.
Collapse
Affiliation(s)
- Xin Jin
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology, Immunology and Transplantation, Transplantation Research Group, Lab of Abdominal Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism (VIB-KU Leuven), KU Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Christelle Vandervelde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Pieterjan Kerckhof
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Marianne S. Carlon
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bart M. Vanaudenaerde
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Laurens J. Ceulemans
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
4
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
5
|
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunol Rev 2024; 322:311-328. [PMID: 38306168 DOI: 10.1111/imr.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.
Collapse
Affiliation(s)
- Natalia S Chaimowitz
- Department of Immunology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Madison R Smith
- UT Health Sciences Center McGovern Medical School, Houston, Texas, USA
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, Texas, USA
- William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| |
Collapse
|
6
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Dalvi A, Bargir UA, Natraj G, Shah I, Madkaikar M. Diagnosis and Management of Infections in Patients with Mendelian Susceptibility to Mycobacterial Disease. Pathogens 2024; 13:203. [PMID: 38535546 PMCID: PMC10975294 DOI: 10.3390/pathogens13030203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/11/2025] Open
Abstract
The diagnosis and treatment of patients with mendelian susceptibility to mycobacterial disease (MSMD) pose consistent challenges due to the diverse infection spectrum observed in this population. Common clinical manifestations include Bacillus Calmette-Guérin vaccine (BCG) complications in countries where routine BCG vaccination is practiced, while in non-BCG-vaccinating countries, Non-Tuberculous Mycobacteria (NTM) is prevalent. In tuberculosis-endemic regions, Mycobacterium tuberculosis (MTB) has a high prevalence, along with other intracellular organisms. Isolating these organisms presents a significant challenge, and treatment is often initiated without confirming the specific species. This review primarily focuses on the methods and challenges associated with diagnosing and treating MSMD patients.
Collapse
Affiliation(s)
- Aparna Dalvi
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| | - Gita Natraj
- Seth GS Medical College and KEM Hospital, Mumbai 400012, India;
| | - Ira Shah
- Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India;
| | - Manisha Madkaikar
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| |
Collapse
|
8
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
9
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
11
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, Albakri KA, Abedalbaset Alzyoud A, Kadir R, Mohamud R. Comprehensive literature review of monkeypox. Emerg Microbes Infect 2022; 11:2600-2631. [PMID: 36263798 PMCID: PMC9627636 DOI: 10.1080/22221751.2022.2132882] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The current outbreak of monkeypox (MPX) infection has emerged as a global matter of concern in the last few months. MPX is a zoonosis caused by the MPX virus (MPXV), which is one of the Orthopoxvirus species. Thus, it is similar to smallpox caused by the variola virus, and smallpox vaccines and drugs have been shown to be protective against MPX. Although MPX is not a new disease and is rarely fatal, the current multi-country MPX outbreak is unusual because it is occurring in countries that are not endemic for MPXV. In this work, we reviewed the extensive literature available on MPXV to summarize the available data on the major biological, clinical and epidemiological aspects of the virus and the important scientific findings. This review may be helpful in raising awareness of MPXV transmission, symptoms and signs, prevention and protective measures. It may also be of interest as a basis for performance of studies to further understand MPXV, with the goal of combating the current outbreak and boosting healthcare services and hygiene practices.Trial registration: ClinicalTrials.gov identifier: NCT02977715..Trial registration: ClinicalTrials.gov identifier: NCT03745131..Trial registration: ClinicalTrials.gov identifier: NCT00728689..Trial registration: ClinicalTrials.gov identifier: NCT02080767..
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | | | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
12
|
Varzari A, Deyneko IV, Bruun GH, Dembic M, Hofmann W, Cebotari VM, Ginda SS, Andresen BS, Illig T. Candidate genes and sequence variants for susceptibility to mycobacterial infection identified by whole-exome sequencing. Front Genet 2022; 13:969895. [PMID: 36338958 PMCID: PMC9632272 DOI: 10.3389/fgene.2022.969895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity are known to influence susceptibility to mycobacterial infections. The aim of this study was to characterize the genetic profile of nine patients with mycobacterial infections (eight with BCGitis and one with disseminated tuberculosis) from the Republic of Moldova using whole-exome sequencing. In total, 12 variants in eight genes known to be associated with Mendelian Susceptibility to Mycobacterial Disease (MSMD) were detected in six out of nine patients examined. In particular, a novel splice site mutation c.373–2A>C in STAT1 gene was found and functionally confirmed in a patient with disseminated tuberculosis. Trio analysis was possible for seven out of nine patients, and resulted in 23 candidate variants in 15 novel genes. Four of these genes - GBP2, HEATR3, PPP1R9B and KDM6A were further prioritized, considering their elevated expression in immune-related tissues. Compound heterozygosity was found in GBP2 in a single patient, comprising a maternally inherited missense variant c.412G>A/p.(Ala138Thr) predicted to be deleterious and a paternally inherited intronic mutation c.1149+14T>C. Functional studies demonstrated that the intronic mutation affects splicing and the level of transcript. Finally, we analyzed pathogenicity of variant combinations in gene pairs and identified five patients with putative oligogenic inheritance. In summary, our study expands the spectrum of genetic variation contributing to susceptibility to mycobacterial infections in children and provides insight into the complex/oligogenic disease-causing mode.
Collapse
Affiliation(s)
- Alexander Varzari
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- *Correspondence: Alexander Varzari,
| | - Igor V. Deyneko
- Laboratory of Functional Genomics, Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Victor M. Cebotari
- Municipal Hospital of Phthisiopneumology, Department of Pediatrics, Kishinev, Moldova
| | - Sergei S. Ginda
- Laboratory of Immunology and Allergology, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Chen X, Chen J, Chen R, Mou H, Sun G, Yang L, Jia Y, Zhao Q, Wen W, Zhou L, Ding Y, Tang X, Yang J, An Y, Zhao X. Genetic and Functional Identifying of Novel STAT1 Loss-of-Function Mutations in Patients with Diverse Clinical Phenotypes. J Clin Immunol 2022; 42:1778-1794. [PMID: 35976469 DOI: 10.1007/s10875-022-01339-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Mutations in signal transducer and activator of transcription 1 (STAT1) cause a broad spectrum of disease phenotypes. Heterozygous STAT1 loss-of-function (LOF) mutations cause Mendelian susceptibility to mycobacterial diseases (MSMD) infection, which is attributable to impaired IFN-γ signaling. The identification of novel mutations may extend the phenotypes associated with autosomal dominant (AD) STAT1 deficiency. METHODS Five patients with heterozygous STAT1 variations were recruited and their clinical and immunologic phenotypes were analyzed, with particular reference to JAK-STAT1 signaling pathways. RESULTS Four, heterozygous STAT1 deficiency mutations were identified, three of which were novel mutations. Two of the mutations were previously unreported mRNA splicing mutations in AD STAT1-deficient patients. Patients with heterozygous STAT1 deficiency suffered not only mycobacterial infection, but also intracellular non-mycobacterial bacterial infection and congenital multiple malformations. AD-LOF mutation impaired IFN-γ-mediated STAT1 phosphorylation, gamma-activated sequence (GAS), and IFN-stimulated response element (ISRE) transcription activity and IFN-induced gene expression to different extents, which might account for the diverse clinical manifestations observed in these patients. CONCLUSION The infectious disease susceptibility and phenotypic spectrum of patients with AD STAT1-LOF are broader than simply MSMD. The susceptibility to infections and immunological deficiency phenotypes, observed in AD-LOF patients, confirms the importance of STAT1 in host-pathogen interaction and immunity. However, variability in the nature and extent of these phenotypes suggests that functional analysis is required to identify accurately novel, heterozygous STAT1 mutations, associated with pathogenicity. Aberrant splice of STAT1 RNA could result in AD-LOF for STAT1 signaling which need more cases for confirmation.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junjie Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ran Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huilin Mou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Gan Sun
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lu Yang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanjun Jia
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wen Wen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
14
|
Xia L, Liu XH, Yuan Y, Lowrie DB, Fan XY, Li T, Hu ZD, Lu SH. An Updated Review on MSMD Research Globally and A Literature Review on the Molecular Findings, Clinical Manifestations, and Treatment Approaches in China. Front Immunol 2022; 13:926781. [PMID: 36569938 PMCID: PMC9774035 DOI: 10.3389/fimmu.2022.926781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) arises from a group of rare inherited errors of immunity that result in selective susceptibility of otherwise healthy people to clinical disease caused by low virulence strains of mycobacteria, such as Mycobacterium bovis Bacille Calmette-Guérin (BCG) and environmental mycobacteria. Patients have normal resistance to other pathogens and no overt abnormalities in routine immunological and hematological evaluations for primary immunodeficiencies. At least 19 genes and 34 clinical phenotypes have been identified in MSMD. However, there have been no systematic reports on the clinical characteristics and genetic backgrounds of MSMD in China. In this review, on the one hand, we summarize an update findings on molecular defects and immunological mechanisms in the field of MSMD research globally. On the other hand, we undertook a systematic review of PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, EMBASE, CNKI, and Wanfang to identify articles published before Jan 23, 2022, to summarize the clinical characteristics, diagnosis, treatment, and prognosis of MSMD in China. All the English and Chinese publications were searched without any restriction on article types.
Collapse
Affiliation(s)
- Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B. Lowrie
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhi-Dong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| | - Shui-Hua Lu
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China,Department of tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| |
Collapse
|
15
|
Duncan CJ, Skouboe MK, Howarth S, Hollensen AK, Chen R, Børresen ML, Thompson BJ, Stremenova Spegarova J, Hatton CF, Stæger FF, Andersen MK, Whittaker J, Paludan SR, Jørgensen SE, Thomsen MK, Mikkelsen JG, Heilmann C, Buhas D, Øbro NF, Bay JT, Marquart HV, de la Morena MT, Klejka JA, Hirschfeld M, Borgwardt L, Forss I, Masmas T, Poulsen A, Noya F, Rouleau G, Hansen T, Zhou S, Albrechtsen A, Alizadehfar R, Allenspach EJ, Hambleton S, Mogensen TH. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J Exp Med 2022; 219:e20212427. [PMID: 35442417 PMCID: PMC9026249 DOI: 10.1084/jem.20212427] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-I) play a critical role in human antiviral immunity, as demonstrated by the exceptionally rare deleterious variants of IFNAR1 or IFNAR2. We investigated five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination. The affected individuals bore the same homozygous IFNAR2 c.157T>C, p.Ser53Pro missense variant. Although absent from reference databases, p.Ser53Pro occurred with a minor allele frequency of 0.034 in their Inuit ancestry. The serine to proline substitution prevented cell surface expression of IFNAR2 protein, small amounts of which persisted intracellularly in an aberrantly glycosylated state. Cells exclusively expressing the p.Ser53Pro variant lacked responses to recombinant IFN-I and displayed heightened vulnerability to multiple viruses in vitro-a phenotype rescued by wild-type IFNAR2 complementation. This novel form of autosomal recessive IFNAR2 deficiency reinforces the essential role of IFN-I in viral immunity. Further studies are warranted to assess the need for population screening.
Collapse
Affiliation(s)
- Christopher J.A. Duncan
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Morten K. Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sophie Howarth
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Anne K. Hollensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rui Chen
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Malene L. Børresen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Benjamin J. Thompson
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Jarmila Stremenova Spegarova
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine F. Hatton
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Frederik F. Stæger
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette K. Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Whittaker
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | | | - Sofie E. Jørgensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Carsten Heilmann
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Medical Department, Pediatric Section, Dronning Ingrid Hospital, Nuuk, Greenland
| | - Daniela Buhas
- Division of Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nina F. Øbro
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jakob T. Bay
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hanne V. Marquart
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - M. Teresa de la Morena
- Seattle Children’s Hospital, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | | | | | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Isabel Forss
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tania Masmas
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anja Poulsen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Francisco Noya
- Division of Allergy & Clinical Immunology, Montreal Children’s Hospital, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- The Neuro, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Reza Alizadehfar
- Division of Allergy & Clinical Immunology, Montreal Children’s Hospital, Montreal General Hospital, McGill University, Montreal, Quebec, Canada
| | - Eric J. Allenspach
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- Seattle Children’s Hospital, Seattle, WA
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Sophie Hambleton
- Clinical and Translational Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Scott O, Sharfe N, Dadi H, Vong L, Garkaby J, Abrego Fuentes L, Willett Pachul J, Nelles S, Nahum A, Roifman CM. Case Report: Eosinophilic Esophagitis in a Patient With a Novel STAT1 Gain-of-Function Pathogenic Variant. Front Immunol 2022; 13:801832. [PMID: 35126392 PMCID: PMC8812721 DOI: 10.3389/fimmu.2022.801832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background STAT1 gain-of-function (GOF) is a primary immune dysregulatory disorder marked by wide infectious predisposition (most notably chronic mucocutaneous Candidiasis), autoimmunity, vascular disease and malignant predisposition. While atopic features have been described in some STAT1 GOF patients, they are not considered a predominant feature of the disease. Additionally, while eosinophilic gastrointestinal infiltration has been reported in some cases, this has always been described in the context of pre-existing oropharyngeal and/or esophageal Candidiasis. Clinical cases Herein, we report 3 members of a multi-generational family diagnosed with STAT1 GOF caused by a novel mutation in the N-terminal domain, c.194A>C (p.D65A). The proband presented initially with a long-standing history of treatment-refractory eosinophilic esophagitis (EoE) without preceding gastrointestinal tract fungal infections, and her mother was diagnosed with esophagitis as well. Conclusion EoE has been previously associated with alterations to STAT6 and STAT3 signaling pathways. The current report expands the possible association between JAK/STAT-related disorders and EoE, suggesting that EoE could be a primary disease manifestation of STAT1 GOF, even in the absence of oropharyngeal and/or esophageal Candidiasis.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Nigel Sharfe
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Laura Abrego Fuentes
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Jessica Willett Pachul
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sandra Nelles
- Department of Gastroenterology, Trillium Health Partners, Mississauga Hospital, Mississauga, ON, Canada
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center, Beer Sheva, Israel
- The Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Chaim M. Roifman,
| |
Collapse
|
17
|
Liu Z, Zhou M, Yuan C, Ni Z, Liu W, Tan Y, Zhang D, Zhou X, Zou T, Wang J, Hou M, Peng X, Zhang X. Two novel STAT1 mutations cause Mendelian susceptibility to mycobacterial disease. Biochem Biophys Res Commun 2021; 591:124-129. [PMID: 34815077 DOI: 10.1016/j.bbrc.2021.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare monogenetic disease, which is characterized by susceptibility to some weakly virulent mycobacteria. Here, we explored the pathogenic genes and molecular mechanisms of MSMD patients. We recruited three patients diagnosed with MSMD from two families. Two novel mutations (c.1228A > G, p.K410E and c.2071A > G, p.M691V) in STAT1 gene were identified from two families. The translocation of K410E mutant STAT1 protein into nucleus was not affected. The binding ability between gamma-activating sequence (GAS) and K410E mutant STAT1 protein was significantly reduced, which will reduce the interaction between STAT1 protein with the promoters of target genes. The M691V mutant STAT1 protein cannot translocate into the nucleus after IFN-γ stimulation, which will affect the STAT1 protein form gamma-activating factors (GAF) and bind the GAS in the promoter region of downstream target genes. Taken together, our results showed that the mutation of K410E led to impaired binding of STAT1 to target DNA, and the mutation of M691V prevented the transport of STAT1 into the nucleus, which led to MSMD. Together, we identified two novel mutations (c.1228A > G, p.K410E and c.2071A > G, p.M691V) in STAT1 gene in MSMD patients, and deciphered the molecular mechanism of MSMD caused by STAT1 mutations.
Collapse
Affiliation(s)
- Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mi Zhou
- Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Chao Yuan
- Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Zhengyi Ni
- Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Wenqiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
18
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Bastard P, Manry J, Chen J, Rosain J, Seeleuthner Y, AbuZaitun O, Lorenzo L, Khan T, Hasek M, Hernandez N, Bigio B, Zhang P, Lévy R, Shrot S, Reino EJG, Lee YS, Boucherit S, Aubart M, Gijsbers R, Béziat V, Li Z, Pellegrini S, Rozenberg F, Marr N, Meyts I, Boisson B, Cobat A, Bustamante J, Zhang Q, Jouangy E, Abel L, Somech R, Casanova JL, Zhang SY. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J Clin Invest 2021; 131:139980. [PMID: 32960813 DOI: 10.1172/jci139980] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inborn errors of TLR3-dependent IFN-α/β- and IFN-λ-mediated immunity in the CNS can underlie herpes simplex virus 1 (HSV-1) encephalitis (HSE). The respective contributions of IFN-α/β and IFN-λ are unknown. We report a child homozygous for a genomic deletion of the entire coding sequence and part of the 3'-UTR of the last exon of IFNAR1, who died of HSE at the age of 2 years. An older cousin died following vaccination against measles, mumps, and rubella at 12 months of age, and another 17-year-old cousin homozygous for the same variant has had other, less severe, viral illnesses. The encoded IFNAR1 protein is expressed on the cell surface but is truncated and cannot interact with the tyrosine kinase TYK2. The patient's fibroblasts and EBV-B cells did not respond to IFN-α2b or IFN-β, in terms of STAT1, STAT2, and STAT3 phosphorylation or the genome-wide induction of IFN-stimulated genes. The patient's fibroblasts were susceptible to viruses, including HSV-1, even in the presence of exogenous IFN-α2b or IFN-β. HSE is therefore a consequence of inherited complete IFNAR1 deficiency. This viral disease occurred in natural conditions, unlike those previously reported in other patients with IFNAR1 or IFNAR2 deficiency. This experiment of nature indicates that IFN-α/β are essential for anti-HSV-1 immunity in the CNS.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France
| | - Shai Shrot
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eduardo J Garcia Reino
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Yoon-Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Department of Pediatric Neurology, Necker Hospital for Sick Children, University of Paris, Paris, France
| | - Rik Gijsbers
- Laboratory of Viral Vector Technology and Gene Therapy and Leuven Viral Vector Core, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Zhi Li
- Unit of Cytokine Signaling, Pasteur Institute, INSERM U1221, Paris, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Pasteur Institute, INSERM U1221, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, University of Paris, AP-HP, Cochin Hospital, Paris, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Emmanuelle Jouangy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| | - Raz Somech
- Pediatric Department and Immunology Unit, Edmond and Lily Safra Children's Hospital, Jeffrey Modell Foundation Center, Sheba Medical Center, Tel HaShomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, New York, USA
| |
Collapse
|
20
|
Le Voyer T, Sakata S, Tsumura M, Khan T, Esteve-Sole A, Al-Saud BK, Gungor HE, Taur P, Jeanne-Julien V, Christiansen M, Köhler LM, ElGhazali GE, Rosain J, Nishimura S, Sakura F, Bouaziz M, Oleaga-Quintas C, Nieto-Patlán A, Deyà-Martinez À, Altuner Torun Y, Neehus AL, Roynard M, Bozdemir SE, Al Kaabi N, Al Hassani M, Mersiyanova I, Rozenberg F, Speckmann C, Hainmann I, Hauck F, Alzahrani MH, Alhajjar SH, Al-Muhsen S, Cole T, Fuleihan R, Arkwright PD, Badolato R, Alsina L, Abel L, Desai M, Al-Mousa H, Shcherbina A, Marr N, Boisson-Dupuis S, Casanova JL, Okada S, Bustamante J. Genetic, Immunological, and Clinical Features of 32 Patients with Autosomal Recessive STAT1 Deficiency. THE JOURNAL OF IMMUNOLOGY 2021; 207:133-152. [PMID: 34183371 DOI: 10.4049/jimmunol.2001451] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus Calmette-Guérin = 13, environmental mycobacteria = 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France; .,University of Paris, Imagine Institute, Paris, France
| | - Sonoko Sakata
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taushif Khan
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Bandar K Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hatice Eke Gungor
- Department of Pediatrics, Pediatric Allergy and Immunology Unit, Kayseri Education and Research Hospital, Erkilet, Kayseri, Turkey
| | - Prasad Taur
- Department of Pediatric Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Lisa-Maria Köhler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gehad Eltayeb ElGhazali
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Shiho Nishimura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Àngela Deyà-Martinez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Yasemin Altuner Torun
- Pediatric Hematology and Oncology Unit, Istinye University, School of Medicine, İstanbul, Turkey
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Sefika Elmas Bozdemir
- Pediatric İnfectious Disease Unit, Department of Pediatrics, Kayseri Education and Research Hospital, Erkilet, Kayseri, Turkey
| | - Nawal Al Kaabi
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Moza Al Hassani
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Irina Mersiyanova
- Molecular Biology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Carsten Speckmann
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Hainmann
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sami Hussain Alhajjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Theresa Cole
- Department of Immunology, The Royal Children's Hospital, Melbourne, Australia
| | - Ramsay Fuleihan
- Division of Allergy & Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Peter D Arkwright
- Department of Paediatric Allergy and Immunology, Lydia Becker Institute of Immunology and Inflammation, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom
| | - Raffaele Badolato
- Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Civil Hospital of Brescia, Brescia, Italy
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Mukesh Desai
- Department of Pediatric Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anna Shcherbina
- Department of Clinical Immunology and Allergy, Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nico Marr
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY; and
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France; .,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Study Center for Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
21
|
Tsumura M, Miki M, Mizoguchi Y, Hirata O, Nishimura S, Tamaura M, Kagawa R, Hayakawa S, Kobayashi M, Okada S. Enhanced osteoclastogenesis in patients with MSMD due to impaired response to IFN-γ. J Allergy Clin Immunol 2021; 149:252-261.e6. [PMID: 34176646 DOI: 10.1016/j.jaci.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with Mendelian susceptibility to mycobacterial disease (MSMD) experience recurrent and/or persistent infectious diseases associated with poorly virulent mycobacteria. Multifocal osteomyelitis is among the representative manifestations of MSMD. The frequency of multifocal osteomyelitis is especially high in patients with MSMD etiologies that impair cellular response to IFN-γ, such as IFN-γR1, IFN-γR2, or STAT1 deficiency. OBJECTIVES This study sought to characterize the mechanism underlying multifocal osteomyelitis in MSMD. METHODS GM colonies prepared from bone marrow mononuclear cells from patients with autosomal dominant (AD) IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 gain of function (GOF) and from healthy controls were differentiated into osteoclasts in the presence or absence of IFN-γ. The inhibitory effect of IFN-γ on osteoclastogenesis was investigated by quantitative PCR, immunoblotting, tartrate-resistant acid phosphatase staining, and pit formation assays. RESULTS Increased osteoclast numbers were identified by examining the histopathology of osteomyelitis in patients with AD IFN-γR1 deficiency or AD STAT1 deficiency. In the presence of receptor activator of nuclear factor kappa-B ligand and M-CSF, GM colonies from patients with AD IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 GOF differentiated into osteoclasts, similar to GM colonies from healthy volunteers. IFN-γ concentration-dependent inhibition of osteoclast formation was impaired in GM colonies from patients with AD IFN-γR1 deficiency or AD STAT1 deficiency, whereas it was enhanced in GM colonies from patients with STAT1 GOF. CONCLUSIONS Osteoclast differentiation is increased in AD IFN-γR1 deficiency and AD STAT1 deficiency due to an impaired response to IFN-γ, leading to excessive osteoclast proliferation and, by inference, increased bone resorption in infected foci, which may underlie multifocal osteomyelitis.
Collapse
Affiliation(s)
- Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Hidamari Children Clinic, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Japanese Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| |
Collapse
|
22
|
Asano T, Khourieh J, Zhang P, Rapaport F, Spaan AN, Li J, Lei WT, Pelham SJ, Hum D, Chrabieh M, Han JE, Guérin A, Mackie J, Gupta S, Saikia B, Baghdadi JEI, Fadil I, Bousfiha A, Habib T, Marr N, Ganeshanandan L, Peake J, Droney L, Williams A, Celmeli F, Hatipoglu N, Ozcelik T, Picard C, Abel L, Tangye SG, Boisson-Dupuis S, Zhang Q, Puel A, Béziat V, Casanova JL, Boisson B. Human STAT3 variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. J Exp Med 2021; 218:212397. [PMID: 34137790 PMCID: PMC8217968 DOI: 10.1084/jem.20202592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joëlle Khourieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Tanwir Habib
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar.,College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luckshman Ganeshanandan
- Department of Clinical Immunology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Australia
| | - Luke Droney
- Department of Clinical Immunology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrew Williams
- Immunology Laboratory, Children's Hospital Westmead, Westmead, Australia
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science Antalya Education and Research Hospital, Antalya, Turkey
| | - Nevin Hatipoglu
- Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Capucine Picard
- Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et de la Recherche Médicale UMR 1163, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| |
Collapse
|
23
|
STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. NPJ Genom Med 2021; 6:34. [PMID: 33990617 PMCID: PMC8121859 DOI: 10.1038/s41525-021-00196-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.
Collapse
|
24
|
Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol 2021; 51:1039-1061. [PMID: 33729549 PMCID: PMC8900014 DOI: 10.1002/eji.202048793] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Type I IFNs are so-named because they interfere with viral infection in vertebrate cells. The study of cellular responses to type I IFNs led to the discovery of the JAK-STAT signaling pathway, which also governs the response to other cytokine families. We review here the outcome of viral infections in mice and humans with engineered and inborn deficiencies, respectively, of (i) IFNAR1 or IFNAR2, selectively disrupting responses to type I IFNs, (ii) STAT1, STAT2, and IRF9, also impairing cellular responses to type II (for STAT1) and/or III (for STAT1, STAT2, IRF9) IFNs, and (iii) JAK1 and TYK2, also impairing cellular responses to cytokines other than IFNs. A picture is emerging of greater redundancy of human type I IFNs for protective immunity to viruses in natural conditions than was initially anticipated. Mouse type I IFNs are essential for protection against a broad range of viruses in experimental conditions. These findings suggest that various type I IFN-independent mechanisms of human cell-intrinsic immunity to viruses have yet to be discovered.
Collapse
Affiliation(s)
- Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium, EU
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium, EU
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
- University of Paris, Imagine Institute, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
25
|
Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity. Curr Opin Immunol 2021; 72:59-64. [PMID: 33839590 DOI: 10.1016/j.coi.2021.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 02/01/2023]
Abstract
Signal transducer and activator of transcription 1 (STAT1) is a latent cytoplasmic transcription factor that is activated by multiple stimuli, including type I, II, and III interferons and interleukin-27. Inborn errors of human STAT1 immunity underlie 4 distinct disorders: autosomal recessive (AR) complete STAT1 deficiency, AR partial STAT1 deficiency, autosomal dominant (AD) STAT1 deficiency, and AD STAT1 gain-of-function. Each disease presents distinct clinical manifestations, excluding the difference in two AR STAT1 deficiencies, which are mainly explained by severity. This observation reflects the multiple and complex roles of STAT1 and how STAT1-mediated signaling is finely tuned in host immune systems.
Collapse
Affiliation(s)
- Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
26
|
Zhang W, Chen X, Gao G, Xing S, Zhou L, Tang X, Zhao X, An Y. Clinical Relevance of Gain- and Loss-of-Function Germline Mutations in STAT1: A Systematic Review. Front Immunol 2021; 12:654406. [PMID: 33777053 PMCID: PMC7991083 DOI: 10.3389/fimmu.2021.654406] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Germline mutations in signal transducer and activator of transcription 1 (STAT1), which lead to primary immunodeficiency, are classified as defects in intrinsic and innate immunity. To date, no comprehensive overview comparing GOF with LOF in early-onset immunodeficiency has been compiled. Objective: To collect and systematically review all studies reporting STAT1 GOF and LOF cases, and to describe the clinical, diagnostic, molecular, and therapeutic characteristics of all the conditions. Methods: A systematic review of the PubMed, EMBASE, Web of Science, Scopus, and Cochrane to identify articles published before May 23, 2020. Data pertaining to patients with a genetic diagnosis of STAT1 GOF or LOF germline mutations, along with detailed clinical data, were reviewed. Results: The search identified 108 publications describing 442 unique patients with STAT1 GOF mutations. The patients documented with chronic mucocutaneous candidiasis (CMC; 410/442), lower respiratory tract infections (210/442), and autoimmune thyroid disease (102/442). Th17 cytopenia was identified in 87.8% of those with GOF mutations. Twenty-five patients with GOF mutations received hematopoietic stem cell transplantation (HSCT), and 10 died several months later. Twelve of 20 patients who received JAK inhibitor therapy showed improved symptoms. Twenty-one publications described 39 unique patients with STAT1 LOF mutations. The most common manifestations were Mendelian susceptibility to mycobacterial diseases (MSMD) (29/39), followed by osteomyelitis (16/39), and lymphadenopathy (9/39). Missense, indel, and frameshift mutations were identified as LOF mutations. There were no obvious defects in lymphocyte subsets or immunoglobulin levels. Eighteen patients required antimycobacterial treatment. Three patients received HSCT, and one of the three died from fulminant EBV infection. Conclusions: STAT1 GOF syndrome is a clinical entity to consider when confronted with a patient with early-onset CMC, bacterial respiratory tract infections, or autoimmune thyroid disease as well as Th17 cytopenia and humoral immunodeficiency. HSCT is still not a reasonable therapeutic choice. Immunoglobulin replacement therapy and JAK inhibitors are an attractive alternative. STAT1 LOF deficiency is a more complicated underlying cause of early-onset MSMD, osteomyelitis, respiratory tract infections, and Herpesviridae infection. Anti-mycobacterial treatment is the main therapeutic choice. More trials are needed to assess the utility of HSCT.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guodong Gao
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Shubin Xing
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Ostadi V, Sherkat R, Migaud M, Modaressadeghi SM, Casanova JL, Puel A, Nekooie-Marnany N, Ganjalikhani-Hakemi M. Functional analysis of two STAT1 gain-of-function mutations in two Iranian families with autosomal dominant chronic mucocutaneous candidiasis. Med Mycol 2021; 59:180-188. [PMID: 32526033 DOI: 10.1093/mmy/myaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/31/2020] [Accepted: 05/09/2020] [Indexed: 02/05/2023] Open
Abstract
Candidiasis is characterized by susceptibility to recurrent or persistent infections caused by Candida spp., typically Candida albicans, of cutaneous and mucosal surfaces. In this report, function and frequency of Th17 cells as well as genetics of patients susceptible to mucocutaneous candidiasis were studied. For patients, T-cell proliferation tests in response to Candida antigen, Th17 cell proportions, and STAT1 phosphorylation were evaluated through flow cytometry. Expression of IL17A, IL17F and IL22 genes were measured by real-time quantitative PCR. At the same time, whole exome sequencing was performed for all patients. We identified two heterozygous substitutions, one: c.821G > A (p. R274Q) was found in a multiplex family with three individuals affected, the second one: c.812A > C (p. Q271P) was found in a sporadic case. Both mutations are located in the coiled-coil domain (CCD) of STAT1. The frequency of Th17 cells, IL17A, IL17F, and IL22 gene expression in patients' peripheral blood mononuclear cells (PBMCs), and T-cell proliferation to Candida antigens were significantly reduced in the patients as compared to healthy controls. An increased STAT1 phosphorylation was observed in patients' PBMCs upon interferon (IFN)-γ stimulation as compared to healthy controls. We report two different but neighboring heterozygous mutations, located in exon 10 of the STAT1 gene, in four Iranian patients with CMC, one of whom also had hypothyroidism. These mutations were associated with impaired T cell proliferation to Candida antigen, low Th17 cell proportions, and increased STAT1 phosphorylation upon IFN-γ. We suggest that interfering with STAT1 phosphorylation might be a promising way for potential therapeutic measurements for such patients.
Collapse
Affiliation(s)
- Vajiheh Ostadi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | | | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U1163 and University Paris Descartes, Sorbonne Paris Cité, Imagine Institute, Paris, France, EU
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Duncan CJA, Randall RE, Hambleton S. Genetic Lesions of Type I Interferon Signalling in Human Antiviral Immunity. Trends Genet 2021; 37:46-58. [PMID: 32977999 PMCID: PMC7508017 DOI: 10.1016/j.tig.2020.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The concept that type I interferons (IFN-I) are essential to antiviral immunity derives from studies on animal models and cell lines. Virtually all pathogenic viruses have evolved countermeasures to IFN-I restriction, and genetic loss of viral IFN-I antagonists leads to virus attenuation. But just how important is IFN-I to antiviral defence in humans? The recent discovery of genetic defects of IFN-I signalling illuminates this and other questions of IFN biology, including the role of the mucosa-restricted type III IFNs (IFN-III), informing our understanding of the place of the IFN system within the concerted antiviral response. Here we review monogenic lesions of IFN-I signalling pathways and summarise the organising principles which emerge.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK.
| | - Richard E Randall
- School of Biology, University of St Andrew's, St Andrew's KY16 9ST, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| |
Collapse
|
29
|
Boehmer DF, Koehler LM, Magg T, Metzger P, Rohlfs M, Ahlfeld J, Rack-Hoch A, Reiter K, Albert MH, Endres S, Rothenfusser S, Klein C, Koenig LM, Hauck F. A Novel Complete Autosomal-Recessive STAT1 LOF Variant Causes Immunodeficiency with Hemophagocytic Lymphohistiocytosis–Like Hyperinflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:3102-3111. [PMID: 32603902 PMCID: PMC9188869 DOI: 10.1016/j.jaip.2020.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 01/23/2023]
Abstract
Background Objective Methods Results Conclusions
Collapse
|
30
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
31
|
Kong XF, Worley L, Rinchai D, Bondet V, Jithesh PV, Goulet M, Nonnotte E, Rebillat AS, Conte M, Mircher C, Gürtler N, Liu L, Migaud M, Elanbari M, Habib T, Ma CS, Bustamante J, Abel L, Ravel A, Lyonnet S, Munnich A, Duffy D, Chaussabel D, Casanova JL, Tangye SG, Boisson-Dupuis S, Puel A. Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome. J Clin Immunol 2020; 40:807-819. [PMID: 32572726 PMCID: PMC7418179 DOI: 10.1007/s10875-020-00803-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Down syndrome (DS) is characterized by the occurrence of three copies of human chromosome 21 (HSA21). HSA21 contains a cluster of four interferon receptor (IFN-R) genes: IFNAR1, IFNAR2, IFNGR2, and IL10RB. DS patients often develop mucocutaneous infections and autoimmune diseases, mimicking patients with heterozygous gain-of-function (GOF) STAT1 mutations, which enhance cellular responses to three types of interferon (IFN). A gene dosage effect at these four loci may contribute to the infectious and autoimmune manifestations observed in individuals with DS. We report high levels of IFN-αR1, IFN-αR2, and IFN-γR2 expression on the surface of monocytes and EBV-transformed-B (EBV-B) cells from studying 45 DS patients. Total and phosphorylated STAT1 (STAT1 and pSTAT1) levels were constitutively high in unstimulated and IFN-α- and IFN-γ-stimulated monocytes from DS patients but lower than those in patients with GOF STAT1 mutations. Following stimulation with IFN-α or -γ, but not with IL-6 or IL-21, pSTAT1 and IFN-γ activation factor (GAF) DNA-binding activities were significantly higher in the EBV-B cells of DS patients than in controls. These responses resemble the dysregulated responses observed in patients with STAT1 GOF mutations. Concentrations of plasma type I IFNs were high in 12% of the DS patients tested (1.8% in the healthy controls). Levels of type I IFNs, IFN-Rs, and STAT1 were similar in DS patients with and without recurrent skin infections. We performed a genome-wide transcriptomic analysis based on principal component analysis and interferon modules on circulating monocytes. We found that DS monocytes had levels of both IFN-α- and IFN-γ-inducible ISGs intermediate to those of monocytes from healthy controls and from patients with GOF STAT1 mutations. Unlike patients with GOF STAT1 mutations, patients with DS had normal circulating Th17 counts and a high proportion of terminally differentiated CD8+ T cells with low levels of STAT1 expression. We conclude a mild interferonopathy in Down syndrome leads to an incomplete penetrance at both cellular and clinical level, which is not correlate with recurrent skin bacterial or fungal infections. The constitutive upregulation of type I and type II IFN-R, at least in monocytes of DS patients, may contribute to the autoimmune diseases observed in these individuals.
Collapse
Affiliation(s)
- Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Lisa Worley
- Immunity & Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Darawan Rinchai
- Sidra Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Vincent Bondet
- Immunobiology of Dendritic Cells Unit, Institut Pasteur, Paris, France
- Inserm U1223, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | - Nicolas Gürtler
- Department of Otorhinolaryngology, University Hospital of Basel, Basel, Switzerland
| | - Luyan Liu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | | | - Tanwir Habib
- Sidra Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Cindy S Ma
- Immunity & Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital, 75015, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | | | - Stanislas Lyonnet
- Laboratory of Genetics and Embryology of Congenital Malformation, INSERM U1163, Imagine Institute, Université de Paris, Paris, France
| | - Arnold Munnich
- Fédération de Génétique et Institut Imagine, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells Unit, Institut Pasteur, Paris, France
- Inserm U1223, Institut Pasteur, Paris, France
| | | | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, USA
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital, 75015, Paris, France
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Stuart G Tangye
- Immunity & Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
32
|
Piersma SJ, Poursine-Laurent J, Yang L, Barber GN, Parikh BA, Yokoyama WM. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. eLife 2020; 9:56882. [PMID: 32723479 PMCID: PMC7413665 DOI: 10.7554/elife.56882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Recognition of DNA viruses, such as cytomegaloviruses (CMVs), through pattern-recognition receptor (PRR) pathways involving MyD88 or STING constitute a first-line defense against infections mainly through production of type I interferon (IFN-I). However, the role of these pathways in different tissues is incompletely understood, an issue particularly relevant to the CMVs which have broad tissue tropisms. Herein, we contrasted anti-viral effects of MyD88 versus STING in distinct cell types that are infected with murine CMV (MCMV). Bone marrow chimeras revealed STING-mediated MCMV control in hematological cells, similar to MyD88. However, unlike MyD88, STING also contributed to viral control in non-hematological, stromal cells. Infected splenic stromal cells produced IFN-I in a cGAS-STING-dependent and MyD88-independent manner, while we confirmed plasmacytoid dendritic cell IFN-I had inverse requirements. MCMV-induced natural killer cytotoxicity was dependent on MyD88 and STING. Thus, MyD88 and STING contribute to MCMV control in distinct cell types that initiate downstream immune responses.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Glen N Barber
- Department of Cell Biology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, United States
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
33
|
Sakata S, Tsumura M, Matsubayashi T, Karakawa S, Kimura S, Tamaura M, Okano T, Naruto T, Mizoguchi Y, Kagawa R, Nishimura S, Imai K, Le Voyer T, Casanova JL, Bustamante J, Morio T, Ohara O, Kobayashi M, Okada S. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int Immunol 2020; 32:663-671. [PMID: 32603428 DOI: 10.1093/intimm/dxaa043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.
Collapse
Affiliation(s)
- Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, EU, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris EU, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.,Paris University, Imagine Institute, Paris, EU, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris EU, France.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, EU, Denmark
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kasarazu, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
34
|
Gruber C, Bogunovic D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum Genet 2020; 139:745-757. [PMID: 32067110 PMCID: PMC7275875 DOI: 10.1007/s00439-020-02131-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Primary immunodeficiencies (PIDs) comprise a diverse group of over 400 genetic disorders that result in clinically apparent immune dysfunction. Although PIDs are classically considered as Mendelian disorders with complete penetrance, we now understand that absent or partial clinical disease is often noted in individuals harboring disease-causing genotypes. Despite the frequency of incomplete penetrance in PID, no conceptual framework exists to categorize and explain these occurrences. Here, by reviewing decades of reports on incomplete penetrance in PID we identify four recurrent themes of incomplete penetrance, namely genotype quality, (epi)genetic modification, environmental influence, and mosaicism. For each of these principles, we review what is known, underscore what remains unknown, and propose future experimental approaches to fill the gaps in our understanding. Although the content herein relates specifically to inborn errors of immunity, the concepts are generalizable across genetic diseases.
Collapse
Affiliation(s)
- Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
35
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
36
|
Bustamante J. Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet 2020; 139:993-1000. [PMID: 32025907 DOI: 10.1007/s00439-020-02120-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of IFN-γ immunity. Affected patients are highly and selectively susceptible to weakly virulent mycobacteria, such as environmental mycobacteria and Bacillus Calmette-Guérin vaccines. Since 1996, disease-causing mutations have been reported in 15 genes, with allelic heterogeneity leading to 30 genetic disorders. Here, we briefly review the progress made in molecular, cellular, immunological, and clinical studies of MSMD since the last review published in 2018. Highlights include the discoveries of new genetic etiologies of MSMD: autosomal recessive (AR) complete deficiencies of (1) SPPL2a, (2) IL-12Rβ2, and (3) IL-23R, and (4) homozygosity for TYK2 P1104A, resulting in selective impairment of responses to IL-23. The penetrance of SPPL2a deficiency for MSMD is high, probably complete, whereas that of IL-12Rβ2 and IL-23R deficiencies, and TYK2 P1104A homozygosity, is incomplete, and probably low. SPPL2a deficiency has added weight to the notion that human cDC2 and Th1* cells are important for antimycobacterial immunity. Studies of IL-12Rβ2 and IL-23R deficiencies, and of homozygosity for P1104A TYK2, have shown that both IL-12 and IL-23 are required for optimal levels of IFN-γ. These recent findings illustrate how forward genetic studies of MSMD are continuing to shed light on the mechanisms of protective immunity to mycobacteria in humans.
Collapse
Affiliation(s)
- Jacinta Bustamante
- Imagine Institute, Paris University, Paris, France. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France. .,Study Center for Primary Immunodeficiencies, AP-HP, Necker Children Hospital, Paris, France.
| |
Collapse
|
37
|
AlZoebie L, Al Sereidi H, Al Maeeni S, Ramsi M. Diagnosing inborn error of immunity following the presentation of a complicated acquired infection after MMRV vaccine administration. BMJ Case Rep 2020; 13:13/1/e233063. [PMID: 31969413 DOI: 10.1136/bcr-2019-233063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Live vaccine-acquired infection should attest for the occurrence of inborn errors of immunity. Autosomal recessive immunodeficiency 31B, a result of a signal transducer and activator of transcription 1 genetic mutation, results in defected interferon pathways: interferon alpha/beta and interferon gamma. These interferons are crucial for the defence against viral and mycobacterial infections. Recognition is important for preventive and therapeutic approaches. Herein, we report the presentation of a newly diagnosed 13-month-old child with immunodeficiency 31B after presenting with disseminated measles and varicella infection after Measles, Mumps, Rubella and Varicella vaccination.
Collapse
Affiliation(s)
- Lama AlZoebie
- Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Hend Al Sereidi
- Paediatric Critical Care Medicine, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Shaima Al Maeeni
- Paediatric Critical Care Medicine, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Musaab Ramsi
- Paediatric Critical Care Medicine, Shaikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Human diseases caused by impaired signal transducer and activator of transcription and Janus kinase signaling. Curr Opin Pediatr 2019; 31:843-850. [PMID: 31693596 DOI: 10.1097/mop.0000000000000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The Janus kinase (JAK) and signal transducer of activation (STAT) pathway plays a key role in the immune system. It is employed by diverse cytokines, interferons, growth factors and related molecules. Mutations in JAK/STAT pathway have been implicated in human disease. Here we review JAK/STAT biology and diseases associated with mutations in this pathway. RECENT FINDINGS Over the past 10 years, many mutations in JAK/STAT pathway has been discovered. These disorders have provided insights to human immunology. SUMMARY In this review, we summarize the biology of each STAT and JAK as well as discuss the human disease that results from somatic or germline mutations to include typical presentation, immunological parameters and treatment.
Collapse
|
39
|
Taft J, Bogunovic D. The Goldilocks Zone of Type I IFNs: Lessons from Human Genetics. THE JOURNAL OF IMMUNOLOGY 2019; 201:3479-3485. [PMID: 30530500 DOI: 10.4049/jimmunol.1800764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/15/2018] [Indexed: 12/27/2022]
Abstract
Type I IFNs (IFN-Is) are powerful cytokines. They provide remarkable protection against viral infections, but their indiscriminate production causes severe self-inflicted damage that can be lethal, particularly in early development. In humans, inappropriately high IFN-I levels caused by defects in the regulatory mechanisms that control IFN-I production and response result in clinical conditions known as type I interferonopathies. In essence, type I interferonopathies define the upper limit of safe, IFN-related inflammation in vivo. Conversely, the loss of IFN-I responsiveness increases susceptibility to viral infections, but, surprisingly, most affected individuals survive despite these inborn errors of immunity. These findings suggest that too much IFN-I early in life is toxic, but that insensitivity to IFN-I is perhaps not the death sentence it was initially thought to be. Human genetic analyses have suggested that seemingly insignificant levels of IFN-regulated gene activity may be sufficient for most of the antiviral defenses used by humans in natura.
Collapse
Affiliation(s)
- Justin Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
40
|
Fabbri M, Frixou M, Degano M, Fousteri G. Type 1 Diabetes in STAT Protein Family Mutations: Regulating the Th17/Treg Equilibrium and Beyond. Diabetes 2019; 68:258-265. [PMID: 30665954 DOI: 10.2337/db18-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/11/2018] [Indexed: 11/13/2022]
Abstract
Improvements in the immunological, molecular, and genetic technologies such as next-generation sequencing have led to an exponential increase in the number of monogenic immune dysregulatory syndromes diagnosed, where type 1 diabetes (T1D) forms part of the autoimmune manifestations. Here, we reviewed the mutations in the signal transducer and activator of transcription (STAT) protein family, namely gain-of-function (GOF) mutations in STAT1 and STAT3 as well as STAT5b deficiency, that show strong association to T1D susceptibility. The equilibrium of T-helper 17 (Th17) and regulatory T cells (Tregs) is often found altered in patients affected by STAT GOF mutations. While the increased number of Th17 cells and the concomitant decrease in Treg cells may explain T1D in STAT3 GOF patients, the reduced number of Th17 cells found in those carrying STAT1 GOF mutations added a new level of complexity on the exact role of Th17 in the pathogenesis of T1D. Here, we describe the possible mechanisms through which STAT3 and STAT1 GOF mutations may perturb the fate and function of Th17 and Tregs and explore how this may lead to the development of T1D. We propose that the study of monogenic diseases, and in particular STAT mutations, may not only improve our understanding of the function of the human immune system but also shed light onto the pathogenic mechanisms of T1D and the genetic variants that confer predisposition to the disease.
Collapse
Affiliation(s)
- Marco Fabbri
- Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Mikaela Frixou
- School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology, Transplantation and Infectious Diseases, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Olbrich P, Freeman AF. STAT1 and STAT3 mutations: important lessons for clinical immunologists. Expert Rev Clin Immunol 2018; 14:1029-1041. [PMID: 30280610 DOI: 10.1080/1744666x.2018.1531704] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The transcription factors signal transducer and activator of transcription (STAT) 1 and STAT3 fulfill fundamental functions in nonimmune and immune cells. The description and follow-up of patients with germline mutations that result in either loss-of-function or gain-of-function have contributed to our understanding of the pathophysiology of these regulators. Depending on the type of mutations, clinical symptoms are complex and can include infection susceptibility, immune dysregulation as well as characteristic nonimmune features. Areas covered: In this review, we provide an overview about mechanistic concepts, clinical manifestations, diagnostic process, and traditional as well as innovative treatment options aiming to help the clinical immunologist to better understand and manage these complex and rare diseases. Clinical and research papers were identified and summarized through PubMed Internet searches, and expert opinions are provided. Expert commentary: The last several years have seen an explosion in the clinical descriptions and pathogenesis knowledge of the diseases caused by GOF and LOF mutations in STAT1 and STAT3. However, harmonization of laboratory testing and follow-up in international cohorts is needed to increase our knowledge about the natural history of these disorders as well as the development of curative or supportive targeted therapies.
Collapse
Affiliation(s)
- Peter Olbrich
- a Sección de Infectología, Reumatologíe e Inmunología Pediátrica (SIRIP) , Hospital Infantil Universitario Virgen del Rocío , Seville , Spain.,b Grupo de Enfermedades Infecciosas e Inmunodeficiencias , Instituto de Biomedicina de Sevilla (IBiS) , Seville , Spain
| | - Alexandra F Freeman
- c National Institute of Allergy and Infectious Diseases, NIH , Bethesda , MD , USA
| |
Collapse
|
42
|
Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia. Sci Rep 2018; 8:6956. [PMID: 29725107 PMCID: PMC5934390 DOI: 10.1038/s41598-018-25260-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4+ T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.
Collapse
|
43
|
Esteve-Solé A, Sologuren I, Martínez-Saavedra MT, Deyà-Martínez À, Oleaga-Quintas C, Martinez-Barricarte R, Martinez-Nalda A, Juan M, Casanova JL, Rodriguez-Gallego C, Alsina L, Bustamante J. Laboratory evaluation of the IFN-γ circuit for the molecular diagnosis of Mendelian susceptibility to mycobacterial disease. Crit Rev Clin Lab Sci 2018; 55:184-204. [PMID: 29502462 PMCID: PMC5880527 DOI: 10.1080/10408363.2018.1444580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integrity of the interferon (IFN)-γ circuit is necessary to mount an effective immune response to intra-macrophagic pathogens, especially Mycobacteria. Inherited monogenic defects in this circuit that disrupt the production of, or response to, IFN-γ underlie a primary immunodeficiency known as Mendelian susceptibility to mycobacterial disease (MSMD). Otherwise healthy patients display a selective susceptibility to clinical disease caused by poorly virulent mycobacteria such as BCG (bacille Calmette-Guérin) vaccines and environmental mycobacteria, and more rarely by other intra-macrophagic pathogens, particularly Salmonella and M. tuberculosis. There is high genetic and allelic heterogeneity, with 19 genetic etiologies due to mutations in 10 genes that account for only about half of the patients reported. An efficient laboratory diagnostic approach to suspected MSMD patients is important, because it enables the establishment of specific therapeutic measures that will improve the patient's prognosis and quality of life. Moreover, it is essential to offer genetic counseling to affected families. Herein, we review the various genetic and immunological diagnostic approaches that can be used in concert to reach a molecular and cellular diagnosis in patients with MSMD.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Ithaisa Sologuren
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, EU
| | | | - Àngela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
| | - Andrea Martinez-Nalda
- Pediatric Infectious Disease and Immunodeficiency Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Spain, EU
| | - Manel Juan
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
- Immunology Department. Biomedical Diagnostics Center, Hospital Clinic-IDIBAPS, Barcelona, Spain, EU
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| | - Carlos Rodriguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, EU
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for SickChildren, AP-HP, Paris, France, EU
| |
Collapse
|
44
|
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol 2017; 14:7-18. [PMID: 29255211 DOI: 10.1038/nrrheum.2017.198] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Reinhold E Schmidt
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, University Medical Centre, University of Freiburg, Faculty of Medicine, Breisacher Straße 115, D-79106 Freiburg, Germany
| | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| |
Collapse
|
45
|
Naviglio S, Soncini E, Vairo D, Lanfranchi A, Badolato R, Porta F. Long-Term Survival After Hematopoietic Stem Cell Transplantation for Complete STAT1 Deficiency. J Clin Immunol 2017; 37:701-706. [DOI: 10.1007/s10875-017-0430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023]
|
46
|
Zimmerman O, Rosen LB, Swamydas M, Ferre EMN, Natarajan M, van de Veerdonk F, Holland SM, Lionakis MS. Autoimmune Regulator Deficiency Results in a Decrease in STAT1 Levels in Human Monocytes. Front Immunol 2017; 8:820. [PMID: 28769929 PMCID: PMC5509791 DOI: 10.3389/fimmu.2017.00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by biallelic autoimmune regulator (AIRE) mutations that manifests with chronic mucocutaneous candidiasis (CMC) and autoimmunity. Patients with STAT1 gain-of-function (GOF) mutations also develop CMC and autoimmunity; they exhibit increased STAT1 protein levels at baseline and STAT1 phosphorylation (pSTAT1) upon interferon (IFN)-γ stimulation relative to healthy controls. AIRE interacts functionally with a protein that directly regulates STAT1, namely protein inhibitor of activated STAT1, which inhibits STAT1 activation. Given the common clinical features between patients with AIRE and STAT1 GOF mutations, we sought to determine whether APECED patients also exhibit increased levels of STAT1 protein and phosphorylation in CD14+ monocytes. We obtained peripheral blood mononuclear cells from 8 APECED patients and 13 healthy controls and assessed the levels of STAT1 protein and STAT1 tyrosine phosphorylation at rest and following IFN-γ stimulation, as well as the levels of STAT1 mRNA. The mean STAT1 protein levels in CD14+ monocytes exhibited a ~20% significant decrease in APECED patients both at rest and after IFN-γ stimulation relative to that of healthy donors. Similarly, the mean peak value of IFN-γ-induced pSTAT1 level was ~20% significantly lower in APECED patients compared to that in healthy controls. The decrease in STAT1 and peak pSTAT1 in APECED patients was not accompanied by decreased STAT1 mRNA or anti-IFN-γ autoantibodies; instead, it correlated with the presence of autoantibodies to type I IFN and decreased AIRE−/− monocyte surface expression of IFN-γ receptor 2. Our data show that, in contrast to patients with STAT1 GOF mutations, APECED patients show a moderate but consistent and significant decrease in total STAT1 protein levels, associated with lower peak levels of pSTAT1 molecules after IFN-γ stimulation.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Lindsey B Rosen
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Muthulekha Swamydas
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Elise M N Ferre
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Mukil Natarajan
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RILMS), Nijmegen, Netherlands
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Michail S Lionakis
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Leiding JW, Okada S, Hagin D, Abinun M, Shcherbina A, Balashov DN, Kim VHD, Ovadia A, Guthery SL, Pulsipher M, Lilic D, Devlin LA, Christie S, Depner M, Fuchs S, van Royen-Kerkhof A, Lindemans C, Petrovic A, Sullivan KE, Bunin N, Kilic SS, Arpaci F, Calle-Martin ODL, Martinez-Martinez L, Aldave JC, Kobayashi M, Ohkawa T, Imai K, Iguchi A, Roifman CM, Gennery AR, Slatter M, Ochs HD, Morio T, Torgerson TR. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J Allergy Clin Immunol 2017; 141:704-717.e5. [PMID: 28601685 DOI: 10.1016/j.jaci.2017.03.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/18/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) cause susceptibility to a range of infections, autoimmunity, immune dysregulation, and combined immunodeficiency. Disease manifestations can be mild or severe and life-threatening. Hematopoietic stem cell transplantation (HSCT) has been used in some patients with more severe symptoms to treat and cure the disorder. However, the outcome of HSCT for this disorder is not well established. OBJECTIVE We sought to aggregate the worldwide experience of HSCT in patients with GOF-STAT1 mutations and to assess outcomes, including donor engraftment, overall survival, graft-versus-host disease, and transplant-related complications. METHODS Data were collected from an international cohort of 15 patients with GOF-STAT1 mutations who had undergone HSCT using a variety of conditioning regimens and donor sources. Retrospective data collection allowed the outcome of transplantation to be assessed. In vitro functional testing was performed to confirm that each of the identified STAT1 variants was in fact a GOF mutation. RESULTS Primary donor engraftment in this cohort of 15 patients with GOF-STAT1 mutations was 74%, and overall survival was only 40%. Secondary graft failure was common (50%), and posttransplantation event-free survival was poor (10% by 100 days). A subset of patients had hemophagocytic lymphohistiocytosis before transplant, contributing to their poor outcomes. CONCLUSION Our data indicate that HSCT for patients with GOF-STAT1 mutations is curative but has significant risk of secondary graft failure and death.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins - All Children's Hospital, St Petersburg, Fla
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - David Hagin
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Mario Abinun
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anna Shcherbina
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Dmitry N Balashov
- Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Vy H D Kim
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adi Ovadia
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen L Guthery
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Michael Pulsipher
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, Calif
| | - Desa Lilic
- Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa A Devlin
- Regional Immunology Service, Royal Hospitals, Belfast, United Kingdom
| | - Sharon Christie
- Department of Pediatrics, Royal Hospitals, Belfast, United Kingdom
| | - Mark Depner
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
| | - Annet van Royen-Kerkhof
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aleksandra Petrovic
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash; Blood and Bone Marrow Transplant Program, Johns Hopkins Medicine-All Children's Hospital, St Petersburg, Fla
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Nancy Bunin
- Division of Oncology, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology, Department of Pediatrics, Uludag University Medical Faculty, Gorukle-Bursa, Turkey
| | - Fikret Arpaci
- GATA Faculty, Bone Marrow Transplant Center, Ankara, Turkey
| | | | | | | | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Teppei Ohkawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Chaim M Roifman
- Canadian Center for Primary Immunodeficiency, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew R Gennery
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary Slatter
- Great North Children's Hospital, RVI, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, ICM, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan.
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, Wash.
| | | |
Collapse
|
48
|
Partial dysfunction of STAT1 profoundly reduces host resistance to flaviviral infection. Virology 2017; 506:1-6. [PMID: 28282567 DOI: 10.1016/j.virol.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/22/2022]
Abstract
The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/β signalling is sufficient to overcome the ability of the host to control the infection.
Collapse
|
49
|
Mortaz E, Adcock IM, Tabarsi P, Darazam IA, Movassaghi M, Garssen J, Jamaati H, Velayati A. Pattern recognitions receptors in immunodeficiency disorders. Eur J Pharmacol 2017; 808:49-56. [PMID: 28095323 DOI: 10.1016/j.ejphar.2017.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 01/13/2023]
Abstract
Pattern recognition receptors (PRRs) recognize common microbial or host-derived macromolecules and have important roles in early activation and response of the immune system. Initiation of the innate immune response starts with the recognition of microbial structures called pathogen associated molecular patterns (PAMPs). Recognition of PAMPs is performed by germline-encoded receptors expressed mainly on immune cells termed pattern recognition receptors (PRRs). Several classes of pattern recognition receptors (PRRs) are involved in the pathogenesis of diseases, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs). Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins in the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are associated with susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Altered TLR responses to TLR2 and 4 agonists are seen in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome (HIES), and for most TLRs in adenosine deaminase deficiency. In this review we provide the reader with an update on the role of TLRs and downstream signaling pathways in PID disorders.
Collapse
Affiliation(s)
- Esameil Mortaz
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti, University of Medical Sciences,Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), USA
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands; Department of Immunology, Nutricia Research, Utrecht, the Netherlands
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, Kong XF, Kato Z, Ohnishi H, Hirata O, Saito S, Ikeda M, El Baghdadi J, Bousfiha A, Fujiwara K, Oleastro M, Yancoski J, Perez L, Danielian S, Ailal F, Takada H, Hara T, Puel A, Boisson-Dupuis S, Bustamante J, Casanova JL, Ohara O, Okada S, Kobayashi M. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol 2016; 140:232-241. [PMID: 28011069 DOI: 10.1016/j.jaci.2016.09.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE We estimated variations in the CCD/DBD of STAT1. METHODS We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Saito
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Okazaki City Hospital, Aichi, Japan
| | | | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Kaori Fujiwara
- Department of Pediatrics, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Matias Oleastro
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Judith Yancoski
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Laura Perez
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Silvia Danielian
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|