1
|
Meng P, Liu W, Lao J, Liu X, Zhang Y, Sun Y, Zhou R, Du C, Wang J, Zhao D, Lin Q, Zhang Y. Paclitaxel improves thrombopoiesis in the absence of thrombopoietin receptor (Mpl). J Thromb Haemost 2024; 22:3599-3613. [PMID: 39307245 DOI: 10.1016/j.jtha.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND Platelets are critical for thrombosis and hemostasis. The THPO-MPL pathway is the primary pathway for generating thrombocytes. Dysregulation of thrombopoiesis results in platelet formation and/or function-related disorders, such as thrombocytopenia. Paclitaxel is an extensively utilized chemotherapeutic agent and its activity may be related to platelets, but the effect of paclitaxel on thrombocytopoiesis warrants comprehensive exploration. OBJECTIVES We focused on identifying factors that regulate thrombocyte production and elucidating paclitaxel's regulatory mechanisms on thrombocytopoiesis, with a particular emphasis on discovering mechanisms that bypass THPO-MPL pathways. METHODS We performed drug screenings using the Tg(mpl:eGFP) zebrafish model in vivo to identify Food and Drug Administration-approved compounds capable of boosting thrombocyte production. An injury experiment was used to evaluate thrombocyte function. Bromodeoxyuridine assays, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and RNA sequencing analyses were performed to explore cytological and molecular mechanisms. Routine blood testing and flow cytometry were used to analyze mouse phenotypes. RESULTS We found that paclitaxel expands thrombocytes by accelerating the proliferation of thrombocytic lineage cells in zebrafish and elevates platelet levels in mice. This effect occurs by bypassing the thrombopoietin receptor (Mpl). We found that paclitaxel promotes thrombopoiesis, potentially involving the JAK2-ERK1/2 MAPK signaling cascade, a pathway integral to MPL and other regulators. Our results further demonstrate that ERK1/2 is at least partially downstream of JAK2 in paclitaxel-induced thrombopoiesis. CONCLUSION Paclitaxel could promote thrombopoiesis by bypassing Mpl but presumably via the JAK2-ERK1/2 MAPK pathways. It will aid in understanding the relationship between paclitaxel and platelets clinically, and paclitaxel may have potential value for safeguarding platelets and improving thrombocytosis in related diseases.
Collapse
Affiliation(s)
- Panpan Meng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiawen Lao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xunwei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangping Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Sun
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Riyang Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Dejian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Lin
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China; Department of Hematology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yiyue Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Ortiz M, Esteban MÁ. Biology and functions of fish thrombocytes: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109509. [PMID: 38493985 DOI: 10.1016/j.fsi.2024.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review examines the role of fish thrombocytes, cells considered functionally analogous to platelets in terms of coagulation, but which differ in their origin and morphology. Despite the evolutionary distance between teleosts and mammals, genomic studies reveal conserved patterns in blood coagulation, although there are exceptions such as the absence of factors belonging to the contact system. Beyond coagulation, fish thrombocytes have important immunological functions. These cells express both proinflammatory genes and genes involved in antigen presentation, suggesting a role in both innate and adaptive immune responses. Moreover, having demonstrated their phagocytic abilities, crucial in the fight against pathogenic microorganisms, underscores their multifaceted involvement in immunity. Finally, the need for further research on the functions of these cells is highlighted, in order to better understand their involvement in maintaining the health of aquaculture fish. The use of standardized and automated methods for the analysis of these activities is advocated, emphaiszing their potential to facilitate the early detection of stress or infection, thus minimizing the economic losses that these adverse situations can generate in the field of aquaculture.
Collapse
Affiliation(s)
- María Ortiz
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Arias CF, Valente-Leal N, Bertocchini F, Marques S, Acosta FJ, Fernandez-Arias C. A new role for erythropoietin in the homeostasis of red blood cells. Commun Biol 2024; 7:58. [PMID: 38191841 PMCID: PMC10774343 DOI: 10.1038/s42003-023-05758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
The regulation of red blood cell (RBC) homeostasis is widely assumed to rely on the control of cell production by erythropoietin (EPO) and the destruction of cells at a fixed, species-specific age. In this work, we show that such a regulatory mechanism would be a poor homeostatic solution to satisfy the changing needs of the body. Effective homeostatic control would require RBC lifespan to be variable and tightly regulated. We suggest that EPO may control RBC lifespan by determining CD47 expression in newly formed RBCs and SIRP-α expression in sinusoidal macrophages. EPO could also regulate the initiation and intensity of anti-RBC autoimmune responses that curtail RBC lifespan in some circumstances. These mechanisms would continuously modulate the rate of RBC destruction depending on oxygen availability. The control of RBC lifespan by EPO and autoimmunity emerges as a key mechanism in the homeostasis of RBCs.
Collapse
Affiliation(s)
- Clemente F Arias
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Nuno Valente-Leal
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | | | - Sofia Marques
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco J Acosta
- Departamento de Ecología, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Fernandez-Arias
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal.
- Departamento de Immunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Jiang X, Sun Y, Yang S, Wu Y, Wang L, Zou W, Jiang N, Chen J, Han Y, Huang C, Wu A, Zhang C, Wu J. Novel chemical-structure TPOR agonist, TMEA, promotes megakaryocytes differentiation and thrombopoiesis via mTOR and ERK signalings. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154637. [PMID: 36610353 DOI: 10.1016/j.phymed.2022.154637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Non-peptide thrombopoietin receptor (TPOR) agonists are promising therapies for the mitigation and treatment of thrombocytopenia. However, only few agents are available as safe and effective for stimulating platelet production for thrombocytopenic patients in the clinic. PURPOSE This study aimed to develop a novel small molecule TPOR agonist and investigate its underlying regulation of function in megakaryocytes (MKs) differentiation and thrombopoiesis. METHODS A potential active compound that promotes MKs differentiation and thrombopoiesis was obtained by machine learning (ML). Meanwhile, the effect was verified in zebrafish model, HEL and Meg-01 cells. Next, the key regulatory target was identified by Drug Affinity Responsive Target Stabilization Assay (DARTS), Cellular Thermal Shift Assay (CETSA), and molecular simulation experiments. After that, RNA-sequencing (RNA-seq) was used to further confirm the associated pathways and evaluate the gene expression induced during MK differentiation. In vivo, irradiation (IR) mice, C57BL/6N-TPORem1cyagen (Tpor-/-) mice were constructed by CRISPR/Cas9 technology to examine the therapeutic effect of TMEA on thrombocytopenia. RESULTS A natural chemical-structure small molecule TMEA was predicted to be a potential active compound based on ML. Obvious phenotypes of MKs differentiation were observed by TMEA induction in zebrafish model and TMEA could increase co-expression of CD41/CD42b, DNA content, and promote polyploidization and maturation of MKs in HEL and Meg-01 cells. Mechanically, TMEA could bind with TPOR protein and further regulate the PI3K/AKT/mTOR/P70S6K and MEK/ERK signal pathways. In vivo, TMEA evidently promoted platelet regeneration in mice with radiation-induced thrombocytopenia but had no effect on Tpor-/- and C57BL/6 (WT) mice. CONCLUSION TMEA could serve as a novel TPOR agonist to promote MKs differentiation and thrombopoiesis via mTOR and ERK signaling and could potentially be created as a promising new drug to treat thrombocytopenia.
Collapse
Affiliation(s)
- Xueqin Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueshan Sun
- The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Shuo Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Long Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nan Jiang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunwei Han
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunlan Huang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Anguo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Yang L, Wu L, Meng P, Zhang X, Zhao D, Lin Q, Zhang Y. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J Thromb Haemost 2022; 20:1900-1909. [PMID: 35622056 DOI: 10.1111/jth.15772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The production of platelets is tightly regulated by thrombopoietin (THPO). Mutations in the THPO gene cause thrombocytopenia. Although mice lacking Thpo present with thrombocytopenia, predicting phenotypes and pathogenicity of novel THPO mutations in mice is limited. Zebrafish can be a powerful tool for fast validation and study of candidate genes of human hematological diseases and have already been used as a model of human thrombocytopenia. OBJECTIVES We aim to investigate the role of Thpo in zebrafish thrombopoiesis and to establish a Thpo-deficient zebrafish model. The model could be applied for illustrating the clinically discovered human THPO variants of which the clinical significance is not known and to evaluate the effect of THPO receptor agonists (THPO-Ras), as well as a screening platform for new drugs. METHODS We generated a thpo loss-of-function zebrafish model using CRISPR/Cas9. After disruption of zebrafish thpo, thposzy6 zebrafish presented with a significant reduction of thpo expression and developed thrombocytopenia. Furthermore, we performed in vivo studies with zebrafish with the thposzy6 mutation and found two human clinical point mutations (c.091C > T and c.112C > T) that were responsible for the thrombocytopenia phenotype. In addition, effects of THPO-RAs used as therapeutics against thrombocytopenia were evaluated in the Tg(mpl:eGFP);thposzy6 line. RESULTS AND CONCLUSIONS Zebrafish with the mutation thposzy6 presented with a significant reduction of thpo expression and developed thrombocytopenia. Thpo loss-of-function zebrafish model can serve as a valuable preclinical model for thrombocytopenia caused by thpo-deficiency, as well as a tool to study human clinical THPO variants and evaluate the effect of THPO-RAs.
Collapse
Affiliation(s)
- Lian Yang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangliang Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuebing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dejian Zhao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Haematopoiesis in Zebrafish (Danio Rerio). Front Immunol 2022; 13:902941. [PMID: 35720291 PMCID: PMC9201100 DOI: 10.3389/fimmu.2022.902941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
7
|
Peña OA, Lubin A, Rowell J, Hoade Y, Khokhar N, Lemmik H, Mahony C, Dace P, Umamahesan C, Payne EM. Differential Requirement of Gata2a and Gata2b for Primitive and Definitive Myeloid Development in Zebrafish. Front Cell Dev Biol 2021; 9:708113. [PMID: 34589480 PMCID: PMC8475954 DOI: 10.3389/fcell.2021.708113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/14/2022] Open
Abstract
Germline loss or mutation of one copy of the transcription factor GATA2 in humans leads to a range of clinical phenotypes affecting hematopoietic, lymphatic and vascular systems. GATA2 heterozygous mice show only a limited repertoire of the features observed in humans. Zebrafish have two copies of the Gata2 gene as a result of an additional round of ancestral whole genome duplication. These genes, Gata2a and Gata2b, show distinct but overlapping expression patterns, and between them, highlight a significantly broader range of the phenotypes observed in GATA2 deficient syndromes, than each one alone. In this manuscript, we use mutants for Gata2a and Gata2b to interrogate the effects on hematopoiesis of these two ohnologs, alone and in combination, during development in order to further define the role of GATA2 in developmental hematopoiesis. We define unique roles for each ohnolog at different stages of developmental myelopoiesis and for the emergence of hematopoietic stem and progenitor cells. These effects are not additive in the haploinsufficient state suggesting a redundancy between these two genes in hematopoietic stem and progenitor cells. Rescue studies additionally support that Gata2b can compensate for the effects of Gata2a loss. Finally we show that adults with loss of combined heterozygosity show defects in the myeloid compartment consistent with GATA2 loss in humans. These results build on existing knowledge from other models of GATA2 deficiency and refine our understanding of the early developmental effects of GATA2. In addition, these studies shed light on the complexity and potential structure-function relationships as well as sub-functionalization of Gata2 genes in the zebrafish model.
Collapse
Affiliation(s)
- Oscar A. Peña
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Alexandra Lubin
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Jasmine Rowell
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Yvette Hoade
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Noreen Khokhar
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Hanna Lemmik
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Christopher Mahony
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Phoebe Dace
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Chianna Umamahesan
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Elspeth M. Payne
- Research Department of Haematology, Cancer Institute, University College London, London, United Kingdom
- National Institute for Health Research (NIHR)/UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Belmonte RL, Engbretson IL, Kim JH, Cajias I, Ahn EYE, Stachura DL. son is necessary for proper vertebrate blood development. PLoS One 2021; 16:e0247489. [PMID: 33630943 PMCID: PMC7906411 DOI: 10.1371/journal.pone.0247489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Isabella L. Engbretson
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Illiana Cajias
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
| | - Eun-Young Erin Ahn
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David L. Stachura
- Department of Biological Sciences, California State University Chico, Chico, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Phosphatidylinositol-3 kinase signaling controls survival and stemness of hematopoietic stem and progenitor cells. Oncogene 2021; 40:2741-2755. [PMID: 33714985 PMCID: PMC8049872 DOI: 10.1038/s41388-021-01733-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to all blood lineages during life. HSPCs emerge from the ventral wall of the dorsal aorta (VDA) during a specific timespan in embryonic development through endothelial hematopoietic transition (EHT). We investigated the ontogeny of HSPCs in mutant zebrafish embryos lacking functional pten, an important tumor suppressor with a central role in cell signaling. Through in vivo live imaging, we discovered that in pten mutant embryos a proportion of the HSPCs died upon emergence from the VDA, an effect rescued by inhibition of phosphatidylinositol-3 kinase (PI3K). Surprisingly, inhibition of PI3K in wild-type embryos also induced HSPC death. Surviving HSPCs colonized the caudal hematopoietic tissue (CHT) normally and committed to all blood lineages. Single-cell RNA sequencing indicated that inhibition of PI3K enhanced survival of multipotent progenitors, whereas the number of HSPCs with more stem-like properties was reduced. At the end of the definitive wave, loss of Pten caused a shift to more restricted progenitors at the expense of HSPCs. We conclude that PI3K signaling tightly controls HSPCs survival and both up- and downregulation of PI3K signaling reduces stemness of HSPCs.
Collapse
|
10
|
Zebrafish Kit ligands cooperate with erythropoietin to promote erythroid cell expansion. Blood Adv 2020; 4:5915-5924. [PMID: 33259600 DOI: 10.1182/bloodadvances.2020001700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Kit ligand (Kitlg) is pleiotropic cytokine with a prominent role in vertebrate erythropoiesis. Although the role of Kitlg in this process has not been reported in Danio rerio (zebrafish), in the present study we show that its function is evolutionarily conserved. Zebrafish possess 2 copies of Kitlg genes (Kitlga and Kitlgb) as a result of whole-genome duplication. To determine the role of each ligand in zebrafish, we performed a series of ex vivo and in vivo gain- and loss-of-function experiments. First, we tested the biological activity of recombinant Kitlg proteins in suspension culture from zebrafish whole-kidney marrow, and we demonstrate that Kitlga is necessary for expansion of erythroid progenitors ex vivo. To further address the role of kitlga and kitlgb in hematopoietic development in vivo, we performed gain-of-function experiments in zebrafish embryos, showing that both ligands cooperate with erythropoietin (Epo) to promote erythroid cell expansion. Finally, using the kita mutant (kitab5/b5 or sparse), we show that the Kita receptor is crucial for Kitlga/b cooperation with Epo in erythroid cells. In summary, using optimized suspension culture conditions with recombinant cytokines (Epo, Kitlga), we report, for the first time, ex vivo suspension cultures of zebrafish hematopoietic progenitor cells that can serve as an indispensable tool to study normal and aberrant hematopoiesis in zebrafish. Furthermore, we conclude that, although partial functional diversification of Kit ligands has been described in other processes, in erythroid development, both paralogs play a similar role, and their function is evolutionarily conserved.
Collapse
|
11
|
Sharma S, Shinde SS, Teekas L, Vijay N. Evidence for the loss of plasminogen receptor KT gene in chicken. Immunogenetics 2020; 72:507-515. [PMID: 33247773 DOI: 10.1007/s00251-020-01186-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.
Collapse
Affiliation(s)
- Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sagar Sharad Shinde
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Lokdeep Teekas
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
12
|
Zebrafish for thrombocytopoiesis- and hemostasis-related researches and disorders. BLOOD SCIENCE 2020; 2:44-49. [PMID: 35402814 PMCID: PMC8975081 DOI: 10.1097/bs9.0000000000000043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Platelets play vital roles in hemostasis, inflammation, and vascular biology. Platelets are also active participants in the immune responses. As vertebrates, zebrafish have a highly conserved hematopoietic system in the developmental, cellular, functional, biochemical, and genetic levels with mammals. Thrombocytes in zebrafish are functional homologs of mammalian platelets. Here, we summarized thrombocyte development, function, and related research techniques in zebrafish, and reviewed available zebrafish models of platelet-associated disorders, including congenital amegakaryocytic thrombocytopenia, inherited thrombocytopenia, essential thrombocythemia, and blood coagulation disorders such as gray platelet syndrome. These elegant zebrafish models and methods are crucial for understanding the molecular and genetic mechanisms of thrombocyte development and function, and provide deep insights into related human disease pathophysiology and drug development.
Collapse
|
13
|
Soslau G. The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:113-127. [DOI: 10.1002/jez.b.22922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphia Pennsylvania
| |
Collapse
|
14
|
Abstract
Thrombocytes in vertebrates other than mammals, inter alia in fish, are analogues of platelets in mammals. In Osteichthyes, these cells take part in haemostatic processes, including aggregation and release reactions in cases of blood vessel damage, and in the immune response development as well. This paper discusses the development of thrombocytes in Osteichthyes, taking into account the need to make changes to the concept of grouping progenitor cells as suggested in the literature. The following pages present the morphological and cytochemical properties of thrombocytes as well as their defence functions, and also point out differences between thrombocytes in fish and platelets in mammals. The paper further highlights the level of thrombocytes' immune activity observed in fish and based on an increased proportion of these cells in response to antigenic stimulation, on morphological shifts towards forms characteristic of dendritic cells after antigenic stimulation and on the presence of surface structures and cytokines released through, inter alia, gene expression of TLR receptors, MHC class II protein-coding genes and pro-inflammatory cytokines. The study also points out the need to recognise thrombocytes in Osteichthyes as specialised immune cells conditioning non-specific immune mechanisms and playing an important role in affecting adaptive immune mechanisms.
Collapse
|
15
|
Konantz M, Müller JS, Lengerke C. Zebrafish Xenografts for the In Vivo Analysis of Healthy and Malignant Human Hematopoietic Cells. Methods Mol Biol 2019; 2017:205-217. [PMID: 31197779 DOI: 10.1007/978-1-4939-9574-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish is a powerful vertebrate model for genetic studies on embryonic development and organogenesis. In the last decades, zebrafish were furthermore increasingly used for disease modeling and investigation of cancer biology. Zebrafish are particularly used for mutagenesis and small molecule screens, as well as for live imaging assays that provide unique opportunities to monitor cell behavior, both on a single cell and whole organism level in real time. Zebrafish have been also used for in vivo investigations of human cells transplanted into embryos or adult animals; this zebrafish xenograft model can be considered as an intermediate assay between in vitro techniques and more time-consuming and expensive mammalian models.Here, we present a protocol for transplantation of healthy and malignant human hematopoietic cells into larval zebrafish; transplantation into adult zebrafish and possible advantages and limitations of the zebrafish compared to murine xenograft models are discussed.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Oltova J, Svoboda O, Bartunek P. Hematopoietic Cytokine Gene Duplication in Zebrafish Erythroid and Myeloid Lineages. Front Cell Dev Biol 2018; 6:174. [PMID: 30619854 PMCID: PMC6306437 DOI: 10.3389/fcell.2018.00174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a precisely orchestrated process regulated by the activity of hematopoietic cytokines and their respective receptors. Due to an extra round of whole genome duplication during vertebrate evolution in teleost fish, zebrafish have two paralogs of many important genes, including genes involved in hematopoiesis. Importantly, these duplication events brought increased level of complexity in such cases, where both ligands and receptors have been duplicated in parallel. Therefore, precise understanding of binding specificities between duplicated ligand-receptor signalosomes as well as understanding of their differential expression provide an important basis for future studies to better understand the role of duplication of these genes. However, although many recent studies in the field have partly addressed functional redundancy or sub-specialization of some of those duplicated paralogs, this information remains to be scattered over many publications and unpublished data. Therefore, the focus of this review is to provide an overview of recent findings in the zebrafish hematopoietic field regarding activity, role and specificity of some of the hematopoietic cytokines with emphasis on crucial regulators of the erythro-myeloid lineages.
Collapse
Affiliation(s)
- Jana Oltova
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czechia
| | - Ondrej Svoboda
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czechia
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Petr Bartunek
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v.v.i., Prague, Czechia
| |
Collapse
|
17
|
Rost MS, Shestopalov I, Liu Y, Vo AH, Richter CE, Emly SM, Barrett FG, Stachura DL, Holinstat M, Zon LI, Shavit JA. Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Adv 2018; 2:3418-3427. [PMID: 30504234 PMCID: PMC6290098 DOI: 10.1182/bloodadvances.2018021865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
The NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.
Collapse
Affiliation(s)
- Megan S Rost
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Ilya Shestopalov
- Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Yang Liu
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Andy H Vo
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Catherine E Richter
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | - Sylvia M Emly
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| | | | - David L Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI; and
| | - Leonard I Zon
- Boston Children's Hospital and Harvard Medical School, Boston, MA
- Stem Cell Program and Division of Hematology/Oncology, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Dana-Farber Cancer Institute and Howard Hughes Medical Institute, Boston, MA
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
| |
Collapse
|
18
|
Abstract
Humoral regulation by ligand/receptor interactions is a fundamental feature of vertebrate hematopoiesis. Zebrafish are an established vertebrate animal model of hematopoiesis, sharing with mammals conserved genetic, molecular and cell biological regulatory mechanisms. This comprehensive review considers zebrafish hematopoiesis from the perspective of the hematopoietic growth factors (HGFs), their receptors and their actions. Zebrafish possess multiple HGFs: CSF1 (M-CSF) and CSF3 (G-CSF), kit ligand (KL, SCF), erythropoietin (EPO), thrombopoietin (THPO/TPO), and the interleukins IL6, IL11, and IL34. Some ligands and/or receptor components have been duplicated by various mechanisms including the teleost whole genome duplication, adding complexity to the ligand/receptor interactions possible, but also providing examples of several different outcomes of ligand and receptor subfunctionalization or neofunctionalization. CSF2 (GM-CSF), IL3 and IL5 and their receptors are absent from zebrafish. Overall the humoral regulation of hematopoiesis in zebrafish displays considerable similarity with mammals, which can be applied in biological and disease modelling research.
Collapse
Affiliation(s)
- Vahid Pazhakh
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| | - Graham J Lieschke
- a Australian Regenerative Medicine Institute, Monash University , Clayton , Australia
| |
Collapse
|
19
|
Berrun A, Harris E, Stachura DL. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish. PLoS One 2018; 13:e0196872. [PMID: 29758043 PMCID: PMC5951578 DOI: 10.1371/journal.pone.0196872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.
Collapse
Affiliation(s)
- Arturo Berrun
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - Elena Harris
- Department of Computer Sciences, California State University Chico, Chico, CA, United States of America
| | - David L Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| |
Collapse
|
20
|
Berrun AC, Stachura DL. Development of an In Vitro Assay to Quantitate Hematopoietic Stem and Progenitor Cells (HSPCs) in Developing Zebrafish Embryos. J Vis Exp 2017:56836. [PMID: 29286381 PMCID: PMC5755513 DOI: 10.3791/56836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hematopoiesis is an essential cellular process in which hematopoietic stem and progenitor cells (HSPCs) differentiate into the multitude of different cell lineages that comprise mature blood. Isolation and identification of these HSPCs is difficult because they are defined ex post facto; they can only be defined after their differentiation into specific cell lineages. Over the past few decades, the zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop ex utero, and by 48 h post-fertilization (hpf) have generated definitive HSPCs. Assays to assess HSPC differentiation and proliferation capabilities have been developed, utilizing transplantation and subsequent reconstitution of the hematopoietic system in addition to visualizing specialized transgenic lines with confocal microscopy. However, these assays are cost prohibitive, technically difficult, and time consuming for many laboratories. Development of an in vitro model to assess HSPCs would be cost effective, quicker, and present fewer difficulties compared to previously described methods, allowing laboratories to quickly assess mutagenesis and drug screens that affect HSPC biology. This novel in vitro assay to assess HSPCs is performed by plating dissociated whole zebrafish embryos and adding exogenous factors that promote only HSPC differentiation and proliferation. Embryos are dissociated into single cells and plated with HSPC-supportive colony stimulating factors that cause them to generate colony forming units (CFUs) that arise from a single progenitor cell. These assays should allow more careful examination of the molecular pathways responsible for HSPC proliferation, differentiation, and regulation, which will allow researchers to understand the underpinnings of vertebrate hematopoiesis and its dysregulation during disease.
Collapse
Affiliation(s)
- A C Berrun
- Department of Biological Sciences, California State University, Chico
| | - D L Stachura
- Department of Biological Sciences, California State University, Chico;
| |
Collapse
|
21
|
Abstract
Tumor radiotherapy induces hematopoietic organ damage and reduces thrombocyte counts. Thrombocytopenia is a common disease. Some studies have shown that tRNA synthetase plays not only catalytic tRNA aminoacylation roles, but also functions similarly to cytokines. Recombinant human tyrosyl-tRNA synthetase with a mutated Y341A (rhTyrRS (Y341A)) promotes megakaryocyte migrate from bone marrow to peripheral blood. It would promote megakaryocytes in the lungs adhering to vascular endothelial cells and resulting in the platelet production. The purpose of this research was to investigate the efficacy of rhTyrRS (Y341A) as a therapy for thrombocytopenia and to explore its mechanism of action. We found platelet number was effectively increased by rhTyrRS (Y341A) via platelet count and reticulated platelets (RPs) flow cytometry. We also demonstrated radiation-induced thrombocytopenia could be prevented by rhTyrRS (Y341A). The results of immunohistochemistry and H&E staining showed the number of pulmonary mature megakaryocytes was significantly increased in rhTyrRS (Y341A) treated groups. In transgenic zebrafish larvae, confocal microscopy results showed rhTyrRS (Y341A) promoted the migration and adhesion of megakaryocytes. These results suggested that rhTyrRS (Y341A) promote megakaryocytes in bone marrow migrating to lungs through blood circulation. rhTyrRS (Y341A) may be an effective medicine which could be used to treat patients suffering from thrombocytopenia.
Collapse
|
22
|
Wolf A, Aggio J, Campbell C, Wright F, Marquez G, Traver D, Stachura DL. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Sci Rep 2017; 7:44644. [PMID: 28300168 PMCID: PMC5353684 DOI: 10.1038/srep44644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system.
Collapse
Affiliation(s)
- Anja Wolf
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Julian Aggio
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Clyde Campbell
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Francis Wright
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Gabriel Marquez
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - David L Stachura
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| |
Collapse
|
23
|
Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte–specific reporter line in zebrafish. Leukemia 2016; 31:1206-1216. [DOI: 10.1038/leu.2016.320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/08/2022]
|
24
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
25
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
26
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
27
|
Abstract
This protocol describes the ex vivo characterization of zebrafish hematopoietic progenitors. We show how to isolate zebrafish hematopoietic cells for cultivation and differentiation in colony assays in semi-solid media. We also describe procedures for the generation of recombinant zebrafish cytokines and for the isolation of carp serum, which are essential components of the medium required to grow zebrafish hematopoietic cells ex vivo. The outcome of these clonal assays can easily be evaluated using standard microscopy techniques after 3-10 d in culture. In addition, we describe how to isolate individual colonies for further imaging and gene expression profiling. In other vertebrate model organisms, ex vivo assays have been crucial for elucidating the relationships among hematopoietic stem cells (HSCs), progenitor cells and their mature progeny. The present protocol should facilitate such studies on cells derived from zebrafish.
Collapse
|
28
|
Abstract
Zebrafish as a model system have been instrumental in understanding early vertebrate development, especially of the hematopoietic system. The external development of zebrafish and their genetic amenability have allowed in-depth studies of multiple blood cell types and their respective genetic regulation. This chapter highlights some new data in zebrafish hematopoiesis regarding primitive and definitive hematopoiesis in the embryonic and adult fish, allowing the isolation of prospective progenitor subsets. It also highlights assays developed to examine the function of these progenitors in vivo and in vitro, allowing an evolutionary understanding of the hematopoietic system and how zebrafish can be better utilized as a model system for a multitude of hematopoietic disorders.
Collapse
Affiliation(s)
- D L Stachura
- California State University, Chico, Chico, CA, United States
| | - D Traver
- University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Esain V, Cortes M, North TE. Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos. Methods Mol Biol 2016; 1451:191-206. [PMID: 27464809 DOI: 10.1007/978-1-4939-3771-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Over the past 20 years, zebrafish have proven to be a valuable model to dissect the signaling pathways involved in hematopoiesis, including Hematopoietic Stem and Progenitor Cell (HSPC) formation and homeostasis. Despite tremendous efforts to generate the tools necessary to characterize HSPCs in vitro and in vivo the zebrafish community still lacks standardized methods to quantify HSPCs across laboratories. Here, we describe three methods used routinely in our lab, and in others, to reliably enumerate HSPCs in zebrafish embryos: large-scale live imaging of transgenic reporter lines, Fluorescence-Activated Cell Sorting (FACS), and in vitro cell culture. While live imaging and FACS analysis allows enumeration of total or site-specific HSPCs, the cell culture assay provides the unique opportunity to test the functional potential of isolated HSPCs, similar to those employed in mammals.
Collapse
Affiliation(s)
- Virginie Esain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Mauricio Cortes
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
30
|
Tanizaki Y, Ichisugi M, Obuchi-Shimoji M, Ishida-Iwata T, Tahara-Mogi A, Meguro-Ishikawa M, Kato T. Thrombopoietin induces production of nucleated thrombocytes from liver cells in Xenopus laevis. Sci Rep 2015; 5:18519. [PMID: 26687619 PMCID: PMC4685256 DOI: 10.1038/srep18519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022] Open
Abstract
The development of mammalian megakaryocytes (MKs) and platelets, which are thought to be absent in non-mammals, is primarily regulated by the thrombopoietin (TPO)/Mpl system. Although non-mammals possess nucleated thrombocytes instead of platelets, the features of nucleated thrombocyte progenitors remain to be clarified. Here, we provide the general features of TPO using Xenopus laevis TPO (xlTPO). Hepatic and splenic cells were cultured in liquid suspension with recombinant xlTPO. These cells differentiated into large, round, polyploid CD41-expressing cells and were classified as X. laevis MKs, comparable to mammalian MKs. The subsequent culture of MKs after removal of xlTPO produced mature, spindle-shaped thrombocytes that were activated by thrombin, thereby altering their morphology. XlTPO induced MKs in cultured hepatic cells for at least three weeks; however, this was not observed in splenic cells; this result demonstrates the origin of early haematopoietic progenitors in the liver rather than the spleen. Additionally, xlTPO enhanced viability of peripheral thrombocytes, indicating the xlTPO-Mpl pathway stimulates anti-apoptotic in peripheral thrombocytes. The development of thrombocytes from MKs via the TPO-Mpl system in X. laevis plays a crucial role in their development from MKs, comparable to mammalian thrombopoiesis. Thus, our results offer insight into the cellular evolution of platelets/MKs in vertebrates. (200/200).
Collapse
Affiliation(s)
- Yuta Tanizaki
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
| | - Megumi Ichisugi
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Miyako Obuchi-Shimoji
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takako Ishida-Iwata
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ayaka Tahara-Mogi
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Mizue Meguro-Ishikawa
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takashi Kato
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480, Japan
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
31
|
Katakura F, Yabu T, Yamaguchi T, Miyamae J, Shirinashihama Y, Nakanishi T, Moritomo T. Exploring erythropoiesis of common carp (Cyprinus carpio) using an in vitro colony assay in the presence of recombinant carp kit ligand A and erythropoietin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:13-22. [PMID: 26111997 DOI: 10.1016/j.dci.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
The use of in vitro colony assays in mammals has contributed to identification of erythroid progenitor cells such as burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) progenitors, and serves to examine functions of erythropoietic growth factors like Erythropoietin (Epo) and Kit ligand. Here, we established an in vitro colony-forming assay capable of investigating erythropoiesis in carp (Cyprinus carpio), cloned and functionally characterized recombinant homologous molecules Epo and Kit ligand A (Kitla), and identified three distinct erythroid progenitor cells in carp. Recombinant carp Epo induced the formation of CFU-E-like and BFU-E-like erythroid colonies, expressing erythroid marker genes, β-globin, epor and gata1. Recombinant carp Kitla alone induced limited colony formation, whereas a combination of Kitla and Epo dramatically enhanced erythroid colony formation and colony cell growth, as well as stimulated the formation of thrombocytic/erythroid colonies expressing not only erythroid markers but also thrombocytic markers, cd41 and c-mpl. Utilizing this colony assay to examine the distribution of distinct erythroid progenitor cells in carp, we demonstrated that carp head and trunk kidney play a primary role in erythropoiesis, while the spleen plays a secondary. Furthermore, we showed that presumably bi-potent thrombocytic/erythroid progenitor cells localize principally in the trunk kidney. Our results indicate that teleost fish possess mechanisms of Epo- and Kitla-dependent erythropoiesis similar to those in other vertebrates, and also help to demonstrate the diversity of erythropoietic sites among vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan.
| | - Takeshi Yabu
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Takuya Yamaguchi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Yuki Shirinashihama
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Teruyuki Nakanishi
- Laboratory of Fish Pathology, Department of Veterinary Medicine, Nihon University, Japan
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
32
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
33
|
Campbell C, Su T, Lau RP, Shah A, Laurie PC, Avalos B, Aggio J, Harris E, Traver D, Stachura DL. Zebrafish embryonic stromal trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation. Exp Hematol 2015; 43:1047-61. [PMID: 26391449 DOI: 10.1016/j.exphem.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/11/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Forward genetic screens in zebrafish have been used to identify genes essential for the generation of primitive blood and the emergence of hematopoietic stem cells (HSCs), but have not elucidated the genes essential for hematopoietic stem and progenitor cell (HSPC) proliferation and differentiation because of the lack of methodologies to functionally assess these processes. We previously described techniques used to test the developmental potential of HSPCs by culturing them on zebrafish kidney stromal (ZKS) cells, derived from the main site of hematopoiesis in the adult teleost. Here we describe an additional primary stromal cell line we refer to as zebrafish embryonic stromal trunk (ZEST) cells, derived from tissue surrounding the embryonic dorsal aorta, the site of HSC emergence in developing fish. ZEST cells encouraged HSPC differentiation toward the myeloid, lymphoid, and erythroid pathways when assessed by morphologic and quantitative reverse transcription polymerase chain reaction analyses. Additionally, ZEST cells significantly expanded the number of cultured HSPCs in vitro, indicating that these stromal cells are supportive of both HSPC proliferation and multilineage differentiation. Examination of ZEST cells indicates that they express numerous cytokines and Notch ligands and possess endothelial characteristics. Further characterization of ZEST cells should prove to be invaluable in understanding the complex signaling cascades instigated by the embryonic hematopoietic niche required to expand and differentiate HSPCs. Elucidating these processes and identifying possibilities for the modulation of these molecular pathways should allow the in vitro expansion of HSPCs for a multitude of therapeutic uses.
Collapse
Affiliation(s)
- Clyde Campbell
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Tammy Su
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Ryan P Lau
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Arpit Shah
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Payton C Laurie
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Brenda Avalos
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Julian Aggio
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Elena Harris
- Department of Biological Sciences, California State University, Chico, California, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - David L Stachura
- Department of Biological Sciences, California State University, Chico, California, USA.
| |
Collapse
|
34
|
Abstract
Hemostasis, the process of blood clot formation and resolution in response to vascular injury, and thrombosis, the dysregulation of hemostasis leading to pathological clot formation, are widely studied. However, the genetic variability in hemostatic and thrombotic disorders is incompletely understood, suggesting that novel mediators have yet to be uncovered. The zebrafish is developing into a powerful in vivo model to study hemostasis, and its features as a model organism are well suited to (a) develop high-throughput screens to identify novel mediators of hemostasis and thrombosis, (b) validate candidate genes identified in human populations, and (c) characterize the structure/function relationship of gene products. In this review, we discuss conservation of the zebrafish hemostatic system, highlight areas for future study, and outline the utility of this model to study blood coagulation and its dysregulation.
Collapse
|
35
|
Katakura F, Katzenback BA, Belosevic M. Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:157-169. [PMID: 25450454 DOI: 10.1016/j.dci.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Thrombopoietin (TPO) is the principal regulator of thrombopoiesis and promotes the proliferation, differentiation and maturation of megakaryocytic progenitor cells in mammals. In this study we report on the molecular and functional characterization of goldfish TPO. Quantitative expression analysis of goldfish tpo revealed the highest mRNA levels in heart, followed by spleen, liver, brain, intestine and kidney tissues. Significant decrease of tpo and c-mpl expressions in goldfish primary kidney macrophage (PKM) cultures, as progenitor to macrophage development progressed, indicates that TPO is not involved in monopoiesis. Recombinant goldfish TPO (rgTPO) alone did not induce significant proliferation of progenitor cells, but TPO in cooperation with recombinant goldfish kit ligand A (rgKITLA) supported proliferation of progenitor cells in a dose-dependent manner. In response to rgTPO or a combination of rgTPO and rgKITLA, the mRNA levels of thrombopoietic markers cd41 and c-mpl as well as thrombo/erythropoietic transcription factors gata1 and lmo2 in sorted progenitor cells were up-regulated, while the mRNA levels of granulopoietic markers (cebpα and gcsfr) and the lymphoid transcription factor gata3 were down-regulated. Furthermore, rgTPO and rgKITLA synergistically stimulated thrombocytic colony-formation. Our results demonstrate that goldfish TPO has similar functions to mammalian TPO as a regulator of thrombopoiesis, and suggests a highly conserved molecular mechanism of thrombocyte development throughout evolution of vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Dasouki M, Saadi I, Ahmed SO. THPO-MPL pathway and bone marrow failure. Hematol Oncol Stem Cell Ther 2014; 8:6-9. [PMID: 25482588 DOI: 10.1016/j.hemonc.2014.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/26/2023] Open
Abstract
Single or multilineage bone marrow failure can be a serious health problem caused by hereditary and non-hereditary causes such as exposure to drugs or environmental toxins. Normal hematopoiesis requires the integrity of several pathways including the THPO-MPL pathway. Over the last two decades, significant advances in the understanding of normal and abnormal functions of this and related pathways have led to novel diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Irfan Saadi
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Syed O Ahmed
- Adult Hematology/Bone Marrow Transplantation, Oncology Center, MBC-64, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
37
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|