1
|
周 鑫, 陈 晓, 文 川, 罗 森. [A case of hepatitis-associated aplastic anemia complicated by hemophagocytic lymphohistiocytosis and literature review]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2025; 27:465-471. [PMID: 40241366 PMCID: PMC12011009 DOI: 10.7499/j.issn.1008-8830.2409118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
A 4-year-old boy was admitted to the hospital with a 3-day history of rash and intermittent abdominal pain, during which abnormal results from routine blood tests were discovered. Initially, he presented with acute jaundice hepatitis and pancytopenia. The patient's condition progressed rapidly, with recurrent fever, worsening jaundice of the skin and sclera, and progressively worsening hepatosplenomegaly. Liver function impairment and bone marrow failure continued to deteriorate, while cytokine levels continued to rise. After excluding infections, autoimmune diseases, tumors, genetic metabolic disorders, and toxicities, the patient was diagnosed with hepatitis-associated aplastic anemia (HAAA) complicated by hemophagocytic lymphohistiocytosis (HLH). Following treatment with corticosteroids, plasma exchange, intravenous immunoglobulin, and liver protection therapy, the patient's symptoms partially alleviated. Aplastic anemia complicated by HLH is relatively uncommon, and HAAA complicated by HLH is even rarer, often presenting insidiously and severely. This paper presents a case of HAAA complicated by HLH and summarizes previously reported cases in the literature, providing references for the early diagnosis and treatment of this condition.
Collapse
|
2
|
Cron KR, Sivan A, Aquino-Michaels K, Ziblat A, Higgs EF, Sweis RF, Tonea R, Lee S, Gajewski TF. PKCδ Germline Variants and Genetic Deletion in Mice Augment Antitumor Immunity through Regulation of Myeloid Cells. Cancer Immunol Res 2025; 13:547-559. [PMID: 39808445 DOI: 10.1158/2326-6066.cir-23-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified protein kinase C delta (PKCδ) as a candidate. Genetic deletion of Prkcd in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1. Single-cell RNA sequencing revealed myeloid cell expression of Prkcd, and PKCδ deletion caused a shift in macrophage gene expression from an M2-like to an M1-like phenotype. Conditional deletion of Prkcd in myeloid cells recapitulated improved tumor control that was augmented further with anti-PD-L1. Analysis of clinical samples confirmed an association between PRKCD variants and M1/M2 phenotype, as well as between a PKCδ knockout-like gene signature and clinical benefit from anti-PD-1. Our results identify PKCδ as a candidate therapeutic target that modulates myeloid cell states.
Collapse
Affiliation(s)
- Kyle R Cron
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ayelet Sivan
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Keston Aquino-Michaels
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Andrea Ziblat
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Emily F Higgs
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Randy F Sweis
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ruxandra Tonea
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Seoho Lee
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
4
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Fregel Lorenzo RI, Dyall SD, Isenberg D, D'Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. eLife 2024; 13:RP96085. [PMID: 39570652 PMCID: PMC11581429 DOI: 10.7554/elife.96085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris CitéParisFrance
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Barbara Craddock
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | | | | | - Sabrina D Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of MauritiusReduitMauritius
| | - David Isenberg
- Bioinformatics Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - David D'Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Nico Lachmann
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne BuildingLondonUnited Kingdom
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Agnes Viale
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | - Nicholas D Socci
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - W Todd Miller
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Physiology and Biophysics, Stony Brook University School of MedicineStony BrookUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick ChildrenParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| |
Collapse
|
5
|
Zhang C, Liang D, Liu Z. Primary immunodeficiency as a cause of immune-mediated kidney diseases. Nephrol Dial Transplant 2024; 39:1772-1784. [PMID: 38772735 PMCID: PMC11522874 DOI: 10.1093/ndt/gfae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024] Open
Abstract
Primary immunodeficiency (PID) is no longer defined by infections alone, and autoimmunity is an accompanying manifestation of PID. Recurrent infections may trigger autoimmunity through molecular mimicry, bystander activation or superantigens. The diagnosis of PID is still challenging, but genetic analysis reveals the underlying link between PID and autoimmunity. Mutations in relevant genes affecting central and peripheral immune tolerance, regulatory T-cell function, expansion of autoreactive lymphocytes, antigen clearance, hyperactivation of type I interferon and nuclear factor-κB pathways have all been implicated in triggering autoimmunity in PID. Autoimmunity in PID leads to chronic inflammation, tissue damage and organ failure, and increases the mortality of patients with PID. The kidneys are inextricably linked with the immune system, and kidney diseases can be mediated by both infection and autoimmunity/inflammation in PID patients. The manifestations of kidney involvement in PID patients are very heterogeneous and include lupus nephritis, C3 glomerulopathy, kidney thrombotic microangiopathy, vasculitis and interstitial nephritis. Patients with PID-caused kidney diseases have defined immune function defects and may benefit from pathway-based biologics, stem cell transplantation or gene therapy. Early diagnosis and appropriate treatment of PID are crucial for reducing the mortality rate and improving organ function and quality of life.
Collapse
Affiliation(s)
- Changming Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
7
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
8
|
Watson CPN, Midha R, Ng DW. Causalgia: A Review of Nerve Resection, Amputation, Immunotherapy, and Amputated Limb CRPS II Pathology. Can J Neurol Sci 2024; 51:351-356. [PMID: 37489506 DOI: 10.1017/cjn.2023.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
BACKGROUND Causalgia and complex regional pain syndrome (CRPS) type II with nerve injury can be difficult to treat. Surgical peripheral nerve denervation for causalgia has been largely abandoned by pain clinicians because of a perception that this may aggravate a central component (anesthesia dolorosa). METHODS We selectively searched Pubmed, Cochrane, MEDLINE, EMBASE, CINAHL Plus, and Scopus from 1947 for articles, books, and book chapters for evidence of surgical treatments (nerve resection and amputation) and treatment related to autoimmunity and immune deficiency with CRPS. RESULTS Reviews were found for the treatment of causalgia or CRPS type II (n = 6), causalgia relieved by nerve resection (n = 6), and causalgia and CRPS II treated by amputation (n = 8). Twelve reports were found of autoimmunity with CRPS, one paper of these on associated immune deficiency and autoimmunity, and two were chosen for discussion regarding treatment with immunoglobulin and one by plasma exchange. We document a report of a detailed and unique pathological examination of a CRPS type II affected amputated limb and related successful treatment with immunoglobulin. CONCLUSIONS Nerve resection, with grafting, and relocation may relieve uncomplicated causalgia and CRPS type II in some patients in the long term. However, an unrecognized and treatable immunological condition may underly some CRPS II cases and can lead to the ultimate failure of surgical treatments.
Collapse
Affiliation(s)
| | - Rajiv Midha
- Department of Clinical Neurosciences, Section of Neurosurgery, University of Calgary, Calgary, AB, Canada
| | - Denise W Ng
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Tusseau M, Khaldi-Plassart S, Cognard J, Viel S, Khoryati L, Benezech S, Mathieu AL, Rieux-Laucat F, Bader-Meunier B, Belot A. Mendelian Causes of Autoimmunity: the Lupus Phenotype. J Clin Immunol 2024; 44:99. [PMID: 38619739 DOI: 10.1007/s10875-024-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Samira Khaldi-Plassart
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Liliane Khoryati
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Sarah Benezech
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Fréderic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Department for Immunology, Hematology and Pediatric Rheumatology, Necker Hospital, APHP, Institut IMAGINE, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France.
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
10
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Jefferson L, Ramanan AV, Jolles S, Bernatoniene J, Mathieu AL, Belot A, Roderick MR. Phenotypic Variability in PRKCD: a Review of the Literature. J Clin Immunol 2023; 43:1692-1705. [PMID: 37794137 DOI: 10.1007/s10875-023-01579-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE Protein kinase C δ (PKCδ) deficiency is a rare genetic disorder identified as a monogenic cause of systemic lupus erythematosus in 2013. Since the first cases were described, the phenotype has expanded to include children presenting with autoimmune lymphoproliferative syndrome-related syndromes and infection susceptibility similar to chronic granulomatous disease or combined immunodeficiency. We review the current published data regarding the pathophysiology, clinical presentation, investigation and management of PKCδ deficiency. METHODS Literature review was performed using MEDLINE. RESULTS Twenty cases have been described in the literature with significant heterogeneity. CONCLUSION The variation in clinical presentation delineates the broad and critical role of PKCδ in immune tolerance and effector functions against pathogens.
Collapse
Affiliation(s)
- Lucy Jefferson
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK.
| | - Athimalaipet Vaidyanathan Ramanan
- Translational Health Sciences, University of Bristol, Bristol, UK
- Paediatric Rheumatology Service, Bristol Royal Hospital for Children, Bristol, UK
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK
| | - Anne-Laure Mathieu
- CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie/International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in children (RAISE), Hospices Civils de Lyon, 69677, Lyon, France.
| | - Marion Ruth Roderick
- Department of Paediatric Immunology and Infectious Diseases Service, Bristol Royal Children's Hospital for Children, Upper Maudlin St, Bristol, BS2 8BJ, UK.
- Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
13
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
14
|
Zhu S, Si J, Zhang H, Qi W, Zhang G, Yan X, Huang Y, Zhao M, Guo Y, Liang J, Lan G. Comparative Serum Proteome Analysis Indicates a Negative Correlation between a Higher Immune Level and Feed Efficiency in Pigs. Vet Sci 2023; 10:vetsci10050338. [PMID: 37235421 DOI: 10.3390/vetsci10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Identifying and verifying appropriate biomarkers is instrumental in improving the prediction of early-stage pig production performance while reducing the cost of breeding and production. The main factor that affects the production cost and environmental protection cost of the pig industry is the feed efficiency of pigs. This study aimed to detect the differentially expressed proteins in the early blood index determination serum between high-feed efficiency and low-feed efficiency pigs and to provide a basis for further identification of biomarkers using the isobaric tandem mass tag and parallel reaction monitoring approach. In total, 350 (age, 90 ± 2 d; body weight, 41.20 ± 4.60 kg) purebred Yorkshire pigs were included in the study, and their serum samples were obtained during the early blood index determination. The pigs were then arranged based on their feed efficiency; 24 pigs with extreme phenotypes were grouped as high-feed efficiency and low-feed efficiency, with 12 pigs in each group. A total of 1364 proteins were found in the serum, and 137 of them showed differential expression between the groups with high- and low-feed efficiency, with 44 of them being upregulated and 93 being downregulated. PRM (parallel reaction monitoring) was used to verify 10 randomly chosen differentially expressed proteins. The proteins that were differentially expressed were shown to be involved in nine pathways, including the immune system, digestive system, human diseases, metabolism, cellular processing, and genetic information processing, according to the KEGG and GO analyses. Moreover, all of the proteins enriched in the immune system were downregulated in the high-feed efficiency pigs, suggesting that a higher immune level may not be conducive to improving feed efficiency in pigs. This study provides insights into the important feed efficiency proteins and pathways in pigs, promoting the further development of protein biomarkers for predicting and improving porcine feed efficiency.
Collapse
Affiliation(s)
- Siran Zhu
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jinglei Si
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Guangxi State Farms Yongxin Animal Husbandry Group Co., Ltd., Nanning 530004, China
| | - Huijie Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Wenjing Qi
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Guangjie Zhang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Xueyu Yan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ye Huang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Mingwei Zhao
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Yafen Guo
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Lee J, Robinson ME, Sun R, Kume K, Ma N, Cosgun KN, Chan LN, Leveille E, Geng H, Vykunta VS, Shy BR, Marson A, Katz S, Chen J, Paietta E, Meffre E, Vaidehi N, Müschen M. Dynamic phosphatase-recruitment controls B-cell selection and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532151. [PMID: 36993276 PMCID: PMC10054997 DOI: 10.1101/2023.03.13.532151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
Collapse
|
16
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Neehus AL, Tuano K, Le Voyer T, Nandiwada SL, Murthy K, Puel A, Casanova JL, Chinen J, Bustamante J. Chronic Granulomatous Disease-Like Presentation of a Child with Autosomal Recessive PKCδ Deficiency. J Clin Immunol 2022; 42:1244-1253. [PMID: 35585372 PMCID: PMC9537221 DOI: 10.1007/s10875-022-01268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Autosomal recessive (AR) PKCδ deficiency is a rare inborn error of immunity (IEI) characterized by autoimmunity and susceptibility to bacterial, fungal, and viral infections. PKCδ is involved in the intracellular production of reactive oxidative species (ROS). MATERIAL AND METHODS We studied a 5-year old girl presenting with a history of Burkholderia cepacia infection. She had no history of autoimmunity, lymphocyte counts were normal, and no auto-antibodies were detected in her plasma. We performed a targeted panel analysis of 407 immunity-related genes and immunological investigations of the underlying genetic condition in this patient. RESULTS Consistent with a history suggestive of chronic granulomatous disease (CGD), oxidative burst impairment was observed in the patient's circulating phagocytes in a dihydrorhodamine 123 (DHR) assay. However, targeted genetic panel analysis identified no candidate variants of known CGD-causing genes. Two heterozygous candidate variants were detected in PRKCD: c.285C > A (p.C95*) and c.376G > T (p.D126Y). The missense variant was also predicted to cause abnormal splicing, as it is located at the splice donor site of exon 5. TOPO-TA cloning confirmed that exon 5 was completely skipped, resulting in a truncated protein. No PKCδ protein was detected in the patient's neutrophils and monocyte-derived macrophages. The monocyte-derived macrophages of the patient produced abnormally low levels of ROS, as shown in an Amplex Red assay. CONCLUSION PKCδ deficiency should be considered in young patients with CGD-like clinical manifestations and abnormal DHR assay results, even in the absence of clinical and biological manifestations of autoimmunity.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Karen Tuano
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Sarada L Nandiwada
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Kruthi Murthy
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Javier Chinen
- Department of Pediatrics, Allergy and Immunology Division, The David Clinic, Baylor College of Medicine and Texas Children's Hospital, The Woodlands, TX, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, INSERM U1163, Paris, France. .,Paris Cité University, Imagine Institute, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. .,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.
| |
Collapse
|
18
|
Ahmed S, Sundaram TG. Which came first in lupus: The interferon or the infection? INDIAN JOURNAL OF RHEUMATOLOGY 2022. [DOI: 10.4103/injr.injr_48_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Lougaris V, Plebani A. Predominantly Antibody Deficiencies. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:482-496. [DOI: 10.1016/b978-0-12-818731-9.00097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Lai HC, Ho UY, James A, De Souza P, Roberts TL. RNA metabolism and links to inflammatory regulation and disease. Cell Mol Life Sci 2021; 79:21. [PMID: 34971439 PMCID: PMC11072290 DOI: 10.1007/s00018-021-04073-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inflammation is vital to protect the host against foreign organism invasion and cellular damage. It requires tight and concise gene expression for regulation of pro- and anti-inflammatory gene expression in immune cells. Dysregulated immune responses caused by gene mutations and errors in post-transcriptional regulation can lead to chronic inflammatory diseases and cancer. The mechanisms underlying post-transcriptional gene expression regulation include mRNA splicing, mRNA export, mRNA localisation, mRNA stability, RNA/protein interaction, and post-translational events such as protein stability and modification. The majority of studies to date have focused on transcriptional control pathways. However, post-transcriptional regulation of mRNA in eukaryotes is equally important and related information is lacking. In this review, we will focus on the mechanisms involved in the pre-mRNA splicing events, mRNA surveillance, RNA degradation pathways, disorders or symptoms caused by mutations or errors in post-transcriptional regulation during innate immunity especially toll-like receptor mediated pathways.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia.
| | - Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, NSW, Australia
- School of Medicine, Western Sydney University, Macarthur, NSW, Australia
| |
Collapse
|
21
|
Garcia-Rendueles AR, Chenlo M, Oroz-Gonjar F, Solomou A, Mistry A, Barry S, Gaston-Massuet C, Garcia-Lavandeira M, Perez-Romero S, Suarez-Fariña M, Pradilla-Dieste A, Dieguez C, Mehlen P, Korbonits M, Alvarez CV. RET signalling provides tumorigenic mechanism and tissue specificity for AIP-related somatotrophinomas. Oncogene 2021; 40:6354-6368. [PMID: 34588620 PMCID: PMC8585666 DOI: 10.1038/s41388-021-02009-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
It is unclear how loss-of-function germline mutations in the widely-expressed co-chaperone AIP, result in young-onset growth hormone secreting pituitary tumours. The RET receptor, uniquely co-expressed in somatotrophs with PIT1, induces apoptosis when unliganded, while RET supports cell survival when it is bound to its ligand. We demonstrate that at the plasma membrane, AIP is required to form a complex with monomeric-intracellular-RET, caspase-3 and PKCδ resulting in PIT1/CDKN2A-ARF/p53-apoptosis pathway activation. AIP-deficiency blocks RET/caspase-3/PKCδ activation preventing PIT1 accumulation and apoptosis. The presence or lack of the inhibitory effect on RET-induced apoptosis separated pathogenic AIP variants from non-pathogenic ones. We used virogenomics in neonatal rats to demonstrate the effect of mutant AIP protein on the RET apoptotic pathway in vivo. In adult male rats altered AIP induces elevated IGF-1 and gigantism, with pituitary hyperplasia through blocking the RET-apoptotic pathway. In females, pituitary hyperplasia is induced but IGF-1 rise and gigantism are blunted by puberty. Somatotroph adenomas from pituitary-specific Aip-knockout mice overexpress the RET-ligand GDNF, therefore, upregulating the survival pathway. Somatotroph adenomas from patients with or without AIP mutation abundantly express GDNF, but AIP-mutated tissues have less CDKN2A-ARF expression. Our findings explain the tissue-specific mechanism of AIP-induced somatotrophinomas and provide a previously unknown tumorigenic mechanism, opening treatment avenues for AIP-related tumours.
Collapse
Affiliation(s)
- Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Fernando Oroz-Gonjar
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Antonia Solomou
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anisha Mistry
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Montserrat Garcia-Lavandeira
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alberto Pradilla-Dieste
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Carlos Dieguez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Patrick Mehlen
- Patrick Mehlen, Apoptosis, Cancer and Development Laboratory- Equipe labellisée 'La Ligue', LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Fukao S, Haniuda K, Tamaki H, Kitamura D. Protein kinase Cδ is essential for the IgG response against T-cell-independent type 2 antigens and commensal bacteria. eLife 2021; 10:72116. [PMID: 34693907 PMCID: PMC8610492 DOI: 10.7554/elife.72116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Antigens (Ags) with multivalent and repetitive structure elicit IgG production in a T-cell-independent manner. However, the mechanisms by which such T-cell-independent type-2 (TI-2) Ags induce IgG responses remain obscure. Here, we report that B-cell receptor (BCR) engagement with a TI-2 Ag but not with a T-cell-dependent (TD) Ag was able to induce the transcription of Aicda encoding activation-induced cytidine deaminase (AID) and efficient class switching to IgG3 upon costimulation with IL-1 or IFN-α in mouse B cells. TI-2 Ags strongly induced the phosphorylation of protein kinase C (PKC)δ and PKCδ mediated the Aicda transcription through the induction of BATF, the key transcriptional regulator of Aicda. In PKCδ-deficient mice, production of IgG was intact against TD Ag but abrogated against typical TI-2 Ags as well as commensal bacteria, and experimental disruption of the gut epithelial barrier resulted in fatal bacteremia. Thus, our results have revealed novel molecular requirements for class switching in the TI-2 response and highlighted its importance in homeostatic commensal-specific IgG production. When the human body faces a potentially harmful microorganism, the immune system responds by finding and destroying the pathogen. This involves the coordination of several different parts of the immune system. B cells are a type of white blood cell that is responsible for producing antibodies: large proteins that bind to specific targets such as pathogens. B cells often need help from other immune cells known as T cells to complete antibody production. However, T cells are not required for B cells to produce antibodies against some bacteria. For example, when certain pathogenic bacteria coated with a carbohydrate called a capsule – such as pneumococcus, which causes pneumonia, or salmonella – invade our body, B cells recognize a repetitive structure of the capsule using a B-cell antigen receptor. This recognition allows B cells to produce antibodies independently of T cells. It is unclear how B cells produce antibodies in this situation or what proteins are required for this activity. To understand this process, Fukao et al. used genetically modified mice and their B cells to study how they produce antibodies independently of T cells. They found that a protein called PKCδ is critical for B cells to produce antibodies, especially of an executive type called IgG, in the T-cell-independent response. PKCδ became active when B cells were stimulated with the repetitive antigen present on the surface of bacteria like salmonella or pneumococcus. Mice that lack PKCδ were unable to produce IgG independently of T cells, leading to fatal infections when bacteria reached the tissues and blood. Understanding the mechanism behind the T cell-independent B cell response could lead to more effective antibody production, potentially paving the way for new vaccines to prevent fatal diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Saori Fukao
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiromasa Tamaki
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
23
|
Neehus AL, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, Karakoc-Aydiner E, Baris S, Yildiran A, Altundag E, Roynard M, Haake K, Migaud M, Dorgham K, Gorochov G, Abel L, Lachmann N, Dogu F, Haskologlu S, İnce E, El-Benna J, Uzel G, Kiykim A, Boztug K, Roderick MR, Shahrooei M, Brogan PA, Abolhassani H, Hancioglu G, Parvaneh N, Belot A, Ikinciogullari A, Casanova JL, Puel A, Bustamante J. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med 2021; 218:e20210501. [PMID: 34264265 PMCID: PMC8288504 DOI: 10.1084/jem.20210501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation for Pharma Chemicals and Biotechnological Products, LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Ahmet Özen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Alisan Yildiran
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Engin Altundag
- Department of Medical Genetics, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Karim Dorgham
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Guy Gorochov
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale, Center for Immunology and Microbial Infections, CIMI-Paris, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Immunology, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Erdal İnce
- Department of Pediatric Infectious Disease, Ankara University School of Medicine, Ankara, Turkey
| | - Jamel El-Benna
- University of Paris, Institut National de la Santé et de la Recherche Médical U1149, Centre National de la Recherche Scientifique-ERL8252, Paris, France
- Center for Research on Inflammation, Laboratory of Excellence Inflamex, Faculty of Medicine, Xavier Bichat, Paris, France
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Marmara University Pediatric Training and Research Hospital, Istanbul, Turkey
- Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Marion R. Roderick
- Pediatric Immunology and Infectious Disease, Bristol Royal Hospital for Children, Bristol, UK
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul A. Brogan
- Infection, Inflammation, and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, University College London Institute of Child Health, London, UK
| | - Hassan Abolhassani
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Gonca Hancioglu
- Department of Pediatric Immunology and Allergy, Ondokuz Mayıs University School of Medicine, Samsun, Turkey
| | - Nima Parvaneh
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Reference Center for Rare Rheumatic and Autoimmune Diseases in Children, Pediatric Rheumatology, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, UMS3444/US8 Lyon University, Lyon, France
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale UMR 1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| |
Collapse
|
24
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
25
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
26
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
27
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Lonic A, Gehling F, Belle L, Li X, Schieber NL, Nguyen EV, Goodall GJ, Parton RG, Daly RJ, Khew-Goodall Y. Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling. J Cell Biol 2021; 220:211661. [PMID: 33411917 PMCID: PMC7797899 DOI: 10.1083/jcb.201902073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor degradation terminates signaling by activated receptor tyrosine kinases. Degradation of EGFR occurs in lysosomes and requires the switching of RAB5 for RAB7 on late endosomes to enable their fusion with the lysosome, but what controls this critical switching is poorly understood. We show that the tyrosine kinase FER alters PKCδ function by phosphorylating it on Y374, and that phospho-Y374-PKCδ prevents RAB5 release from nascent late endosomes, thereby inhibiting EGFR degradation and promoting the recycling of endosomal EGFR to the cell surface. The rapid association of phospho-Y374-PKCδ with EGFR-containing endosomes is diminished by PTPN14, which dephosphorylates phospho-Y374-PKCδ. In triple-negative breast cancer cells, the FER-dependent phosphorylation of PKCδ enhances EGFR signaling and promotes anchorage-independent cell growth. Importantly, increased Y374-PKCδ phosphorylation correlating with arrested late endosome maturation was identified in ∼25% of triple-negative breast cancer patients, suggesting that dysregulation of this pathway may contribute to their pathology.
Collapse
Affiliation(s)
- Ana Lonic
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Freya Gehling
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Leila Belle
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Nicole L. Schieber
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth V. Nguyen
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory J. Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Correspondence to Yeesim Khew-Goodall:
| |
Collapse
|
29
|
Abolhassani H. Specific Immune Response and Cytokine Production in CD70 Deficiency. Front Pediatr 2021; 9:615724. [PMID: 33996677 PMCID: PMC8120026 DOI: 10.3389/fped.2021.615724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Collective clinical and immunologic findings of defects in the CD27-CD70 axis indicate a primary immunodeficiency associated with terminal B-cell development defect and immune dysregulation leading to autoimmunity, uncontrolled viral infection, and lymphoma. Since the molecular mechanism underlying this entity of primary immunodeficiency has been recently described, more insight regarding the function and profile of immunity is required. Therefore, this study aimed to investigate stimulated antibody production, polyclonal vs. virus-specific T-cell response, and cytokine production of a CD70-deficient patient reported previously with early-onset antibody deficiency suffering from chronic viral infections and B-cell lymphoma. The patient and her family members were subjected to clinical evaluation, immunological assays, and functional analyses. The findings of this study indicate an impaired ability of B cells to produce immunoglobulins, and a poor effector function of T cells was also associated with the severity of clinical phenotype. Reduced proportions of cells expressing the memory marker CD45RO, as well as T-bet and Eomes, were observed in CD70-deficient T cells. The proportion of 2B4+ and PD-1+ virus-specific CD8+ T cells was also reduced in the patient. Although the CD70-mutated individuals presented with early-onset clinical manifestations that were well-controlled by using conventional immunological and anticancer chemotherapies, with better prognosis as compared with CD27-deficient patients, targeted treatment toward specific disturbed immune profile may improve the management and even prevent secondary complications.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Van AAN, Kunkel MT, Baffi TR, Lordén G, Antal CE, Banerjee S, Newton AC. Protein kinase C fusion proteins are paradoxically loss of function in cancer. J Biol Chem 2021; 296:100445. [PMID: 33617877 PMCID: PMC8008189 DOI: 10.1016/j.jbc.2021.100445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
Within the AGC kinase superfamily, gene fusions resulting from chromosomal rearrangements have been most frequently described for protein kinase C (PKC), with gene fragments encoding either the C-terminal catalytic domain or the N-terminal regulatory moiety fused to other genes. Kinase fusions that eliminate regulatory domains are typically gain of function and often oncogenic. However, several quality control pathways prevent accumulation of aberrant PKC, suggesting that PKC fusions may paradoxically be loss of function. To explore this topic, we used biochemical, cellular, and genome editing approaches to investigate the function of fusions that retain the portion of the gene encoding either the catalytic domain or regulatory domain of PKC. Overexpression studies revealed that PKC catalytic domain fusions were constitutively active but vulnerable to degradation. Genome editing of endogenous genes to generate a cancer-associated PKC fusion resulted in cells with detectable levels of fusion transcript but no detectable protein. Hence, PKC catalytic domain fusions are paradoxically loss of function as a result of their instability, preventing appreciable accumulation of protein in cells. Overexpression of a PKC regulatory domain fusion suppressed both basal and agonist-induced endogenous PKC activity, acting in a dominant-negative manner by competing for diacylglycerol. For both catalytic and regulatory domain fusions, the PKC component of the fusion proteins mediated the effects of the full-length fusions on the parameters examined, suggesting that the partner protein is dispensable in these contexts. Taken together, our findings reveal that PKC gene fusions are distinct from oncogenic fusions and present a mechanism by which loss of PKC function occurs in cancer.
Collapse
Affiliation(s)
- An-Angela N Van
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Maya T Kunkel
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Corina E Antal
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA; Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, USA
| | - Sourav Banerjee
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, California, USA.
| |
Collapse
|
31
|
Li Y, Zhou Y, Zhao M, Zou J, Zhu Y, Yuan X, Liu Q, Cai H, Chu CQ, Liu Y. Differential Profile of Plasma Circular RNAs in Type 1 Diabetes Mellitus. Diabetes Metab J 2020; 44:854-865. [PMID: 32662258 PMCID: PMC7801755 DOI: 10.4093/dmj.2019.0151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND No currently available biomarkers or treatment regimens fully meet therapeutic needs of type 1 diabetes mellitus (T1DM). Circular RNA (circRNA) is a recently identified class of stable noncoding RNA that have been documented as potential biomarkers for various diseases. Our objective was to identify and analyze plasma circRNAs altered in T1DM. METHODS We used microarray to screen differentially expressed plasma circRNAs in patients with new onset T1DM (n=3) and age-/gender-matched healthy controls (n=3). Then, we selected six candidates with highest fold-change and validated them by quantitative real-time polymerase chain reaction in independent human cohort samples (n=12). Bioinformatic tools were adopted to predict putative microRNAs (miRNAs) sponged by these validated circRNAs and their downstream messenger RNAs (mRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to gain further insights into T1DM pathogenesis. RESULTS We identified 68 differentially expressed circRNAs, with 61 and seven being up- and downregulated respectively. Four of the six selected candidates were successfully validated. Curations of their predicted interacting miRNAs revealed critical roles in inflammation and pathogenesis of autoimmune disorders. Functional relations were visualized by a circRNA-miRNA-mRNA network. GO and KEGG analyses identified multiple inflammation-related processes that could be potentially associated with T1DM pathogenesis, including cytokine-cytokine receptor interaction, inflammatory mediator regulation of transient receptor potential channels and leukocyte activation involved in immune response. CONCLUSION Our study report, for the first time, a profile of differentially expressed plasma circRNAs in new onset T1DM. Further in silico annotations and bioinformatics analyses supported future application of circRNAs as novel biomarkers of T1DM.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Minghui Zhao
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Zou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University School of Medicine, Portland, OR, USA
- Section of Rheumatology, VA Portland Health Care System, Portland, OR, USA
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, Abolhassani H, Aghamohammadi A. Protein Kinase C-Delta Defect in Autoimmune Lymphoproliferative Syndrome-Like Disease: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2020; 51:331-342. [PMID: 33047643 DOI: 10.1080/08820139.2020.1829638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Protein kinase C is a family of serine/threonine kinases that play a key role in the adaptive immune cell signaling, as well as regulation of growth, apoptosis, and differentiation of a variety of cell types. Patients homozygous for a null mutation of the Protein Kinase C Delta (PRKCD) gene, present clinical feature of immune dysregulation with susceptibility to Epstein-Barr virus infection. However, a minority of patients present the autoimmune lymphoproliferative syndrome (ALPS). METHODS The data were collected by direct interview and examining the patient's clinical record. Whole-exome sequencing was performed to detect the underlying genetic mutation in the patient. We also conducted electronic searches for ALPS-like reported patients in PubMed, Web of Science, and Scopus databases. RESULTS In this study, we reported a 13-year-old boy who presented with autoimmunity, lymphoproliferation, recurrent pneumonia, cardiomyopathy, and dermatological manifestations. An elevation of double-negative T cells, CD8+ T cells, serum IgG level, as well as a reduction in NK cells, was observed in the patient. A homozygous frameshift mutation (c.1293_1294insA) in exon 13 of the PRKCD gene was confirmed. The literature search showed 39 ALPS-like patients with monogenic defects which only six (15.3%) of them were due to PRKCD genes. CONCLUSION PRKCD should be considered in the context of ALPS clinical manifestations with prominent dermatological involvements.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Li S, Liu Q, Wu D, He T, Yuan J, Qiu H, Tickner J, Zheng SG, Li X, Xu J, Rong L. PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis 2020; 11:762. [PMID: 32938907 PMCID: PMC7494897 DOI: 10.1038/s41419-020-02947-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
PKC-δ is an important molecule for B-cell proliferation and tolerance. B cells have long been recognized to play a part in osteoimmunology and pathological bone loss. However, the role of B cells with PKC-δ deficiency in bone homeostasis and the underlying mechanisms are unknown. We generated mice with PKC-δ deletion selectively in B cells by crossing PKC-δ-loxP mice with CD19-Cre mice. We studied their bone phenotype using micro-CT and histology. Next, immune organs were obtained and analyzed. Western blotting was used to determine the RANKL/OPG ratio in vitro in B-cell cultures, ELISA assay and immunohistochemistry were used to analyze in vivo RANKL/OPG balance in serum and bone sections respectively. Finally, we utilized osteoclastogenesis to study osteoclast function via hydroxyapatite resorption assay, and isolated primary calvaria osteoblasts to investigate osteoblast proliferation and differentiation. We also investigated osteoclast and osteoblast biology in co-culture with B-cell supernatants. We found that mice with PKC-δ deficiency in B cells displayed an osteopenia phenotype in the trabecular and cortical compartment of long bones. In addition, PKC-δ deletion resulted in changes of trabecular bone structure in association with activation of osteoclast bone resorption and decrease in osteoblast parameters. As expected, inactivation of PKC-δ in B cells resulted in changes in spleen B-cell number, function, and distribution. Consistently, the RANKL/OPG ratio was elevated remarkably in B-cell culture, in the serum and in bone specimens after loss of PKC-δ in B cells. Finally, in vitro analysis revealed that PKC-δ ablation suppressed osteoclast differentiation and function but co-culture with B-cell supernatant reversed the suppression effect, as well as impaired osteoblast proliferation and function, indicative of osteoclast–osteoblast uncoupling. In conclusion, PKC-δ plays an important role in the interplay between B cells in the immune system and bone cells in the pathogenesis of bone lytic diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Southern Medical University, Guangzhou Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
34
|
Rheumatologic and autoimmune manifestations in primary immune deficiency. Curr Opin Allergy Clin Immunol 2020; 19:545-552. [PMID: 31425194 DOI: 10.1097/aci.0000000000000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Here we review the rheumatologic and autoimmune features of primary immune deficiencies with a focus on recently recognized genetic diseases, the spectrum of autoimmunity in PID, and targeted therapies. RECENT FINDINGS Primary immune deficiencies (PIDs) were initially described as genetic diseases of the immune system leading to susceptibility to infection. It is now well recognized that immune dysfunction and dysregulation also cause noninfectious complications including autoimmunity. The increased application of molecular testing for PID has revealed the diversity of clinical disease. Recent discoveries of diseases with prominent autoimmunity include activated phosphoinositide 3-kinase δ syndrome and PIDs caused by gain-of-function in STAT1 and STAT3. Similarly, identification of larger cohorts of patients with molecular diagnoses in more common PIDs, such as common variable immune deficiency (CVID), has led to increased understanding of the range of autoimmunity in PIDs. Understanding the molecular basis of these PIDs has the potential to lead to targeted therapy to treat associated autoimmunity. SUMMARY Autoimmunity and rheumatologic disease can be presenting symptoms and/or complicating features of primary immunodeficiencies. Evaluation for PIDs in patients who have early-onset, multiple, and/or atypical autoimmunity can enhance diagnosis and therapeutic options.
Collapse
|
35
|
Khodzhaev K, Bay SB, Kebudi R, Altindirek D, Kaya A, Erbilgin Y, Ng OH, Kiykim A, Erol FC, Zengin FS, Firtina S, Ng YY, Aksoy BA, Sayitoglu M. Lymphoma Predisposing Gene in an Extended Family: CD70 Signaling Defect. J Clin Immunol 2020; 40:883-892. [PMID: 32620996 DOI: 10.1007/s10875-020-00816-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Genome-wide sequencing studies in pediatric cancer cohorts indicate that about 10% of patients have germline mutations within cancer predisposition genes. Within this group, primary immune deficiencies take the priority regarding the vulnerability of the patients to infectious agents and the difficulties of cancer management. On the other hand, early recognition of these diseases may offer specific targeted therapies and hematopoietic stem cell transplantation as an option. Besides therapeutic benefits, early diagnosis will provide genetic counseling for the family members. Within this context, an extended family with multiple consanguineous marriages and affected individuals, who presented with combined immune deficiency (CID) and/or Hodgkin lymphoma phenotype, were examined by exome sequencing. A pathogenic homozygous missense CD70 variation was detected (NM_001252.5:c332C>T) in concordance with CD70 phenotype and familial segregation was confirmed. CD70 variations in patients with CID and malignancy have very rarely been reported. This paper reports extended family with multiple affected members with CID and malignancy carrying a missense CD70 variation, and reviews the rare cases reported in the literature. Primary immune deficiencies appear to be a potential cause for pediatric cancers. Better focusing on these inborn disorders to prevent or make an early diagnosis of malignant transformation and reduce mortalities is important.
Collapse
Affiliation(s)
- Khusan Khodzhaev
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sema Buyukkapu Bay
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey.
| | - Didem Altindirek
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Aysenur Kaya
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Yucel Erbilgin
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Division of Pediatric Allergy Immunology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Funda Cipe Erol
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Feride Sen Zengin
- Intensive Care Unit, Erzurum Education and Research Hospital, Erzurum, Turkey
| | - Sinem Firtina
- Faculty of Art and Science, Department of Molecular Biology and Genetics, Istinye University, Istanbul, Turkey
| | - Yuk Yin Ng
- Genetics and Bioengineering Department, Istanbul Bilgi University, Istanbul, Turkey
| | - Basak Adakli Aksoy
- Department of Pediatric Hematology Oncology, Altınbaş University, Istanbul, Turkey
| | - Muge Sayitoglu
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
37
|
Li S, He T, Wu D, Zhang L, Chen R, Liu B, Yuan J, Tickner J, Qin A, Xu J, Rong L. Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Front Cell Dev Biol 2020; 8:450. [PMID: 32582715 PMCID: PMC7295979 DOI: 10.3389/fcell.2020.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase C delta (PKC-δ) functions as an important regulator in bone metabolism. However, the precise involvement of PKC-δ in the regulation of osteoclasts remains elusive. We generated an osteoclast specific PKC-δ knockout mouse strain to investigate the function of PKC-δ in osteoclast biology. Bone phenotype was investigated using microcomputed tomography. Osteoclast and osteoblast parameters were assessed using bone histomorphometry, and analysis of osteoclast formation and function with osteoclastogensis and hydroxyapatite resorption assays. The molecular mechanisms by which PKC-δ regulated osteoclast function were dissected by Western Blotting, TUNEL assay, transfection and transcriptome sequencing. We found that ablation of PKC-δ in osteoclasts resulted in an increase in trabecular and cortical bone volume in male mice, however, the bone mass phenotype was not observed in female mice. This was accompanied by decreased osteoclast number and surface, and Cathepsin-K protein levels in vivo, as well as decreased osteoclast formation and resorption in vitro in a male-specific manner. PKC-δ regulated androgen receptor transcription by binding to its promoter, moreover, PKC-δ conditional knockout did not increase osteoclast apoptosis but increased MAPK signaling and enhanced androgen receptor transcription and expression, finally leding to significant alterations in gene expression and signaling changes related to extracellular matrix proteins specifically in male mice. In conclusion, PKC-δ plays an important role in osteoclast formation and function in a male-specific manner. Our work reveals a previously unknown target for treatment of gender-related bone diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
38
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
39
|
van de Ven A, Mader I, Wolff D, Goldacker S, Fuhrer H, Rauer S, Grimbacher B, Warnatz K. Structural Noninfectious Manifestations of the Central Nervous System in Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:1047-1062.e6. [PMID: 31857261 DOI: 10.1016/j.jaip.2019.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Central nervous system (CNS) disease in adult common variable immunodeficiency (CVID) is rare, and therefore diagnostic and therapeutic protocols are lacking. OBJECTIVE To provide clinical information aiming to establish awareness and first experience-based recommendations. METHODS We reviewed clinical manifestations, genetic and immunological characteristics, diagnostic evaluation, and treatment of patients with CVID with abnormal magnetic resonance imaging (MRI) of the CNS disease in our cohort. RESULTS Seventeen patients with CNS manifestation and a previous diagnosis of CVID were identified. Presenting symptoms of the CNS disease included loss of sensory or motoric function, headache, or epilepsy. Contrast-enhancing lesions of the brain or solely the spinal cord were the most common findings on MRI. The prevalence of splenomegaly, lymphadenopathy, interstitial lung disease, and autoimmune cytopenia was significantly increased compared with control CVID patients. In 8 patients, a molecular defect was identified, including mutations in CTLA4, NFKB1, and CECR1. Patients with CVID with CNS involvement generally displayed lymphopenia, skewed CD4+ T-cell subsets, and increased proportions of CD21low B cells in the peripheral blood. CNS involvement usually responded well to high-dose steroids, but regularly required maintenance therapy to prevent relapse. CONCLUSION CNS disease is a severe but rare complication in CVID disorders, particularly affecting patients with other noninfectious disease symptoms. Diagnostic evaluation needs to rule out infectious causes by all means; a genetic evaluation is recommended given the high probability of an underlying monogenic disorder. Possible treatment consists of steroids with yet to be determined optimal maintenance therapy in case of relapse.
Collapse
Affiliation(s)
- Annick van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands; Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Radiology, Schön Klinik, Vogtareuth, Germany; Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Fuhrer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Freiburg, Germany
| | - Sebastian Rauer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center of the University Hospital, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
40
|
Cabral-Marques O, Schimke LF, de Oliveira EB, El Khawanky N, Ramos RN, Al-Ramadi BK, Segundo GRS, Ochs HD, Condino-Neto A. Flow Cytometry Contributions for the Diagnosis and Immunopathological Characterization of Primary Immunodeficiency Diseases With Immune Dysregulation. Front Immunol 2019; 10:2742. [PMID: 31849949 PMCID: PMC6889851 DOI: 10.3389/fimmu.2019.02742] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.
Collapse
Affiliation(s)
- Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Nadia El Khawanky
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Freiburg im Breisgau, Germany.,Precision Medicine Theme, The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Rodrigo Nalio Ramos
- INSERM U932, SiRIC Translational Immunotherapy Team, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | | | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, United States
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Leavis H, Zwerina J, Manger B, Fritsch-Stork RDE. Novel Developments in Primary Immunodeficiencies (PID)-a Rheumatological Perspective. Curr Rheumatol Rep 2019; 21:55. [PMID: 31486986 DOI: 10.1007/s11926-019-0854-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of the most relevant new disorders, disease entities, or disease phenotypes of primary immune deficiency disorders (PID) for the interested rheumatologist, using the new phenotypic classification by the IUIS (International Union of Immunological Societies) as practical guide. RECENT FINDINGS Newly recognized disorders of immune dysregulation with underlying mutations in genes pertaining to the function of regulatory T cells (e.g., CTLA-4, LRBA, or BACH2) are characterized by multiple autoimmune diseases-mostly autoimmune cytopenia-combined with an increased susceptibility to infections due to hypogammaglobulinemia. On the other hand, new mutations (e.g., in NF-kB1, PI3Kδ, PI3KR1, PKCδ) leading to the clinical picture of CVID (common variable immmune deficiency) have been shown to increasingly associate with autoimmune diseases. The mutual association of autoimmune diseases with PID warrants increased awareness of immunodeficiencies when diagnosing autoimmune diseases with a possible need to initiate appropriate genetic tests.
Collapse
Affiliation(s)
- Helen Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collingasse 30, A-1140, Wien, Austria
| | - Bernhard Manger
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlange-Nürnberg, Erlangen, Germany
| | - Ruth D E Fritsch-Stork
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collingasse 30, A-1140, Wien, Austria. .,Sigmund Freud University, Vienna, Austria.
| |
Collapse
|
42
|
Lawitschka A, Gueclue ED, Januszko A, Körmöczi U, Rottal A, Fritsch G, Bauer D, Peters C, Greinix HT, Pickl WF, Kuzmina Z. National Institutes of Health-Defined Chronic Graft-vs.-Host Disease in Pediatric Hematopoietic Stem Cell Transplantation Patients Correlates With Parameters of Long-Term Immune Reconstitution. Front Immunol 2019; 10:1879. [PMID: 31507582 PMCID: PMC6718560 DOI: 10.3389/fimmu.2019.01879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Recent data revealed the importance of immune reconstitution (IR) for the evaluation of possible biomarkers in National Institutes of Health (NIH)–defined chronic graft-vs.-host disease (cGVHD) and its clinical aspects. In this large pediatric study (n = 146), we have analyzed whether cellular and humoral parameters of IR in the long-term follow-up (FU) with a special emphasis on B-cell reconstitution correlate with NIH-defined cGVHD criteria. HYPOTHESIS: we were especially interested in whether meaningful cGVHD biomarkers could be defined in a large pediatric cohort. We here demonstrate for the first time in a highly homogenous pediatric patient cohort that both cGVHD (n = 38) and its activity were associated with the perturbation of the B-cell compartment, including low frequencies of CD19+CD27+ memory B-cells and increased frequencies of circulating CD19+CD21low B-cells, a well-known hyperactivated B-cell subset frequently found elevated in chronic infection and autoimmunity. Notably, resolution of cGVHD correlated with expansion of CD19+CD27+ memory B-cells and normalization of CD19+CD21low B-cell frequencies. Moreover, we found that the severity of cGVHD had an impact on parameters of IR and that severe cGVHD was associated with increased CD19+CD21low B-cell frequencies. When comparing the clinical characteristics of the active and non-active cGVHD patients (in detail at time of analyses), we found a correlation between activity and a higher overall severity of cGVHD, which means that in the active cGVHD patient group were more patients with a higher disease burden of cGVHD—despite similar risk profiles for cGVHD. Our data also provide solid evidence that the time point of analysis regarding both hematopoietic stem cell transplantation (HSCT) FU and cGVHD disease activity may be of critical importance for the detailed investigation of pediatric cohorts. Finally, we have proven that the differences in risk factors and patterns of IR, with cGVHD as its main confounding factor, between malignant and non-malignant diseases, are important to be considered in future studies aiming at identification of novel biomarkers for cGVHD.
Collapse
Affiliation(s)
- Anita Lawitschka
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Ece Dila Gueclue
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Angela Januszko
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Ulrike Körmöczi
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Arno Rottal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Fritsch
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Dorothea Bauer
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Christina Peters
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | | | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Zoya Kuzmina
- Children's Cancer Research Institute, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Abstract
Systemic lupus erythematosus (SLE) is a severe lifelong multisystem autoimmune disease characterized by the presence of autoantibodies targeting nuclear autoantigens, increased production of type I interferon and B cell abnormalities. Clinical presentation of SLE is extremely heterogeneous and different groups of disease are likely to exist. Recently, childhood-onset SLE (cSLE) cases have been linked to single gene mutations, defining the concept of monogenic or Mendelian lupus. Genes associated with Mendelian lupus can be grouped in at least three functional categories. First, complement deficiencies represent the main cause of monogenic lupus and its components are involved in the clearance of dying cells, a mechanism also called efferocytosis. Mutations in extracellular DNASE have been also identified in cSLE patients and represent additional causes leading to defective clearance of nucleic acids and apoptotic bodies. Second, the study of Aicardi-Goutières syndromes has introduced the concept of type-I interferonopathies. Bona fide lupus syndromes have been associated to this genetic condition, driven by defective nucleic acids metabolism or innate sensors overactivity. Interferon signalling anomalies can be detected and monitored during therapies, such as Janus-kinase (JAK) inhibitors. Third, tolerance breakdown can occur following genetic mutations in B and/or T cell expressing key immunoregulatory molecules. Biallelic mutations in PRKCD are associated to lupus and lymphoproliferative diseases as PKC-δ displays proapoptotic activity and is crucial to eliminate self-reactive transitional B cells. Here we review the literature of the emerging field of Mendelian lupus and discuss the physiopathological learning from these inborn errors of immunity. In addition, clinical and biological features are highlighted as well as specific therapies that have been tested in these genetic contexts.
Collapse
|
44
|
Abstract
Protein kinase C (PKC) isozymes belong to a family of Ser/Thr kinases whose activity is governed by reversible release of an autoinhibitory pseudosubstrate. For conventional and novel isozymes, this is effected by binding the lipid second messenger, diacylglycerol, but for atypical PKC isozymes, this is effected by binding protein scaffolds. PKC shot into the limelight following the discovery in the 1980s that the diacylglycerol-sensitive isozymes are "receptors" for the potent tumor-promoting phorbol esters. This set in place a concept that PKC isozymes are oncoproteins. Yet three decades of cancer clinical trials targeting PKC with inhibitors failed and, in some cases, worsened patient outcome. Emerging evidence from cancer-associated mutations and protein expression levels provide a reason: PKC isozymes generally function as tumor suppressors and their activity should be restored, not inhibited, in cancer therapies. And whereas not enough activity is associated with cancer, variants with enhanced activity are associated with degenerative diseases such as Alzheimer's disease. This review describes the tightly controlled mechanisms that ensure PKC activity is perfectly balanced and what happens when these controls are deregulated. PKC isozymes serve as a paradigm for the wisdom of Confucius: "to go beyond is as wrong as to fall short."
Collapse
Affiliation(s)
- Alexandra C Newton
- a Department of Pharmacology , University of California at San Diego , La Jolla , CA , USA
| |
Collapse
|
45
|
Lougaris V, Plebani A. Genetics of CVID. RARE DISEASES OF THE IMMUNE SYSTEM 2019:67-76. [DOI: 10.1007/978-3-319-91785-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Wilson CS, Chhabra P, Marshall AF, Morr CV, Stocks BT, Hoopes EM, Bonami RH, Poffenberger G, Brayman KL, Moore DJ. Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice. Diabetes 2018; 67:2349-2360. [PMID: 30131391 PMCID: PMC6198348 DOI: 10.2337/db18-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/12/2018] [Indexed: 02/05/2023]
Abstract
Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgMSW) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
Collapse
Affiliation(s)
- Christopher S Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Andrew F Marshall
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Caleigh V Morr
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Blair T Stocks
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Emilee M Hoopes
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Greg Poffenberger
- Department of Medicine, Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Daniel J Moore
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Ian Burr Division of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
47
|
Lei L, Muhammad S, Al-Obaidi M, Sebire N, Cheng IL, Eleftheriou D, Brogan P. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatr Rheumatol Online J 2018; 16:61. [PMID: 30257684 PMCID: PMC6158832 DOI: 10.1186/s12969-018-0278-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We previously described an endogamous Pakistani kindred in whom we identified a novel homozygous missense mutation in the PRKCD gene encoding for protein kinase C δ (PKCδ) as a cause of monogenic systemic lupus erythematosus (SLE). PKCδ has a role in the negative regulation of B cells. Given the nature of the disease, a logical targeted therapeutic approach in these patients is B cell depletion. Indeed, the 3 siblings all had a marked clinical response and resolution of symptoms with rituximab, although 2 of the siblings had severe reactions to rituximab thus precluding further treatment with this. We therefore describe the first successful use of ofatumumab for this rare form of monogenic SLE. CASE PRESENTATION All three affected siblings presented with SLE before the age of 3-years with lethargy, intermittent fever, thrombocytopenia, cutaneous involvement, alopecia, and hepatosplenomegaly. Tubulointerstitial nephritis was also present in 1 of the siblings. Homozygosity mapping followed by whole exome sequencing identified a homozygous missense mutation in PRKCD (p.Gly432Trp), subsequently confirmed by Sanger sequencing to be present in all 3 siblings. All 3 patients were initially treated with rituximab, however 2 of the siblings developed severe infusion-related reactions. For subsequent disease flare in these individuals we therefore used an alternative B cell depleting agent, ofatumumab (300 mg/1.73m2 on day 1; 700 mg/1.73m2 on day 15). This resulted in marked clinical improvement in both patients. To the best of our knowledge, this is the first report describing the successful use of ofatumumab for PKCδ deficiency. CONCLUSIONS PKCδ deficiency causes a monogenic form of SLE which responds well to B cell depletion. Ofatumumab is also likely to have a therapeutic role for sporadic juvenile SLE (jSLE) patients intolerant of rituximab.
Collapse
Affiliation(s)
| | - Sabina Muhammad
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Muthana Al-Obaidi
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Neil Sebire
- grid.420468.cDepartment of Paediatric Histopathology, Great Ormond Street Hospital, London, UK
| | - Iek Leng Cheng
- 0000 0004 5902 9895grid.424537.3Paediatric Rheumatology Department, Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - Despina Eleftheriou
- 0000000121901201grid.83440.3bInfection, Inflammation and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, UK ,ARUK centre for adolescent rheumatology, London, UK
| | - Paul Brogan
- 0000000121901201grid.83440.3bInfection, Inflammation and Rheumatology Section, Infection, Immunity, Inflammation and Physiological Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
48
|
Azizi G, Yazdani R, Rae W, Abolhassani H, Rojas M, Aghamohammadi A, Anaya JM. Monogenic polyautoimmunity in primary immunodeficiency diseases. Autoimmun Rev 2018; 17:1028-1039. [PMID: 30107266 DOI: 10.1016/j.autrev.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a large group of genetic disorders that affect distinct components of the immune system. PID patients are susceptible to infection and non-infectious complications, particularly autoimmunity. A specific group of monogenic PIDs are due to mutations in genes that are critical for the regulation of immunological tolerance and immune responses. This group of monogenic PIDs is at high risk of developing polyautoimmunity (i.e., the presence of more than one autoimmune disease in a single patient) because of their impaired immunity. In this review, we discuss the mechanisms of autoimmunity in PIDs and the characteristics of polyautoimmunity in the following PIDs: IPEX; monogenic IPEX-like syndrome; LRBA deficiency; CTLA4 deficiency; APECED; ALPS; and PKCδ deficiency.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wiliam Rae
- Department of Immunology, MP8, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, Hampshire SO16 6YD, UK
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
49
|
Abstract
Proper regulation of the immune system is required for protection against pathogens and preventing autoimmune disorders. Inborn errors of the immune system due to inherited or de novo germline mutations can lead to the loss of protective immunity, aberrant immune homeostasis, and the development of autoimmune disease, or combinations of these. Forward genetic screens involving clinical material from patients with primary immunodeficiencies (PIDs) can vary in severity from life-threatening disease affecting multiple cell types and organs to relatively mild disease with susceptibility to a limited range of pathogens or mild autoimmune conditions. As central mediators of innate and adaptive immune responses, T cells are critical orchestrators and effectors of the immune response. As such, several PIDs result from loss of or altered T cell function. PID-associated functional defects range from complete absence of T cell development to uncontrolled effector cell activation. Furthermore, the gene products of known PID causal genes are involved in diverse molecular pathways ranging from T cell receptor signaling to regulators of protein glycosylation. Identification of the molecular and biochemical cause of PIDs can not only guide the course of treatment for patients, but also inform our understanding of the basic biology behind T cell function. In this chapter, we review PIDs with known genetic causes that intrinsically affect T cell function with particular focus on perturbations of biochemical pathways.
Collapse
Affiliation(s)
- William A Comrie
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States; Clinical Genomics Program, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, United States.
| |
Collapse
|
50
|
Pai SY, Notarangelo LD. Congenital Disorders of Lymphocyte Function. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|