1
|
Modi NB, Shames R, Lickliter JD, Gupta S. Pharmacokinetics, pharmacodynamics, and tolerability of an aqueous formulation of rusfertide (PTG-300), a hepcidin mimetic, in healthy volunteers: A double-blind first-in-human study. Eur J Haematol 2024; 113:340-350. [PMID: 38785334 DOI: 10.1111/ejh.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Rusfertide is a potent peptide mimetic of hepcidin being investigated for the treatment of polycythemia vera. This randomized, placebo-controlled, double-blind study evaluated the safety, pharmacokinetics, and pharmacodynamics of single and repeated subcutaneous doses of an aqueous formulation of rusfertide in healthy adult males. METHODS Subjects received single doses of 1, 3, 10, 20, 40, or 80 mg rusfertide or placebo. A separate cohort of subjects received two doses of 40 mg rusfertide or placebo 1 week apart. Blood samples for pharmacokinetics and pharmacodynamics were collected, and adverse events, clinical laboratory tests, 12-lead electrocardiograms, and vital signs were monitored. RESULTS Rusfertide was well tolerated. There were no serious or severe treatment-emergent adverse events, and no patterns of clinically important adverse events, or laboratory, vital sign, or electrocardiogram abnormalities. Mean maximum rusfertide plasma concentration (Cmax) and area under the concentration-time curve increased with dose, but less than dose proportionally. Median time to Cmax was 2-4.5 h for 40 and 80 mg rusfertide and 8-24 h for lower doses. Apparent clearance and half-life increased with dose. Single doses of rusfertide 1-80 mg were associated with dose-dependent decreases in serum iron and transferrin-iron saturation. CONCLUSIONS Rusfertide was well tolerated and showed dose-dependent pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Nishit B Modi
- Protagonist Therapeutics, Inc., Newark, California, USA
| | | | | | - Suneel Gupta
- Protagonist Therapeutics, Inc., Newark, California, USA
| |
Collapse
|
2
|
Bozzini C, Busti F, Marchi G, Vianello A, Cerchione C, Martinelli G, Girelli D. Anemia in patients receiving anticancer treatments: focus on novel therapeutic approaches. Front Oncol 2024; 14:1380358. [PMID: 38628673 PMCID: PMC11018927 DOI: 10.3389/fonc.2024.1380358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Anemia is common in cancer patients and impacts on quality of life and prognosis. It is typically multifactorial, often involving different pathophysiological mechanisms, making treatment a difficult task. In patients undergoing active anticancer treatments like chemotherapy, decreased red blood cell (RBC) production due to myelosuppression generally predominates, but absolute or functional iron deficiency frequently coexists. Current treatments for chemotherapy-related anemia include blood transfusions, erythropoiesis-stimulating agents, and iron supplementation. Each option has limitations, and there is an urgent need for novel approaches. After decades of relative immobilism, several promising anti-anemic drugs are now entering the clinical scenario. Emerging novel classes of anti-anemic drugs recently introduced or in development for other types of anemia include activin receptor ligand traps, hypoxia-inducible factor-prolyl hydroxylase inhibitors, and hepcidin antagonists. Here, we discuss their possible role in the treatment of anemia observed in patients receiving anticancer therapies.
Collapse
Affiliation(s)
- Claudia Bozzini
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giacomo Marchi
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Cerchione
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
- EuroBloodNet Referral Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
3
|
Hanson AL, Mulè MP, Ruffieux H, Mescia F, Bergamaschi L, Pelly VS, Turner L, Kotagiri P, Göttgens B, Hess C, Gleadall N, Bradley JR, Nathan JA, Lyons PA, Drakesmith H, Smith KGC. Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19. Nat Immunol 2024; 25:471-482. [PMID: 38429458 PMCID: PMC10907301 DOI: 10.1038/s41590-024-01754-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.
Collapse
Affiliation(s)
- Aimee L Hanson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew P Mulè
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hélène Ruffieux
- MRC Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Victoria S Pelly
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Berthold Göttgens
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Christoph Hess
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nicholas Gleadall
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Botnar Research Centre for Child Health (BRCCH), University of Basel and ETH Zurich, Basel, Switzerland
| | - John R Bradley
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Mironova OI, Panferov AS. Anemia of chronic diseases: current state of the problem and perspectives. TERAPEVT ARKH 2023; 94:1349-1354. [PMID: 37167177 DOI: 10.26442/00403660.2022.12.201984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Anemia of chronic diseases is a condition, that accompanies several chronic conditions, that have inflammation as an underlying cause. The article covers current concepts of pathogenesis, evaluation and treatment of this type of anemia. The new perspectives in the development of investigational methods and treatment are discussed. The new methods of iron deficiency assessment in patients with systemic inflammation are discussed separately.
Collapse
|
5
|
Role of Iron Deficiency in Heart Failure-Clinical and Treatment Approach: An Overview. Diagnostics (Basel) 2023; 13:diagnostics13020304. [PMID: 36673114 PMCID: PMC9857585 DOI: 10.3390/diagnostics13020304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The association of chronic heart failure (CHF) and iron deficiency (ID) with or without anemia is frequently encountered in current medical practice and has a negative prognostic impact, worsening patients' exercise capacity and increasing hospitalization costs. Moreover, anemia is common in patients with chronic kidney disease (CKD) and CHF, an association known as cardio-renal anemia syndrome (CRAS) possessing a significantly increased risk of death. AIM This review aims to provide an illustrative survey on the impact of ID in CHF patients-based on physiopathological traits, clinical features, and the correlation between functional and absolute ID with CHF-and the benefit of iron supplementation in CHF. METHOD We selected the most recent publications with important scientific content covering the association of CHF and ID with or without anemia. DISCUSSIONS An intricate physiopathological interplay is described in these patients-decrease in erythropoietin levels, activation of the renin-angiotensin-aldosterone system, systemic inflammation, and increases in hepcidin levels. These mechanisms amplify anemia, CHF, and CKD severity and worsen patients' outcomes. CONCLUSIONS Anemia is frequently encountered in CHF and represents a negative prognostic factor. Data from randomized controlled trials have underlined the administration of intravenous iron therapy (ferric carboxymaltose) as the only viable treatment option, with beneficial effects on quality of life and exercise capacity in patients with ID and systolic heart failure.
Collapse
|
6
|
Qiu F, Wu L, Yang G, Zhang C, Liu X, Sun X, Chen X, Wang N. The role of iron metabolism in chronic diseases related to obesity. Mol Med 2022; 28:130. [PMID: 36335331 PMCID: PMC9636637 DOI: 10.1186/s10020-022-00558-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body’s sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.
Collapse
|
7
|
The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation. Blood 2022; 140:2011-2023. [PMID: 35994752 DOI: 10.1182/blood.2021013472] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Anemia of inflammation (AI) is a highly prevalent comorbidity in patients affected by chronic inflammatory disorders, such as chronic kidney disease, inflammatory bowel disease, or cancer, that negatively affect disease outcome and quality of life. The pathophysiology of AI is multifactorial, with inflammatory hypoferremia and iron-restricted erythropoiesis playing a major role in the context of disease-specific factors. Here, we review the recent progress in our understanding of the molecular mechanisms contributing to iron dysregulation in AI, the impact of hypoferremia and anemia on the course of the underlying disease, and (novel) therapeutic strategies applied to treat AI.
Collapse
|
8
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
9
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Wish JB. Treatment of Anemia in Kidney Disease: Beyond Erythropoietin. Kidney Int Rep 2021; 6:2540-2553. [PMID: 34622095 PMCID: PMC8484111 DOI: 10.1016/j.ekir.2021.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease. Treatment with erythropoiesis-stimulating agents has decreased transfusion rates, but has not been consistently shown to improve cardiovascular outcomes or quality of life. Moreover, treatment to hemoglobin levels normal for the general population (13-14 g/dL) has resulted in increased cardiovascular morbidity and mortality versus lower hemoglobin targets, and some patients with chronic kidney disease do not reach these lower hemoglobin targets despite escalating doses of erythropoiesis-stimulating agents. The pathophysiology of anemia in patients with chronic kidney disease has been informed by the discovery of hypoxia-inducible factor and hepcidin pathways. Recent innovations in anemia treatment leverage knowledge of these pathways to effectively raise hemoglobin levels independent of erythropoiesis-stimulating agent administration. Several agents that stabilize hypoxia-inducible factor are undergoing or have completed phase 3 clinical trials. These agents appear to have equal efficacy as erythropoiesis-stimulating agents in raising hemoglobin levels and have not been associated with major safety signals to date. Because of the potential for off-target effects from non-anemia-related gene transcription by hypoxia-inducible factor stabilization, longer-term follow-up studies and registries will be needed to ensure safety. Agents that modulate hepcidin have undergone early clinical trials with mixed results regarding safety and efficacy in increasing hemoglobin levels. Sodium-glucose cotransporter 2 inhibitors, which also decrease hepcidin levels, have been associated with increased hemoglobin levels among patients with chronic kidney disease in clinical trials exploring proteinuria and kidney disease progression.
Collapse
Affiliation(s)
- Jay B. Wish
- Division of Nephrology, IU Health University Hospital, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Larsson J, Hoppe E, Gautrois M, Cvijovic M, Jirstrand M. Second-generation TNFα turnover model for improved analysis of test compound interventions in LPS challenge studies. Eur J Pharm Sci 2021; 165:105937. [PMID: 34260892 DOI: 10.1016/j.ejps.2021.105937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Abstract
This study presents a non-linear mixed effects model describing tumour necrosis factor alpha (TNFα) release after lipopolysaccharide (LPS) provocations in absence or presence of anti-inflammatory test compounds. Inter-occasion variability and the pharmacokinetics of two test compounds have been added to this second-generation model, and the goal is to produce a framework of how to model TNFα response in LPS challenge studies in vivo and demonstrate its general applicability regardless of occasion or type of test compound. Model improvements based on experimental data were successfully implemented and provided a robust model for TNFα response after LPS provocation, as well as reliable estimates of the median pharmacodynamic parameters. The two test compounds, Test Compound A and roflumilast, showed 81.1% and 74.9% partial reduction of TNFα response, respectively, and the potency of Test Compound A was estimated to 0.166 µmol/L. Comparing this study with previously published work reveals that our model leads to biologically reasonable output, handles complex data pooled from different studies, and highlights the importance of accurately distinguishing the stimulatory effect of LPS from the inhibitory effect of the test compound.
Collapse
Affiliation(s)
- Julia Larsson
- Fraunhofer-Chalmers Centre, Chalmers Science Park, 412 88 Gothenburg, Sweden.; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden..
| | | | | | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, 412 88 Gothenburg, Sweden
| |
Collapse
|
12
|
Gutiérrez OM. Treatment of Iron Deficiency Anemia in CKD and End-Stage Kidney Disease. Kidney Int Rep 2021; 6:2261-2269. [PMID: 34514189 PMCID: PMC8418942 DOI: 10.1016/j.ekir.2021.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
Iron deficiency is common in individuals with chronic kidney disease and plays a major role in the development of anemia. Oral and intravenous iron agents are both available to replete iron in patients with chronic kidney disease diagnosed with iron deficiency. The choice of which agent to use is most often dictated by goals of therapy, tolerability, convenience, and response to prior therapy. Diminished absorption of iron in the gastrointestinal tract and a high incidence of gastrointestinal adverse effects can reduce the efficacy of oral iron agents, necessitating the use of i.v. iron formulations to treat iron deficiency anemia, particularly in patients requiring kidney replacement therapy. Newer oral agents may help to overcome these limitations and help treat iron deficiency in those not requiring kidney replacement therapy. Recent studies have provided new evidence that more aggressive repletion of iron in patients with chronic kidney disease requiring kidney replacement therapy may provide benefits with respect to anemia management and hard clinical outcomes such as cardiovascular disease and survival.
Collapse
Affiliation(s)
- Orlando M. Gutiérrez
- Division of Nephrology, Department of Medicine and Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Sharma YP, Kaur N, Kasinadhuni G, Batta A, Chhabra P, Verma S, Panda P. Anemia in heart failure: still an unsolved enigma. Egypt Heart J 2021; 73:75. [PMID: 34453627 PMCID: PMC8403217 DOI: 10.1186/s43044-021-00200-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Anemia affects one-third of heart failure patients and is associated with increased morbidity and mortality. Despite being one of the commonest comorbidities associated with heart failure, there is a significant knowledge gap about management of anemia in the setting of heart failure due to conflicting evidence from recent trials. MAIN BODY The etiology of anemia in heart failure is multifactorial, with absolute and functional iron deficiency, decreased erythropoietin levels and erythropoietin resistance, inflammatory state and heart failure medications being the important causative factors. Anemia adversely affects the already compromised hemodynamics in heart failure, besides being commonly associated with more comorbidities and more severe disease. Though low hemoglobin levels are associated with poor outcomes, the correction of anemia has not been consistently associated with improved outcomes. Parenteral iron improves the functional capacity in iron deficient heart failure patients, the effects are independent of hemoglobin levels, and also the evidence on hard clinical outcomes is yet to be ascertained. CONCLUSION Despite all the research, anemia in heart failure remains an enigma. Perhaps, anemia is a marker of severe disease, rather than the cause of poor outcome in these patients. In this review, we discuss the current understanding of anemia in heart failure, its management and the newer therapies being studied.
Collapse
Affiliation(s)
- Yash Paul Sharma
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Navjyot Kaur
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Ganesh Kasinadhuni
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Akash Batta
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Pulkit Chhabra
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Samman Verma
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India
| | - Prashant Panda
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER) Chandigarh, Sector-12, Chandigarh, India.
| |
Collapse
|
14
|
Weir MR. Managing Anemia across the Stages of Kidney Disease in Those Hyporesponsive to Erythropoiesis-Stimulating Agents. Am J Nephrol 2021; 52:450-466. [PMID: 34280923 DOI: 10.1159/000516901] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with CKD frequently have anemia that results from iron-restricted erythropoiesis and inflammation. Anemia of CKD is currently managed with iron supplements and erythropoiesis-stimulating agents (ESAs) to promote erythropoiesis and with RBC transfusion in severe cases. Hyporesponse to ESAs, or the need for larger than usual doses to attain a given hemoglobin (Hb) level, is associated with increased morbidity and mortality and presents a pressing clinical challenge, particularly for patients on dialysis. This paper reviews ESA hyporesponse and potential new therapeutic options in the management of anemia of CKD. SUMMARY The most common causes of ESA hyporesponse include iron deficiency and inflammation, and to a lesser degree, secondary hyperparathyroidism, inadequate dialysis, malnutrition, and concomitant medications. Management of ESA hyporesponse is multipronged and involves treating low level infections, ensuring adequate nutrition, and optimizing iron status and dialysis modality, although some patients can remain refractory. Inflammation directly increases production and secretion of hepcidin, contributes to an impaired response to hypoxia, and suppresses proliferation of erythroid progenitors. Coordination of renal and hepatic erythropoietin (EPO) production and iron metabolism is under the control of hypoxia-inducible factors (HIF), which are in turn regulated by HIF-prolyl hydroxylases (HIF-PHs). HIF-PHs and hepcidin are therefore attractive potential drug targets particularly in patients with ESA hyporesponse. Several oral HIF-PH inhibitors have been evaluated in patients with anemia of CKD and have been shown to increase Hb and reduce hepcidin regardless of inflammation, iron status, or dialysis modality. These sustained effects are achieved through more modest increases in endogenous EPO compared with ESAs. Key Messages: Treatments that address ESA hyporesponse remain a significant unmet clinical need in patients with anemia of CKD. New therapies such as HIF-PH inhibitors have the potential to address fundamental aspects of ESA hyporesponse and provide a new therapeutic option in these patients.
Collapse
Affiliation(s)
- Matthew R Weir
- Division of Nephrology, University of Maryland Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther 2021; 226:107877. [PMID: 33895185 DOI: 10.1016/j.pharmthera.2021.107877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Iron is an essential element for the mammalian body however, its homeostasis must be regulated accurately for appropriate physiological functioning. Alterations in physiological iron levels can lead to moderate to severe iron disorders like chronic and acute iron deficiency (anemia) or iron overload. Hepcidin plays an important role in regulating homeostasis between circulating iron and stored iron in the cells as well as the absorption of dietary iron in the intestine. Inflammatory disorders restrict iron absorption from food due to increased circulating levels of hepcidin. Increased production of hepcidin causes ubiquitination of ferroportin (FPN) leading to its degradation, thereby retaining iron in the spleen, duodenal enterocytes, macrophages, and hepatocytes. Hepcidin inhibitors and antagonists play a consequential role to ameliorate inflammation-associated anemia. Many natural and synthesized compounds, able to reduce hepcidin expression during inflammation have been identified in recent years. Few of which are currently at various phases of clinical trial. This article comprises a comprehensive review of therapeutic approaches for the efficient treatment of anemia associated with inflammation. Many strategies have been developed targeting the hepcidin-FPN axis to rectify iron disorders. Hepcidin modulation with siRNAs, antibodies, chemical compounds, and plant extracts provides new insights for developing advanced therapeutics for iron-related disorders. Hepcidin antagonist's treatment has a high potential to improve iron status in patients with iron disorders, but their clinical success needs further recognition along with the identification and application of new therapeutic approaches.
Collapse
|
16
|
Agarwal AK. Iron metabolism and management: focus on chronic kidney disease. Kidney Int Suppl (2011) 2021; 11:46-58. [PMID: 33777495 PMCID: PMC7983022 DOI: 10.1016/j.kisu.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease (CKD) and results from the dysregulation of iron metabolism and erythropoiesis. Hepcidin is a key regulator of iron availability and leads to iron sequestration during the state of iron repletion. Decreases in the level of hepcidin in the presence of hypoxia and/or iron limitation allow for greater iron availability for erythropoiesis. However, kidney excretion of hepcidin decreases as the severity of CKD increases, whereas production of hepcidin is increased under inflammatory conditions often present in patients with CKD, both of which contribute to anemia. Assessment of iron status is, therefore, essential in the treatment of anemia. However, current laboratory tests for the determination of the adequate supply of iron have many limitations, including diurnal variation in the levels of biomarkers, lack of standardized reference methods across laboratories, and confounding by the presence of inflammation. In addition, the current treatment paradigm for anemia of CKD can further disrupt iron homeostasis; for example, treatment with erythropoiesis-stimulating agents in the absence of supplemental iron can induce functional iron deficiency. Moreover, supplemental iron can further increase levels of hepcidin. Several novel therapies, including hypoxia-inducible factor prolyl hydroxylase inhibitors and hepcidin inhibitors/antagonists, have shown promise in attenuating the levels and/or activity of hepcidin in anemia of CKD, thus ensuring the availability of iron for erythropoiesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Department of Medicine, VA Central California Health Care System, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Panoskaltsis N, McCarthy NE, Knight SC. Myelopoiesis of acute inflammation: lessons from TGN1412-induced cytokine storm. Cancer Immunol Immunother 2021; 70:1155-1160. [PMID: 32862238 DOI: 10.1007/s00262-020-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
TGN1412, a superagonist monoclonal antibody targeting CD28, caused cytokine storm in six healthy volunteers in a first-in-man study in 2006. Despite clinical improvement and termination of the cytokine release syndrome within days, anemia persisted in all patients with hemoglobin reaching baseline levels as much as 6 months later. Granulocytic dysplasia continued for 20 days in association with increased expression of CD69 and IL-4, but reduced IL-10; with resolution, this profile reversed to higher IL-10 expression and counter-balanced circannual cycling of IL-4 and IL-10 thereafter over 7 months. Along with immune cell subset and cytokine correlates monitored over 2 years, these observations offer unique insights into the expected changes in myelopoiesis and natural resolution in otherwise healthy young individuals in response to acute inflammation and cytokine storm in the absence of concomitant infection or comorbidity.
Collapse
Affiliation(s)
- Nicki Panoskaltsis
- Department of Haematology, Imperial College London, Northwick Park and St. Mark's Campus, London, UK.
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- BioMedical Systems Engineering Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Neil E McCarthy
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
- Centre for Immunobiology, The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, London, UK
| |
Collapse
|
18
|
Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer 2020; 11:6902-6915. [PMID: 33123281 PMCID: PMC7592013 DOI: 10.7150/jca.49532] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023] Open
Abstract
Traditional anticancer therapies can cause serious side effects in clinical treatment due to their nonspecific of tumor cells. Aptamers, also termed as 'chemical antibodies', are short DNA or RNA oligonucleotides selected from the synthetic large random single-strand oligonucleotide library by systematic evolution of ligands by exponential enrichment (SELEX) to bind to lots of different targets, such as proteins or nucleic acid structures. Aptamers have good affinities and high specificity with target molecules, thus may be able to act as drugs themselves to directly inhibit the proliferation of tumor cells, or own great potentialities in the targeted drug delivery systems which can be used in tumor diagnosis and target specific tumor cells, thereby minimizing the toxicity to normal cells. Here we review the unique properties of aptamer represents a great opportunity when applied to the rapidly developing fields of biotechnology and discuss the recent developments in the use of aptamers as powerful tools for analytic, diagnostic and therapeutic applications for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Liang Gao
- Department of Dermatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| |
Collapse
|
19
|
Effect of Interleukin and Hepcidin in Anemia of Chronic Diseases. Anemia 2020; 2020:3041738. [PMID: 32095285 PMCID: PMC7033950 DOI: 10.1155/2020/3041738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
Background Anemia of chronic disease (ACD) also termed as the anemia of inflammation has been found to be associated with inflammations, chronic infections, and cancers, particularly in old age. Recent studies revealed that interleukin-6 (IL-6), a proinflammatory cytokine, and hepcidin, an antimicrobial hepatic peptide, play a key role in ACD pathogenesis. Patients and Methods. The study included 40 subjects with chronic diseases and 40 normal subjects of the same age group. Red cell indices, levels of IL-6 and hepcidin, and iron profile were measured in all participants using Bayer ADVIA 120, VITROS 5600, Integrated System/2008, and ELISA assay, respectively. Results The level of hemoglobin was considerably less in patients of chronic diseases referred to as "cases" than the normal subjects or "controls" (8.7 ± 1.5 vs. 13.2 ± 0.9). Red blood corpuscle (RBC) count, hematocrit (HCT) level, serum iron, mean corpuscular hemoglobin concentration (MCHC), and serum total iron-binding capacity (TIBC) were found to be significantly lower in the cases as compared to controls (p < 0.001). Serum IL-6 and hepcidin levels were substantially higher in the cases than in the controls (p < 0.001). Serum IL-6 and hepcidin levels were substantially higher in the cases than in the controls (p < 0.001). Serum IL-6 and hepcidin levels were substantially higher in the cases than in the controls (. Conclusion This study detected a significant increase in serum IL-6 and hepcidin levels in patients with ACD than the controls. These findings offer an insight into the role played by both cytokine and peptide in the pathogenesis of ACD and thus provide a rationale for future use of novel drugs inhibiting their effects on iron metabolism.
Collapse
|
20
|
Boshuizen M, Binnekade JM, Nota B, van de Groep K, Cremer OL, Horn J, Schultz MJ, van Bruggen R, Juffermans NP. Potential of Parameters of Iron Metabolism for the Diagnosis of Anemia of Inflammation in the Critically Ill. Transfus Med Hemother 2020; 47:61-67. [PMID: 32110195 PMCID: PMC7036579 DOI: 10.1159/000497123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Anemia of inflammation (AI) is the most common cause of anemia in the critically ill, but its diagnosis is a challenge. New therapies specific to AI are in development, and they require accurate detection of AI. This study explores the potential of parameters of iron metabolism for the diagnosis of AI during an ICU stay. METHODS In a nested case-control study, 30 patients developing AI were matched to 60 controls. The iron parameters were determined in plasma samples during an ICU stay. Receiver operating characteristic curves were used to determine the iron parameter threshold with the highest sensitivity and specificity to predict AI. Likelihood ratios as well as positive and negative predictive values were calculated as well. RESULTS The sensitivity of iron parameters for diagnosing AI ranges between 62 and 76%, and the specificity between 57 and 72%. Iron and transferrin show the greatest area under the curve. Iron shows the highest sensitivity, and transferrin and transferrin saturation display the highest specificity. Hepcidin and ferritin show the lowest specificity. At an actual anemia prevalence of 53%, the diagnostic accuracy of iron, transferrin, and transferrin saturation was fair, with a positive predictive value between 71 and 73%. Combining iron, transferrin, transferrin saturation, hepcidin, and/or ferritin levels did not increase the accuracy of the AI diagnosis. CONCLUSIONS In this explorative study on the use of different parameters of iron metabolism for diagnosing AI during an ICU stay, low levels of commonly measured markers such as plasma iron, transferrin, and transferrin saturation have the highest sensitivity and specificity and outperform ferritin and hepcidin.
Collapse
Affiliation(s)
- Margit Boshuizen
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan M. Binnekade
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Benjamin Nota
- Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kirsten van de Groep
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janneke Horn
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J. Schultz
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
22
|
Abstract
OBJECTIVE Because anemia of inflammation is common in ICU patients and hepcidin is the key regulator of iron homeostasis, we examined time-dependent changes in hepcidin, erythropoietin, iron, and inflammatory markers in surgical ICU patients with anemia. DESIGN Prospective single-center clinical noninterventional study. SETTING Surgical ICUs; U.S. university hospital. PATIENTS One hundred surgical adult ICU patients. MEASUREMENTS AND MAIN RESULTS Time-dependent changes in serum hepcidin, hematologic, and erythropoietic studies were performed on ICU admission and at serial time-points through day 28, and correlated with hematologic and iron parameters and inflammatory response. Median serum hepcidin levels were significantly increased at ICU admission and decreased over time (144-36 ng/mL; p < 0.0001). Despite increased reticulocyte counts (1.3-2.9%), mean serum erythropoietin levels remained low (29-44 mU/mL) and hemoglobin did not significantly change. Hepcidin was positively correlated with RBC transfusion, C-reactive protein, interleukin-6, ferritin, and negatively correlated with iron, total iron binding capacity, transferrin, and reticulocyte response. Hepcidin did not correlate with tumor necrosis factor-α serum concentrations. Regression analyses confirmed that ferritin, C-reactive protein, and reticulocyte number were predictive of same-day hepcidin; hepcidin and C-reactive protein were predictive of same-day reticulocyte count. CONCLUSIONS Hepcidin serum concentrations are markedly increased on ICU admission, and decrease significantly over the course of the ICU stay (28 d). Decreased hepcidin concentrations are associated with increased reticulocyte response and decreased inflammatory response reflected by decreased interleukin-6 and C-reactive protein concentrations, but not with anemia resolution.
Collapse
|
23
|
Loftus TJ, Mira JC, Miller ES, Kannan KB, Plazas JM, Delitto D, Stortz JA, Hagen JE, Parvataneni HK, Sadasivan KK, Brakenridge SC, Moore FA, Moldawer LL, Efron PA, Mohr AM. The Postinjury Inflammatory State and the Bone Marrow Response to Anemia. Am J Respir Crit Care Med 2019; 198:629-638. [PMID: 29768025 DOI: 10.1164/rccm.201712-2536oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE The pathophysiology of persistent injury-associated anemia is incompletely understood, and human data are sparse. OBJECTIVES To characterize persistent injury-associated anemia among critically ill trauma patients with the hypothesis that severe trauma would be associated with neuroendocrine activation, erythropoietin dysfunction, iron dysregulation, and decreased erythropoiesis. METHODS A translational prospective observational cohort study comparing severely injured, blunt trauma patients who had operative fixation of a hip or femur fracture (n = 17) with elective hip repair patients (n = 22). Bone marrow and plasma obtained at the index operation were assessed for circulating catecholamines, systemic inflammation, erythropoietin, iron trafficking pathways, and erythroid progenitor growth. Bone marrow was also obtained from healthy donors from a commercial source (n = 8). MEASUREMENTS AND MAIN RESULTS During admission, trauma patients had a median of 625 ml operative blood loss and 5 units of red blood cell transfusions, and Hb decreased from 10.5 to 9.3 g/dl. Compared with hip repair, trauma patients had higher median plasma norepinephrine (21.9 vs. 8.9 ng/ml) and hepcidin (56.3 vs. 12.2 ng/ml) concentrations (both P < 0.05). Bone marrow erythropoietin and erythropoietin receptor expression were significantly increased among patients undergoing hip repair (23% and 14% increases, respectively; both P < 0.05), but not in trauma patients (3% and 5% increases, respectively), compared with healthy control subjects. Trauma patients had lower bone marrow transferrin receptor expression than did hip repair patients (57% decrease; P < 0.05). Erythroid progenitor growth was decreased in trauma patients (39.0 colonies per plate; P < 0.05) compared with those with hip repair (57.0 colonies per plate; P < 0.05 compared with healthy control subjects) and healthy control subjects (66.5 colonies per plate). CONCLUSIONS Severe blunt trauma was associated with neuroendocrine activation, erythropoietin dysfunction, iron dysregulation, erythroid progenitor growth suppression, and persistent injury-associated anemia. Clinical trial registered with www.clinicaltrials.gov (NCT 02577731).
Collapse
Affiliation(s)
- Tyler J Loftus
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Juan C Mira
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Elizabeth S Miller
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | | | - Jessica M Plazas
- 3 College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | | | - Julie A Stortz
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Jennifer E Hagen
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | - Hari K Parvataneni
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | - Kalia K Sadasivan
- 4 Department of Orthopedic Surgery, University of Florida Health, Gainesville, Florida; and
| | | | - Frederick A Moore
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Lyle L Moldawer
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Philip A Efron
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| | - Alicia M Mohr
- 1 Department of Surgery.,2 Sepsis and Critical Illness Research Center, and
| |
Collapse
|
24
|
Napolitano LM. Understanding Anemia in the ICU to Develop Future Treatment Strategies. Am J Respir Crit Care Med 2019; 198:554-555. [PMID: 29944840 DOI: 10.1164/rccm.201805-0989ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Diepeveen LE, Laarakkers CM, Peters HPE, van Herwaarden AE, Groenewoud H, IntHout J, Wetzels JF, van Swelm RPL, Swinkels DW. Unraveling Hepcidin Plasma Protein Binding: Evidence from Peritoneal Equilibration Testing. Pharmaceuticals (Basel) 2019; 12:ph12030123. [PMID: 31450766 PMCID: PMC6789442 DOI: 10.3390/ph12030123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Peptide hormone hepcidin regulates systemic iron metabolism and has been described to be partially bound to α2-macroglobulin and albumin in blood. However, the reported degree of hepcidin protein binding varies between <3% and ≈89%. Since protein-binding may influence hormone function and quantification, better insight into the degree of hepcidin protein binding is essential to fully understand the biological behavior of hepcidin and interpretation of its measurement in patients. Here, we used peritoneal dialysis to assess human hepcidin protein binding in a functional human setting for the first time. We measured freely circulating solutes in blood and peritoneal fluid of 14 patients with end-stage renal disease undergoing a peritoneal equilibration test to establish a curve describing the relation between molecular weight and peritoneal clearance. Calculated binding percentages of total cortisol and testosterone confirmed our model. The protein-bound fraction of hepcidin was calculated to be 40% (±23%). We, therefore, conclude that a substantial proportion of hepcidin is freely circulating. Although a large inter-individual variation in hepcidin clearance, besides patient-specific peritoneal transport characteristics, may have affected the accuracy of the determined binding percentage, we describe an important step towards unraveling human hepcidin plasma protein binding in vivo including the caveats that need further research.
Collapse
Affiliation(s)
- Laura E Diepeveen
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.
| | - Coby M Laarakkers
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Hilde P E Peters
- Department of Nephrology, Isala Hospital, 8025 Zwolle, The Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Hans Groenewoud
- Department of Health Evidence, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Joanna IntHout
- Department of Health Evidence, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Rachel P L van Swelm
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| |
Collapse
|
26
|
Li W, Zhao M, Yan H, Wang K, Lan XI. Aptamer Oligonucleotides as Potential Therapeutics in Hematologic Diseases. Mini Rev Med Chem 2019; 19:788-795. [PMID: 28969551 DOI: 10.2174/1389557517666171002160526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/22/2017] [Accepted: 08/05/2017] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides generated by a novel in vitro selection technique termed Systematic evolution of ligands by exponential enrichment (SELEX). During the past two decades, various aptamer drugs have been developed and many of them have entered into clinical trials. In the present review, we focus on aptamers as potential therapeutics for hematological diseases, including anemia of chronic inflammation (ACI) and anemia of chronic disease (ACD), hemophilia, thrombotic thrombocytopenic purpura (TTP) or VWD type-2B, and sickle cell disease (SCD), in particular, those that have entered into clinical trials.
Collapse
Affiliation(s)
- Weibin Li
- Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, No 156 North Xi-er Huan Road, Fuzhou 350025, Fujian Province, China
| | - Meng Zhao
- Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, No 156 North Xi-er Huan Road, Fuzhou 350025, Fujian Province, China
| | - Huihui Yan
- Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, No 156 North Xi-er Huan Road, Fuzhou 350025, Fujian Province, China
| | - Kaiyu Wang
- Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, No 156 North Xi-er Huan Road, Fuzhou 350025, Fujian Province, China
| | - XIaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, No 156 North Xi-er Huan Road, Fuzhou 350025, Fujian Province, China
| |
Collapse
|
27
|
Boshuizen M, van Bruggen R, Zaat SA, Schultz MJ, Aguilera E, Motos A, Senussi T, Idone FA, Pelosi P, Torres A, Bassi GL, Juffermans NP. Development of a model for anemia of inflammation that is relevant to critical care. Intensive Care Med Exp 2019; 7:47. [PMID: 31346819 PMCID: PMC6658638 DOI: 10.1186/s40635-019-0261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Anemia of inflammation (AI) is common in critically ill patients. Although this syndrome negatively impacts the outcome of critical illness, understanding of its pathophysiology is limited. Also, new therapies that increase iron availability for erythropoiesis during AI are upcoming. A model of AI induced by bacterial infections that are relevant for the critically ill is currently not available. This paper describes the development of an animal model for AI that is relevant for critical care research. RESULTS In experiments with rats, the rats were inoculated either repeatedly or with a slow release of Streptococcus pneumoniae or Pseudomonas aeruginosa. Rats became ill, but their hemoglobin levels remained stable. The use of a higher dose of bacteria resulted in a lethal model. Then, we turned to a model with longer disease duration, using pigs that were supported by mechanical ventilation after inoculation with P. aeruginosa. The pigs became septic 12 to 24 h after inoculation, with a statistically significant decrease in mean arterial pressure and base excess, while heart rate tended to increase. Pigs needed resuscitation and vasopressor therapy to maintain a mean arterial pressure > 60 mmHg. After 72 h, the pigs developed anemia (baseline 9.9 g/dl vs. 72 h, 7.6 g/dl, p = 0.01), characterized by statistically significant decreased iron levels, decreased transferrin saturation, and increased ferritin. Hepcidin levels tended to increase and transferrin levels tended to decrease. CONCLUSIONS Using pathogens commonly involved in pulmonary sepsis, AI could not be induced in rats. Conversely, in pigs, P. aeruginosa induced pulmonary sepsis with concomitant AI. This AI model can be applied to study the pathophysiology of AI in the critically ill and to investigate the effectivity and toxicity of new therapies that aim to increase iron availability.
Collapse
Affiliation(s)
- Margit Boshuizen
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands.
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, 1066, CX, The Netherlands.
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, 1066, CX, The Netherlands
| | - Sebastian A Zaat
- Department of Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, 1105, AZ, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| | - Eli Aguilera
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
| | - Ana Motos
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
| | - Tarek Senussi
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
- Department of Surgical Sciences and Integrated Diagnostics (DISC), San Martino Policlinico Hospital - IRCCS for Oncology, 16132, Genova, Italy
| | - Francesco Antonio Idone
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), San Martino Policlinico Hospital - IRCCS for Oncology, 16132, Genova, Italy
| | - Antonio Torres
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
| | - Gianluigi Li Bassi
- Department of Pulmonary and Critical Care Medicine, Thorax Institute, Hospital Clínic, 08036, Barcelona, Spain
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105, AZ, the Netherlands
| |
Collapse
|
28
|
Radosz A, Obuchowicz A. The role of hepcidin in regulating iron homeostasis in selected diseases. DEVELOPMENTAL PERIOD MEDICINE 2019; 23. [PMID: 31280251 PMCID: PMC8522373 DOI: 10.34763/devperiodmed.20192302.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iron is an element whose content in the human organism remains under strict control not only due to its involvement in many life processes but also because of its potential toxicity. The latest studies in iron metabolism, especially the involvement of hepcidin, which is the main regulator of iron homeostasis, broadened our knowledge in many medical fields (immunology, nephrology, hematology, gastrology). The present paper is a review of the literature devoted to the importance of hepcidin under selected conditions.
Collapse
Affiliation(s)
- Aleksandra Radosz
- Chair and Department of Pediatrics in Bytom, The School of Health Sciences, Medical University of Silesia, Katowice, Poland,Aleksandra Radosz Katedra i Oddział Kliniczny Pediatrii ul. Batorego 15, 41-902 Bytom tel. (32) 78-61-504, (32)78-61-498
| | - Anna Obuchowicz
- Chair and Department of Pediatrics in Bytom, The School of Health Sciences, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
29
|
Maimaitiyiming Y, Hong DF, Yang C, Naranmandura H. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol 2019; 145:797-810. [PMID: 30830295 DOI: 10.1007/s00432-019-02882-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Aptamers are a class of single-stranded nucleic acid (DNA or RNA) oligonucleotides that are screened in vitro by a technique called systematic evolution of ligands by exponential enrichment (SELEX). They have stable three-dimensional structures that can bind to various targets with high affinity and specificity. Due to distinct properties such as easy synthesis, high stability, small size, low toxicity and immunogenicity, they have been largely studied as anticancer agents/tools. Consequently, aptamers are starting to play important roles in disease prevention, diagnosis and therapy. This review focuses on studies that evaluated the effect of aptamers on various aspects of cancer therapy. It also provides novel and unique insights into the role of aptamers on the fight against cancer. METHODS We reviewed literatures about the role of aptamers against cancer from PUBMED databases in this article. RESULTS Here, we summarized the role of aptamers on the fight against cancer in a unique point of view. Meanwhile, we presented novel ideas such as aptamer-pool-drug conjugates for the treatment of refractory cancers. CONCLUSIONS Aptamers and antibodies should form a "coalition" against cancers to maximize their advantages and minimize disadvantages.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - De Fei Hong
- The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
30
|
Malyszko J, Malyszko JS, Matuszkiewicz-Rowinska J. Hepcidin as a therapeutic target for anemia and inflammation associated with chronic kidney disease. Expert Opin Ther Targets 2019; 23:407-421. [PMID: 30907175 DOI: 10.1080/14728222.2019.1599358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Anemia is a common manifestation of chronic kidney disease (CKD). The pathogenesis of CKD-associated anemia is multifactorial. Our understanding of the molecular control of iron metabolism has improved dramatically because of the discovery of hepcidin and attempts to introduce new drugs to stimulate erythropoiesis or affect the hepcidin-ferroportin pathway have recently emerged. Areas covered: We examine the possible role of hepcidin in iron metabolism and regulation and the potential therapeutic options involving hepcidin and hepcidin-ferroportin axis in renal anemia treatment. We focus on therapeutic targeting of hepcidin, the hepcidin-ferroportin axis and key molecules such as anti-hepcidin antibodies, spigelmers, and anticalins. We also discuss compounds affecting the bone morphogenetic protein receptor [BMP/BMPR] complex and molecules that influence hepcidin, such as hypoxia-inducible factor 1 stabilizers. Expert opinion: Hepcidin is a key regulator of iron availability and is a potential future therapeutic target for managing anemia that is associated with CKD. There are potential risks and benefits associated with novel sophisticated therapies and there are several novel options on the horizon; however, clinical data are currently limited and need development. Inhibition of hepcidin via various pathways might be a viable adjunctive therapeutic option in other clinical situations.
Collapse
Affiliation(s)
- Jolanta Malyszko
- a Department of Nephrology, Dialysis and Internal Medicine , Warsaw Medical University , Warsaw , Poland
| | - Jacek S Malyszko
- b Department of Nephrology and Transplantology with Dialysis Unit , Medical University , Bialystok , Poland
| | | |
Collapse
|
31
|
Kiers D, van Eijk LT, van der Hoeven JG, Swinkels DW, Pickkers P, Kox M. Hypoxia attenuates inflammation-induced hepcidin synthesis during experimental human endotoxemia. Haematologica 2019; 104:e230-e232. [PMID: 30655372 DOI: 10.3324/haematol.2018.202796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Dorien Kiers
- Department of Intensive Care Medicine, Radboud University Medical Center.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
| | - Lucas T van Eijk
- Department of Intensive Care Medicine, Radboud University Medical Center.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
| | - Dorine W Swinkels
- Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center.,Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center.,Hepcidinanalysis.com, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center .,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
| |
Collapse
|
32
|
Kiers D, Leijte GP, Gerretsen J, Zwaag J, Kox M, Pickkers P. Comparison of different lots of endotoxin and evaluation of in vivo potency over time in the experimental human endotoxemia model. Innate Immun 2019; 25:34-45. [PMID: 30782041 PMCID: PMC6830888 DOI: 10.1177/1753425918819754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The experimental human endotoxemia model is used to study the systemic inflammatory response in vivo. The previously used lot of endotoxin, which was used for over a decade, is no longer approved for human use and a new Good Manufacturing Practices-grade batch has become available. We compared the inflammatory response induced by either bolus or continuous administration of either the previously used lot #1188844 or new lots of endotoxin (#94332B1 and #94332B4). Compared with lot #1188844, bolus administration of lot #94332B1 induced a more pronounced systemic inflammatory response including higher plasma levels of pro-inflammatory cytokines and more pronounced clinical signs of inflammation. In contrast, continuous infusion of lot #94332B4 resulted in a slightly less pronounced inflammatory response compared with lot #1188844. Furthermore, we evaluated whether lot #1188844 displayed in vivo potency loss by reviewing inflammatory parameters obtained from 17 endotoxemia studies performed in our centre between 2007 and 2016. Despite inter-study variability in endotoxemia-induced effects on temperature, heart rate, symptoms, and leukocyte counts, the magnitude of these effects did not decrease over time. In conclusion, although all lots of endotoxin induce a pronounced inflammatory response, the magnitude differs between lots. We observed no potency loss of endotoxin over time.
Collapse
Affiliation(s)
- Dorien Kiers
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
- Both authors contributed equally to this work (shared first
authorship)
| | - Guus P. Leijte
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
- Both authors contributed equally to this work (shared first
authorship)
| | - Jelle Gerretsen
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
| | - Jelle Zwaag
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Dept. of Intensive Care Medicine, Radboud University Medical
Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University
Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
33
|
Hepcidin Therapeutics. Pharmaceuticals (Basel) 2018; 11:ph11040127. [PMID: 30469435 PMCID: PMC6316648 DOI: 10.3390/ph11040127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Hepcidin is a key hormonal regulator of systemic iron homeostasis and its expression is induced by iron or inflammatory stimuli. Genetic defects in iron signaling to hepcidin lead to “hepcidinopathies” ranging from hereditary hemochromatosis to iron-refractory iron deficiency anemia, which are disorders caused by hepcidin deficiency or excess, respectively. Moreover, dysregulation of hepcidin is a pathogenic cofactor in iron-loading anemias with ineffective erythropoiesis and in anemia of inflammation. Experiments with preclinical animal models provided evidence that restoration of appropriate hepcidin levels can be used for the treatment of these conditions. This fueled the rapidly growing field of hepcidin therapeutics. Several hepcidin agonists and antagonists, as well as inducers and inhibitors of hepcidin expression have been identified to date. Some of them were further developed and are currently being evaluated in clinical trials. This review summarizes the state of the art.
Collapse
|
34
|
Wawer AA, Jennings A, Fairweather-Tait SJ. Iron status in the elderly: A review of recent evidence. Mech Ageing Dev 2018; 175:55-73. [PMID: 30040993 DOI: 10.1016/j.mad.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
A comprehensive literature review of iron status in the elderly was undertaken in order to update a previous review (Fairweather-Tait et al, 2014); 138 summarised papers describe research on the magnitude of the problem, aetiology and age-related physiological changes that may affect iron status, novel strategies for assessing iron status with concurrent health conditions, hepcidin, lifestyle factors, iron supplements, iron status and health outcomes (bone mineral density, frailty, inflammatory bowel disease, kidney failure, cancer, cardiovascular, and neurodegenerative diseases). Each section of this review concludes with key points from the relevant papers. The overall findings were that disturbed iron metabolism plays a major role in a large number of conditions associated with old age. Correction of iron deficiency/overload may improve disease prognosis, but diagnosis of iron deficiency requires appropriate cut-offs for biomarkers of iron status in elderly men and women to be agreed. Iron deficiency (with or without anemia), anemia of inflammation, and anemia of chronic disease are all widespread in the elderly and, once identified, should be investigated further as they are often indicative of underlying disease. Management options should be reviewed and updated, and novel therapies, which show potential for treating anemia of inflammation or chronic disease, should be considered.
Collapse
Affiliation(s)
- Anna A Wawer
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, 5011, South Australia, Australia
| | - Amy Jennings
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | | |
Collapse
|
35
|
Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult. Curr Opin Hematol 2018; 25:37-43. [PMID: 29035909 DOI: 10.1097/moh.0000000000000395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe recent findings in the context of previous work regarding dysregulated myelopoiesis and hematopoietic function following an acute physiologic insult, focusing on the expansion and persistence of myeloid-deriver suppressor cells, the deterioration of lymphocyte number and function, and the inadequacy of stress erythropoiesis. RECENT FINDINGS Persistent myeloid-derived suppressor cell (MDSC) expansion among critically ill septic patients is associated with T-cell suppression, vulnerability to nosocomial infection, chronic critical illness, and poor long-term functional status. Multiple approaches targeting MDSC expansion and suppressor cell activity may serve as a primary or adjunctive therapeutic intervention. Traumatic injury and the neuroendocrine stress response suppress bone marrow erythropoietin receptor expression in a process that may be reversed by nonselective beta-adrenergic receptor blockade. Hepcidin-mediated iron-restricted anemia of critical illness requires further investigation of novel approaches involving erythropoiesis-stimulating agents, iron administration, and hepcidin modulation. SUMMARY Emergency myelopoiesis is a dynamic process with unique phenotypes for different physiologic insults and host factors. Following an acute physiologic insult, critically ill patients are subject to persistent MDSC expansion, deterioration of lymphocyte number and function, and inadequate stress erythropoiesis. Better strategies are required to identify patients who are most likely to benefit from targeted therapies.
Collapse
|
36
|
Hasegawa T, Koiwa F, Akizawa T. Anemia in conventional hemodialysis: Finding the optimal treatment balance. Semin Dial 2018; 31:599-606. [PMID: 29909605 DOI: 10.1111/sdi.12719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Renal anemia is a serious and common complication in hemodialysis (HD) patients. The introduction of erythropoiesis-stimulating agents (ESAs) has dramatically improved hemoglobin levels and outcomes. Several interventional studies reported that excessive correction of anemia and the massive use of ESA can trigger cardiovascular disease (CVD), and consequently may worsen the prognosis of patients undergoing HD. Therefore, it has been widely recognized that large doses of ESA should be used with caution. An effective use of iron preparations is required to yield the optimal effect of ESA. It is well-known that iron utilization is inhibited under pathological conditions, such as chronic inflammation, resulting in ESA resistance. It is postulated that a new class of therapeutic agents for renal anemia, hypoxia inducible factor prolyl hydroxylase (HIF-PH) inhibitors, will have beneficial treatment effects in patients on HD. HIF is induced by hypoxia and promotes erythropoietin production. In the absence of a hypoxic state, HIF is decomposed by the HIF catabolic enzyme. HIF-PH inhibitors inhibit this degrading enzyme and stimulate endogenous erythropoietin production via HIF induction. Additionally, HIF-PH inhibitors promote effective utilization of iron and raise erythropoietin to physiological concentrations. Accordingly, HIF-PH inhibitors improve anemia and iron metabolism. It appears that this effect persists irrespective of chronic inflammatory conditions. HIF-PH inhibitors do not overshoot erythropoietin above physiological concentrations like ESAs. Therefore, it is hypothesized that HIF-PH inhibitors would not increase the risk of CVD in patients undergoing HD.
Collapse
Affiliation(s)
- Takeshi Hasegawa
- Office for Promoting Medical Research, Showa University, Tokyo, Japan.,Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan.,Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical University, Fukushima, Japan.,Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Arora N, Caldwell A, Wafa K, Szczesniak A, Caldwell M, Al-Banna N, Sharawy N, Islam S, Zhou J, Holbein BE, Kelly MEM, Lehmann C. DIBI, a polymeric hydroxypyridinone iron chelator, reduces ocular inflammation in local and systemic endotoxin-induced uveitis. Clin Hemorheol Microcirc 2018; 69:153-164. [PMID: 29630535 DOI: 10.3233/ch-189109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVE Non-infectious uveitis is an inflammatory disease of the eye commonly treated by corticosteroids, though important side effects may result. A main mediator of inflammation are oxygen free radicals generated in iron-dependent pathways. As such, we investigated the efficacy of a novel iron chelator, DIBI, as an anti-inflammatory agent in local and systemic models of endotoxin induced uveitis (EIU). METHODS Firstly, the effects of DIBI in systemic EIU in Lewis rats were established. 2 hours post intravenous LPS or LPS/DIBI injections, leukocyte activation and functional capillary density (FCD) were examined using intravital microscopy (IVM) of the iridial microcirculation. Secondly, the toxicity of DIBI was evaluated in BALB/C mice for both acute and chronic dosages through gross ocular examination, intraocular pressure measurements and hematoxylin-eosin staining of ocular tissue. Lastly, three groups of BALB/C mice, control, LPS or DIBI + LPS, were studied to evaluate the effectiveness of DIBI in treating local EIU. Five hours post-local intravitreal (i.v) injection, leukocyte activation and capillary density were examined via IVM. RESULTS Treatment of systemic EIU with DIBI resulted in a reduction of leukocyte activation and FCD improvement within the iridial microcirculation. Toxicity studies suggested that acute and chronic DIBI administration had no adverse effects in the eye. In the local EIU model, DIBI was shown to reduce leukocyte activation and restored the FCD/DCD ratio, providing evidence for its anti-inflammatory properties. CONCLUSIONS Our study has provided evidence that DIBI has anti-inflammatory effects in experimental uveitis. Additionally, no local ocular toxicity was observed.
Collapse
Affiliation(s)
- N Arora
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - A Caldwell
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - K Wafa
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - A Szczesniak
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - M Caldwell
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - N Al-Banna
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - N Sharawy
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - S Islam
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - J Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - B E Holbein
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Chelation Partners Inc, Halifax, NS, Canada
| | - M E M Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Ch Lehmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
38
|
Girelli D, Marchi G, Camaschella C. Anemia in the Elderly. Hemasphere 2018; 2:e40. [PMID: 31723768 PMCID: PMC6745992 DOI: 10.1097/hs9.0000000000000040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023] Open
Abstract
Anemia affects a substantial fraction of the elderly population, representing a public health problem that is predicted to further increase in coming years because of the demographic drive. Being typically mild, it is falsely perceived as a minor problem, particularly in the elderly with multimorbidity, so that it often remains unrecognized and untreated. Indeed, mounting evidence indicates that anemia in the elderly (AE) is independently associated with disability and other major negative outcomes, including mortality. AE is generally multifactorial, but initial studies suggested that etiology remains unexplained in near one-third of cases. This proportion is consistently declining due to recent advances highlighting the role of several conditions including clonal hematopoiesis, "inflammaging," correctable androgen deficiency in men, and under-recognized iron deficiency. Starting from a real-world case vignette illustrating a paradigmatic example of anemia in an elderly patient with multimorbidity, we review the main clinical and pathophysiological aspect of AE, giving some practical insights into how to manage similar cases.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Giacomo Marchi
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
39
|
In a Mouse Model of Sepsis, Hepcidin Ablation Ameliorates Anemia More Effectively than Iron and Erythropoietin Treatment. Shock 2018; 48:490-497. [PMID: 28452907 DOI: 10.1097/shk.0000000000000886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intensive care unit (ICU) anemia is an extreme version of anemia of inflammation that occurs commonly in critically ill patients and is associated with increased morbidity and mortality. Currently available therapies for ICU anemia have shown inconsistent efficacies in clinical trials. We conducted a systematic study of the effects of early versus delayed iron (Fe) and/or erythropoietin (EPO) therapy in our previously characterized mouse model of ICU anemia based on an injection of heat-killed Brucella abortus. To study the effects of ongoing inflammation on the response to therapy, inflamed wild-type (WT) and hepcidin knockout (HKO) mice were treated at either early (days 1 and 2) or delayed (days 7 and 8) time points after the inflammatory stimulus. In the early treatment group, Fe and/or EPO therapy did not increase hemoglobin (Hgb) levels or reticulocyte production in either the inflamed WT or HKO groups. In the delayed treatment group, combination Fe + EPO therapy did increase Hgb and reticulocyte production in WT mice (mean ΔHgb in WT saline group -9.2 g/dL vs. Fe/EPO -5.5 g/dL; P < 0.001). The HKO mice in the delayed treatment group did not improve their Hgb, but HKO mice in all treatment groups developed a milder anemia than the WT mice. Our findings indicate that combination Fe + EPO therapy is effective in partially reversing ICU anemia when administered after the phase of acute inflammation. Hepcidin ablation alone was more effective in attenuating ICU anemia than Fe + EPO therapy, which indicates the potential of antihepcidin therapeutics in treating ICU anemia.
Collapse
|
40
|
Bergamaschi G, Di Sabatino A, Corazza GR. Pathogenesis, diagnosis and treatment of anaemia in immune-mediated gastrointestinal disorders. Br J Haematol 2018; 182:319-329. [PMID: 29732532 DOI: 10.1111/bjh.15254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune-mediated disorders affecting the gastrointestinal (GI) tract may compromise GI integrity, interfere with the absorption of nutrients and cause bleeding and inflammation. All these features contribute to the pathogenesis of anaemia, the most prevalent extra-intestinal manifestation of immune-mediated GI disorders. Anaemia is most commonly due to iron deficiency and/or inflammation, but vitamin deficiencies and, more infrequently, autoimmune haemolysis or drug-induced myelosuppression can be involved. Here we address several issues related to the differential diagnosis and treatment of anaemia in immune-mediated GI disorders, giving particular relevance to the problem of iron deficiency anaemia associated with inflammation. It is emphasized how, in most cases, anaemias due to iron or vitamin deficiencies are best treated by parenteral administration of the deficient factor(s), and how the available high dose intravenous (IV) iron formulations can reduce ambulatory and social costs of IV iron supplementation, while improving patient's compliance to treatment. Actual and future treatment possibilities for anaemia of inflammation, involving the use of erythropoiesis stimulating agents, biologicals and hepcidin inhibitors are discussed.
Collapse
Affiliation(s)
| | - Antonio Di Sabatino
- Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy.,University of Pavia, Pavia, Italy
| | - Gino R Corazza
- Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy.,University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Boshuizen M, Binnekade JM, Nota B, van de Groep K, Cremer OL, Tuinman PR, Horn J, Schultz MJ, van Bruggen R, Juffermans NP. Iron metabolism in critically ill patients developing anemia of inflammation: a case control study. Ann Intensive Care 2018; 8:56. [PMID: 29717382 PMCID: PMC5930297 DOI: 10.1186/s13613-018-0407-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anemia occurring as a result of inflammatory processes (anemia of inflammation, AI) has a high prevalence in critically ill patients. Knowledge on changes in iron metabolism during the course of AI is limited, hampering the development of strategies to counteract AI. This case control study aimed to investigate iron metabolism during the development of AI in critically ill patients. METHODS Iron metabolism in 30 patients who developed AI during ICU stay was compared with 30 septic patients with a high Hb and 30 non-septic patients with a high Hb. Patients were matched on age and sex. Longitudinally collected plasma samples were analyzed for levels of parameters of iron metabolism. A linear mixed model was used to assess the predictive values of the parameters. RESULTS In patients with AI, levels of iron, transferrin and transferrin saturation showed an early decrease compared to controls with a high Hb, already prior to the development of anemia. Ferritin, hepcidin and IL-6 levels were increased in AI compared to controls. During AI development, erythroferrone decreased. Differences in iron metabolism between groups were not influenced by APACHE IV score. CONCLUSIONS The results show that in critically ill patients with AI, iron metabolism is already altered prior to the development of anemia. Levels of iron regulators in AI differ from septic controls with a high Hb, irrespective of disease severity. AI is characterized by high levels of hepcidin, ferritin and IL-6 and low levels of iron, transferrin and erythroferrone.
Collapse
Affiliation(s)
- Margit Boshuizen
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan M. Binnekade
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Benjamin Nota
- Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kirsten van de Groep
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olaf L. Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter R. Tuinman
- Department of Intensive Care Medicine, VU University Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke Horn
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcus J. Schultz
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
42
|
Anemia in Heart Failure. JACC-HEART FAILURE 2018; 6:201-208. [DOI: 10.1016/j.jchf.2017.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
|
43
|
Hohlbaum AM, Gille H, Trentmann S, Kolodziejczyk M, Rattenstetter B, Laarakkers CM, Katzmann G, Christian HJ, Andersen N, Allersdorfer A, Olwill SA, Meibohm B, Audoly LP, Swinkels DW, van Swelm RPL. Sustained plasma hepcidin suppression and iron elevation by Anticalin-derived hepcidin antagonist in cynomolgus monkey. Br J Pharmacol 2018; 175:1054-1065. [PMID: 29329501 DOI: 10.1111/bph.14143] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Anaemia of chronic disease (ACD) has been linked to iron-restricted erythropoiesis imposed by high circulating levels of hepcidin, a 25 amino acid hepatocyte-derived peptide that controls systemic iron homeostasis. Here, we report the engineering of the human lipocalin-derived, small protein-based anticalin PRS-080 hepcidin antagonist with high affinity and selectivity. EXPERIMENTAL APPROACH Anticalin- and hepcidin-specific pharmacokinetic (PK)/pharmacodynamic modelling (PD) was used to design and select the suitable drug candidate based on t1/2 extension and duration of hepcidin suppression. The development of a novel free hepcidin assay enabled accurate analysis of bioactive hepcidin suppression and elucidation of the observed plasma iron levels after PRS-080-PEG30 administration in vivo. KEY RESULTS PRS-080 had a hepcidin-binding affinity of 0.07 nM and, after coupling to 30 kD PEG (PRS-080-PEG30), a t1/2 of 43 h in cynomolgus monkeys. Dose-dependent iron mobilization and hepcidin suppression were observed after a single i.v. dose of PRS-080-PEG30 in cynomolgus monkeys. Importantly, in these animals, suppression of free hepcidin and subsequent plasma iron elevation were sustained during repeated s.c. dosing. After repeated dosing and followed by a treatment-free interval, all iron parameters returned to pre-dose values. CONCLUSIONS AND IMPLICATIONS In conclusion, we developed a dose-dependent and safe approach for the direct suppression of hepcidin, resulting in prolonged iron mobilization to alleviate iron-restricted erythropoiesis that can address the root cause of ACD. PRS-080-PEG30 is currently in early clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | - Coby M Laarakkers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | | | | | | | | | | | - Bernd Meibohm
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Rachel P L van Swelm
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands.,Hepcidinanalysis.com, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Biggar P, Kim GH. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res Clin Pract 2017; 36:209-223. [PMID: 28904872 PMCID: PMC5592888 DOI: 10.23876/j.krcp.2017.36.3.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Anemia, complicating the course of chronic kidney disease, is a significant parameter, whether interpreted as subjective impairment or an objective prognostic marker. Renal anemia is predominantly due to relative erythropoietin (EPO) deficiency. EPO inhibits apoptosis of erythrocyte precursors. Studies using EPO substitution have shown that increasing hemoglobin (Hb) levels up to 10–11 g/dL is associated with clinical improvement. However, it has not been unequivocally proven that further intensification of erythropoiesis stimulating agent (ESA) therapy actually leads to a comprehensive benefit for the patient, especially as ESAs are potentially associated with increased cerebro-cardiovascular events. Recently, new developments offer interesting options not only via stimulating erythropoeisis but also by employing additional mechanisms. The inhibition of activin, a member of the transforming growth factor superfamily, has the potential to correct anemia by stimulating liberation of mature erythrocyte forms and also to mitigate disturbed mineral and bone metabolism as well. Hypoxia-inducible factor prolyl hydroxylase inhibitors also show pleiotropic effects, which are at the focus of present research and have the potential of reducing mortality. However, conventional ESAs offer an extensive body of safety evidence, against which the newer substances should be measured. Carbamylated EPO is devoid of Hb augmenting effects whilst exerting promising tissue protective properties. Additionally, the role of hepcidin antagonists is discussed. An innovative new hemodialysis blood tube system, reducing blood contact with air, conveys a totally different and innocuous option to improve renal anemia by reducing mechanical hemolysis.
Collapse
Affiliation(s)
- Patrick Biggar
- Department of Nephrology, Klinikum Coburg, GmbH, Coburg, Germany.,KfH Kidney Centre, Coburg, Germany
| | - Gheun-Ho Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Pasricha SR, Lim PJ, Duarte TL, Casu C, Oosterhuis D, Mleczko-Sanecka K, Suciu M, Da Silva AR, Al-Hourani K, Arezes J, McHugh K, Gooding S, Frost JN, Wray K, Santos A, Porto G, Repapi E, Gray N, Draper SJ, Ashley N, Soilleux E, Olinga P, Muckenthaler MU, Hughes JR, Rivella S, Milne TA, Armitage AE, Drakesmith H. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3. Nat Commun 2017; 8:403. [PMID: 28864822 PMCID: PMC5581335 DOI: 10.1038/s41467-017-00500-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/04/2017] [Indexed: 12/21/2022] Open
Abstract
Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency.
Collapse
Affiliation(s)
- Sant-Rayn Pasricha
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Department of Medicine, The Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | - Pei Jin Lim
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Tiago L Duarte
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Dorenda Oosterhuis
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Katarzyna Mleczko-Sanecka
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
- International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Maria Suciu
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Rita Da Silva
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Kinda Al-Hourani
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - João Arezes
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kirsty McHugh
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sarah Gooding
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Katherine Wray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Santos
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
| | - Graça Porto
- Instituto de Investigação e Inovação em Saúde and IBMC-Instituto de Biologia Molecular e Celular, University of Porto, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto Portugal, 4050-313, Porto, Portugal
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Elizabeth Soilleux
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DU, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Cambridge University, Cambridge, CB2 0QQ, UK
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9700-AD, Groningen, The Netherlands
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg; and Molecular Medicine Partnership Unit, Heidelberg, 69117, Germany
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
46
|
Wang C, Fang Z, Zhu Z, Liu J, Chen H. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Exp Hematol 2017; 52:24-31. [DOI: 10.1016/j.exphem.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
|
47
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
48
|
Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16:400-423. [PMID: 28154410 PMCID: PMC5455971 DOI: 10.1038/nrd.2016.248] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.
Collapse
Affiliation(s)
- Bart J. Crielaard
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Stefano Rivella
- Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA, United States of America
| |
Collapse
|
49
|
Locatelli F, Del Vecchio L, Luise MC. Current and future chemical therapies for treating anaemia in chronic kidney disease. Expert Opin Pharmacother 2017; 18:781-788. [PMID: 28443351 DOI: 10.1080/14656566.2017.1323872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Erythropoiesis-stimulating agents (ESAs) are not perfect, since they have potential side effects. Iron therapy is also receiving growing attention in recent years. Areas covered: We performed a literature search on PubMed using the following key words: anemia, chronic kidney disease, HIF stabilisers, sotatercept, actin traps, iron, iron-containing phosphate binders, iron dialysate. We reviewed new drugs that are under clinical development to obtain better safety and activity and/or easier and cheaper manufacturing processes in comparison to available ESAs. We also considered new strategies to increase iron stores. Several phase 1 and 2 studies support the beneficial role of increasing Hypoxia Inducible factor (HIF) activity for stimulating endogenous erythropoiesis. Sotatercept and luspatercept, two activin traps, are undergoing clinical development mainly for indications other than CKD. They have the additional effect of improving osteoporosis. Iron-containing phosphate binders have become available recently. Expert opinion: Several medical needs are unmet with ESA. HIF stabilisers are the most appealing drugs undergoing clinical development. They expose patients to lower levels of EPO than ESA, possibly reducing unintended effects. Their long-term safety is still to be demonstrated. One new iron-containing phosphate binders has the potential of combining two indications: hyperphosphoremia and iron deficiency, possibly improving compliance.
Collapse
Affiliation(s)
- Francesco Locatelli
- a Department of Nephrology and Dialysis , Alessandro Manzoni Hospital, ASST Lecco , Lecco , Italy
| | - Lucia Del Vecchio
- a Department of Nephrology and Dialysis , Alessandro Manzoni Hospital, ASST Lecco , Lecco , Italy
| | - Maria Carmen Luise
- a Department of Nephrology and Dialysis , Alessandro Manzoni Hospital, ASST Lecco , Lecco , Italy
| |
Collapse
|
50
|
Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol 2017; 137:220-236. [PMID: 28514781 DOI: 10.1159/000471838] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Iron is an essential metal for cell survival that is regulated by the peptide hormone hepcidin. However, its influence on certain diseases is directly related to iron metabolism or secondary to underlying diseases. Genetic alterations influence the serum hepcidin concentration, which can lead to an iron overload in tissues, as observed in haemochromatosis, in which serum hepcidin or defective hepcidin synthesis is observed. Another genetic imbalance of iron is iron-refractory anaemia, in which serum concentrations of hepcidin are increased, precluding the flow and efflux of extra- and intracellular iron. During the pathogenesis of certain diseases, the resulting oxidative stress, as well as the increase in inflammatory cytokines, influences the transcription of the HAMP gene to generate a secondary anaemia due to the increase in the serum concentration of hepcidin. To date, there is no available drug to inhibit or enhance hepcidin transcription, mostly due to the cytotoxicity described in the in vitro models. The proposed therapeutic targets are still in the early stages of clinical trials. Some candidates are promising, such as heparin derivatives and minihepcidins. This review describes the main pathways of systemic and genetic regulation of hepcidin, as well as its influence on the disorders related to iron metabolism.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|