1
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
2
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
3
|
Zhao N, Wang H, Zhang M, Tian W, Liu Y, Tian D, Yao J, Liu M. Characterization of NK Cells Using Single-Cell RNA Sequencing in Patients With Acute-On-Chronic Liver Failure. J Gastroenterol Hepatol 2025; 40:917-929. [PMID: 39800654 DOI: 10.1111/jgh.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND AND AIM Acute-on-chronic liver failure (ACLF) is characterized by fast progression and high mortality, with systemic inflammation and immune paralysis as its key events. While natural killer (NK) cells are key innate immune cells, their unique function and subpopulation heterogeneity in ACLF have not been fully elucidated. This study aimed to investigate the characteristics of NK cell subsets in the peripheral blood of patients with ACLF and determine their roles in the inflammatory responses. METHODS Circulating NK cells (14 751 cells) from patients with ACLF and healthy controls (HCs) were subjected to single-cell RNA sequencing (scRNA-seq). Clustering and annotation were used to identify the features of NK cell subsets and the characteristics of disease progression in ACLF. RESULTS Four NK cell subsets were obtained, including adaptive NK cells, mature NK cells, inflamed NK cells, and CD56bright NK cells. Compared with the HCs, the patients with ACLF had a significantly lower proportion of Mature NK cells and a higher proportion of Inflamed NK cells. Quasi-temporal analysis showed that Inflamed NK cells were highly enriched in the late quasi-temporal sequence, and genes related to pro-inflammatory were significantly up-regulated in Inflamed NK cells. In addition, scRNA-seq and flow cytometry confirmed that the expression level of cell migration inducing hyaluronidase 2 (CEMIP2) in NK cells progressively increased from the HC group to the ACLF survival group and then to the ACLF death group. CONCLUSIONS scRNA-seq reveals that Inflamed NK cell subsets are associated with ACLF progression and poor prognosis. CEMIP2 may be a molecular marker for ACLF progression.
Collapse
Affiliation(s)
- Ninghui Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Han Wang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Miaoxin Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulong Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Roussot N, Kaderbhai C, Ghiringhelli F. Targeting Immune Checkpoint Inhibitors for Non-Small-Cell Lung Cancer: Beyond PD-1/PD-L1 Monoclonal Antibodies. Cancers (Basel) 2025; 17:906. [PMID: 40075753 PMCID: PMC11898530 DOI: 10.3390/cancers17050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Immunotherapy targeting the PD-1/PD-L1 axis has revolutionized treatment, providing durable responses in a subset of patients. However, with fewer than 50% of patients achieving significant benefits, there is a critical need to expand therapeutic strategies. This review explores emerging targets in immune checkpoint inhibition beyond PD-1/PD-L1, including CTLA-4, TIGIT, LAG-3, TIM-3, NKG2A, and CD39/CD73. We highlight the biological basis of CD8 T cell exhaustion in shaping the antitumor immune response. Novel therapeutic approaches targeting additional inhibitory receptors (IR) are discussed, with a focus on their distinct mechanisms of action and combinatory potential with existing therapies. Despite significant advancements, challenges remain in overcoming resistance mechanisms and optimizing patient selection. This review underscores the importance of dual checkpoint blockade and innovative bispecific antibody engineering to maximize therapeutic outcomes for NSCLC patients.
Collapse
Affiliation(s)
- Nicolas Roussot
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Courèche Kaderbhai
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, 21000 Dijon, France; (C.K.); (F.G.)
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, 21000 Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Team TIRECs: Therapies and Immune REsponse in CancerS, 21000 Dijon, France
- UFR Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
5
|
Ahmady F, Sharma A, Achuthan AA, Kannourakis G, Luwor RB. The Role of TIM-3 in Glioblastoma Progression. Cells 2025; 14:346. [PMID: 40072074 PMCID: PMC11899008 DOI: 10.3390/cells14050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression. Here, we critically summarize the current literature regarding TIM-3 expression as a prognostic marker for glioblastoma, its expression profile on immune cells in glioblastoma patients and the exploration of anti-TIM-3 agents in glioblastoma pre-clinical models for potential clinical application.
Collapse
Affiliation(s)
- Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127 Bonn, Germany;
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Adrian A. Achuthan
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia;
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Rodney B. Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
6
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Wang J, Li H, Kulkarni A, Anderson JL, Upadhyay P, Onyekachi OV, Arantes LMRB, Banerjee H, Kane LP, Zhang X, Bruno TC, Bao R, Ferris RL, Vujanovic L. Differential impact of TIM-3 ligands on NK cell function. J Immunother Cancer 2025; 13:e010618. [PMID: 39773563 PMCID: PMC11748930 DOI: 10.1136/jitc-2024-010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3+ natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3+ NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions. METHODS Single-cell RNA sequencing and flow cytometry were used to study the prevalence, phenotypes and function of TIM-3+ NK cells in HNSCC patient tumors and blood. In vitro killing, proliferation and cytokine production assays were implemented to evaluate whether the four TIM-3 ligands differentially modulate TIM-3+ NK cell functions, and whether disruption of TIM-3/ligand interaction can enhance NK cell-mediated antitumor effector mechanisms. Finally, The Cancer Genome Atlas survival analysis and digital spatial profiling were employed to study the potential impact of etiology-associated differences on patients with HNSCC outcomes. RESULTS We demonstrate that TIM-3 is highly prevalent on circulating and tumor-infiltrating NK cells. It co-expresses with CD44 and marks NK cells with heightened effector potential. Among the four putative TIM-3 ligands, galectin-9 most consistently suppresses NK cell-mediated cytotoxicity and proliferation through TIM-3 and CD44 signaling, respectively, but promotes IFN-γ release in a TIM-3-dependent manner. Among patients with HNSCC, an elevated intratumoral TIM-3+ NK cell gene signature associates with worse outcomes, specifically in those with human papillomavirus (HPV)+ disease, potentially attributable to higher galectin-9 levels in HPV+ versus HPV- patients. CONCLUSIONS Our findings underscore the complex functional impact of TIM-3 ligand signaling, which is consistent with recent clinical trials suggesting that targeting TIM-3 alone is suboptimal as an immunotherapeutic approach for treating malignancies.
Collapse
Affiliation(s)
- Juncheng Wang
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Housaiyin Li
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aditi Kulkarni
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Anderson
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Pragati Upadhyay
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Onyedikachi Victor Onyekachi
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lidia M R B Arantes
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Barretos Cancer Hospital, Barretos, Brazil
| | - Hridesh Banerjee
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lawrence P Kane
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xin Zhang
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, North Carolina, USA
| | - Lazar Vujanovic
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Lee H, Ko DS, Heo HJ, Baek SE, Kim EK, Kwon EJ, Kang J, Yu Y, Baryawno N, Kim K, Lee D, Kim YH. Uncovering NK cell sabotage in gut diseases via single cell transcriptomics. PLoS One 2025; 20:e0315981. [PMID: 39752457 PMCID: PMC11698320 DOI: 10.1371/journal.pone.0315981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC. Using single-cell RNA sequencing datasets, we analyzed the profiles of immune cells in colorectal tissues obtained from healthy donors, UC patients, and CRC patients. The colon tissues from patients and healthy participants were visualized by immunostaining followed by laser confocal microscopy for select targets. Natural killer (NK) cells from UC patients on medication showed reduced cytotoxicity compared to those from healthy individuals. Nonetheless, a UC-specific pathway called the BAG6-NCR3 axis led to higher levels of inflammatory cytokines and increased the cytotoxicity of NCR3+ NK cells, thereby contributing to the persistence of colitis. In the context of colorectal cancer (CRC), both NK cells and CD8+ T cells exhibited significant changes in cytotoxicity and exhaustion. The GALECTIN-9 (LGALS9)-HAVCR2 axis was identified as one of the CRC-specific pathways. Within this pathway, NK cells solely communicated with myeloid cells under CRC conditions. HAVCR2+ NK cells from CRC patients suppressed NK cell-mediated cytotoxicity, indicating a reduction in immune surveillance. Overall, we elucidated the comprehensive UC and CRC immune microenvironments and NK cell-mediated immune responses. Our findings can aid in selecting therapeutic targets that increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Dai Sik Ko
- Division of Vascular Surgery, Department of General Surgery, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Junho Kang
- Department of Research, Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Yeuni Yu
- Medical Research Institute, Pusan National University, Yangsan, Republic of Korea
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Kihun Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Meng X, Luo Y, Cui L, Wang S. Involvement of Tim-3 in Maternal-fetal Tolerance: A Review of Current Understanding. Int J Biol Sci 2025; 21:789-801. [PMID: 39781467 PMCID: PMC11705645 DOI: 10.7150/ijbs.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
As the first T cell immunoglobulin mucin (Tim) family member to be identified, Tim-3 is a powerful immune checkpoint that functions in immunoregulation and induction of tolerance. Conventionally, Tim-3 is considered to play a role in adaptive immunity, especially in helper T cell-mediated immune responses. As researches progress, Tim-3 has been detected in a wider range of cell types, modulating cell function through ligand-receptor interactions and other pathways. Strikingly, Tim-3 plays a pivotal role in maternal-fetal tolerance by regulating immune cell functions and orchestrating the maternal-fetal cross-talk. In this review, we elaborate on the involvement of Tim-3 in immunology, with a focus on its participation in maternal-fetal tolerance to provide new insights into immunoregulation during pregnancy. Our work will be helpful in further understanding the pathogenesis of pregnancy-related diseases and will inspire new strategies for their diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| |
Collapse
|
10
|
Shi ZY, Sun K, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. Features and prognostic significance of soluble TIM-3 and its ligands Gal-9 and CEACAM1 levels in the diagnostic bone marrow of adult acute myeloid leukemia patients. J Leukoc Biol 2024; 117:qiae191. [PMID: 39267264 DOI: 10.1093/jleuko/qiae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
The prognostic significance of soluble immune checkpoint molecule TIM-3 and its ligands in the plasma has been illustrated in various solid tumors, but such study in newly diagnosed acute myeloid leukemia (AML) remains absent. Soluble TIM-3, Gal-9, and CEACAM1 levels in bone marrow plasma samples collected from 90 adult AML patients at diagnosis and 12 healthy donors were measured by enzyme-linked immunosorbent assays, and 16 AML patients were simultaneously tested cell membrane TIM-3 expression by multicolor flow cytometry. AML patients had significantly elevated soluble TIM-3 levels and similar soluble Gal-9 and CEACAM1 levels compared with healthy donors (P = 0.0003, 0.26, and 0.96, respectively). In the whole cohort, a high soluble TIM-3 level was the sole independent adverse prognostic factor for relapse-free survival (RFS) (P = 0.0060), and together with adverse European LeukemiaNet genetic risk they were independent poor prognostic factors for event-free survival (P = 0.0030 and 0.0040, respectively). A high soluble CEACAM1 level was significantly related to lower RFS (P = 0.028). In addition, a high soluble Gal-9 level had a significant association with lower RFS in patients receiving allogeneic hematopoietic stem cell transplantation at the first complete remission (P = 0.037). Furthermore, soluble TIM-3 level tended to have positive correlation with the percentage of nonblast myeloid TIM-3+ cells in nucleated cells in AML (r = 0.48, P = 0.073). Therefore, the high soluble TIM-3 level in the diagnostic BM plasma predicted poor outcome in adult AML patients, and a high sGal-9 level was associated with relapse after allogeneic hematopoietic stem cell transplantation.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/mortality
- Female
- Male
- Middle Aged
- Adult
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/blood
- Antigens, CD/blood
- Antigens, CD/metabolism
- Prognosis
- Cell Adhesion Molecules/blood
- Aged
- Galectins/blood
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Young Adult
- Ligands
- Disease-Free Survival
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Adolescent
Collapse
Affiliation(s)
- Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| |
Collapse
|
11
|
Rodríguez-Ubreva J, Calafell-Segura J, Calvillo CL, Keller B, Ciudad L, Handfield LF, de la Calle-Fabregat C, Godoy-Tena G, Andrés-León E, Hoo R, Porter T, Prigmore E, Hofmann M, Decker A, Martín J, Vento-Tormo R, Warnatz K, Ballestar E. COVID-19 progression and convalescence in common variable immunodeficiency patients show dysregulated adaptive immune responses and persistent type I interferon and inflammasome activation. Nat Commun 2024; 15:10344. [PMID: 39609471 PMCID: PMC11605083 DOI: 10.1038/s41467-024-54732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most prevalent primary immunodeficiency, marked by hypogammaglobulinemia, poor antibody responses, and increased infection susceptibility. The COVID-19 pandemic provided a unique opportunity to study the effects of prolonged viral infections on the immune responses of CVID patients. Here we use single-cell RNA-seq and spectral flow cytometry of peripheral blood samples before, during, and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a persistent type I interferon signature at convalescence across immune compartments. Alterations in adaptive immunity include sustained activation of naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell differentiation is defective, although cytotoxicity remains intact. Monocytes show persistent activation of inflammasome-related genes. These findings suggest the involvement of intact humoral immunity in regulating these processes and might indicate the need for early intervention to manage viral infections in CVID patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | | | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annegrit Decker
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
12
|
Sun K, Shi ZY, Xie DH, Wang YZ, Jiang H, Jiang Q, Huang XJ, Qin YZ. The Functional Role and Prognostic Significance of TIM-3 Expression on NK Cells in the Diagnostic Bone Marrows in Acute Myeloid Leukemia. Biomedicines 2024; 12:2717. [PMID: 39767624 PMCID: PMC11727352 DOI: 10.3390/biomedicines12122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Compared to other immune checkpoint molecules, T cell immunoglobulin domain and mucin domain-3 (TIM-3) is highly expressed on natural killer (NK) cells, but its functional role and prognostic significance in acute myeloid leukemia (AML) remains unclear. This study aims to evaluate the role of TIM-3 expression on the cytotoxic and killing capacity of NK cells and its prognostic significance in AML. Methods: AML public single-cell RNA sequencing (scRNAseq) data were used to analyze the correlation of transcript levels between HAVCR2 (encoding TIM-3) and cytotoxic molecules in NK cells. NK cells from the bone marrows of seven newly diagnosed AML patients and five healthy donors (HDs) were stimulated in vitro and cell-killing activity was evaluated. A total of one hundred and five newly diagnosed adult AML patients and seven HDs were tested the expression of TIM-3 and cytotoxic molecules on the bone marrow NK cells by multi-parameter flow cytometry (MFC). Results: Both scRNAseq and MFC analysis demonstrated that TIM-3 expression on NK cells was positively related to the levels of perforin (PFP) and granzyme B (GZMB) (all p < 0.05) in AML. It was PFP and GZMB but not the TIM-3 level that was related to NK-cell-killing activity against K562 cells (p = 0.027, 0.042 and 0.55). A high frequency of TIM-3+ NK cells predicted poorer relapse-free survival (RFS) and event-free survival (EFS) (p = 0.013 and 0.0074), but was not an independent prognostic factor, whereas low GZMB levels in TIM-3+ NK cells independently predicted poorer RFS (p = 0.0032). Conclusions: TIM-3 expression on NK cells is positively related to PFP and GZMB levels but has no relation to cell-killing activity in AML, and low GZMB levels in TIM-3+ NK cells in the diagnostic bone marrows predicts poor outcomes. This study lays a theoretical foundation for the clinical application of immune checkpoint inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; (K.S.); (Z.-Y.S.); (D.-H.X.); (Y.-Z.W.); (H.J.); (Q.J.); (X.-J.H.)
| |
Collapse
|
13
|
Zhang Z, Ren C, Xiao R, Ma S, Liu H, Dou Y, Fan Y, Wang S, Zhan P, Gao C, Yue X, Li C, Gao L, Liang X, Wu Z, Ma C. Palmitoylation of TIM-3 promotes immune exhaustion and restrains antitumor immunity. Sci Immunol 2024; 9:eadp7302. [PMID: 39546589 DOI: 10.1126/sciimmunol.adp7302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an immune checkpoint that has critical roles in immune exhaustion. However, little is known about the mechanisms that regulate TIM-3 surface expression and turnover. Here, we report that human TIM-3 is palmitoylated by the palmitoyltransferase DHHC9 at residue cysteine 296 (Cys296). Palmitoylation stabilized TIM-3 by preventing binding to E3 ubiquitin ligase HRD1, thereby suppressing its polyubiquitination and degradation. DHHC9 knockdown attenuated chimeric antigen receptor T (CAR-T) cell exhaustion, and a peptidic inhibitor of TIM-3 palmitoylation accelerated TIM-3 degradation and enhanced antitumor immunity mediated by CAR-T cells and natural killer (NK) cells. In hepatocellular carcinoma, DHHC9 expression correlated with TIM-3 expression in CD8+ T cells and NK cells, and high DHHC9 expression was associated with shorter survival in patients with high TIM-3. These findings demonstrate that palmitoylation of TIM-3 catalyzed by DHHC9 promotes its stability, resulting in immune exhaustion and impaired antitumor immunity.
Collapse
Affiliation(s)
- Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Caiyue Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Rong Xiao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Huimin Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Yutong Dou
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, Shandong, China
| | - Chengjiang Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Xuetian Yue
- Department of Cellular Biology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, 250012 Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College, Shandong University, 250012 Jinan, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
14
|
McCulloch TR, Rossi GR, Alim L, Lam PY, Wong JKM, Coleborn E, Kumari S, Keane C, Kueh AJ, Herold MJ, Wilhelm C, Knolle PA, Kane L, Wells TJ, Souza-Fonseca-Guimaraes F. Dichotomous outcomes of TNFR1 and TNFR2 signaling in NK cell-mediated immune responses during inflammation. Nat Commun 2024; 15:9871. [PMID: 39543125 PMCID: PMC11564688 DOI: 10.1038/s41467-024-54232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Natural killer (NK) cell function is regulated by a balance of activating and inhibitory signals. Tumor necrosis factor (TNF) is an inflammatory cytokine ubiquitous across homeostasis and disease, yet its role in regulation of NK cells remains unclear. Here, we find upregulation of the immune checkpoint protein, T cell immunoglobulin and mucin domain 3 (Tim3), is a biomarker of TNF signaling in NK cells during Salmonella Typhimurium infection. In mice with conditional deficiency of either TNF receptor 1 (TNFR1) or TNF receptor 2 (TNFR2) in NK cells, we find TNFR1 limits bacterial clearance whereas TNFR2 promotes it. Mechanistically, via single cell RNA sequencing we find that both TNFR1 and TNFR2 induce the upregulation of Tim3, while TNFR1 accelerates NK cell death but TNFR2 promotes NK cell accumulation and effector function. Our study thus highlights the complex interplay of TNF-based regulation of NK cells by the two TNF receptors during inflammation.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction
- Inflammation/immunology
- Inflammation/metabolism
- Mice
- Mice, Inbred C57BL
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Salmonella typhimurium/immunology
- Mice, Knockout
- Salmonella Infections/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Male
- Female
Collapse
Affiliation(s)
- Timothy R McCulloch
- Frazer Institute, The University of Queensland, Woolloongabba, Australia.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | - Gustavo R Rossi
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Louisa Alim
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Pui Yeng Lam
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Joshua K M Wong
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Elaina Coleborn
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lawrence Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Woolloongabba, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
15
|
Har-Zahav A, Tobar A, Fried S, Sivan R, Wilkins BJ, Russo P, Shamir R, Wells RG, Gurevich M, Waisbourd-Zinman O. Oral N-acetylcysteine ameliorates liver fibrosis and enhances regenerative responses in Mdr2 knockout mice. Sci Rep 2024; 14:26513. [PMID: 39489865 PMCID: PMC11532366 DOI: 10.1038/s41598-024-78387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Cholangiopathies are poorly understood disorders with no effective therapy. The extrahepatic biliary tree phenotype is less studied compared to the intrahepatic biliary injury in both human disease and Mdr2-/- mice, the established cholestatic mouse model. This study aimed to characterize the extra hepatic biliary tree of Mdr2-/- mice at various ages and to determine if injury can be repaired with the antioxidant and glutathione precursor N-acetyl-L-Cysteine treatment (NAC). We characterized extra hepatic bile ducts (EHBD)s at various ages from 2 to 40 weeks old FVB/N and Mdr2-/- mice. We examined the therapeutic potential of local NAC ex vivo using EHBD explants at early and late stages of injury; and systematic therapy by in vivo oral administration for 3 weeks. EHBD and liver sections were assessed by histology and immunofluorescent stains. Serum liver enzyme activities were analyzed, and liver spatial protein expression analysis was performed. Mdr2-/- mice developed progressive EHBD injury, similar to extrahepatic PSC. NAC treatment of ex vivo EHBD explants led to improved duct morphology. In vivo, oral administration of NAC improved liver fibrosis, and decreased liver enzyme activities. Spatial protein analysis revealed cell-type specific differential response to NAC, collectively indicating a transition from pro-apoptotic into proliferative state. NAC treatment should be further investigated as a potential therapeutic option for human cholangiopathies.
Collapse
Affiliation(s)
- Adi Har-Zahav
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Ana Tobar
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
- Department of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Sophia Fried
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Sivan
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raanan Shamir
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Departments of Medicine, Bioengineering, and Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gurevich
- The Organ Transplantation Division, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Orith Waisbourd-Zinman
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine, Felsenstein Medical Research Center Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
17
|
Leau R, Duplouye P, Huchet V, Nerrière-Daguin V, Martinet B, Néel M, Morin M, Danger R, Braudeau C, Josien R, Blancho G, Haspot F. Correct stimulation of CD28H arms NK cells against tumor cells. Eur J Immunol 2024; 54:e2350901. [PMID: 39101623 DOI: 10.1002/eji.202350901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Tumor evasion has recently been associated with a novel member of the B7 family, HERV-H LTR-associating 2 (HHLA2), which is mostly overexpressed in PDL-1neg tumors. HHLA2 can either induce a costimulation signal when bound to CD28H or inhibit it by binding to KIR3DL3 on T- and NK cells. Given the broad distribution of CD28H expression on NK cells and its role, we compared two monoclonal antibodies targeting this novel NK-cell engager in this study. We show that targeting CD28H at a specific epitope not only strongly activates Ca2+ flux but also results in NK-cell activation. CD28H-activated NK cells further display increased cytotoxic activity against hematopoietic cell lines and bypass HHLA2 and HLA-E inhibitory signals. Additionally, scRNA-seq analysis of clear cell renal cancer cells revealed that HHLA2+ clear cell renal cancer cell tumors were infiltrated with CD28H+ NK cells, which could be targeted by finely chosen anti-CD28H Abs.
Collapse
Affiliation(s)
- Raphaëlle Leau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Pierre Duplouye
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Virginie Huchet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Véronique Nerrière-Daguin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Bernard Martinet
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Mélanie Néel
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Martin Morin
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Richard Danger
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Cécile Braudeau
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Régis Josien
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France
| | - Gilles Blancho
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| | - Fabienne Haspot
- Center for Research in Transplantation and Translational Immunology, Nantes Université, CHU Nantes, INSERM, UMR 1064, Nantes, France
| |
Collapse
|
18
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
19
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024; 56:2365-2381. [PMID: 39528800 PMCID: PMC11612210 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Ahmady F, Curpen P, Perriman L, Fonseca Teixeira A, Wu S, Zhu HJ, Poddar A, Jayachandran A, Kannourakis G, Luwor RB. Reduced T and NK Cell Activity in Glioblastoma Patients Correlates with TIM-3 and BAT3 Dysregulation. Cells 2024; 13:1777. [PMID: 39513882 PMCID: PMC11545661 DOI: 10.3390/cells13211777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Inhibitory receptors are critical for regulating immune cell function. In cancer, these receptors are often over-expressed on the cell surface of T and NK cells, leading to reduced anti-tumor activity. Here, through the analysis of 11 commonly studied checkpoint and inhibitory receptors, we discern that only HAVCR2 (TIM3) and ENTPD1 (CD39) display significantly greater gene expression in glioblastoma compared to normal brain and lower grade glioma. Cell surface TIM-3, but not ENTPD1, was also elevated on activated CD4+ and CD8+ T cells, as well as on NK cells from glioblastoma patients compared to healthy donor T and NK cells. A subsequent analysis of molecules known to co-ordinate TIM-3 function and regulation was performed, which revealed that BAT3 expression was significantly reduced in CD4+ and CD8+ T cells, as well as NK cells from glioblastoma patients compared to counterparts from healthy donors. These pro-inhibitory changes are also correlated with reduced levels of the activation marker CD69 and the pro-inflammatory cytokine IFNγ in CD4+ and CD8+ T cells, as well as NK cells from glioblastoma patients. Collectively, these data reveal that glioblastoma-mediated CD4+ and CD8+ T cell and NK cell suppression is due, at least in part, to dysregulated TIM-3 and BAT3 expression and the associated downstream immunoregulatory and dysfunctional effects.
Collapse
Affiliation(s)
- Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Peter Curpen
- Townsville Hospital and Health Service, James Cook University, Townsville, QLD 4814, Australia;
| | - Louis Perriman
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Siqi Wu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Arpita Poddar
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Rodney B. Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (L.P.); (A.P.); (A.J.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3050, Australia; (A.F.T.); (S.W.); (H.-J.Z.)
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
21
|
Alekseeva NA, Boyko AA, Shevchenko MA, Grechikhina MV, Streltsova MA, Alekseeva LG, Sapozhnikov AM, Deyev SM, Kovalenko EI. Three-Dimensional Model Analysis Revealed Differential Cytotoxic Effects of the NK-92 Cell Line and Primary NK Cells on Breast and Ovarian Carcinoma Cell Lines Mediated by Variations in Receptor-Ligand Interactions and Soluble Factor Profiles. Biomedicines 2024; 12:2398. [PMID: 39457710 PMCID: PMC11504426 DOI: 10.3390/biomedicines12102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated peripheral NK (pNK) cells and NK-92 cells in spheroid models of BT-474, MCF7 and SKOV-3 carcinomas and uncovers the reasons for the differential effectiveness of NK cells against tumors. Methods: Tumor spheroids of similar size and shape, obtained from agarose molds, were incubated with NK-92 or pNK cells for 24 h. Tumor cell death was detected using flow cytometry or confocal microscopy. Cytokine production, granzyme B levels and NK cell degranulation analyses were performed, along with pNK and target-cell phenotypic characterization. Results: While NK-92 and pNK cells lysed BT-474 spheroids with comparably low efficiency, pNK cells were more capable of eliminating MCF7 and SKOV-3 spheroids than NK-92 cells were. The results of the functional and phenotypic analyses strongly support the participation of the NKG2D-NKG2DL pathway in pNK cell activation induced by the most sensitive cytotoxic attack on SKOV-3 spheroids, whereas the CX3CR1-CX3CL1 axis appears to be involved in the pNK reaction against MCF-7 spheroids. Conclusions: We provide a new approach for the preliminary identification of the most promising NK cell receptors that can alter the effectiveness of cancer therapy depending on the specific tumor type. Using this approach, NK-92 cells or pNK subsets can be selected for further accumulation and/or genetic modification to improve specificity and reactivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (M.V.G.); (M.A.S.); (L.G.A.); (A.M.S.); (S.M.D.)
| |
Collapse
|
22
|
Parent-Roberge H, Fontvieille A, Poirier L, Tai LH, Pavic M, Fülöp T, Riesco E. Acute natural killer cells response to a continuous moderate intensity and a work-matched high intensity interval exercise session in metastatic cancer patients treated with chemotherapy. Brain Behav Immun Health 2024; 40:100825. [PMID: 39155952 PMCID: PMC11327397 DOI: 10.1016/j.bbih.2024.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Background It has been suggested that the acute natural killer (NK) cell response to aerobic exercise might contribute to the tumor suppressor effect of regular exercise observed in preclinical studies. Moreover, because this response is modulated by exercise intensity, high-intensity intervals exercise (HIIE) might represent an interesting therapeutic approach in cancer patients. However, this immune response remains unstudied in cancer patients currently undergoing chemotherapy. Objective To characterize the acute NK cell response following a moderate-intensity continuous aerobic exercise session (MOD), and a HIIE session in metastatic cancer patients treated with chemotherapy. Methods Twelve cancer patients (45-65 years old) underwent a MOD and a duration and work-matched HIIE trial, in a block-randomized order. Peripheral blood mononuclear cells (PBMC) were isolated before, after and 1h after each trial. NK cell subsets were enumerated using flow cytometry and complete blood counts. The surface expression of the cytotoxic NK cell (cNK; CD56dimCD16+) subset was evaluated for its expression of the differentiation markers CD57 and CD158a, the activating receptor NKG2D, the immune checkpoints TIM-3 and PD-1, and the chemokine receptors CXCR3, CXCR4 and CCR2. Results cNK cell blood counts increased immediately following MOD (p < 0.001) and decreased back to pre-exercise values 1 h after exercise cessation (p < 0.001). The most responsive cNK cell subsets were expressing CD57, CD158a, NKG2D, TIM-3 and CXCR3. The HIIE trial elicited a similar biphasic response, without any difference between trials (all p ≥ 0.38). However, significant changes in the MFI values of CXCR4 and NKG2D were observed in the cNK cell subset following HIIE (all p ≤ 0.038), but not MOD. Conclusion In metastatic cancer patients undergoing chemotherapy, both MOD and HIIE can elicit an acute mobilisation and egress of NK cells exhibiting phenotypic characteristics associated with high cytotoxicity and tumor homing. Future longitudinal trials are needed to determine if combining aerobic exercise training and chemotherapy will translate towards favorable immune and clinical outcomes.
Collapse
Affiliation(s)
- Hugo Parent-Roberge
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Adeline Fontvieille
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Laurence Poirier
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Lee-Hwa Tai
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
- University of Sherbrooke, Department of Immunology and Cell Biology, 3201 rue Jean-Mignault, J1E 4K8, Canada
| | - Michel Pavic
- University of Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
- Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Qc, Canada, J1H5N4
| | - Tamàs Fülöp
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
- University of Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12e avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Qc, J1H 5N4, Canada
| | - Eléonor Riesco
- University of Sherbrooke, Faculty of Physical Activity Sciences, 2500, boul. de l’Université, Sherbrooke, Qc, J1K 2R1, Canada
- Research Centre on Aging, affiliated with CIUSSS de l’Estrie - CHUS, 1036, rue Belvédère sud, Sherbrooke, Qc, J1H 4C4, Canada
| |
Collapse
|
23
|
Huang Y, Tian Z, Bi J. Intracellular checkpoints for NK cell cancer immunotherapy. Front Med 2024; 18:763-777. [PMID: 39340588 DOI: 10.1007/s11684-024-1090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 09/30/2024]
Abstract
Natural killer (NK) cells are key innate immune lymphocytes, which play important roles against tumors. However, tumor-infiltrating NK cells are always hypofunctional/exhaustive. On the one hand, this state is contributed by context-dependent interactions between inhibitory NK cell checkpoint receptors and their ligands, which usually vary in different tumor types and stages during tumor development. On the other hand, the inhibitory functions of intracellular checkpoint molecules of NK cells are more similar across different tumor types, representing common mechanisms limiting the potential of NK cell therapy. In this review, representative NK cell intracellular checkpoint molecules in different aspects of NK cell biology were reviewed, and therapeutic potentials were discussed by targeting these molecules to promote antitumor NK cell therapy.
Collapse
Affiliation(s)
- Yingying Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, 530021, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, 100864, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
25
|
Zych M, Kniotek M, Roszczyk A, Dąbrowski F, Jędra R, Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int J Mol Sci 2024; 25:9378. [PMID: 39273326 PMCID: PMC11395075 DOI: 10.3390/ijms25179378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Due to the genetic diversity between the mother and the fetus, heightened control over the immune system during pregnancy is crucial. Immunological parameters determined by clinicians in women with idiopathic recurrent spontaneous abortion (RSA) include the quantity and activity of Natural Killer (NK) and Natural Killer T (NKT) cells, the quantity of regulatory T lymphocytes, and the ratio of pro-inflammatory cytokines, which indicate imbalances in Th1 and Th2 cell response. The processes are controlled by immune checkpoint proteins (ICPs) expressed on the surface of immune cells. We aim to investigate differences in the expression of ICPs on T cells, T regulatory lymphocytes, NK cells, and NKT cells in peripheral blood samples collected from RSA women, pregnant women, and healthy multiparous women. We aim to discover new insights into the role of ICPs involved in recurrent pregnancy loss. Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from blood samples obtained from 10 multiparous women, 20 pregnant women (11-14th week of pregnancy), and 20 RSA women, at maximum of 72 h after miscarriage. The PBMCs were stained for flow cytometry analysis. Standard flow cytometry immunophenotyping of PBMCs was performed using antibodies against classical lymphocyte markers, including CD3, CD4, CD8, CD56, CD25, and CD127. Additionally, ICPs were investigated using antibodies against Programmed Death Protein-1 (PD-1, CD279), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3, CD366), V-domain Ig suppressor of T cell activation (VISTA), T cell immunoglobulin and ITIM domain (TIGIT), and Lymphocyte activation gene 3 (LAG-3). We observed differences in the surface expression of ICPs in the analyzed subpopulations of lymphocytes between early pregnancy and RSA, after miscarriage, and in women. We noted diminished expression of PD-1 on T lymphocytes (p = 0.0046), T helper cells (CD3CD4 positive cells, p = 0.0165), T cytotoxic cells (CD3CD8 positive cells, p = 0.0046), T regulatory lymphocytes (CD3CD4CD25CD127 low positive cells, p = 0.0106), and NKT cells (CD3CD56/CD16 positive cells, p = 0.0438), as well as LAG-3 on lymphocytes T (p = 0.0225) T helper, p = 0.0426), T cytotoxic cells (p = 0.0458) and Treg (p = 0.0293), and cells from RSA women. Impaired expression of TIM-3 (p = 0.0226) and VISTA (p = 0.0039) on CD8 cytotoxic T and NK (TIM3 p = 0.0482; VISTA p = 0.0118) cells was shown, with an accompanying increased expression of TIGIT (p = 0.0211) on NKT cells. The changes in the expression of surface immune checkpoints indicate their involvement in the regulation of pregnancy. The data might be utilized to develop specific therapies for RSA women based on the modulation of ICP expression.
Collapse
MESH Headings
- Humans
- Female
- Pregnancy
- Abortion, Habitual/immunology
- Abortion, Habitual/metabolism
- Abortion, Habitual/blood
- Adult
- Biomarkers/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immune Checkpoint Proteins/metabolism
- Immune Checkpoint Proteins/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Immunophenotyping
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Antigens, CD/metabolism
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Programmed Cell Death 1 Receptor/metabolism
Collapse
Affiliation(s)
- Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Filip Dąbrowski
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
- Club35, Polish Society of Obstetricians and Gynecologists PTGiP, Cybernetyki7F/87, 02-677 Warsaw, Poland
| | - Robert Jędra
- Department of Gynecology and Gynecological Oncology, Medical Centre of Postgraduate Medical Education, CMKP, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
26
|
Pesce Viglietti AI, Bordignon MB, Ostinelli A, Rizzo MM, Cueto G, Sanchez MB, Perazzo F, Amat M, Coló F, Costanzo MV, Nervo A, Nadal J, Crimi G, Mc Lean I, Spengler EA, Mordoh J, Mandó P, Levy EM. In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab. Int J Mol Sci 2024; 25:9268. [PMID: 39273217 PMCID: PMC11395157 DOI: 10.3390/ijms25179268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Currently, therapy for early-stage human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) is based on the combination of trastuzumab and pertuzumab plus chemotherapy in a neoadjuvant regimen. The INMUNOHER study aimed to detect immunological markers in peripheral blood and their association with treatment response. Sixty-two HER2+ BC patients were recruited. Pre-treatment samples were obtained before the start of treatment, while post-treatment samples were obtained after completing therapy and before surgery and were analyzed by flow cytometry. The pathologic complete response (pCR) rate achieved was 82.3%. The expression of the NKp30, PD-1, and TIM-3 receptors was reduced in the Natural Killer (NK)-CD56dim subset of patients who did not achieve pCR. Following therapy, many changes were found in leukocytes, including alterations in T cell lymphocyte proportions. Also, the percentage of NK cells decreased, and several phenotypic changes were observed in this population. After treatment, IFN-γ production by NK cells against HER2+-cells with or without trastuzumab was significantly reduced. HER2-targeted therapy plus chemotherapy demonstrated high efficacy in most patients, reducing the statistical power for finding immunological markers. However, NK subset phenotypes correlated better with response groups, and numerous changes in the percentage of leukocytes and T and NK cells, as well as changes in the functionality of NK cells, were observed in most patients after treatment, encouraging further research into these immune populations.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (A.I.P.V.); (M.B.B.)
| | - María Belén Bordignon
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (A.I.P.V.); (M.B.B.)
| | - Alexis Ostinelli
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Manglio Miguel Rizzo
- Clinical Oncology Unit, Hospital Universitario Austral, Derqui-Pilar, Buenos Aires B1629ODT, Argentina
| | - Gerardo Cueto
- Grupo de Bioestadística Aplicada, Departamento de Ecología, Genética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-UBA/CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1428AOE, Argentina
| | - María Belén Sanchez
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (A.I.P.V.); (M.B.B.)
| | - Florencia Perazzo
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Ciudad Autónoma de Buenos Aires C1431AOE, Argentina
| | - Mora Amat
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Federico Coló
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | | | - Adrián Nervo
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Jorge Nadal
- Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina
| | - Gabriel Crimi
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Ciudad Autónoma de Buenos Aires C1431AOE, Argentina
| | - Ignacio Mc Lean
- Clinical Oncology Unit, Hospital Universitario Austral, Derqui-Pilar, Buenos Aires B1629ODT, Argentina
| | - Eunice Amancay Spengler
- Clinical Oncology Unit, Hospital Universitario Austral, Derqui-Pilar, Buenos Aires B1629ODT, Argentina
| | - José Mordoh
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (A.I.P.V.); (M.B.B.)
| | - Pablo Mandó
- Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Ciudad Autónoma de Buenos Aires C1431AOE, Argentina
| | - Estrella Mariel Levy
- Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires C1426AOE, Argentina; (A.I.P.V.); (M.B.B.)
| |
Collapse
|
27
|
Chang X, Miao J. Role of TIM-3 in ovarian cancer: the forsaken cop or a new noble. Front Immunol 2024; 15:1407403. [PMID: 39206199 PMCID: PMC11350557 DOI: 10.3389/fimmu.2024.1407403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
T cell immunoglobulin and mucin domain-3 (TIM-3), a crucial immune checkpoint following PD1 and CTLA4, is widely found in several immune cells. Nonetheless, its performance in recent clinical trials appears disappointing. Ovarian cancer (OC), a malignant tumor with a high mortality rate in gynecology, faces significant hurdles in immunotherapy. The broad presence of TIM-3 offers a new opportunity for immunotherapy in OC. This study reviews the role of TIM-3 in OC and assesses its potential as a target for immunotherapy. The regulatory effects of TIM-3 on the immune microenvironment in OC are discussed, with a focus on preclinical studies that demonstrate TIM-3's modulation of various immune cells in OC. Additionally, the potential therapeutic advantages and challenges of targeting TIM-3 in OC are examined.
Collapse
Affiliation(s)
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Biały S, Siemaszko J, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Unravelling the potential of TIM-3 gene polymorphism in allogeneic hematopoietic stem cell transplantation - a preliminary study. Transpl Immunol 2024; 85:102084. [PMID: 38992477 DOI: 10.1016/j.trim.2024.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) molecule is a key regulator of the immune response by exerting an inhibitory effect on various types of immune cells. Understanding the role of TIM-3 in hematopoietic stem cell transplantation (HSCT) may improve transplant outcomes. Our study evaluated the potential association between TIM-3 polymorphisms, namely rs1036199 (A > C) or rs10515746 (C > A), changes which are located in exon 3 and the promoter region of the TIM-3 gene, and post-HSCT outcomes. METHODS One-hundred and twenty allogeneic HSCT patients and their respective donors were enrolled and genotyped for TIM-3 single nucleotide polymorphisms (SNPs) using real-time PCR with TaqMan assays. RESULTS We found that the presence of the rare alleles and heterozygous genotypes of studied SNP in recipients tended to protect against or increase the risk for acute graft-versus-host disease (aGvHD). For the rs1036199 polymorphism, recipients with the AC heterozygous genotype (p = 0.0287) or carrying the rarer C allele (p = 0.0334) showed a lower frequency of aGvHD development along all I-IV grades. A similar association was detected for the rs10515746 polymorphism as recipients with the CA genotype (p = 0.0095) or the recessive A allele (p = 0.0117) less frequently developed aGvHD. Furthermore, the rarer A allele of rs10515746 SNP was also associated with a prolonged aGvHD-free survival (p = 0.0424). Cytomegalovirus (CMV) infection was more common in patients transplanted with TIM-3 rs10515746 mismatched donors (p = 0.0229) and this association was also found to be independent of HLA incompatibility and pre-transplant CMV-IgG status. Multivariate analyses confirmed the role of these recessive alleles and donor-recipient TIM-3 incompatibility as an independent factor in aGvHD and CMV development. CONCLUSIONS Polymorphism of TIM-3 molecule may affect the immune response in HSCT patients. The recessive alleles of rs1036199 and rs10515746 SNPs decreased the risk of developing aGvHD. TIM-3 donor-recipient genetic matching may also affect the risk of post-transplant CMV infection, indicating the potential value of genetic profiling in optimizing transplant strategies.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
29
|
Engelskircher SA, Chen PC, Strunz B, Oltmanns C, Ristic T, Owusu Sekyere S, Kraft AR, Cornberg M, Wirth T, Heinrich B, Björkström NK, Wedemeyer H, Woller N. Impending HCC diagnosis in patients with cirrhosis after HCV cure features a natural killer cell signature. Hepatology 2024; 80:202-222. [PMID: 38381525 PMCID: PMC11191062 DOI: 10.1097/hep.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/25/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND AND AIMS The risk of developing HCC in chronically infected patients with AQ2 HCV with liver cirrhosis is significantly elevated. This risk remains high even after a sustained virological response with direct-acting antivirals. To date, disease-associated signatures of NK cells indicating HCC development are unclear. APPROACH AND RESULTS This study investigated NK cell signatures and functions in 8 cohorts covering the time span of HCC development, diagnosis, and onset. In-depth analysis of NK cell profiles from patients with cirrhosis who developed HCC (HCV-HCC) after sustained virological response compared with those who remained tumor-free (HCV-noHCC) revealed increasingly dissimilar NK cell signatures over time. We identified expression patterns with persistently high frequencies of TIM-3 and CD38 on NK cells that were largely absent in healthy controls and were associated with a high probability of HCC development. Functional assays revealed that the NK cells had potent cytotoxic features. In contrast to HCV-HCC, the signature of HCV-noHCC converged with the signature found in healthy controls over time. Regarding tissue distribution, single-cell sequencing showed high frequencies of these cells in liver tissue and the invasive margin but markedly lower frequencies in tumors. CONCLUSIONS We show that HCV-related HCC development has profound effects on the imprint of NK cells. Persistent co-expression of TIM-3hi and CD38 + on NK cells is an early indicator for HCV-related HCC development. We propose that the profiling of NK cells may be a rapid and valuable tool to assess the risk of HCC development in a timely manner in patients with cirrhosis after HCV cure.
Collapse
Affiliation(s)
- Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Po-Chun Chen
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- ZIB program, Hannover Medical School, Carl-Neuberg Str., Hannover, Germany
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carlos Oltmanns
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tijana Ristic
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Solomon Owusu Sekyere
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R.M. Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
- Centre for Individualized Infection Medicine (CIIM), Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bernd Heinrich
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center of Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Carl-Neuberg, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology, Infectious Diseases, and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| |
Collapse
|
30
|
Talvard-Balland N, Braun LM, Dixon KO, Zwick M, Engel H, Hartmann A, Duquesne S, Penter L, Andrieux G, Rindlisbacher L, Acerbis A, Ehmann J, Köllerer C, Ansuinelli M, Rettig A, Moschallski K, Apostolova P, Brummer T, Illert AL, Schramm MA, Cheng Y, Köttgen A, Duyster J, Menssen HD, Ritz J, Blazar BR, Boerries M, Schmitt-Gräff A, Sariipek N, Van Galen P, Buescher JM, Cabezas-Wallscheid N, Pahl HL, Pearce EL, Soiffer RJ, Wu CJ, Vago L, Becher B, Köhler N, Wertheimer T, Kuchroo VK, Zeiser R. Oncogene-induced TIM-3 ligand expression dictates susceptibility to anti-TIM-3 therapy in mice. J Clin Invest 2024; 134:e177460. [PMID: 38916965 PMCID: PMC11324309 DOI: 10.1172/jci177460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.
Collapse
MESH Headings
- Animals
- Hepatitis A Virus Cellular Receptor 2/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Mice
- Hematopoietic Stem Cell Transplantation
- Graft vs Leukemia Effect/immunology
- Graft vs Leukemia Effect/genetics
- Humans
- Allografts
- Ligands
- Oncogenes
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Nana Talvard-Balland
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Lukas M. Braun
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Karen O. Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Melissa Zwick
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Helena Engel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Alina Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Sandra Duquesne
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Berlin, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Rindlisbacher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andrea Acerbis
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Jule Ehmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Christoph Köllerer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Michela Ansuinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Andres Rettig
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Kevin Moschallski
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Petya Apostolova
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Freiburg, Germany
| | - Anna L. Illert
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center–University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | | | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood and Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Nurefsan Sariipek
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Peter Van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joerg M. Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Heike L. Pahl
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
| | - Erika L. Pearce
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J. Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- CIBSS–Centre for Integrative Biological Signalling Studies, and
| | - Tobias Wertheimer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K. Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Internal Medicine I, Faculty of Medicine and Medical Center
- German Cancer Consortium (DKTK) Partner Site Freiburg, a partnership between German Cancer Research Center (DKFZ) and Medical Center, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Tarhini AA, Hedges D, Tan AC, Rodriguez P, Sukrithan V, Ratan A, McCarter MTD, Carpten J, Colman H, Ikeguchi AP, Puzanov I, Arnold SM, Churchman ML, Hwu P, Conejo-Garcia JR, Dalton WS, Weiner GJ, Eljilany I. Differences in Co-Expression of T Cell Co-Inhibitory and Co-Stimulatory Molecules with PD-1 Across Different Human Cancers. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2024; 9:10224. [PMID: 40083977 PMCID: PMC11906192 DOI: 10.29011/2574-710x.10224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Purpose The promise of immune checkpoint inhibitor (ICI) therapy underlines the importance of comprehensively investigating the rationale for combinations with diverse immune modulators across different cancer types. Given the progress made with PD1 blockade to date, we examined mRNA co-expression levels of PD-1 with 13 immune checkpoints, including co-inhibitory receptors (LAG3, CTLA4, PD-L1, TIGIT, TIM3, VISTA, BTLA) and co-stimulatory molecules (CD28, OX40, GITR, CD137, CD27, HVEM), using RNA-Seq by Expectation-Maximization (RSEM). Methods We analyzed real-world clinical and transcriptomic data from the Total Cancer Care Protocol (NCT03977402) and Avatar® project of patients with cancer treated within the Oncology Research Information Exchange Network (ORIEN) network. Using anti-PD1 as a backbone, we intended to investigate the rationale for combinations in different cancers. Pearson's R coefficients and associated P-values were calculated using SciPy 1.7.0. Results The co-expression of PD1 with 13 immune checkpoints and PD-L1 varies across selected malignancies included. In cutaneous melanoma, PD1 expression correlated significantly with four co-inhibitory receptors (LAG3, TIM3, TIGIT, VISTA) and one co-stimulatory molecule (CD137). In urothelial carcinoma, PD1 expression significantly correlated with four co-inhibitory (TIGIT, CTLA4, LAG3, VISTA) and four co-stimulatory (OX40, CD27, CD137, HVEM) molecules. In pancreatic adenocarcinoma, only CD28 showed a significant correlation with PD1 expression. No significant correlations with PD1 expression were found in the ovarian cancer cohort. Notably, melanoma and urothelial carcinoma exhibited a dominant co-expression of co-inhibitory molecules with PD1, indicative of exhausted T cells, in contrast to the co-stimulatory molecule dominance in ovarian and pancreatic cancers, suggesting less differentiated T cells. Conclusions Our findings highlight the potential for diverse combination strategies in immunotherapy, particularly with PD1 blockade, across various cancers.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Aik Choon Tan
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Paulo Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vineeth Sukrithan
- Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | - John Carpten
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexandra P Ikeguchi
- Oklahoma University Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susanne M Arnold
- University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Patrick Hwu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Islam Eljilany
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
34
|
Ahmed J, Nishizaki D, Miyashita H, Lee S, Nesline MK, Pabla S, Conroy JM, DePietro P, Sicklick JK, Kato S, Kurzrock R. TIM-3 transcriptomic landscape with clinical and immunomic correlates in cancer. Am J Cancer Res 2024; 14:2493-2506. [PMID: 38859842 PMCID: PMC11162668 DOI: 10.62347/mqff6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
TIM-3, an inhibitory checkpoint receptor, may invoke anti-PD-1/anti-PD-L1 immune checkpoint inhibitor (ICI) resistance. The predictive impact of TIM-3 RNA expression in various advanced solid tumors among patients treated with ICIs is yet to be determined, and their prognostic significance also remains unexplored. We investigated TIM-3 transcriptomic expression and clinical outcomes. We examined TIM-3 RNA expression data through the OmniSeq database. TIM-3 transcriptomic patterns were calibrated against a reference population (735 tumors), adjusted to internal housekeeping genes, and calculated as percentiles. Overall, 514 patients (31 cancer types; 489 patients with advanced/metastatic disease and clinical annotation) were assessed. Ninety tumors (17.5% of 514) had high (≥75th percentile RNA rank) TIM-3 expression. Pancreatic cancer had the greatest proportion of TIM-3 high expressors (36% of 55 patients). Still, there was variability within cancer types with, for instance, 12.7% of pancreatic cancers harboring low TIM-3 (<25th percentile) levels. High TIM-3 expression independently and significantly correlated with high PD-L2 RNA expression (odds ratio (OR) 9.63, 95% confidence interval (CI) 4.91-19.4, P<0.001) and high VISTA RNA expression (OR 2.71, 95% CI 1.43-5.13, P=0.002), all in multivariate analysis. High TIM-3 RNA did not correlate with overall survival (OS) from time of metastatic disease in the 272 patients who never received ICIs, suggesting that it is not a prognostic factor. However, high TIM-3 expression predicted longer median OS (but not progression-free survival) in 217 ICI-treated patients (P=0.0033; median OS, 2.84 versus 1.21 years (high versus not-high TIM-3)), albeit not retained in multivariable analysis. In summary, TIM-3 RNA expression was variable between and within malignancies, and high levels associated with high PD-L2 and VISTA checkpoints and with pancreatic cancer. Individual tumor immunomic assessment and co-targeting co-expressed checkpoints merits exploration in prospective trials as part of a precision immunotherapy strategy.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of HealthBethesda, MD, The United Sates
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Hirotaka Miyashita
- Dartmouth Cancer Center, Hematology and Medical OncologyLebanon, NH, The United States
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | | | | | | | - Paul DePietro
- OmniSeq Inc. (Labcorp)Buffalo, NY, The United States
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California San DiegoSan Diego, CA, The United States
- Department of Pharmacology, University of California San DiegoSan Diego, CA, The United States
- Moores Cancer Center, University of California San DiegoLa Jolla, CA, The United States
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Razelle Kurzrock
- WIN ConsortiumParis, France
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of WisconsinMilwaukee, WI, The United States
| |
Collapse
|
35
|
Delova A, Pasc A, Monari A. Interaction of the Immune System TIM-3 Protein with a Model Cellular Membrane Containing Phosphatidyl-Serine Lipids. Chemistry 2024; 30:e202304318. [PMID: 38345892 DOI: 10.1002/chem.202304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
T cell transmembrane, Immunoglobulin, and Mucin (TIM) are important immune system proteins which are especially present in T-cells and regulated the immune system by sensing cell engulfment and apoptotic processes. Their role is exerted by the capacity to detect the presence of phosphatidyl-serine lipid polar head in the outer leaflet of cellular membranes (correlated with apoptosis). In this contribution by using equilibrium and enhanced sampling molecular dynamics simulation we unravel the molecular bases and the thermodynamics of TIM, and in particular TIM-3, interaction with phosphatidyl serine in a lipid bilayer. Since TIM-3 deregulation is an important factor of pro-oncogenic tumor micro-environment understanding its functioning at a molecular level may pave the way to the development of original immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Andreea Pasc
- Université de Lorraine and CNRS, UMR 7053L2CM, F-54000, Nancy, France
| | - Antonio Monari
- Université Paris Cité and CNRS, ITDODYS, F-75006, Paris, France
| |
Collapse
|
36
|
Yan Z, Ma T, Wang X, Yi L, Wei P, Zhang H, Wang J. Establishment of novel anti-TIM-3 antibodies interfering with its binding to ligands. Heliyon 2024; 10:e28126. [PMID: 38560237 PMCID: PMC10979056 DOI: 10.1016/j.heliyon.2024.e28126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The T cell immunoglobulin and mucin-domain containing-3 (TIM-3) receptor has gained significant attention as a promising target for cancer immunotherapy. The inhibitory effect of T cells by TIM-3 is mediated through the interaction between TIM-3 and its ligands. Ligand-blocking anti-TIM-3 antibodies possess the potential to reactivate antigen-specific T cells and augment anti-tumor immunity. However, the precise ligand-receptor interactions disrupted by the administration of TIM-3 blocking Abs have yet to be fully elucidated. In this study, we have developed a panel of monoclonal antibodies targeting human TIM-3, namely MsT001, MsT065, MsT229, and MsT286. They exhibited high sensitivities (10 pg/mL) and affinities (3.70 × 10-9 to 4.61 × 10-11 M) for TIM-3. The TIM-3 antibodies recognized distinct epitopes, including linear epitopes (MsT001 and MsT065), and a conformational epitope (MsT229 and MsT286). Additionally, the MsT229 and MsT286 displayed reactivity towards cynomolgus TIM-3. The interactions between TIM-3/Gal-9, TIM-3/HMGB-1, and TIM-3/CEACAM-1 disrupt the binding of MsT229 and MsT286, while leaving the binding of MsT001 and MsT065 unaffected. The inhibitory effect on the interaction between Gal-9 and TIM-3 was found to be dose-dependently in the presence of either MsT229 or MsT286. The findings suggested that the involvement of conformational epitopes in TIM-3 is crucial for its interaction with ligands, and we successfully generated novel anti-TIM-3 Abs that exhibit inhibitory potential. In conclusion, our finding offers valuable insights -on the comprehension and targeting of human TIM-3.
Collapse
Affiliation(s)
- Zhuohong Yan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| |
Collapse
|
37
|
Kristenson L, Badami C, Ljungberg A, Islamagic E, Tian Y, Xie G, Hussein BA, Pesce S, Tang KW, Thorén FB. Deletion of the TMEM30A gene enables leukemic cell evasion of NK cell cytotoxicity. Proc Natl Acad Sci U S A 2024; 121:e2316447121. [PMID: 38557174 PMCID: PMC11009675 DOI: 10.1073/pnas.2316447121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.
Collapse
Affiliation(s)
- Linnea Kristenson
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Chiara Badami
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Angelica Ljungberg
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
| | - Erna Islamagic
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Yarong Tian
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Guojiang Xie
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
| | - Brwa Ali Hussein
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| | - Silvia Pesce
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Dipartimento di Medicina Sperimentale, Università di Genova, Genoa16132, Italy
| | - Ka-Wei Tang
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 46, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg413 46, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg413 90, Sweden
| | - Fredrik B. Thorén
- Tumor Immunology (TIMM) Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg413 90, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg413 90, Sweden
| |
Collapse
|
38
|
Mele D, Ottolini S, Lombardi A, Conteianni D, Bandera A, Oliviero B, Mantovani S, Cassaniti I, Baldanti F, Gori A, Mondelli MU, Varchetta S. Long-term dynamics of natural killer cells in response to SARS-CoV-2 vaccination: Persistently enhanced activity postvaccination. J Med Virol 2024; 96:e29585. [PMID: 38566585 DOI: 10.1002/jmv.29585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Natural Killer (NK) cells play a significant role in the early defense against virus infections and cancer. Recent studies have demonstrated the involvement of NK cells in both the induction and effector phases of vaccine-induced immunity in various contexts. However, their role in shaping immune responses following SARS-CoV-2 vaccination remains poorly understood. To address this matter, we conducted a comprehensive analysis of NK cell phenotype and function in SARS-CoV-2 unexposed individuals who received the BNT162b2 vaccine. We employed a longitudinal study design and utilized a panel of 53 15-mer overlapping peptides covering the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein to assess NK cell function at 0 and 20 days following the first vaccine, and 30 and 240 days following booster. Additionally, we evaluated the levels of total IgG anti-Spike antibodies and their potential neutralizing ability. Our findings revealed an increased NK cell activity upon re-exposure to RBD when combined with IL12 and IL18 several months after booster. Concurrently, we observed that the frequencies of NKG2A + NK cells declined over the course of the follow-up period, while NKG2C increased only in CMV positive subjects. The finding that NK cell functions are inducible 9 months after vaccination upon re-exposure to RBD and cytokines, sheds light on the role of NK cells in contributing to SARS-CoV-2 vaccine-induced immune protection and pave the way to further studies in the field.
Collapse
Affiliation(s)
- Dalila Mele
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sabrina Ottolini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniela Conteianni
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Barbara Oliviero
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Cassaniti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Department of Microbiology and Virology, Molecular Virology Unit, Fondazione IRCCS, Policlinico S. Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Gori
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, L. Sacco Hospital, Università di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Stefania Varchetta
- Division of Clinical Immunology - Infectious Diseases, Department of Research, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
39
|
Reggiani F, Talarico G, Gobbi G, Sauta E, Torricelli F, Manicardi V, Zanetti E, Orecchioni S, Falvo P, Piana S, Lococo F, Paci M, Bertolini F, Ciarrocchi A, Sancisi V. BET inhibitors drive Natural Killer activation in non-small cell lung cancer via BRD4 and SMAD3. Nat Commun 2024; 15:2567. [PMID: 38519469 PMCID: PMC10960013 DOI: 10.1038/s41467-024-46778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.
Collapse
Affiliation(s)
- Francesca Reggiani
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Giulia Gobbi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Federica Torricelli
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Manicardi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Biobank, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Paci
- Thoracic Surgery Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
40
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
Dixon KO, Lahore GF, Kuchroo VK. Beyond T cell exhaustion: TIM-3 regulation of myeloid cells. Sci Immunol 2024; 9:eadf2223. [PMID: 38457514 DOI: 10.1126/sciimmunol.adf2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) is an important immune checkpoint molecule initially identified as a marker of IFN-γ-producing CD4+ and CD8+ T cells. Since then, our understanding of its role in immune responses has significantly expanded. Here, we review emerging evidence demonstrating unexpected roles for TIM-3 as a key regulator of myeloid cell function, in addition to recent work establishing TIM-3 as a delineator of terminal T cell exhaustion, thereby positioning TIM-3 at the interface between fatigued immune responses and reinvigoration. We share our perspective on the antagonism between TIM-3 and T cell stemness, discussing both cell-intrinsic and cell-extrinsic mechanisms underlying this relationship. Looking forward, we discuss approaches to decipher the underlying mechanisms by which TIM-3 regulates stemness, which has remarkable potential for the treatment of cancer, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Karen O Dixon
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Gonzalo Fernandez Lahore
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Annis JL, Duncan JBW, Billcheck HO, Kuzma AG, Crittenden RB, Brown MG. Multiple Immune and Genetic Mechanisms Contribute to Cmv5s-Driven Susceptibility and Tissue Damage during Acute Murine Cytomegalovirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:813-824. [PMID: 38224204 PMCID: PMC10922835 DOI: 10.4049/jimmunol.2300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
The MHC class I molecule H-2Dk conveys resistance to acute murine CMV infection in both C57L (H-2Dk transgenic) and MA/My mice. M.H2k/b mice are on an MA/My background aside from a C57L-derived region spanning the MHC (Cmv5s), which diminishes this resistance and causes significant spleen histopathology. To hone in on the effector elements within the Cmv5s interval, we generated several Cmv5-recombinant congenic mouse strains and screened them in vivo, allowing us to narrow the phenotype-associated interval >6-fold and segment the genetic mechanism to at least two independent loci within the MHC region. In addition, we sought to further characterize the Cmv5s-associated phenotypes in their temporal appearance and potential direct relationship to viral load. To this end, we found that Cmv5s histopathology and NK cell activation could not be fully mirrored in the MA/My mice with increased viral dose, and that marginal zone destruction was the first apparent Cmv5s phenotype, being reliably quantified as early as 2 d postinfection in the M.H2k/b mice, prior to divergence in viral load, weight loss, or NK cell phenotype. Finally, we further dissect NK cell involvement, finding no intrinsic differences in NK cell function, despite increased upregulation of activation markers and checkpoint receptors. In conclusion, these data dissect the genetic and immunologic underpinnings of Cmv5 and reveal a model in which polymorphism within the MHC region of the genome leads to the development of tissue damage and corrupts protective NK cell immunity during acute viral infection.
Collapse
Affiliation(s)
- Jessica L. Annis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - John Benjamin W. Duncan
- Biomedical Sciences Graduate Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Helen O. Billcheck
- Center for Comparative Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Anna G. Kuzma
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | - Rowena B. Crittenden
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael G. Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
43
|
Jiang B, Zhou H, Xie X, Xia T, Ke C. Down-regulation of zinc finger protein 335 undermines natural killer cell function in mouse colitis-associated colorectal carcinoma. Heliyon 2024; 10:e25721. [PMID: 38375265 PMCID: PMC10875430 DOI: 10.1016/j.heliyon.2024.e25721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Natural killer (NK) cells constitute an active and potent anti-tumor effector population against multiple malignancies. NK cells exploit tumoricidal machinery to restrain colorectal carcinoma (CRC) expansion and invasion. Nonetheless, it is becoming increasingly evident that functional exhaustion considerably compromises the potency of NK cells in patients with CRC. To elucidate the factors that impair NK cell function in the context of CRC, we determined the role of zinc finger protein 335 (ZFP335) in modulating NK cell activity in mouse CRC induced by azoxymethane and dextran sulfate sodium. ZFP335 was profoundly decreased in NK cells in mesenteric lymph nodes of CRC-bearing mice. ZFP335 was especially diminished in NK cells that were both phenotypically and functionally exhausted. Besides, effective ZFP335 knockdown markedly undermined NK cell proliferation, tumoricidal protein production, degranulation, and cytotoxic efficacy on malignant cells, strongly suggesting that ZFP335 reinforces NK cell function. Importantly, ZFP335 knockdown lowered the expression of Janus kinase 1 (JAK1) and Janus kinase 3 (JAK3), both of which play crucial roles in NK cell homeostasis and activation. Collectively, ZFP335 down-regulation is essential for NK cell exhaustion in mesenteric lymph nodes of mice with CRC. We discovered a new ZFP335-JAK1/3 signaling pathway that modulates NK cell exhaustion.
Collapse
Affiliation(s)
- Bin Jiang
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Tian Xia
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| | - Chao Ke
- The Department of Gastrointestinal, Hernia, and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, 430060, China
| |
Collapse
|
44
|
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N. Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies. Cancer Immunol Res 2024; 12:149-160. [PMID: 38060011 PMCID: PMC11492724 DOI: 10.1158/2326-6066.cir-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Bladder tumors have a high mutational burden and tend to be responsive to immune therapies; however, response rates remain modest. To date, immunotherapy in bladder cancer has largely focused on enhancing T-cell immune responses in the bladder tumor microenvironment. It is anticipated that other immune cells, including innate lymphoid cells (ILC), which play an important role in bladder oncogenesis and tumor suppression, could be targeted to improve response to existing therapies. ILCs are classified into five groups: natural killer cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. ILCs are pleiotropic and play dual and sometimes paradoxical roles in cancer development and progression. Here, a comprehensive discussion of the current knowledge and recent advancements in understanding the role of ILCs in bladder cancer is provided. We discuss the multifaceted roles that ILCs play in bladder immune surveillance, tumor protection, and immunopathology of bladder cancer. This review provides a rationale for targeting ILCs in bladder cancer, which is relevant for other solid tumors.
Collapse
Affiliation(s)
- Onika D.V. Noel
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
45
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
46
|
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. Nature 2024; 626:727-736. [PMID: 38383621 DOI: 10.1038/s41586-023-06945-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| | - Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Stéphanie Cornen
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | |
Collapse
|
47
|
Wiley KS, Kwon D, Knorr DA, Fox MM. Regulatory T-cell phenotypes in prenatal psychological distress. Brain Behav Immun 2024; 116:62-69. [PMID: 38016492 PMCID: PMC11402516 DOI: 10.1016/j.bbi.2023.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Experiencing symptoms of psychological distress during pregnancy is common and has been linked to dysregulated immune functioning. In this context, immunoregulatory function is especially relevant because of its crucial role in establishment and maintenance of healthy pregnancy. However, little research has examined associations between women's prenatal psychological distress and immunoregulatory biomarkers. We investigated how symptoms of depression, anxiety, and stress relate to circulating levels of regulatory T-cells (Tregs). MATERIALS AND METHODS Pregnant Latina women were assessed at around 12 weeks of pregnancy (N = 82). These assessments included blood draws and self-report questionnaires assessing symptoms of depression, state anxiety, pregnancy-related anxiety, and perceived stress. Flow cytometry on PBMCs was used to quantify circulating Tregs, defined as CD3+CD4+CD25hiCD127loFoxP3+, and subpopulations positive for one of the following intra- or extracellular markers, CD45RA, CTLA-4, Helios, PD-1, TIM-3, and TIGIT. We collected 82 samples at 12 weeks. Multivariable linear regressions tested for associations between symptoms of psychological distress and Treg concentrations, adjusted for gestational age. RESULTS State anxiety symptoms at 12 weeks were negatively associated with parent Treg cell levels (b = -4.02, p = 0.023) and subpopulations Helios+ (b = -3.29, p = 0.019) and TIM3+ (b = -3.17, p = 0.008). Perceived stress was negatively associated with the PD-1+ subpopulation at 12 weeks (b = -4.02, p = 0.023). Depression was not related to Tregs or the subpopulations. CONCLUSION Our observation that symptoms of anxiety and stress are related to tolerogenic immunology suggests a possible biomechanism explaining correlations of maternal mood disorders with adverse outcomes for mothers and offspring.
Collapse
Affiliation(s)
- Kyle S Wiley
- Department of Anthropology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States.
| | - Dayoon Kwon
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California, Los Angeles, United States
| | - Delaney A Knorr
- Department of Anthropology, University of California, Los Angeles, United States
| | - Molly M Fox
- Department of Anthropology, University of California, Los Angeles, United States; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
| |
Collapse
|
48
|
Ding S, Zhang T, Lei Y, Liu C, Liu Z, Fu R. The role of TIM3 + NK and TIM3 - NK cells in the immune pathogenesis of severe aplastic anemia. J Transl Int Med 2024; 12:96-105. [PMID: 38525441 PMCID: PMC10956726 DOI: 10.2478/jtim-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background Natural killer (NK) cells play important immunoregulatory roles in the immune pathogenesis of severe aplastic anemia (SAA). Our previous research showed that SAA caused a decrease in T cell immunoglobulin mucin-3 (TIM3) expression on NK cells. Here we investigated the expression of surface receptors, and the cytotoxicity of peripheral TIM3+ NK and TIM3- NK cells in patients with SAA. Methods The expressions of surface receptors and cytoplasmic protein of TIM3+ NK and TIM3- NK cells from peripheral blood were detected by FCM. The functions of mDCs, and apoptosis rate of K562 cells after co-culture with TIM3+ NK and TIM3- NK cells were maesured by FCM. Westren-blot was used to detect the changes of TIM3+ NK and TIM3- NK signaling pathway proteins (AKT, P-AKT) and compare the functional activity of the two groups. Results Activating receptors NKG2D and Granzyme B were higher, while inhibiting receptors NKG2A, CD158a and CD158b were lower on TIM3- NK cells compared with TIM3+ NK cells in patients with SAA. In SAA, the expression of CD80 and CD86 on mDCs (Myeloid dendritic cells) was significantly decreased after incubation with TIM3- NK cells. The apoptosis rate (AR) of K562 cells was significantly increased after being incubated with TIM3- NK cells in SAA. The level of signal pathway protein AKT of TIM3- NK cells in SAA was similar to that of TIM3+ NK cells, and the levels of P-AKT and P-AKT/AKT ratio of TIM3- NK cells were significantly higher than those of TIM3+ NK cells. Conclusions Therefore, TIM3 exerts its inhibitory effect on NK cells and participates in the immune pathogenesis of SAA. Low expression of TIM3 contributes to the enhancement of NK cell activity which in turn inhibits the immune activation state of SAA and improves the disease state. Our research may aid the development of new therapeutic strategies based on TIM3-NK cells infusion for the treatment of SAA.
Collapse
Affiliation(s)
- Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Tian Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Yingying Lei
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin300052, China
| |
Collapse
|
49
|
Field KR, Wragg KM, Kent SJ, Lee WS, Juno JA. γδ T cells mediate robust anti-HIV functions during antiretroviral therapy regardless of immune checkpoint expression. Clin Transl Immunology 2024; 13:e1486. [PMID: 38299190 PMCID: PMC10825377 DOI: 10.1002/cti2.1486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Objectives Although antiretroviral therapy (ART) efficiently suppresses HIV viral load, immune dysregulation and dysfunction persist in people living with HIV (PLWH). γδ T cells are functionally impaired during untreated HIV infection, but the extent to which they are reconstituted upon ART is currently unclear. Methods Utilising a cohort of ART-treated PLWH, we assessed the frequency and phenotype, characterised in vitro functional responses and defined the impact of immune checkpoint marker expression on effector functions of both Vδ1 and Vδ2 T cells. We additionally explore the in vitro expansion of Vδ2 T cells from PLWH on ART and the mechanisms by which such expanded cells may sense and kill HIV-infected targets. Results A matured NK cell-like phenotype was observed for Vδ1 T cells among 25 ART-treated individuals (PLWH/ART) studied compared to 17 HIV-uninfected controls, with heightened expression of 2B4, CD160, TIGIT and Tim-3. Despite persistent phenotypic perturbations, Vδ1 T cells from PLWH/ART exhibited strong CD16-mediated activation and degranulation, which were suppressed upon Tim-3 and TIGIT crosslinking. Vδ2 T cell degranulation responses to the phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate at concentrations up to 2 ng mL-1 were significantly impaired in an immune checkpoint-independent manner among ART-treated participants. Nonetheless, expanded Vδ2 T cells from PLWH/ART retained potent anti-HIV effector functions, with the NKG2D receptor contributing substantially to the elimination of infected cells. Conclusion Our findings highlight that although significant perturbations remain within the γδ T cell compartment throughout ART-treated HIV, both subsets retain the capacity for robust anti-HIV effector functions.
Collapse
Affiliation(s)
- Kirsty R Field
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Kathleen M Wragg
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
50
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|