1
|
Attia A, Habel A, Xu W, Stayoussef M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Serum Protein Profiling as theranostic biomarkers for Left- and Right-Sided Colon Cancer using Luminex ® technology. Cancer Biomark 2025; 42:18758592251329321. [PMID: 40232184 DOI: 10.1177/18758592251329321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundGiven the differences between malignancies arising from different segments of the colon, specific theranostic biomarkers can be linked to either Right-sided (RCC) or Left-sided colon cancer (LCC).ObjectiveAnalysis of 65 serum proteins to identify panels of theranostic biomarkers for LCC and RCC.MethodsSerum levels of 65 immunomodulators were measured in CC, LCC, and RCC patients, as well as healthy controls with the ProcartaPlex Human Immune Monitoring 65-Plex Panel.ResultsIL-27 may be used for early detection in LCC. CD-30 was up-regulated in metastatic CC, BLC was up-regulated in metastatic LCC and CD-40L was down-regulated in metastatic RCC. MDC and MMP-1 were positively associated, while IL-9 and VEGF-A were negatively associated with lymph nodes invasion in CC. Up-regulation of IL-12p70 and MMP-1 in LCC with lymph nodes invasion contrasted with down-regulation of IL-9 and MIP-1beta. IL-23, I-TAC, and SDF-1α were negatively associated with resistant CC to Folfox chemotherapy, and I-TAC was down-regulated in resistant LCC. IL-2 and FGF-2 were down-regulated, while APRIL was up-regulated in resistant RCC.ConclusionsOur study revealed significant differences in serum protein levels between LCC and RCC emphasizing the importance to explore novel theranostic biomarkers for CC, associated with resistance or sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Amani Attia
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Azza Habel
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Mouna Stayoussef
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| | - Amel Mezlini
- Medical Oncology Department, Salah Azaiez Oncology Institute, Tunis, Tunisia
| | - Anis Larbi
- Beckman Coulter Life Sciences, Ville pinte, France
| | - Besma Yaacoubi-Loueslati
- Department of Biology, Faculty of Sciences of Tunis (FST), Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), University of Tunis El Manar (UTM), Tunis, Tunisia
| |
Collapse
|
2
|
Wu S, Wu Z, Lu Z, Qi F, Cheng J, Chu T, Li B, Zhao Y, Nie G, Li S. Selective apoptosis of tumor-associated platelets boosts the anti-metastatic potency of PD-1 blockade therapy. Cell Rep Med 2025; 6:101984. [PMID: 40020674 PMCID: PMC11970387 DOI: 10.1016/j.xcrm.2025.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Despite the transformative impact of programmed cell death protein-1 (PD-1) blockade therapy on metastatic/advanced solid tumor treatment, its efficacy is hindered by a limited response rate. Platelets play a pivotal role in tumor metastasis by shielding circulating tumor cells and secreting immunosuppressive factors. We here demonstrate that selectively inducing apoptosis in tumor-associated platelets (TAPs) using ABT-737-loaded nanoparticles (cyclic arginine-glycine-aspartate containing peptide-modified ABT-737-loaded nanoparticles [cRGD-NP@A]) enhances the anti-metastatic efficacy of the anti-PD-1 antibody (aPD-1). cRGD-NP@A specifically binds to TAPs, disrupting platelet-tumor cell interactions and exposing tumor cells to immune surveillance in vivo. Combined with aPD-1, cRGD-NP@A substantially augments immune activation and reduces TAP-derived immunosuppressive factors, notably transforming growth factor β1 (TGF-β1), consequently improving anti-metastatic outcomes across multiple metastasis-bearing animal models without observable adverse effects. Our study underscores the importance of depleting TAPs to enhance PD-1 blockade therapy, presenting a promising strategy to improve response rates and clinical outcomes for patients with metastatic cancer.
Collapse
Affiliation(s)
- Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Jin Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; School of Astronautics, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
3
|
Farhid F, Hosseini E, Kargar F, Ghasemzadeh M. Interplay between platelet and T lymphocyte after coronary artery bypass grafting (CABG): Evidence for platelet mediated post-CABG immunomodulation. Microvasc Res 2025; 160:104805. [PMID: 40107494 DOI: 10.1016/j.mvr.2025.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND On-pump coronary artery bypass grafting (CABG) triggers inflammatory responses as a result of surgical stress and extracorporeal circulation, which affect platelet and leukocyte activation while enhancing their intimate crosstalk. Given this, the study presented here aimed to investigate platelet-T cell interaction after CABG focusing on the changes in immunomodulatory subtypes of regulatory T Cells. METHODS Blood samples were obtained from twenty patients undergoing on-pump CABG at 5 different time points of 24 h before, immediately, 2 h, 24 h, and one week after surgery. Total leukocyte and lymphocyte counts were determined using an automatic cell counter. Platelet P-selectin expression, frequencies of CD4+ and CD8+ T cells, platelet-T cell aggregates (PTCAs), and regulatory T cells derived from CD4+ (T4reg) and CD8+ (T8reg) cells, were assessed by flow cytometry. RESULTS A significant increase in total leukocyte count occurred immediately after CABG, whereas, conversely, lymphocyte and CD4+ T cells but not CD8+ T cells decreased 2 h after surgery. However, all these changes returned to pre-CABG baseline levels within a week. Platelet P-selectin expression increased immediately after surgery, followed by a two-hour delay after PTCA, and both returned to baseline after one week. T4regs and T8regs showed a similar increase and decrease trend, where T8regs but not T4regs returned to baseline one week after surgery. CONCLUSION CABG surgery induces an inflammatory response that activates platelets and enhances P-selectin expression, facilitating PTCA formation. This mechanism is critical for the dynamics and differentiation of T cells, which play an essential role in post-CABG modulation of immune responses.
Collapse
Affiliation(s)
- Fateme Farhid
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Faranak Kargar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
4
|
Sharafi Monfared M, Nazmi S, Parhizkar F, Jafari D. Soluble B7 and TNF family in colorectal cancer: Serum level, prognostic and treatment value. Hum Immunol 2025; 86:111232. [PMID: 39793378 DOI: 10.1016/j.humimm.2025.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Soluble immune checkpoints (sIC) are crucial factors in the immune system. They regulate immune responses by transforming intercellular signals via binding to their membrane-bound receptor or ligand. Moreover, soluble ICs are vital in immune regulation, cancer development, and prognosis. They can be identified and measured in various tumor microenvironments. Recently, sICs have become increasingly important in clinically assessing malignancies like colorectal cancer (CRC) patients. This review explores the evolving role of the soluble B7 family and soluble tumor necrosis factor (TNF) superfamily members in predicting disease progression, treatment response, and overall patient outcomes in CRC. We comprehensively analyze the diagnostic and prognostic potential of soluble immune checkpoints in CRC. Understanding the role of these soluble immune checkpoints in CRC management and their potential as targets for precision medicine approaches can be critical for improving outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Mohanna Sharafi Monfared
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Nazmi
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Forough Parhizkar
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Gümüş A, Sönmez D, Demirkol Ş, Tolgahan Hakan M, Verim A, Süoğlu Y, Yaylım İ, Ergen A. Impact of CD40 (rs1883832) and CD40L (rs1126535) gene variants on laryngeal cancer susceptibility and their association with serum biomarker levels of sCD40 and sCD40L. PLoS One 2024; 19:e0312576. [PMID: 39625893 PMCID: PMC11614260 DOI: 10.1371/journal.pone.0312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION The most prevalent head and neck cancer type is laryngeal cancer. Laryngeal cancer susceptibility is increased by a combination of genetic variables and environmental factors. Genetic predispositions that influence the functioning of the immune system can affect tumor development. Our study investigates the impact of alterations in CD40 (rs1883832) and CD40L (rs1126535) genes and the levels of their proteins on the development of laryngeal cancer. MATERIALS AND METHODS The PCR-RFLP method was used for genotyping SNPs in 96 patients with laryngeal cancer and 127 healthy individuals. Additionally, ELISA was utilized to measure circulating levels of sCD40 and sCD40L. RESULTS We identified a significant difference in the genotype distribution of CD40 (rs1883832) between laryngeal cancer patients and healthy individuals (p = 0.05). The C allele was dominant, and the CC genotype was more frequently observed in patients with laryngeal cancer (OR: 2.34, 95% CI: 0.98-5.54). In contrast, no statistically significant difference in the genotypes of CD40L (rs1126535) was detected between laryngeal cancer patients and the control group (p = 0.12). Additionally, no significant differences in serum sCD40 or sCD40L levels were observed between the groups (p = 0.48 and p = 0.15, respectively). However, a moderate positive correlation was found between sCD40 and sCD40L levels in the laryngeal cancer group (r = 0.52, p<0.01), a relationship that was not observed in the control group. DISCUSSION According to the current findings, it is suggested that the CD40 (rs1883832) gene variation found in patients may indicate an individual's susceptibility to developing laryngeal cancer. On the other hand, CD40L (rs1126535) seems to not play a significant role. While serum sCD40 and sCD40L levels did not show significant differences between patients and controls, the correlation in cancer patients suggests that these markers may be relevant in tumor progression. Further research is required to clarify the functional implications of these genetic variants and their potential use as biomarkers for laryngeal cancer.
Collapse
Affiliation(s)
- Alper Gümüş
- Medical Biochemistry Laboratory, Çam Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Dilara Sönmez
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Şeyda Demirkol
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşegül Verim
- Department of Otorhinolaryngology/Head and Neck Surgery, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey
| | - Yusufhan Süoğlu
- Istanbul Faculty of Medicine, Department of Otorhinolaryngology, Istanbul University, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Baretti M, Danilova L, Durham JN, Betts CB, Cope L, Sidiropoulos DN, Tandurella JA, Charmsaz S, Gross N, Hernandez A, Ho WJ, Thoburn C, Walker R, Leatherman J, Mitchell S, Christmas B, Saeed A, Gaykalova DA, Yegnasubramanian S, Fertig EJ, Coussens LM, Yarchoan M, Jaffee E, Azad NS. Entinostat in combination with nivolumab in metastatic pancreatic ductal adenocarcinoma: a phase 2 clinical trial. Nat Commun 2024; 15:9801. [PMID: 39532835 PMCID: PMC11557583 DOI: 10.1038/s41467-024-52528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by low cytotoxic lymphocytes, abundant immune-suppressive cells, and resistance to immune checkpoint inhibitors (ICI). Preclinical PDA models showed the HDAC inhibitor entinostat reduced myeloid cell immunosuppression, sensitizing tumors to ICI therapy. This phase II study combined entinostat with nivolumab (PD1 inhibitor) in patients with advanced PDA (NCT03250273). Patients received entinostat 5 mg orally once weekly for 14-day lead-in, followed by entinostat and nivolumab. The primary endpoint was the objective response rate (ORR) by RECIST v1.1. Secondary endpoints included safety, duration of response, progression free-survival and overall survival. Between November 2017 and November 2020, 27 evaluable patients were enrolled. Three showed partial responses (11% ORR, 95% CI, 2.4%-29.2%) with a median response duration of 10.2 months. Median progression-free survival (PFS) and overall survival (OS) were, respectively, 1.89 (95% CI, 1.381-2.301) and 2.729 (95% CI, 1.841-5.622) months. Grade ≥3 treatment-related adverse events occurred in 19 patients (63%), including decreased lymphocyte count, anemia, hypoalbuminemia, and hyponatremia. As exploratory analysis, peripheral and tumor immune profiles changes were assessed using CyTOF, mIHC, and RNA-seq. Entinostat increased dendritic cell activation and maturation. Gene expression analysis revealed an enrichment in inflammatory response pathways with combination treatment. Although the primary endpoint was not met, entinostat and nivolumab showed durable responses in a small subset of PDA patients. Myeloid cell immunomodulation supported the preclinical hypothesis, providing a basis for future combinatorial therapies to enhance clinical benefits in PDA.
Collapse
Affiliation(s)
- Marina Baretti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Jennifer N Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Courtney B Betts
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Akoya Biosciences, Marlborough, USA
| | - Leslie Cope
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Joseph A Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Nicole Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Alexei Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Chris Thoburn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Rosalind Walker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - James Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Brian Christmas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Ali Saeed
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Daria A Gaykalova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
- Johns Hopkins in Health Precision Medicine, Johns Hopkins Medicine, Baltimore, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Elizabeth Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Nilofer S Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA.
- The Convergence Institute, Johns Hopkins University, Baltimore, USA.
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA.
| |
Collapse
|
7
|
Christakoudi S, Tsilidis KK, Gunter MJ, Riboli E. Allometric fat mass index and alanine aminotransferase attenuate the associations of platelet parameters with lung cancer risk. Sci Rep 2024; 14:26318. [PMID: 39487349 PMCID: PMC11530616 DOI: 10.1038/s41598-024-78281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
We have previously shown that body mass index attenuates a positive association of platelet count (PLT) and inverse of mean platelet volume (MPV) with lung cancer risk in men. It is unclear whether fat mass, lean mass, or liver function tests (LFTs) show similar attenuations. Using bioelectrical impedance measurements (UK Biobank cohort) and multivariable Cox proportional hazards models, we examined the associations of allometric fat-mass index (AFI, fat mass adjusted for height), allometric lean-mass index (ALI, fat-free mass adjusted for height and fat mass), and LFTs with lung cancer risk and their multiplicative and additive interactions with platelet parameters. Based on 1573 lung cancer cases in men and 1473 in women with body composition measurements (1541 in men; 1428 in women with biomarker measurements), AFI in women, ALI in both sexes, alanine aminotransferase (ALT) and total bilirubin in men were inversely associated, while gamma-glutamyl transferase in men and alkaline phosphatase in both sexes were positively associated with lung cancer risk. Only AFI and ALT interacted inversely with PLT and positively with MPV in men. The attenuation of the associations of platelet parameters with lung cancer risk by high-AFI and high-ALT in men suggests that adiposity-related factors hinder lung-cancer-related platelet associations.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, White City Campus, 90 Wood Lane, London, W12 0BZ, UK.
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, White City Campus, 90 Wood Lane, London, W12 0BZ, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, White City Campus, 90 Wood Lane, London, W12 0BZ, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, White City Campus, 90 Wood Lane, London, W12 0BZ, UK
| |
Collapse
|
8
|
Foldi J, Blenman KRM, Marczyk M, Gunasekharan V, Polanska A, Gee R, Davis M, Kahn AM, Silber A, Pusztai L. Peripheral blood immune parameters, response, and adverse events after neoadjuvant chemotherapy plus durvalumab in early-stage triple-negative breast cancer. Breast Cancer Res Treat 2024; 208:369-377. [PMID: 39002068 DOI: 10.1007/s10549-024-07426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE We evaluated T- and B-cell receptor (TCR and BCR) repertoire diversity and 38 serum cytokines in pre- and post-treatment peripheral blood of 66 patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy plus durvalumab and assessed associations with pathologic response and immune-related adverse events (irAEs) during treatment. METHODS Genomic DNA was isolated from buffy coat for TCR and BCR clonotype profiling using the Immunoseq platform and diversity was quantified with Pielou's evenness index. MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel was used to measure serum cytokine levels, which were compared between groups using moderated t-statistic with Benjamini-Hochberg correction for multiple testing. RESULTS TCR and BCR diversity was high (Pielou's index > 0.75) in all samples. Baseline receptor diversities and change in diversity pre- and post-treatment were not associated with pathologic response or irAE status, except for BCR diversity that was significantly lower post-treatment in patients who developed irAE (unadjusted p = 0.0321). Five cytokines increased after treatment in patients with pathologic complete response (pCR) but decreased in patients with RD, most prominently IL-8. IFNγ, IL-7, and GM-CSF levels were higher in pre-treatment than in post-treatment samples of patients who developed irAEs but were lower in those without irAEs. CONCLUSION Baseline peripheral blood cytokine levels may predict irAEs in patients treated with immune checkpoint inhibitors and chemotherapy, and increased post-treatment B-cell clonal expansion might mediate irAEs.
Collapse
Affiliation(s)
- Julia Foldi
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA.
- Division of Hematology and Oncology, Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, 300 Halket Street, Room 3524, Pittsburgh, PA, USA.
| | - Kim R M Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Michal Marczyk
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Vignesh Gunasekharan
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Alicja Polanska
- Mullard Space Science Laboratory, University College London, London, UK
| | - Renelle Gee
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Mya Davis
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Adriana M Kahn
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Andrea Silber
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Pedersen K, Laursen NS, Hansen AG, Palarasah Y, Thiel S. Development of an immunoassay for quantification of soluble human CD40L (CD154) in plasma and serum samples. J Immunol Methods 2024; 531:113710. [PMID: 38871279 DOI: 10.1016/j.jim.2024.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
When the membrane protein CD40 ligand (CD40L) on activated T cells binds the receptor CD40 on B-cells, it provides a co-stimulatory signal for B cell activation. Dysregulation of the CD40L:CD40 axis is associated with inflammatory and autoimmune diseases. The presence of soluble CD40L (sCD40L) in plasma is implicated in several diseases, from cardiovascular and autoimmune diseases to different types of cancer, and sCD40L has been suggested as a valuable marker of disease. If sCD40L is to be used as a biomarker, being able to precisely measure and quantify the levels of sCD40L in human blood samples is of utmost importance. We demonstrate the development of a sandwich-type time-resolved immunofluorometric assay for quantification of sCD40L in plasma or serum samples. For this, we generate 29 monoclonal anti-CD40L antibodies, and from these, we select the optimal combination of capture antibody and detection antibody. A number of variables were tested: the influence of the type of sample (comparing 3 different blood collection tubes for serum sampling and 4 different types of tubes for plasma sampling), the influence of freeze-thaw cycles, the influence of sampling time during night and day, and the influence of centrifugation of the samples. We found a very similar level of sCD40L in paired EDTA plasma and serum samples. Out of 100 healthy blood donor samples 61 had a level of sCD40L below the detection level of the assay, whereas the remaining 39 samples had ranging levels of sCD40L from 1.14 to 33.14 ng/mL. In summary, we present a time-resolved immunofluorometric assay based on paired monoclonal antibodies, ensuring high specificity, sensitivity, and homogeneity. The Eu3+-based assay additionally provides consistent assay readouts due to the extended decay time not seen in standard enzyme-linked immunosorbent assays. The assay paves the way for specific and consistent quantification of sCD40L in human plasma and serum samples.
Collapse
Affiliation(s)
| | - Nick Stub Laursen
- Department of Biomedicine, Aarhus University, Denmark; Commit Biologics, Denmark
| | | | - Yaseelan Palarasah
- Department of Molecular Medicine, University of Southern Denmark, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark.
| |
Collapse
|
10
|
Pazoki A, Dadfar S, Shadab A, Haghmorad D, Oksenych V. Soluble CD40 Ligand as a Promising Biomarker in Cancer Diagnosis. Cells 2024; 13:1267. [PMID: 39120299 PMCID: PMC11311304 DOI: 10.3390/cells13151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer remains a significant challenge in medicine due to its complexity and heterogeneity. Biomarkers have emerged as vital tools for cancer research and clinical practice, facilitating early detection, prognosis assessment, and treatment monitoring. Among these, CD40 ligand (CD40L) has gained attention for its role in immune response modulation. Soluble CD40 ligand (sCD40L) has shown promise as a potential biomarker in cancer diagnosis and progression, reflecting interactions between immune cells and the tumor microenvironment. This review explores the intricate relationship between sCD40L and cancer, highlighting its diagnostic and prognostic potential. It discusses biomarker discovery, emphasizing the need for reliable markers in oncology, and elucidates the roles of CD40L in inflammatory responses and interactions with tumor cells. Additionally, it examines sCD40L as a biomarker, detailing its significance across various cancer types and clinical applications. Moreover, the review focuses on therapeutic interventions targeting CD40L in malignancies, providing insights into cellular and gene therapy approaches and recombinant protein-based strategies. The clinical effectiveness of CD40L-targeted therapy is evaluated, underscoring the need for further research to unlock the full potential of this signaling pathway in cancer management.
Collapse
Affiliation(s)
- Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Shadab
- Department of Health Science, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
11
|
Sundling C, Yman V, Mousavian Z, Angenendt S, Foroogh F, von Horn E, Lautenbach MJ, Grunewald J, Färnert A, Sondén K. Disease-specific plasma protein profiles in patients with fever after traveling to tropical areas. Eur J Immunol 2024; 54:e2350784. [PMID: 38308504 DOI: 10.1002/eji.202350784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Fever is common among individuals seeking healthcare after traveling to tropical regions. Despite the association with potentially severe disease, the etiology is often not determined. Plasma protein patterns can be informative to understand the host response to infection and can potentially indicate the pathogen causing the disease. In this study, we measured 49 proteins in the plasma of 124 patients with fever after travel to tropical or subtropical regions. The patients had confirmed diagnoses of either malaria, dengue fever, influenza, bacterial respiratory tract infection, or bacterial gastroenteritis, representing the most common etiologies. We used multivariate and machine learning methods to identify combinations of proteins that contributed to distinguishing infected patients from healthy controls, and each other. Malaria displayed the most unique protein signature, indicating a strong immunoregulatory response with high levels of IL10, sTNFRI and II, and sCD25 but low levels of sCD40L. In contrast, bacterial gastroenteritis had high levels of sCD40L, APRIL, and IFN-γ, while dengue was the only infection with elevated IFN-α2. These results suggest that characterization of the inflammatory profile of individuals with fever can help to identify disease-specific host responses, which in turn can be used to guide future research on diagnostic strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Stockholm South Hospital, Stockholm, Sweden
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sina Angenendt
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fariba Foroogh
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ellen von Horn
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Respiratory Medicine Unit, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Sondén
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Li S, Lu Z, Wu S, Chu T, Li B, Qi F, Zhao Y, Nie G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat Rev Cancer 2024; 24:72-87. [PMID: 38040850 DOI: 10.1038/s41568-023-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/03/2023]
Abstract
Systemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis. This has led to the identification of the biological changes in platelets in the presence of tumours, the complex interactions between platelets and tumour cells during tumour progression, and the effects of platelets on antitumour therapeutic response. In this Review, we present a detailed picture of the dynamic roles of platelets in tumour development and progression as well as their use in diagnosis, prognosis and monitoring response to therapy. We also provide our view on how to overcome challenges faced by the development of precise antiplatelet strategies for safe and efficient clinical cancer therapy.
Collapse
Affiliation(s)
- Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Li M, Gui J, Wang H, An J, Wu R, Liu X, Wu B, Xiao H. Prognostic Value of Platelet Aggregation Function in Patients with laryngeal Carcinoma. Int J Gen Med 2023; 16:5559-5566. [PMID: 38034899 PMCID: PMC10683666 DOI: 10.2147/ijgm.s428122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Background Laryngeal cancer was one of the most common malignancies of the head in those years. It has become one of the most common causes of death due to its high recurrence rate and high metastasis rate. It was well known that platelets, especially activated platelets, promote the proliferation, division, and invasion of tumor cells. Activated platelets promote cancer progression and metastasis. However, the prognostic value of platelet aggregation function in laryngeal cancer remains poorly understood. The purpose of this study was to investigate the predictive significance of platelet aggregation function in laryngeal cancer. Materials and Methods Between January 2015 and December 2016, we conducted a retrospective analysis of 203 patients who were diagnosed with laryngeal cancer consecutively. The patients were stratified by platelet aggregation function into two groups: low "adenosine diphosphate induced light transmittance aggregometry (ADP-induced LTA) ≤15.1" and high (ADP-induced LTA >15.1). Pathological tissues from different parts of the operation were collected and the pathologist determined the pathological type. We assessed the prognostic significance of platelet aggregation function using Kaplan-Meier curves and Cox regression. Results The low cohort had a significantly higher lymphocyte count than the high cohort. Compared with the high cohort, the low cohort had significantly lower levels of platelet-to-lymphocyte ratio (PLR), ADP-induced LTA, and Interleukins (IL)-6. The ADP-induced LTA (hazard ratio, 1.212; P <0.001) was independently related with 5-year overall survival rate. Conclusion Patients with ADP-induced LTA >15.1 experience poor outcomes. Platelet aggregation function, when elevated, could be a new prognostic indicator for laryngeal cancer.
Collapse
Affiliation(s)
- Minghua Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| | - Jiawei Gui
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| | - Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, People’s Republic of China
| | - Jun An
- Department of Otolaryngology-Head and Neck Surgery, Xuzhou Central Hospital, Xuzhou, 221009, People’s Republic of China
| | - Ruoqing Wu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| | - Xiaotong Liu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| | - Bo Wu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| | - Hui Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, People’s Republic of China
| |
Collapse
|
14
|
Vucetic A, Lafleur A, Côté M, Kobasa D, Chan M, Alvarez F, Piccirillo C, Dong G, Olivier M. Extracellular vesicle storm during the course of Ebola virus infection in primates. Front Cell Infect Microbiol 2023; 13:1275277. [PMID: 38035334 PMCID: PMC10684970 DOI: 10.3389/fcimb.2023.1275277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Collapse
Affiliation(s)
- Andrea Vucetic
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Andrea Lafleur
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Darwyn Kobasa
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mable Chan
- Special Pathogen Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - George Dong
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Federation of Clinical Immunology (FOCiS) Centres of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
15
|
Fujimoto H, Fukuzato S, Kanno K, Akutsu T, Ohdaira H, Suzuki Y, Urashima M. Reduced Relapse-Free Survival in Colorectal Cancer Patients with Elevated Soluble CD40 Ligand Levels Improved by Vitamin D Supplementation. Nutrients 2023; 15:4361. [PMID: 37892436 PMCID: PMC10609672 DOI: 10.3390/nu15204361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Although elevated serum levels of soluble CD40 ligand (sCD40L) were reported in patients with cancer, the importance of high sCD40L levels in clinical oncology remains unknown. We conducted a post hoc analysis of the AMATERASU randomized clinical trial of vitamin D3 supplementation (2000 IU/day) in patients with digestive tract cancer to assess its significance. Serum sCD40L levels were measured by ELISA in 294 residual samples, and were divided into tertiles. In patients with colorectal cancer (CRC), 5-year relapse-free survival (RFS) rates in the middle and highest tertiles were 61.6% and 61.2%, respectively, which was significantly lower than 83.8% in the lowest tertile. A Cox proportional hazard analysis showed that the lowest tertile had a significantly lower risk of relapse or death than the highest tertile even with multivariate adjustment (hazard ratio (HR), 0.30; 95% confidence interval (CI), 0.11-0.80; p = 0.016). In the subgroup of CRC patients with the highest tertile of sCD40L, the 5-year RFS rate in the vitamin D group was 77.9%, which was significantly higher than 33.2% in the placebo group (HR, 0.30; 95% CI, 0.11-0.81; p = 0.018 [Pinteraction = 0.04]). In conclusion, elevated sCD40L might be a biomarker of poor prognosis in patients with CRC, but vitamin D supplementation might improve RFS in patients with high sCD40L.
Collapse
Affiliation(s)
- Hiroshi Fujimoto
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
- Biometrics and Data Sciences, Bristol-Myers Squibb K.K., 1-2-1 Otemachi Chiyoda-ku, Tokyo 100-0004, Japan
| | - Soichiro Fukuzato
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Kazuki Kanno
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Taisuke Akutsu
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| | - Hironori Ohdaira
- Department of Surgery, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara 329-2763, Japan; (H.O.); (Y.S.)
| | - Yutaka Suzuki
- Department of Surgery, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara 329-2763, Japan; (H.O.); (Y.S.)
| | - Mitsuyoshi Urashima
- Division of Molecular Epidemiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (H.F.); (S.F.); (K.K.); (T.A.)
| |
Collapse
|
16
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
17
|
van den Ende T, Ezdoglian A, Baas LM, Bakker J, Lougheed SM, Harrasser M, Waasdorp C, van Berge Henegouwen MI, Hulshof MC, Haj Mohammad N, van Hillegersberg R, Mook S, van der Laken CJ, van Grieken NC, Derks S, Bijlsma MF, van Laarhoven HW, de Gruijl TD. Longitudinal immune monitoring of patients with resectable esophageal adenocarcinoma treated with Neoadjuvant PD-L1 checkpoint inhibition. Oncoimmunology 2023; 12:2233403. [PMID: 37470057 PMCID: PMC10353329 DOI: 10.1080/2162402x.2023.2233403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023] Open
Abstract
The analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry holds promise as a platform for immune checkpoint inhibition (ICI) biomarker identification. Our aim was to characterize the systemic immune compartment in resectable esophageal adenocarcinoma patients treated with neoadjuvant ICI therapy. In total, 24 patients treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-L1 (atezolizumab) from the PERFECT study (NCT03087864) were included and 26 patients from a previously published nCRT cohort. Blood samples were collected at baseline, on-treatment, before and after surgery. Response groups for comparison were defined as pathological complete responders (pCR) or patients with pathological residual disease (non-pCR). Based on multicolor flow cytometry of PBMCs, an immunosuppressive phenotype was observed in the non-pCR group of the PERFECT cohort, characterized by a higher percentage of regulatory T cells (Tregs), intermediate monocytes, and a lower percentage of type-2 conventional dendritic cells. A further increase in activated Tregs was observed in non-pCR patients on-treatment. These findings were not associated with a poor response in the nCRT cohort. At baseline, immunosuppressive cytokines were elevated in the non-pCR group of the PERFECT study. The suppressive subsets correlated at baseline with a Wnt/β-Catenin gene expression signature and on-treatment with epithelial-mesenchymal transition and angiogenesis signatures from tumor biopsies. After surgery monocyte activation (CD40), low CD8+Ki67+ T cell rates, and the enrichment of CD206+ monocytes were related to early recurrence. These findings highlight systemic barriers to effective ICI and the need for optimized treatment regimens.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Aiarpi Ezdoglian
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lisanne M. Baas
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Sinéad M. Lougheed
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Micaela Harrasser
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Cynthia Waasdorp
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark I. van Berge Henegouwen
- Department of Surgery, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Maarten C.C.M. Hulshof
- Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiotherapy, Amsterdam Umc, University of Amsterdam, Amsterdam, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Mook
- Department of Radiotherapy, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Conny J. van der Laken
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rheumatology and Clinical Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Nicole C.T. van Grieken
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maarten F. Bijlsma
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Ding S, Dong X, Song X. Tumor educated platelet: the novel BioSource for cancer detection. Cancer Cell Int 2023; 23:91. [PMID: 37170255 PMCID: PMC10176761 DOI: 10.1186/s12935-023-02927-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023] Open
Abstract
Platelets, involved in the whole process of tumorigenesis and development, constantly absorb and enrich tumor-specific substances in the circulation during their life span, thus called "Tumor Educated Platelets" (TEPs). The alterations of platelet mRNA profiles have been identified as tumor markers due to the regulatory mechanism of post-transcriptional splicing. Small nuclear RNAs (SnRNAs), the important spliceosome components in platelets, dominate platelet RNA splicing and regulate the splicing intensity of pre-mRNA. Endogenous variation at the snRNA levels leads to widespread differences in alternative splicing, thereby driving the development and progression of neoplastic diseases. This review systematically expounds the bidirectional tumor-platelets interactions, especially the tumor induced alternative splicing in TEP, and further explores whether molecules related to alternative splicing such as snRNAs can serve as novel biomarkers for cancer diagnostics.
Collapse
Affiliation(s)
- Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Xiaohan Dong
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
19
|
Cleary SJ, Conrad C. Investigating and imaging platelets in inflammation. Int J Biochem Cell Biol 2023; 157:106373. [PMID: 36716816 DOI: 10.1016/j.biocel.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Blood platelets are best known for their roles in hemostasis and thrombosis, but platelets also make important contributions to inflammation, immunity, and inflammatory resolution. Experiments involving depletion, genetic modification, and live imaging of platelets in animal models have increased our mechanistic understanding of platelet contributions to inflammation. In this minireview, we provide a critical overview of experimental techniques for manipulating and imaging platelets in inflammation models. We then highlight studies using innovative approaches to elucidate molecular mechanisms through which platelet subsets, platelet Fc gamma receptors, and pro-resolution platelet functions influence inflammatory responses. We also propose future technologies and research directions which might move us closer to harnessing of platelet functions for improved therapeutic modulation of inflammatory diseases.
Collapse
Affiliation(s)
- Simon J Cleary
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| | - Catharina Conrad
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
21
|
Ibraheem K, Yhmed AMA, Nasef MM, Georgopoulos NT. TRAF3/p38-JNK Signalling Crosstalk with Intracellular-TRAIL/Caspase-10-Induced Apoptosis Accelerates ROS-Driven Cancer Cell-Specific Death by CD40. Cells 2022; 11:cells11203274. [PMID: 36291141 PMCID: PMC9600997 DOI: 10.3390/cells11203274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
The capacity to induce tumour-cell specific apoptosis represents the most unique feature of the TNF receptor (TNFR) family member CD40. Recent studies on the signalling events triggered by its membrane-presented ligand CD40L (mCD40L) in normal and malignant epithelial cells have started to unravel an exquisite context and cell type specificity for the functional effects of CD40. Here, we demonstrate that, in comparison to other carcinomas, mCD40L triggered strikingly more rapid apoptosis in colorectal carcinoma (CRC) cells, underpinned by its ability to entrain two concurrently operating signalling axes. CD40 ligation initially activates TNFR-associated factor 3 (TRAF3) and subsequently NADPH oxidase (NOX)/Apoptosis signal-regulating kinase 1 (ASK1)-signalling and induction of reactive oxygen species (ROS) to mediate p38/JNK- and ROS-dependent cell death. At that point, p38/JNK signalling directly activates the mitochondrial pathway, and triggers rapid induction of intracellular TNF-related apoptosis-inducing ligand (TRAIL) that signals from internal compartments to initiate extrinsic caspase-10-asscociated apoptosis, leading to truncated Bid (tBid)-activated mitochondrial signalling. p38 and JNK are essential both for direct mitochondrial apoptosis induction and the TRAIL/caspase-10/tBid pathway, but their involvement follows functional hierarchy and temporally controlled interplay, as p38 function is required for JNK phosphorylation. By engaging both intrinsic and extrinsic pathways to activate apoptosis via two signals simultaneously, CD40 can accelerate CRC cell death. Our findings further unravel the multi-faceted properties of the CD40/mCD40L dyad, highlighted by the novel TNFR crosstalk that accelerates tumour cell-specific death, and may have implications for the use of CD40 as a therapeutic target.
Collapse
Affiliation(s)
- Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Albashir M. A. Yhmed
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Department of Medical Laboratory Sciences, Faculty of Medical Technology, Wadi Alshatti University, Wadi Alshatti P.O. Box 68, Libya
| | - Mohamed M. Nasef
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Correspondence: ; Tel.: +44-(0)1484-25-6860
| |
Collapse
|
22
|
Sengupta S, Bhattacharya G, Chatterjee S, Datey A, Shaw SK, Suranjika S, Nath P, Barik PK, Prasad P, Chattopadhyay S, Swain RK, Parida A, Devadas S. Underlying Co-Morbidity Reveals Unique Immune Signatures in Type II Diabetes Patients Infected With SARS-CoV2. Front Immunol 2022; 13:848335. [PMID: 35572555 PMCID: PMC9094480 DOI: 10.3389/fimmu.2022.848335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV2 infection in patients with comorbidities, particularly T2DM, has been a major challenge globally and has been shown to be associated with high morbidity and mortality. Here, we did whole blood immunophenotyping along with plasma cytokine, chemokine, antibody isotyping, and viral load from oropharyngeal swab to understand the immune pathology in the T2DM patients infected with SARS-CoV2. Methods Blood samples from 25 Covid-19 positive patients having T2DM, 10 Covid-19 positive patients not having T2DM, and 10 Covid-19 negative, non-diabetic healthy controls were assessed for various immune cells by analyzing for their signature surface proteins in mass cytometry. Circulating cytokines, chemokines, and antibody isotypes were determined from plasma while viral copy number was determined from oropharyngeal swabs. All our representative data corroborated with laboratory findings. Results Our observations encompass T2DM patients having elevated levels of both type I and type II cytokines and higher levels of circulating IgA, IgM, IgG1, and IgG2 as compared to NDM and healthy volunteers. They also displayed higher percentages of granulocytes, mDCs, plasmablasts, Th2-like cells, CD4+ EM cells, and CD8+ TE cells as compared to healthy volunteers. T2DM patients also displayed lower percentages of pDCs, lymphocytes, CD8+ TE cells, CD4+, and CD8+ EM. Conclusion Our study demonstrated that patients with T2DM displayed higher inflammatory markers and a dysregulated anti-viral and anti-inflammatory response when compared to NDM and healthy controls and the dysregulated immune response may be attributed to meta inflammation.
Collapse
Affiliation(s)
- Soumya Sengupta
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Gargee Bhattacharya
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Sanchari Chatterjee
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Ankita Datey
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Shubham K Shaw
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Sandhya Suranjika
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Paritosh Nath
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prakash K Barik
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Punit Prasad
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Soma Chattopadhyay
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Rajeeb K Swain
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Ajay Parida
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| | - Satish Devadas
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, India
| |
Collapse
|
23
|
Herold Z, Herold M, Herczeg G, Fodor A, Szasz AM, Dank M, Somogyi A. High plasma CD40 ligand level is associated with more advanced stages and worse prognosis in colorectal cancer. World J Clin Cases 2022; 10:4084-4096. [PMID: 35665117 PMCID: PMC9131230 DOI: 10.12998/wjcc.v10.i13.4084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 04/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is often associated with elevated platelet count (> 400 × 109/L), known as thrombocytosis. The role of CD40 ligand (CD40L), a member of the tumor necrosis factor family, is controversial in CRC. Circulating CD40L is higher in CRC, but its relationship with disease staging and local and distant metastasis is not clear. Although most of the circulating CD40L is produced by platelets, no previous study investigated its relationship with CRC-related thrombocytosis. AIM To investigate the role of CD40L to predict the outcome of CRC and its relation to thrombocytosis. METHODS A total of 106 CRC patients and 50 age and sex-matched control subjects were enrolled for the study. Anamnestic data including comorbidities and histopathological data were collected. Laboratory measurements were performed at the time of CRC diagnosis and 1.5 mo and at least 6 mo after the surgical removal of the tumor. Plasma CD40L and thrombopoietin were measured via enzyme-linked immunosorbent assay, while plasma interleukin-6 was measured via electrochemiluminescence immunoassay. Patient follow-ups were terminated on January 31, 2021. RESULTS Plasma CD40L of CRC patients was tendentiously higher, while platelet count (P = 0.0479), interleukin-6 (P = 0.0002), and thrombopoietin (P = 0.0024) levels were significantly higher as opposed to the control subjects. Twelve of the 106 CRC patients (11.3%) had thrombocytosis. Significantly higher CD40L was found in the presence of distant metastases (P = 0.0055) and/or thrombocytosis (P = 0.0294). A connection was found between CD40L and platelet count (P = 0.0045), interleukin-6 (P = 0.0130), and thrombocytosis (P = 0.0155). CD40L was constant with the course of CRC, and all baseline differences persisted throughout the whole study. Both pre- and postoperative elevated platelet count, CD40L, and interleukin-6 level were associated with poor overall and disease-specific survival of patients. The negative effect of CD40L and interleukin-6 on patient survival remained even after the stratification by thrombocytosis. CONCLUSION CD40L levels of CRC patients do not change with the course of the disease. The CD40L level is strongly correlated with platelet count, interleukin-6, thrombocytosis, and the presence of distant metastases.
Collapse
Affiliation(s)
- Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Gyorgy Herczeg
- Department of General Surgery, Szent Imre University Teaching Hospital, Budapest H-1115, Hungary
| | - Agnes Fodor
- Department of General Surgery, Szent Imre University Teaching Hospital, Budapest H-1115, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| |
Collapse
|
24
|
Liu R, Peng L, Zhou L, Huang Z, Zhou C, Huang C. Oxidative Stress in Cancer Immunotherapy: Molecular Mechanisms and Potential Applications. Antioxidants (Basel) 2022; 11:antiox11050853. [PMID: 35624717 PMCID: PMC9137834 DOI: 10.3390/antiox11050853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is an effective treatment option that revolutionizes the management of various cancers. Nevertheless, only a subset of patients receiving immunotherapy exhibit durable responses. Recently, numerous studies have shown that oxidative stress induced by reactive oxygen species (ROS) plays essential regulatory roles in the tumor immune response, thus regulating immunotherapeutic effects. Specifically, studies have revealed key roles of ROS in promoting the release of tumor-associated antigens, manipulating antigen presentation and recognition, regulating immune cell phenotypic differentiation, increasing immune cell tumor infiltration, preventing immune escape and diminishing immune suppression. In the present study, we briefly summarize the main classes of cancer immunotherapeutic strategies and discuss the interplay between oxidative stress and anticancer immunity, with an emphasis on the molecular mechanisms underlying the oxidative stress-regulated treatment response to cancer immunotherapy. Moreover, we highlight the therapeutic opportunities of manipulating oxidative stress to improve the antitumor immune response, which may improve the clinical outcome.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
| | - Chengwei Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo 315020, China
- Correspondence: (C.Z.); (C.H.)
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (L.P.); (L.Z.); (Z.H.)
- Correspondence: (C.Z.); (C.H.)
| |
Collapse
|
25
|
Tsai YT, Strauss J, Toney NJ, Jochems C, Venzon DJ, Gulley JL, Schlom J, Donahue RN. Immune correlates of clinical parameters in patients with HPV-associated malignancies treated with bintrafusp alfa. J Immunother Cancer 2022; 10:jitc-2022-004601. [PMID: 35418484 PMCID: PMC9014099 DOI: 10.1136/jitc-2022-004601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Bintrafusp alfa is a bifunctional agent consisting of an anti-human PD-L1 antibody linked to two TGFβRII. It is designed to act both as a checkpoint inhibitor and to ‘trap’ TGFβ in the tumor microenvironment. Phase I and II clinical studies demonstrated clinical activity in patients with a range of human papillomavirus (HPV)-associated cancers. The purpose of the studies reported here was the interrogation of various aspects of the peripheral immunome in patients with HPV-associated cancers, both prior to and early in the treatment regimen of bintrafusp alfa to better understand the mode of action of the agent and to help define which patients are more likely to benefit from bintrafusp alfa treatment. Patients and methods The peripheral immunome of patients (n=65) with HPV+ malignancies was analyzed both prior to treatment with bintrafusp alfa and day 14 post-treatment for levels and changes in (1) 158 different immune cell subsets, (2) multiple plasma soluble factors including analytes reflecting immune stimulatory and inhibitory status, (3) complete blood counts, and in a subset of patients (4) TCR diversity and (5) HPV-specific T-cell responses. Results Interrogation of the peripheral immunome prior to bintrafusp alfa treatment revealed several factors that associated with clinical response, including (1) higher levels of sCD27:sCD40L ratios, (2) lower levels of TGFβ1 and 12 additional factors associated with tumor mesenchymalization, and (3) higher CD8+ T cell:MDSC ratios. Analysis at 2 weeks post bintrafusp alfa revealed that eventual clinical responders had fewer increases in IL-8 levels and the neutrophil to lymphocyte ratio, and higher levels of HPV-16 specific CD8+ T cells. This study also provided information concerning differences in the peripheral immunome for patients who were naïve versus refractory to prior checkpoint inhibition therapy. While preliminary, two multivariate models developed predicted clinical benefit with 76%–91% accuracy. Conclusions These studies add insight into the mechanism of action of bintrafusp alfa and provide evidence that the interrogation of both cellular and soluble components of the peripheral immunome of patients with HPV-associated malignancies, either prior to or early in the therapeutic regimen, can provide information as to which patients are more likely to benefit with bintrafusp alfa therapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Li W, Syed F, Yu R, Yang J, Xia Y, Relich RF, Russell PM, Zhang S, Khalili M, Huang L, Kacena MA, Zheng X, Yu Q. Soluble Immune Checkpoints Are Dysregulated in COVID-19 and Heavy Alcohol Users With HIV Infection. Front Immunol 2022; 13:833310. [PMID: 35281051 PMCID: PMC8904355 DOI: 10.3389/fimmu.2022.833310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard Yu
- Department of Internal Medicine, School of Medicine, University of Nevada, Reno, NV, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick M. Russell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Laurence Huang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoqun Zheng
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
27
|
Samson LD, Buisman A, Ferreira JA, Picavet HSJ, Verschuren WMM, Boots AMH, Engelfriet P. Inflammatory marker trajectories associated with frailty and ageing in a 20‐year longitudinal study. Clin Transl Immunology 2022; 11:e1374. [PMID: 35154709 PMCID: PMC8826353 DOI: 10.1002/cti2.1374] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The aim of this exploratory study was to investigate the development of low‐grade inflammation during ageing and its relationship with frailty. Methods The trajectories of 18 inflammatory markers measured in blood samples, collected at 5‐year intervals over a period of 20 years from 144 individuals aged 65–75 years at the study endpoint, were related to the degree of frailty later in life. Results IFN‐γ‐related markers and platelet activation markers were found to change in synchrony. Chronically elevated levels of IL‐6 pathway markers, such as CRP and sIL‐6R, were associated with more frailty, poorer lung function and reduced physical strength. Being overweight was a possible driver of these associations. More and stronger associations were detected in women, such as a relation between increasing sCD14 levels and frailty, indicating a possible role for monocyte overactivation. Multivariate prediction of frailty confirmed the main results, but predictive accuracy was low. Conclusion In summary, we documented temporal changes in and between inflammatory markers in an ageing population over a period of 20 years, and related these to clinically relevant health outcomes.
Collapse
Affiliation(s)
- Leonard Daniël Samson
- National Institute of Public Health and the Environment Bilthoven The Netherlands
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen The Netherlands
| | - Anne‐Marie Buisman
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - José A Ferreira
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - H Susan J Picavet
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| | - W M Monique Verschuren
- National Institute of Public Health and the Environment Bilthoven The Netherlands
- Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Annemieke MH Boots
- Department of Rheumatology and Clinical Immunology University of Groningen University Medical Center Groningen The Netherlands
| | - Peter Engelfriet
- National Institute of Public Health and the Environment Bilthoven The Netherlands
| |
Collapse
|
28
|
Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S, Li F, Wan Y, Yin J, Wang R, Li Y, Zhang C, Zhang H, Cao Y. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022; 10:jitc-2021-003809. [PMID: 35086948 PMCID: PMC8796271 DOI: 10.1136/jitc-2021-003809] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. Methods The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. Results Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. Conclusion CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.
Collapse
Affiliation(s)
- Ruikun Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingru Chen
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Zhuoqian Zhao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Haoran Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyu Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Fan Li
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yajuan Wan
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Rui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Cuizhu Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Hongkai Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China.,CNBG-NKU Joint R&D Center, Beijing Institute of Biological Products Co., Ltd., China National Biotec Group, Beijing, China
| | - Youjia Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China .,Frontier Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| |
Collapse
|
29
|
Chatterjee S, Datey A, Sengupta S, Ghosh A, Jha A, Walia S, Singh S, Suranjika S, Bhattacharya G, Laha E, Keshry SS, Ray A, Pani SS, Suryawanshi AR, Dash R, Senapati S, Beuria TK, Syed GH, Prasad P, Raghav SK, Devadas S, Swain RK, Chattopadhyay S, Parida A. Clinical, Virological, Immunological, and Genomic Characterization of Asymptomatic and Symptomatic Cases With SARS-CoV-2 Infection in India. Front Cell Infect Microbiol 2022; 11:725035. [PMID: 34993157 PMCID: PMC8724424 DOI: 10.3389/fcimb.2021.725035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection. Methods Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively. In addition, whole-genome sequencing of viral strains and mutational analysis were carried out. Results Analysis of the biochemical parameters highlighted the increased levels of C-reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT, and ferritin in symptomatic patients. Symptomatic patients were mostly with one or more comorbidities, especially type 2 diabetes (66.6%). The virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. On the other hand, viral load was higher in plasma and serum samples of symptomatic patients, and they develop sufficient amounts of antibodies (IgG, IgM, and IgA). The levels of seven cytokines (IL-6, IL-1α, IP-10, IL-8, IL-10, IFN-α2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO, and MDC) were remarkably higher in asymptomatic patients. The whole-genome sequence analysis revealed that the current isolates were clustered with 19B, 20A, and 20B clades; however, 11 additional changes in Orf1ab, spike, Orf3a, Orf8, and nucleocapsid proteins were acquired. The D614G mutation in spike protein is linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load, and among them, two patients with this mutation passed away. Conclusions This is the first comprehensive study of SARS-CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and thereby advance the implementation of effective disease control strategies.
Collapse
Affiliation(s)
- Sanchari Chatterjee
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Infectious Disease Biology, Regional Center for Biotechnology, Faridabad, India
| | - Ankita Datey
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Soumya Sengupta
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Infectious Disease Biology, Regional Center for Biotechnology, Faridabad, India
| | - Arup Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Atimukta Jha
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Safal Walia
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Sharad Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Sandhya Suranjika
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Gargee Bhattacharya
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Infectious Disease Biology, Regional Center for Biotechnology, Faridabad, India
| | - Eshna Laha
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Infectious Disease Biology, Regional Center for Biotechnology, Faridabad, India
| | | | - Amrita Ray
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,Infectious Disease Biology, Regional Center for Biotechnology, Faridabad, India
| | - Sweta Smita Pani
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | - Rupesh Dash
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | | | - Tushar K Beuria
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Punit Prasad
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Sunil Kumar Raghav
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Rajeeb K Swain
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ajay Parida
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
30
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
31
|
The Relationship between Inflammation Markers (CRP, IL-6, sCD40L) and Colorectal Cancer Stage, Grade, Size and Location. Diagnostics (Basel) 2021; 11:diagnostics11081382. [PMID: 34441316 PMCID: PMC8393680 DOI: 10.3390/diagnostics11081382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was the evaluation whether in primary colorectal cancer (CRC) patients (n = 55): age, sex, TNM classification results, WHO grade, tumor location (proximal colon, distal colon, rectum), tumor size, platelet count (PLT), mean platelet volume (MPV), mean platelet component (MCP), levels of carcinoembryonic antigen (CEA), cancer antigen (CA 19-9), as well as soluble lectin adhesion molecules (L-, E-, and P-selectins) may influence circulating inflammatory biomarkers: IL-6, CRP, and sCD40L. We found that CRP concentration evaluation in routine clinical practice may have an advantage as a prognostic biomarker in CRC patients, as this protein the most comprehensively reflects clinicopathological features of the tumor. Univariate linear regression analysis revealed that in CRC patients: (1) with an increase in PLT by 10 × 103/μL, the mean concentration of CRP increases by 3.4%; (2) with an increase in CA 19-9 of 1 U/mL, the mean concentration of CRP increases by 0.7%; (3) with the WHO 2 grade, the mean CRP concentration increases 3.631 times relative to the WHO 1 grade group; (4) with the WHO 3 grade, the mean CRP concentration increases by 4.916 times relative to the WHO 1 grade group; (5) with metastases (T1-4N+M+) the mean CRP concentration increases 4.183 times compared to non-metastatic patients (T1-4N0M0); (6) with a tumor located in the proximal colon, the mean concentration of CRP increases 2.175 times compared to a tumor located in the distal colon; (7) in patients with tumor size > 3 cm, the CRP concentration is about 2 times higher than in patients with tumor size ≤ 3 cm. In the multivariate linear regression model, the variables that influence the mean CRP value in CRC patients included: WHO grade and tumor localization. R2 for the created model equals 0.50, which indicates that this model explains 50% of the variance in the dependent variable. In CRC subjects: (1) with the WHO 2 grade, the mean CRP concentration rises 3.924 times relative to the WHO 1 grade; (2) with the WHO 3 grade, the mean CRP concentration increases 4.721 times in relation to the WHO 1 grade; (3) with a tumor located in the rectum, the mean CRP concentration rises 2.139 times compared to a tumor located in the distal colon; (4) with a tumor located in the proximal colon, the mean concentration of CRP increases 1.998 times compared to the tumor located in the distal colon; if other model parameters are fixed.
Collapse
|
32
|
Liu F, Hu HJ, Regmi P, Jin YW, Ma WJ, Wang JK, Zou RQ, Li FY. Elevated Platelet Distribution Width Predicts Poor Prognosis in Gallbladder Carcinoma. Cancer Manag Res 2021; 13:4647-4655. [PMID: 34140810 PMCID: PMC8203277 DOI: 10.2147/cmar.s311061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that platelet distribution width (PDW) is a reliable predictor of prognosis of a variety of tumors. Nevertheless, the prognostic value of PDW in gallbladder carcinoma (GBC) remains unknown. We aimed to explore the correlation between PDW and prognosis in patients with GBC. METHODS A total of 303 patients with GBC who underwent curative surgery between January 2005 and February 2017 were enrolled. The relationship between PDW and clinicopathological features was analyzed. Receiver operating characteristic (ROC) curve was used to identify the optimal cutoff value of PDW. The overall survival (OS) rate was estimated by Kaplan-Meier method. Meanwhile, univariable and multivariable Cox regression model were used to evaluate the risk factors for OS. RESULTS There was significant correlation between elevated PDW and AJCC stage. In addition, survival analysis revealed that the patients with PDW>14.95 have a worse prognosis than patients with PDW14.95 (P < 0.001). The multivariable Cox regression model analysis demonstrated that PDW was an independent prognostic factor in GBC patients (hazard ratio=1.976, 95% confidence interval:1.474-2.650, P<0.001). CONCLUSION Elevated PDW can predict poor prognosis in GBC patients, and further studies are needed to verify the reliability and clarify the exact molecular mechanistic of PDW in GBC.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Hai-Jie Hu
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Parbatraj Regmi
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Yan-Wen Jin
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Wen-Jie Ma
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Jun-Ke Wang
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Rui-Qi Zou
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| | - Fu-Yu Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People’s Republic of China
| |
Collapse
|
33
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
34
|
Iriani A, Setiabudy RD, Kresno SB, Sudoyo AW, Bardosono S, Rachman A, Harahap AR, Arief M. Expression of mRNA TNFα and level of protein TNFα after exposure sCD40L in bone marrow mononuclear cells of myelodysplastic syndromes. Stem Cell Investig 2021; 8:6. [PMID: 33829058 DOI: 10.21037/sci-2020-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
Background Cytopenia is the primary phenomenon in myelodysplastic syndrome (MDS) amidst hypercellular bone marrow. The soluble CD40 ligand (sCD40L) is considered as a cytokine that can trigger synthesis of tumor necrosis factor α (TNFα) that promotes apoptosis. The objective of this study is to prove that recombinant human sCD40L (rh-sCD40L) exposure on bone marrow mononuclear cells (BMMC) MDS increases TNFα expression at mRNA level and at protein level. Methods BMMC from MDS patients whom diagnosed and classified using the WHO 2008 criteria, were exposed to rh-sCD40L and antiCD40L. The expressions of TNFα mRNAs were quantified by qRT-PCR, level of TNFα were measured using the ELISA method. Results Exposure of rh-sCD40L significantly increased the expression of TNFα mRNA. The similar exposure also significantly increased the level of TNFα compared to controls. TNFα mRNA expression on BMMC in MDS samples exposed to rh-sCD40L is 3.32 times compared to TNFα mRNA expression without exposure. level of TNFα in supernatant media exposed to rh-sCD40L in MDS samples was higher than that of control samples which were 44.44 and 4.85 pg/mL, P=0.018. Conclusions The sCD40L plays a role in increasing the synthesis of TNFα in mRNA level and protein level in BMMC MDS.
Collapse
Affiliation(s)
- Anggraini Iriani
- Department of Clinical Pathology, Yarsi University, Jakarta, Indonesia
| | | | - Siti B Kresno
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | - Aru W Sudoyo
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Saptawati Bardosono
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Andhika Rachman
- Department of Hematology and Medical Oncology, University of Indonesia, Jakarta, Indonesia
| | - Alida R Harahap
- Department of Clinical Pathology, University of Indonesia, Jakarta, Indonesia
| | - Mansyur Arief
- Department of Clinical Pathology, Hasanudin University, Makasar, Indonesia
| |
Collapse
|
35
|
Bilusic M, McMahon S, Madan RA, Karzai F, Tsai YT, Donahue RN, Palena C, Jochems C, Marté JL, Floudas C, Strauss J, Redman J, Abdul Sater H, Rabizadeh S, Soon-Shiong P, Schlom J, Gulley JL. Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer 2021; 9:jitc-2021-002374. [PMID: 33762322 PMCID: PMC7993215 DOI: 10.1136/jitc-2021-002374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Background Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1–, E2b–] targeting three TAAs—prostate-specific antigen (PSA), brachyury, and MUC-1—has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial–mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. Methods Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. Results Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65–1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. Conclusions Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. Trial registration number NCT03481816.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheri McMahon
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ravi A Madan
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Fatima Karzai
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Charalampos Floudas
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Julius Strauss
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Redman
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Houssein Abdul Sater
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancy Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Donahue RN, Marté JL, Goswami M, Toney NJ, Tsai YT, Gulley JL, Schlom J. Interrogation of the cellular immunome of cancer patients with regard to the COVID-19 pandemic. J Immunother Cancer 2021; 9:jitc-2020-002087. [PMID: 33707314 PMCID: PMC7956734 DOI: 10.1136/jitc-2020-002087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
While vaccines directed against the SARS-CoV-2 spike protein will have varying degrees of effectiveness in preventing SARS-CoV-2 infections, the severity of infection will be determined by multiple host factors including the ability of immune cells to lyse virus-infected cells. This review will discuss the complexity of both adaptive and innate immunomes and how a flow-based assay can detect up to 158 distinct cell subsets in the periphery. This assay has been employed to show the effect of age on differences in specific immune cell subsets, and the differences in the immunome between healthy donors and age-matched cancer patients. Also reviewed are the numerous soluble factors, in addition to cytokines, that may vary in the pathogenesis of SARS-CoV-2 infections and may also be employed to help define the effectiveness of a given vaccine or other antiviral agents. Various steroids have been employed in the management of autoimmune adverse events in cancer patients receiving immunotherapeutics and may be employed in the management of SARS-CoV-2 infections. The influence of steroids on multiple immune cells subsets will also be discussed.
Collapse
Affiliation(s)
- Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Meghali Goswami
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yo-Ting Tsai
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Mijic S, Dabrosin C. Platelet Activation In Situ in Breasts at High Risk of Cancer: Relationship with Mammographic Density and Estradiol. J Clin Endocrinol Metab 2021; 106:485-500. [PMID: 33180937 DOI: 10.1210/clinem/dgaa820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT High mammographic density in postmenopausal women is an independent risk factor for breast cancer by undetermined mechanisms. No preventive therapy for this risk group is available. Activated platelets release growth factors that modulate the microenvironment into a protumorigenic state. Estrogens may affect the risk of breast cancer and platelet function. Whether platelets are activated in situ in breast cancer or in normal breast tissue at high risk of breast cancer and the association to estradiol remains elusive. OBJECTIVE To investigate whether platelets are activated in situ in breast cancers and in dense breast tissue of postmenopausal women and explore correlations between estradiol, released platelet factors, and inflammatory proteins. SETTING AND DESIGN Sampling of in vivo proteins was performed using microdialysis in a total of 71 women: 10 with breast cancer, 42 healthy postmenopausal women with different breast densities, and 19 premenopausal women. RESULTS Our data demonstrate increased levels of coagulation factors in dense breast tissue similar to that found in breast cancers, indicating excessive platelet activation. Premenopausal breasts exhibited similar levels of coagulation factors as postmenopausal dense breasts. Out of 13 coagulations factors that were upregulated in dense breasts, 5 exhibited significant correlations with estradiol, both locally in the breast and systemically. In breast tissue, positive correlations between coagulation factors and key inflammatory proteins and matrix metalloproteinases were detected. CONCLUSIONS Breast density, not estradiol, is the major determinant of local platelet activation. Inactivation of platelets may be a therapeutic strategy for cancer prevention in postmenopausal women with dense breasts.
Collapse
Affiliation(s)
- Sofija Mijic
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
38
|
Marté JL, Toney NJ, Cordes L, Schlom J, Donahue RN, Gulley JL. Early changes in immune cell subsets with corticosteroids in patients with solid tumors: implications for COVID-19 management. J Immunother Cancer 2020; 8:jitc-2020-001019. [PMID: 33219091 PMCID: PMC7681794 DOI: 10.1136/jitc-2020-001019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The risk–benefit calculation for corticosteroid administration in the management of COVID-19 is complex and urgently requires data to inform the decision. The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation associated with poor prognosis in both COVID-19 and cancer. Investigating NLR as an inflammatory marker and lymphocyte levels as a critical component of antiviral immunity may inform the dilemma of reducing toxic hyperinflammation while still maintaining effective antiviral responses. Methods We performed a retrospective analysis of NLR, absolute neutrophil counts (ANCs) and absolute lymphocyte counts (ALCs) in patients with cancer enrolled in immunotherapy trials who received moderate-dose to high-dose corticosteroids. We compared paired presteroid and available poststeroid initiation values daily during week 1 and again on day 14 using the Wilcoxon signed-rank test. Associated immune subsets by flow cytometry were included where available. Results Patients (n=48) with a variety of solid tumors received prednisone, methylprednisolone, or dexamethasone alone or in combination in doses ranging from 20 to 190 mg/24 hours (prednisone equivalent). The median NLR prior to steroid administration was elevated at 5.0 (range: 0.9–61.2). The corresponding median ANC was 5.1 K/µL (range: 2.03–22.31 K/µL) and ALC was 1.03 K/µL (0.15–2.57 K/µL). One day after steroid administration, there was a significant transient drop in median ALC to 0.54 K/µL (p=0.0243), driving an increase in NLR (median 10.8, p=0.0306). Relative lymphopenia persisted through day 14 but was no longer statistically significant. ANC increased steadily over time, becoming significant at day 4 (median: 7.31 K/µL, p=0.0171) and remaining significantly elevated through day 14. NLR was consistently elevated after steroid initiation, significantly at days 1, 7 (median: 8.2, p=0.0272), and 14 (median: 15.0, p=0.0018). Flow cytometry data from 11 patients showed significant decreases in activated CD4 cells and effector memory CD8 cells. Conclusions The early drop in ALC with persistent lymphopenia as well as the prolonged ANC elevation seen in response to corticosteroid administration are similar to trends associated with increased mortality in several coronavirus studies to include the current SARS-CoV-2 pandemic. The affected subsets are essential for effective antiviral immunity. This may have implications for glucocorticoid therapy for COVID-19.
Collapse
Affiliation(s)
- Jennifer L Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole J Toney
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Schlom J, Donahue RN. The Importance of Cellular Immunity in the Development of Vaccines and Therapeutics for COVID-19. J Infect Dis 2020; 222:1435-1438. [PMID: 32651586 PMCID: PMC7454733 DOI: 10.1093/infdis/jiaa415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/06/2020] [Indexed: 11/12/2022] Open
Abstract
It is important to develop vaccines that can also mediate T-cell responses to SARS-CoV-2 to limit severity of infections, and to analyze the cellular immunome in the use of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Hartzell S, Bin S, Cantarelli C, Haverly M, Manrique J, Angeletti A, Manna GL, Murphy B, Zhang W, Levitsky J, Gallon L, Yu SMW, Cravedi P. Kidney Failure Associates With T Cell Exhaustion and Imbalanced Follicular Helper T Cells. Front Immunol 2020; 11:583702. [PMID: 33117396 PMCID: PMC7552886 DOI: 10.3389/fimmu.2020.583702] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Individuals with kidney failure are at increased risk of cardiovascular events, as well as infections and malignancies, but the associated immunological abnormalities are unclear. We hypothesized that the uremic milieu triggers a chronic inflammatory state that, while accelerating atherosclerosis, promotes T cell exhaustion, impairing effective clearance of pathogens and tumor cells. Clinical and demographic data were collected from 78 patients with chronic kidney disease (CKD) (n = 42) or end-stage kidney disease (ESKD) (n = 36) and from 18 healthy controls (HC). Serum cytokines were analyzed by Luminex. Immunophenotype of T cells was performed by flow cytometry on peripheral blood mononuclear cells. ESKD patients had significantly higher serum levels of IFN-γ, TNF-α, sCD40L, GM-CSF, IL-4, IL-8, MCP-1, and MIP-1β than CKD and HC. After mitogen stimulation, both CD4+ and CD8+ T cells in ESKD group demonstrated a pro-inflammatory phenotype with increased IFN-γ and TNF-α, whereas both CKD and ESKD patients had higher IL-2 levels. CKD and ESKD were associated with increased frequency of exhausted CD4+ T cells (CD4+KLRG1+PD1+CD57-) and CD8+ T cells (CD8+KLRG1+PD1+CD57-), as well as anergic CD4+ T cells (CD4+KLRG1-PD1+CD57-) and CD8+ T cells (CD8+KLRG1-PD1+CD57-). Although total percentage of follicular helper T cell (TFH) was similar amongst groups, ESKD had reduced frequency of TFH1 (CCR6-CXCR3+CXCR5+PD1+CD4+CD8-), but increased TFH2 (CCR6-CXCR3-CXCR5+PD1+CD4+CD8-), and plasmablasts (CD3-CD56-CD19+CD27highCD38highCD138-). In conclusion, kidney failure is associated with pro-inflammatory markers, exhausted T cell phenotype, and upregulated TFH2, especially in ESKD. These immunological changes may account, at least in part, for the increased cardiovascular risk in these patients and their susceptibility to infections and malignancies.
Collapse
Affiliation(s)
- Susan Hartzell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sofia Bin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliera-Universitaria di Parma, Parma, Italy
| | - Meredith Haverly
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna Sant'Orsola- Malpighi Hospital, Bologna, Italy
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Josh Levitsky
- Division of Gastroenterology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lorenzo Gallon
- Division of Nephrology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Samuel Mon-Wei Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
41
|
Ng SSW, Zhang H, Wang L, Citrin D, Dawson LA. Association of pro-inflammatory soluble cytokine receptors early during hepatocellular carcinoma stereotactic radiotherapy with liver toxicity. NPJ Precis Oncol 2020; 4:17. [PMID: 32695883 PMCID: PMC7360781 DOI: 10.1038/s41698-020-0124-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/15/2020] [Indexed: 02/08/2023] Open
Abstract
Plasma levels of soluble factors early during hepatocellular carcinoma (HCC) stereotactic body radiotherapy (SBRT) were evaluated in relation to radiation liver injury, tumor response, and risk of early death. No significant differences were found in baseline plasma levels of AFP, CXCL1, and HGF amongst HCC patients with different Child Pugh scores. Higher levels of sTNFRII (P < 0.001), and lower levels of sCD40L (P < 0.001) and CXCL1 (P = 0.01) following one to two fractions of SBRT were noted in patients who developed liver toxicity vs. those who did not. High circulating levels of AFP (HR 2.16, P = 0.04), sTNFRII (HR 2.27, P = 0.01), and sIL-6R (HR 1.99, P = 0.03) early during SBRT were associated with increased risk of death 3 months post treatment. Plasma levels of the studied factors early during SBRT were not associated with tumor response. A pro-inflammatory systemic environment is associated with development of liver toxicity and increased risk of early death following SBRT.
Collapse
Affiliation(s)
- Sylvia S. W. Ng
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| | - Hong Zhang
- Radiation Oncology Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Lisa Wang
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON Canada
| | - Deborah Citrin
- Radiation Oncology Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Laura A. Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
42
|
A pilot clinical trial testing topical resiquimod and a xenopeptide as immune adjuvants for a melanoma vaccine targeting MART-1. Melanoma Res 2020; 29:420-427. [PMID: 30520800 DOI: 10.1097/cmr.0000000000000556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A vaccine that could expand melanoma-specific T cells might reduce the risk of recurrence of resected melanoma and could provide an alternative or adjunct to standard immunotherapy options. We tested the safety and immunogenicity of a vaccine coupling a melanoma-associated peptide with a xenogenic peptide (to promote epitope spreading) and/or resiquimod (to activate antigen-presenting cells). HLA-A2-positive patients with resected stage II, III, and IV melanoma were assigned to treatment on one of three schedules. All patients received three subcutaneous doses of the peptide MART-1a mixed with Montanide. In addition, patients on schedule 1 received the xenoantigen peptide Gag267-274, patients on schedule 2 received topical resiquimod, and patients on schedule 3 received both Gag267-274 and resiquimod. Blood samples were tested for the frequency of antigen-specific T cells by tetramer assay, as well as immune cell subtypes and plasma cytokine levels. Patients enrolled from October 2012 to December 2014, with 10 patients enrolling to each schedule. The most common adverse events were injection site reaction (26 patients) and fatigue (15 patients). Tetramer analysis revealed antigen-specific responses (defined as doubling of MART-1a-specific T cells from pretreatment to post-treatment) in 20, 60, and 40% of patients treated on schedules 1, 2, and 3, respectively. Vaccine treatment consisting of MART-1a peptide, Gag267-274, Montanide, and topical resiquimod was well-tolerated. The addition of the Gag267-274 xenoantigen was not associated with an increase in the response to MART-1a, whereas use of topical resiquimod was associated with a higher frequency of MART-1a-specific T-cell responses that did not meet statistical significance.
Collapse
|
43
|
Tiako Meyo M, Jouinot A, Giroux-Leprieur E, Fabre E, Wislez M, Alifano M, Leroy K, Boudou-Rouquette P, Tlemsani C, Khoudour N, Arrondeau J, Thomas-Schoemann A, Blons H, Mansuet-Lupo A, Damotte D, Vidal M, Goldwasser F, Alexandre J, Blanchet B. Predictive Value of Soluble PD-1, PD-L1, VEGFA, CD40 Ligand and CD44 for Nivolumab Therapy in Advanced Non-Small Cell Lung Cancer: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12020473. [PMID: 32085544 PMCID: PMC7072584 DOI: 10.3390/cancers12020473] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
A large interindividual variability has been observed in anti Programmed cell Death 1 (anti-PD1) therapies efficacy. The aim of this study is to assess the correlation of soluble PD-1 (sPD-1), soluble Programmed cell Death Ligand 1 (sPD-L1), Vascular Endothelial Growth Factor A (VEGFA), soluble CD40 ligand (sCD40L) and soluble CD44 (sCD44), with survival in nivolumab-treated metastatic non-small cell lung cancer (NSCLC) patients. Plasma biomarkers were assayed at baseline and after two cycles of nivolumab. A cut-off of positivity for sPD-1, sPD-L1 and sCD40L expressions was defined as a plasma level above the lower limit of quantification. Baseline sPD-1 and sPD-L1 levels were subsequently analyzed in a control group of EGFR-mutated (Epidermal Growth Factor Receptor) NSCLC patients. Association between survival and biomarkers was investigated using Cox proportional hazard regression model. Eighty-seven patients were included (51 nivolumab-treated patients, 36 in EGFR-mutated group). In nivolumab group, baseline sPD-1, sPD-L1 and sCD40L were positive for 15(29.4%), 27(52.9%) and 18(50%) patients, respectively. We defined a composite criteria (sCombo) corresponding to sPD-1 and/or sPD-L1 positivity for each patient. In nivolumab group, baseline sCombo positivity was associated with shorter median progression-free survival (PFS) (78 days 95%CI (55–109) vs. 658 days (222-not reached); HR: 4.12 (1.95–8.71), p = 0.0002) and OS (HR: 3.99(1.63–9.80), p = 0.003). In multivariate analysis, baseline sCombo independently correlated with PFS (HR: 2.66 (1.17–6.08), p = 0.02) but not OS. In EGFR-mutated group, all patients were baseline sCombo positive; therefore this factor was not associated with survival. After two cycles of nivolumab, an increased or stable sPD-1 level independently correlated with longer PFS (HR: 0.49, 95%CI (0.30–0.80), p = 0.004) and OS (HR: 0.39, 95%CI (0.21–0.71), p = 0.002). VEGFA, sCD40L and sCD44 did not correlate with survival. We propose a composite biomarker using sPD-1and sPDL-1 to predict nivolumab efficacy in NSCLC patients. A larger validation study is warranted.
Collapse
Affiliation(s)
- Manuela Tiako Meyo
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Correspondence: ; Tel.: +331-5841-2313; Fax: +331-5841-2315
| | - Anne Jouinot
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cochin, INSERM U1016, 75014 Paris, France
| | - Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-AmbroiseParé Hospital and EA 4340 University Versailles-Saint Quentin en Yvelines, 92100 Boulogne, France;
| | - Elizabeth Fabre
- Department of Thoracic Oncology, Georges Pompidou European Hospital, AP-HP, 75015 Paris, France;
| | - Marie Wislez
- Department of Pneumology, Cochin Hospital, APHP, 75014 Paris, France;
| | - Marco Alifano
- Department of Thoracic Surgery, Cochin Hospital, APHP, 75014 Paris, France;
| | - Karen Leroy
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Nihel Khoudour
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
| | - Jennifer Arrondeau
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Audrey Thomas-Schoemann
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
| | - Hélène Blons
- Department of Cyto-pathology, Georges Pompidou European Hospital, AP-HP, 75015 Paris, France;
| | - Audrey Mansuet-Lupo
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Diane Damotte
- Department of Cyto-pathology, Cochin Hospital, AP-HP, 75014 Paris, France; (K.L.); (A.M.-L.); (D.D.)
| | - Michel Vidal
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cordeliers, INSERM U1147, 75006 Paris, France
| | - Jérôme Alexandre
- Department of Medical Oncology, Cochin Hospital, AP-HP, Paris Descartes University, CARPEM, 75014 Paris, France; (A.J.); (P.B.-R.); (C.T.); (J.A.); (F.G.); (J.A.)
- Institut Cochin, INSERM U1016, 75014 Paris, France
- Institut Cordeliers, INSERM U1147, 75006 Paris, France
| | - Benoit Blanchet
- Drug Biology–Toxicology, Cochin Hospital, AP-HP, CARPEM, 75014 Paris, France; (N.K.); (M.V.); (B.B.)
- UMR8038 CNRS, U1268 INSERM, Faculty of Pharmacy, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France;
| |
Collapse
|
44
|
Gong D, Wang Y, Wang Y, Chen X, Chen S, Wang R, Liu L, Duan C, Luo S. Extensive serum cytokine analysis in patients with prostate cancer. Cytokine 2020; 125:154810. [DOI: 10.1016/j.cyto.2019.154810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
|
45
|
Grosdidier C, Blanz KD, Deharo P, Bernot D, Poggi M, Bastelica D, Wolf D, Duerschmied D, Grino M, Cuisset T, Alessi M, Canault M. Platelet CD40 ligand and bleeding during P2Y12 inhibitor treatment in acute coronary syndrome. Res Pract Thromb Haemost 2019; 3:684-694. [PMID: 31624788 PMCID: PMC6781928 DOI: 10.1002/rth2.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Antiplatelet therapy through inhibition of the adenosine diphosphate (ADP)/P2Y12 pathway is commonly used in the treatment of acute coronary syndrome (ACS). Although efficient in preventing platelet activation and thrombus formation, it increases the risk of bleeding complications. In patients with ACS receiving platelet aggregation inhibitors, that is, P2Y12 blockers (n = 923), we investigated the relationship between plasma and platelet-associated CD40L levels and bleeding events (n = 71). Treatment with P2Y12 inhibitors in patients with ACS did not affect plasma-soluble CD40L levels, but decreased platelet CD40L surface expression (pCD40L) and platelet-released CD40L (rCD40L) levels in response to stimulation as compared to healthy controls. In vitro inhibition of the ADP pathway in healthy control platelets reduced both pCD40L and rCD40L levels. In a multivariable analysis, the reduced pCD40L level observed in ACS patients was significantly associated with the risk of bleeding occurrence (adjusted odds ratio = 0.15; 95% confidence interval = 0.034-0.67). P2Y12 inhibitor-treated (ticagrelor) mice exhibited a 2.5-fold increase in tail bleeding duration compared with controls. A significant reduction in bleeding duration was observed on CD40L+/+ but not CD40L-/- platelet infusion. In addition, CD40L blockade in P2Y12 inhibitor-treated blood samples from a healthy human reduced thrombus growth over immobilized collagen under arterial flow. In conclusion, measurement of pCD40L may offer a novel approach to assessing bleeding risk in patients with ACS who are being treated with P2Y12 inhibitors.
Collapse
Affiliation(s)
- Charlotte Grosdidier
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Kelly D. Blanz
- Spemann Graduate School of Biology and MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Pierre Deharo
- Department of CardiologyAPHM, CHU TimoneMarseilleFrance
| | - Denis Bernot
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | - Marjorie Poggi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Dennis Wolf
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology IHeart Center Freiburg UniversityFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Michel Grino
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
| | | | - Marie‐Christine Alessi
- Aix Marseille UniversityINSERM, INRA, C2VNMarseilleFrance
- Hematology LaboratoryAPHM, CHU TimoneMarseilleFrance
| | | |
Collapse
|
46
|
Chakrabarti R, Kapse B, Mukherjee G. Soluble immune checkpoint molecules: Serum markers for cancer diagnosis and prognosis. Cancer Rep (Hoboken) 2019; 2:e1160. [PMID: 32721130 PMCID: PMC7941475 DOI: 10.1002/cnr2.1160] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND With the recent advances in the understanding of the interaction of the immune system with developing tumor, it has become imperative to consider the immunological parameters for both cancer diagnosis and disease prognosis. Additionally, in the era of emerging immunotherapeutic strategies in cancer, it is very important to follow the treatment outcome and also to predict the correct immunotherapeutic strategy in individual patients. There being enormous heterogeneity among tumors at different sites or between primary and metastatic tumors in the same individual, or interpatient heterogeneity, it is very important to study the tumor-immune interaction in the tumor microenvironment and beyond. Importantly, molecular tools and markers identified for such studies must be suitable for monitoring in a noninvasive manner. RECENT FINDINGS Recent studies have shown that the immune checkpoint molecules play a key role in the development and progression of tumors. In-depth studies of these molecules have led to the development of most of the cancer immunotherapeutic reagents that are currently either in clinical use or under different phases of clinical trials. Interestingly, many of these cell surface molecules undergo alternative splicing to produce soluble isoforms, which can be tracked in the serum of patients. CONCLUSIONS Several studies demonstrate that the serum levels of these soluble isoforms could be used as noninvasive markers for cancer diagnosis and disease prognosis or to predict patient response to specific therapeutic strategies.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Bhavya Kapse
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurIndia
| | - Gayatri Mukherjee
- School of Medical Science and TechnologyIndian Institute of Technology KharagpurKharagpurIndia
| |
Collapse
|
47
|
Singh S, Chakrabarti R. Consequences of EMT-Driven Changes in the Immune Microenvironment of Breast Cancer and Therapeutic Response of Cancer Cells. J Clin Med 2019; 8:jcm8050642. [PMID: 31075939 PMCID: PMC6572359 DOI: 10.3390/jcm8050642] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process through which epithelial cells lose their epithelial characteristics and cell–cell contact, thus increasing their invasive potential. In addition to its well-known roles in embryonic development, wound healing, and regeneration, EMT plays an important role in tumor progression and metastatic invasion. In breast cancer, EMT both increases the migratory capacity and invasive potential of tumor cells, and initiates protumorigenic alterations in the tumor microenvironment (TME). In particular, recent evidence has linked increased expression of EMT markers such as TWIST1 and MMPs in breast tumors with increased immune infiltration in the TME. These immune cells then provide cues that promote immune evasion by tumor cells, which is associated with enhanced tumor progression and metastasis. In the current review, we will summarize the current knowledge of the role of EMT in the biology of different subtypes of breast cancer. We will further explore the correlation between genetic switches leading to EMT and EMT-induced alterations within the TME that drive tumor growth and metastasis, as well as their possible effect on therapeutic response in breast cancer.
Collapse
Affiliation(s)
- Snahlata Singh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a Target for Interference With Inflammation and Thrombosis. Front Med (Lausanne) 2019; 6:76. [PMID: 31106204 PMCID: PMC6499166 DOI: 10.3389/fmed.2019.00076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP) on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and the polymer has been recognized as a therapeutic target for interference with blood coagulation and vascular hyperpermeability. PolyP content and chain length depend on the specific cell type and energy status, which may affect cellular functions. PolyP metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic cells and mammalian systems have remained enigmatic. In this review, we will present an overview of polyP functions, focusing on intra- and extracellular roles of the polymer and discuss open questions that emerge from the current knowledge on polyP regulation.
Collapse
Affiliation(s)
- Reiner K W Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorena Hänel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikel Allende
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
PI3K/AKT and CD40L Signaling Regulate Platelet Activation and Endothelial Cell Damage in Sepsis. Inflammation 2019; 41:1815-1824. [PMID: 29956071 DOI: 10.1007/s10753-018-0824-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelets contribute to inflammation and their activation has been suggested as versatile effectors of sepsis. Activation of platelets promotes secretion of CD40L that induces sepsis and multiple organ dysfunction syndrome (MODS). However, the mechanisms regulate platelet-derived CD40L are not fully understood. Activation of PI3K/Akt pathway has been reported as a key component of sepsis, whereas the role of PI3K/Akt pathway in platelet-derived CD40L is unknown. In this study, we identified PI3K/Akt pathway as a key regulator of CD40L secretion by platelets. Significantly, inhibition of PI3K/Akt pathway by Ly294002 attenuated platelet activation and CD40L production. Moreover, PI3K/Akt pathway blocking suppresses vascular endothelial cells in vivo. Furthermore, the expression of biomarkers that represent the severity of sepsis, such as ICAM-1, VCAM-1, and E-selectin, was also suppressed by Ly294002. Altogether, our results confirm the pivotal role of PI3K/Akt pathway in sepsis and its inhibition might be a potential therapeutic target.
Collapse
|
50
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|