1
|
Brivio E, Bautista F, Zwaan CM. Naked antibodies and antibody-drug conjugates: targeted therapy for childhood acute lymphoblastic leukemia. Haematologica 2024; 109:1700-1712. [PMID: 38832425 PMCID: PMC11141655 DOI: 10.3324/haematol.2023.283815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
The treatment of childhood acute lymphoblastic leukemia (ALL) has reached overall survival rates exceeding 90%. The present and future challenges are to cure the remainder of patients still dying from disease, and to reduce morbidity and mortality in those who can be cured with standard-of-care chemotherapy by replacing toxic chemotherapy elements while retaining cure rates. With the novel therapeutic options introduced in the last years, including immunotherapies and targeted antibodies, the treatment of ALL is undergoing major changes. For B-cell precursor ALL, blinatumomab, an anti-CD19 bispecific antibody, has established its role in the consolidation treatment for both high- and standard-risk first relapse of ALL, in the presence of bone marrow involvement, and may also have an impact on the outcome of high-risk subsets such as infant ALL and Philadelphia chromosome-positive ALL. Inotuzumab ozogamicin, an anti-CD22 drug conjugated antibody, has demonstrated high efficacy in inducing complete remission in relapsed ALL, even in the presence of high tumor burden, but randomized phase III trials are still ongoing. For T-ALL the role of CD38-directed treatment, such as daratumumab, is gaining interest, but randomized data are needed to assess its specific benefit. These antibodies are currently being tested in patients with newly diagnosed ALL and may lead to major changes in the present paradigm of treatment of pediatric ALL. Unlike the past, lessons may be learned from innovations in adult ALL, in which more drastic changes are piloted that may need to be translated to pediatrics.
Collapse
Affiliation(s)
- Erica Brivio
- Princess Máxima Center for Pediatric Oncology, Utrecht
| | | | - C. Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht
- Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Li J, Shen G, Liu Z, Liu Y, Wang M, Zhao F, Ren D, Xie Q, Li Z, Liu Z, Zhao Y, Ma F, Liu X, Xu Z, Zhao J. Treatment-related adverse events of antibody-drug conjugates in clinical trials: A systematic review and meta-analysis. CANCER INNOVATION 2023; 2:346-375. [PMID: 38090386 PMCID: PMC10686142 DOI: 10.1002/cai2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2024]
Abstract
Background The wide use of antibody-drug conjugates (ADCs) is transforming the cancer-treatment landscape. Understanding the treatment-related adverse events (AEs) of ADCs is crucial for their clinical application. We conducted a meta-analysis to analyze the profile and incidence of AEs related to ADC use in the treatment of solid tumors and hematological malignancies. Methods We searched the PubMed, Embase, and Cochrane Library databases for articles published from January 2001 to October 2022. The overall profile and incidence of all-grade and grade ≥ 3 treatment-related AEs were the primary outcomes of the analysis. Results A total of 138 trials involving 15,473 patients were included in this study. The overall incidence of any-grade treatment-related AEs was 100.0% (95% confidence interval [CI]: 99.9%-100.0%; I 2 = 89%) and the incidence of grade ≥ 3 treatment-related AEs was 6.2% (95% CI: 3.0%-12.4%; I² = 99%). Conclusions This study provides a comprehensive overview of AEs related to ADCs used for cancer treatment. ADC use resulted in a high incidence of any-grade AEs but a low incidence of grade ≥ 3 AEs. The AE profiles and incidence differed according to cancer type, ADC type, and ADC components.
Collapse
Affiliation(s)
- Jinming Li
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Yaobang Liu
- Department of Surgical OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zitao Li
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Fei Ma
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| | - Xinlan Liu
- Department of Surgical OncologyGeneral Hospital of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | | | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment CenterAffiliated Hospital of Qinghai University, Affiliated Cancer Hospital of Qinghai UniversityXiningQinghaiChina
- Qinghai Provincial Clinical Research Center for Cancer; Qinghai Provincial Institute of Cancer ResearchXiningQinghaiChina
| |
Collapse
|
3
|
Zheng S, Gillespie E, Naqvi AS, Hayer KE, Ang Z, Torres-Diz M, Quesnel-Vallières M, Hottman DA, Bagashev A, Chukinas J, Schmidt C, Asnani M, Shraim R, Taylor DM, Rheingold SR, O'Brien MM, Singh N, Lynch KW, Ruella M, Barash Y, Tasian SK, Thomas-Tikhonenko A. Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discov 2022; 3:103-115. [PMID: 35015683 PMCID: PMC9780083 DOI: 10.1158/2643-3230.bcd-21-0087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Downregulation of surface epitopes causes postimmunotherapy relapses in B-lymphoblastic leukemia (B-ALL). Here we demonstrate that mRNA encoding CD22 undergoes aberrant splicing in B-ALL. We describe the plasma membrane-bound CD22 Δex5-6 splice isoform, which is resistant to chimeric antigen receptor (CAR) T cells targeting the third immunoglobulin-like domain of CD22. We also describe splice variants skipping the AUG-containing exon 2 and failing to produce any identifiable protein, thereby defining an event that is rate limiting for epitope presentation. Indeed, forcing exon 2 skipping with morpholino oligonucleotides reduced CD22 protein expression and conferred resistance to the CD22-directed antibody-drug conjugate inotuzumab ozogamicin in vitro. Furthermore, among inotuzumab-treated pediatric patients with B-ALL, we identified one nonresponder in whose leukemic blasts Δex2 isoforms comprised the majority of CD22 transcripts. In a second patient, a sharp reduction in CD22 protein levels during relapse was driven entirely by increased CD22 exon 2 skipping. Thus, dysregulated CD22 splicing is a major mechanism of epitope downregulation and ensuing resistance to immunotherapy. SIGNIFICANCE The mechanism(s) underlying downregulation of surface CD22 following CD22-directed immunotherapy remains underexplored. Our biochemical and correlative studies demonstrate that in B-ALL, CD22 expression levels are controlled by inclusion/skipping of CD22 exon 2. Thus, aberrant splicing of CD22 is an important driver/biomarker of de novo and acquired resistance to CD22-directed immunotherapies. See related commentary by Bourcier and Abdel-Wahab, p. 87. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Sisi Zheng
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Elisabeth Gillespie
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Ammar S. Naqvi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Katharina E. Hayer
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Manuel Torres-Diz
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A. Hottman
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Asen Bagashev
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - John Chukinas
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Carolin Schmidt
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Mukta Asnani
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
| | - Rawan Shraim
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of
Philadelphia, Philadelphia, Pennsylvania
| | - Susan R. Rheingold
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen M. O'Brien
- Cincinnati Children's Hospital Medical Center, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| | - Nathan Singh
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine at
the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marco Ruella
- Department of Medicine, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah K. Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia,
Philadelphia, Pennsylvania
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of
Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
5
|
Stokke JL, Bhojwani D. Antibody-Drug Conjugates for the Treatment of Acute Pediatric Leukemia. J Clin Med 2021; 10:3556. [PMID: 34441852 PMCID: PMC8396964 DOI: 10.3390/jcm10163556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
The clinical development of antibody-drug conjugates (ADCs) has gained momentum in recent years and these agents are gradually moving into frontline regimens for pediatric acute leukemias. ADCs consist of a monoclonal antibody attached to a cytotoxic payload by a cleavable linker. This structure allows for highly cytotoxic agents to be directly delivered to leukemia cells leading to cell death and avoids excessive off-tumor toxicity. Near universal expression on B-cell acute lymphoblastic leukemia (ALL) blasts and the ability of rapid internalization has rendered CD22 an ideal target for ADC in B-ALL. Inotuzumab ozogamicin, the anti-CD22 antibody linked to calicheamicin led to complete remission rates of 60-80% in patients with relapsed/refractory B-ALL. In acute myeloid leukemia (AML), the CD33 targeting gemtuzumab ozogamicin has demonstrated modest improvements in survival and is the only ADC currently licensed in the United States for pediatric patients with de novo AML. Several other ADCs have been developed and tested clinically for leukemia but have achieved limited success to date. The search for additional leukemia-specific targets and optimization of ADC structure and specificity are ongoing efforts to improve their therapeutic window. This review provides a comprehensive overview of ADCs in acute leukemias, with a focus on pediatric ALL and AML.
Collapse
Affiliation(s)
- Jamie L. Stokke
- Division of Hematology-Oncology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Deepa Bhojwani
- Division of Hematology-Oncology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol 2021; 12:694763. [PMID: 34177960 PMCID: PMC8226120 DOI: 10.3389/fimmu.2021.694763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need for therapeutic interventions for desensitization and antibody-mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased due to preformed DSA detected at time of transplant or the reactivation of HLA memory after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that develops post-transplant due to inadequate immunosuppression and again may lead to acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the humoral immune response, has been the primary target of desensitization and AMR treatment. However, in many cases these protocols fail to achieve efficient removal of all DSA and long-term outcomes of patients with persistent DSA are far worse when compared to non-sensitized patients. We believe that targeting multiple components of humoral immunity will lead to improved outcomes for such patients. In this review, we will briefly discuss conventional desensitization methods targeting antibody or B cell removal and then present a mechanistically designed desensitization regimen targeting plasma cells and the humoral response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
8
|
Kyriakidis I, Vasileiou E, Rossig C, Roilides E, Groll AH, Tragiannidis A. Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. J Fungi (Basel) 2021; 7:186. [PMID: 33807678 PMCID: PMC7999508 DOI: 10.3390/jof7030186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Since 1985 when the first agent targeting antigens on the surface of lymphocytes was approved (muromonab-CD3), a multitude of such therapies have been used in children with hematologic malignancies. A detailed literature review until January 2021 was conducted regarding pediatric patient populations treated with agents that target CD2 (alefacept), CD3 (bispecific T-cell engager [BiTE] blinatumomab), CD19 (denintuzumab mafodotin, B43, BiTEs blinatumomab and DT2219ARL, the immunotoxin combotox, and chimeric antigen receptor [CAR] T-cell therapies tisagenlecleucel and axicabtagene ciloleucel), CD20 (rituximab and biosimilars, 90Y-ibritumomab tiuxetan, ofatumumab, and obinutuzumab), CD22 (epratuzumab, inotuzumab ozogamicin, moxetumomab pasudotox, BiTE DT2219ARL, and the immunotoxin combotox), CD25 (basiliximab and inolimomab), CD30 (brentuximab vedotin and iratumumab), CD33 (gemtuzumab ozogamicin), CD38 (daratumumab and isatuximab), CD52 (alemtuzumab), CD66b (90Y-labelled BW 250/183), CD248 (ontuxizumab) and immune checkpoint inhibitors against CTLA-4 (CD152; abatacept, ipilimumab and tremelimumab) or with PD-1/PD-L1 blockade (CD279/CD274; atezolizumab, avelumab, camrelizumab, durvalumab, nivolumab and pembrolizumab). The aim of this narrative review is to describe treatment-related invasive fungal diseases (IFDs) of each category of agents. IFDs are very common in patients under blinatumomab, inotuzumab ozogamicin, basiliximab, gemtuzumab ozogamicin, alemtuzumab, and tisagenlecleucel and uncommon in patients treated with moxetumomab pasudotox, brentuximab vedotin, abatacept, ipilimumab, pembrolizumab and avelumab. Although this new era of precision medicine shows promising outcomes of targeted therapies in children with leukemia or lymphoma, the results of this review stress the necessity for ongoing surveillance and suggest the need for antifungal prophylaxis in cases where IFDs are very common complications.
Collapse
Affiliation(s)
- Ioannis Kyriakidis
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
| | - Eleni Vasileiou
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, D-48149 Münster, Germany;
| | - Emmanuel Roilides
- Infectious Diseases Unit, Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, 3rd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Andreas H. Groll
- Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, Infectious Disease Research Program, University Children’s Hospital Münster, D-48149 Münster, Germany;
| | - Athanasios Tragiannidis
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
- Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, Infectious Disease Research Program, University Children’s Hospital Münster, D-48149 Münster, Germany;
| |
Collapse
|
9
|
Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 2021; 120:5-24. [DOI: 10.1016/j.jfma.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
|
10
|
Shah NN, Schneiderman J, Kuruvilla D, Bhojwani D, Fry TJ, Martin PL, Schultz KR, Silverman LB, Whitlock JA, Wood B, Vainshtein I, Adams A, Confer D, Pulsipher MA, Chaudhury S, Wayne AS. Fatal capillary leak syndrome in a child with acute lymphoblastic leukemia treated with moxetumomab pasudotox for pre-transplant minimal residual disease reduction. Pediatr Blood Cancer 2021; 68:e28574. [PMID: 32959985 DOI: 10.1002/pbc.28574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer Schneiderman
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Denison Kuruvilla
- Clinical Pharmacology and Safety Sciences, AstraZeneca, San Francisco, California
| | - Deepa Bhojwani
- Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Terry J Fry
- Pediatric Oncology, Children's Hospital Colorado, Denver, Colorado
| | - Paul L Martin
- Pediatric Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kirk R Schultz
- Division of Hematology and Oncology, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Lewis B Silverman
- Pediatric Hematology and Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James A Whitlock
- Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brent Wood
- Department of Pathology, University of Washington, Seattle, Washington
| | - Inna Vainshtein
- Clinical Pharmacology and Safety Sciences, AstraZeneca, San Francisco, California
| | - Alexia Adams
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Dennis Confer
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota.,Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Michael A Pulsipher
- Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sonali Chaudhury
- Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alan S Wayne
- Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Moxetumomab pasudotox for hairy cell leukemia: preclinical development to FDA approval. Blood Adv 2020; 3:2905-2910. [PMID: 31594764 DOI: 10.1182/bloodadvances.2019000507] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
Moxetumomab pasudotox (MP) is an immunotoxin that recently received US Food and Drug Administration (FDA) approval for the treatment of hairy cell leukemia (HCL) that has failed at least 2 prior lines of therapy, including a purine analog. MP is a recombinant immunotoxin that consists of an anti-CD22 immunoglobulin variable domain genetically joined to Pseudomonas exotoxin (PE38). Unlike most antibody-drug conjugates, which use a chemical linker, recombinant DNA techniques are used to produce MP. MP and its predecessor, BL22, were initially developed to treat non-Hodgkin lymphoma, acute lymphoblastic leukemia, and HCL. However, MP was found to be particularly effective in HCL due to the high level of CD22 cell-surface expression. The recent pivotal phase 3 trial of MP in relapsed/refractory HCL demonstrated a durable complete remission rate of 30%, and 85% of complete responders achieved minimal residual disease negativity, which is associated with improved disease-free survival outcomes in HCL. In addition to an exceptional depth of response, MP appears to be less immunosuppressive than purine analogs. MP is generally well tolerated but has unique toxicities, including capillary leak syndrome and hemolytic uremic syndrome, which are poorly understood. This review will encompass the preclinical and clinical development of MP, with particular attention to its current indication in HCL.
Collapse
|
12
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
13
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Kreitman RJ, Pastan I. Development of Recombinant Immunotoxins for Hairy Cell Leukemia. Biomolecules 2020; 10:E1140. [PMID: 32756468 PMCID: PMC7464581 DOI: 10.3390/biom10081140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy with excellent initial response to purine analogs pentostatin or cladribine, but patients are rarely, if ever, cured. Younger patients will usually need repeat chemotherapy which has declining benefits and increasing toxicities with each course. Targeted therapies directed to the BRAF V600E mutation and Bruton's tyrosine kinase may be helpful, but rarely eradicate the minimal residual disease (MRD) which will eventually lead to relapse. Moxetumomab pasudotox (Moxe) is an anti-CD22 recombinant immunotoxin, which binds to CD22 on HCL cells and leads to apoptotic cell death after internalization and trafficking of the toxin to the cytosol. Phase I testing achieved a complete remission (CR) rate of 57% in relapsed/refractory HCL. Most CRs were without MRD and eradication of MRD correlated with prolonged CR duration. Patients were often MRD-free after five years. Important mild-moderate toxicities included capillary leak and hemolytic uremic syndromes which could be prevented and managed conservatively. A phase 3 trial met its endpoint of durable CR with acceptable toxicity, leading to FDA approval of Moxe for relapsed/refractory HCL, under the name Lumoxiti. Moxe combined with rituximab is currently being evaluated in relapsed/refractory HCL to improve the rate of MRD-free CR.
Collapse
Affiliation(s)
- Robert J. Kreitman
- Laboratory of Molecular Biology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- National Institutes of Health, Building 37/5124b, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
15
|
Kuruvilla D, Chia YL, Balic K, Yao NS, Kreitman RJ, Pastan I, Li X, Standifer N, Liang M, Tseng C, Faggioni R, Roskos L. Population pharmacokinetics, efficacy, and safety of moxetumomab pasudotox in patients with relapsed or refractory hairy cell leukaemia. Br J Clin Pharmacol 2020; 86:1367-1376. [PMID: 32077130 PMCID: PMC7318999 DOI: 10.1111/bcp.14250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/14/2019] [Accepted: 02/01/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS To characterize the pharmacokinetics (PK) of moxetumomab pasudotox, an anti-CD22 recombinant immunotoxin, in adults with relapsed or refractory hairy cell leukaemia, we examined data from a phase 1 study (Study 1001; n = 49) and from the pivotal clinical study (Study 1053; n = 74). METHODS Data from both studies were pooled (n = 123) to develop a population PK model. Covariates included demographics, disease state, liver and kidney function, prior treatment, and antidrug antibodies (ADAs). Exposure-response and exposure-safety were analysed separately by study. A 1-compartment model with linear elimination from the central compartment and 2 clearance (CL) rates was developed. RESULTS Moxetumomab pasudotox was cleared more rapidly after cycle 1, day 1 (CL1 = 24.7 L/h) than subsequently (CL2 = 3.76 L/h), with high interindividual variability (116 and 109%, respectively). In Study 1053, patients with ADA titres >10 240 showed ~4-fold increase in CL. Higher exposures (≥median) were related to higher response rates, capillary leak syndrome and increased creatinine (Study 1053 only), or grade ≥3 adverse events (Study 1001 only). Clinical benefits were still observed in patients with lower exposure or high ADA titres. CONCLUSION Despite a high incidence of immunogenicity with increased clearance, moxetumomab pasudotox demonstrated efficacy in hairy cell leukaemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Ira Pastan
- National Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Xia Li
- AstraZenecaGaithersburgMDUSA
| | | | | | | | | | | |
Collapse
|
16
|
Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, Ombrello A, Steinberg SM, Martin S, Delbrook C, Hoffman L, Little L, Ponduri A, Qin H, Qureshi H, Dulau-Florea A, Salem D, Wang HW, Yuan C, Stetler-Stevenson M, Panch S, Tran M, Mackall CL, Stroncek DF, Fry TJ. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial. J Clin Oncol 2020; 38:1938-1950. [PMID: 32286905 PMCID: PMC7280047 DOI: 10.1200/jco.19.03279] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Patients with B-cell acute lymphoblastic leukemia who experience relapse after or are resistant to CD19-targeted immunotherapies have limited treatment options. Targeting CD22, an alternative B-cell antigen, represents an alternate strategy. We report outcomes on the largest patient cohort treated with CD22 chimeric antigen receptor (CAR) T cells. PATIENTS AND METHODS We conducted a single-center, phase I, 3 + 3 dose-escalation trial with a large expansion cohort that tested CD22-targeted CAR T cells for children and young adults with relapsed/refractory CD22+ malignancies. Primary objectives were to assess the safety, toxicity, and feasibility. Secondary objectives included efficacy, CD22 CAR T-cell persistence, and cytokine profiling. RESULTS Fifty-eight participants were infused; 51 (87.9%) after prior CD19-targeted therapy. Cytokine release syndrome occurred in 50 participants (86.2%) and was grade 1-2 in 45 (90%). Symptoms of neurotoxicity were minimal and transient. Hemophagocytic lymphohistiocytosis-like manifestations were seen in 19/58 (32.8%) of subjects, prompting utilization of anakinra. CD4/CD8 T-cell selection of the apheresis product improved CAR T-cell manufacturing feasibility as well as heightened inflammatory toxicities, leading to dose de-escalation. The complete remission rate was 70%. The median overall survival was 13.4 months (95% CI, 7.7 to 20.3 months). Among those who achieved a complete response, the median relapse-free survival was 6.0 months (95% CI, 4.1 to 6.5 months). Thirteen participants proceeded to stem-cell transplantation. CONCLUSION In the largest experience of CD22 CAR T-cells to our knowledge, we provide novel information on the impact of manufacturing changes on clinical outcomes and report on unique CD22 CAR T-cell toxicities and toxicity mitigation strategies. The remission induction rate supports further development of CD22 CAR T cells as a therapeutic option in patients resistant to CD19-targeted immunotherapy.
Collapse
Affiliation(s)
- Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven L. Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bonnie Yates
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jianjian Jin
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Pamela L. Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amanda Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cindy Delbrook
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Leah Hoffman
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lauren Little
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anusha Ponduri
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haris Qureshi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alina Dulau-Florea
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dalia Salem
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hao-Wei Wang
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Constance Yuan
- Department of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Sandhya Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Minh Tran
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Crystal L. Mackall
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pediatrics, Stanford University, Stanford, CA
| | - David F. Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children’s Hospital of Colorado, Aurora, CO
| |
Collapse
|
17
|
Chatzikonstantinou T, Gavriilaki M, Anagnostopoulos A, Gavriilaki E. An Update in Drug-Induced Thrombotic Microangiopathy. Front Med (Lausanne) 2020; 7:212. [PMID: 32528969 PMCID: PMC7256484 DOI: 10.3389/fmed.2020.00212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Maria Gavriilaki
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Eleni Gavriilaki
- BMT Unit, Hematology Department, G Papanicolaou Hospital, Thessaloniki, Greece
| |
Collapse
|
18
|
MLL-rearranged infant leukaemia: A 'thorn in the side' of a remarkable success story. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194564. [PMID: 32376390 DOI: 10.1016/j.bbagrm.2020.194564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Advances in treatment of childhood leukaemia has led to vastly improved survival rates, however some subtypes such as those characterised by MLL gene rearrangement (MLL-r), especially in infants, continue to have high relapse rates and poor survival. Natural history and molecular studies indicate that infant acute lymphoblastic leukaemia (ALL) originates in utero, is distinct from childhood ALL, and most cases are caused by MLL-r resulting in an oncogenic MLL fusion protein. Unlike childhood ALL, only a very small number of additional mutations are present in infant ALL, indicating that MLL-r alone may be sufficient to give rise to this rapid onset, aggressive leukaemia in an appropriate fetal cell context. Despite modifications in treatment approaches, the outcome of MLL-r infant ALL has remained dismal and a clear understanding of the underlying biology of the disease is required in order to develop appropriate disease models and more effective therapeutic strategies.
Collapse
|
19
|
Shah NN, Bhojwani D, August K, Baruchel A, Bertrand Y, Boklan J, Dalla-Pozza L, Dennis R, Hijiya N, Locatelli F, Martin PL, Mechinaud F, Moppett J, Rheingold SR, Schmitt C, Trippett TM, Liang M, Balic K, Li X, Vainshtein I, Yao NS, Pastan I, Wayne AS. Results from an international phase 2 study of the anti-CD22 immunotoxin moxetumomab pasudotox in relapsed or refractory childhood B-lineage acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28112. [PMID: 31944549 PMCID: PMC7485266 DOI: 10.1002/pbc.28112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND In a multicenter phase 1 study of children with relapsed/refractory acute lymphoblastic leukemia (ALL), moxetumomab pasudotox, an anti-CD22 immunotoxin, demonstrated a manageable safety profile and preliminary evidence of clinical activity. A phase 2 study further evaluated efficacy. PROCEDURE This international, multicenter, phase 2 study enrolled children with relapsed/refractory B-cell precursor ALL who received moxetumomab pasudotox 40 µg/kg intravenously every other day, for six doses per 21-day cycle. The primary objective was to evaluate the complete response (CR) rate. Secondary objectives included safety, pharmacokinetics, and immunogenicity evaluations. RESULTS Thirty-two patients (median age, 10 years) were enrolled at 16 sites; 30 received study drug and were evaluable for safety; 28 were evaluable for response. The objective response rate was 28.6%, with three patients (10.7%) achieving morphologic CR, and five patients (17.9%) achieving partial response. Disease progression occurred in 11 patients (39.3%). Ten patients (33.3%) experienced at least one treatment-related serious adverse event, including capillary leak syndrome (CLS; n = 6), hemolytic uremic syndrome (HUS; n = 4), and treatment-related death (n = 1) from pulmonary edema. No differences were observed in inflammatory markers in patients who did or did not develop CLS or HUS. CONCLUSIONS Despite a signal for clinical activity, this phase 2 study was terminated at interim analysis for a CR rate that did not reach the stage 1 target. Preclinical data suggest enhanced efficacy of moxetumomab pasudotox via continuous infusion or in combination regimens; thus, further studies designed to optimize the efficacy and safety of moxetumomab pasudotox in pediatric ALL may be warranted.
Collapse
Affiliation(s)
- Nirali N. Shah
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deepa Bhojwani
- Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - André Baruchel
- Robert Debré Hospital (APHP and University Paris Diderot), Paris, France
| | - Yves Bertrand
- CHU Institut d’Hématologie et Oncologie Pédiatrique, Lyon, France
| | | | | | - Robyn Dennis
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nobuko Hijiya
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Paul L. Martin
- Duke Children’s Hospital & Health Center, Durham, NC, USA
| | - Françoise Mechinaud
- Children’s Cancer Centre, The Royal Children’s Hospital, Melbourne, Australia
| | | | | | | | | | | | | | - Xia Li
- AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Ira Pastan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan S. Wayne
- Children’s Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Meyer SJ, Böser A, Korn MA, Koller C, Bertocci B, Reimann L, Warscheid B, Nitschke L. Cullin 3 Is Crucial for Pro-B Cell Proliferation, Interacts with CD22, and Controls CD22 Internalization on B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3360-3374. [DOI: 10.4049/jimmunol.1900925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
|
21
|
Serial evaluation of CD19 surface expression in pediatric B-cell malignancies following CD19-targeted therapy. Leukemia 2020; 34:3064-3069. [PMID: 32103145 DOI: 10.1038/s41375-020-0760-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/28/2019] [Accepted: 02/11/2020] [Indexed: 12/28/2022]
|
22
|
Jacoby E, Shahani SA, Shah NN. Updates on CAR T-cell therapy in B-cell malignancies. Immunol Rev 2020; 290:39-59. [PMID: 31355492 DOI: 10.1111/imr.12774] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
By increasing disease-free survival and offering the potential for long-term cure, chimeric antigen receptor (CAR) T-cell therapy has dramatically expanded therapeutic options among those with high-risk B-cell malignancies. As CAR T-cell utilization evolves however, novel challenges are generated. These include determining how to optimally integrate CAR T cells into standard of care and overcoming mechanisms of resistance to CAR T-cell therapy, such as evolutionary stress induced on cancer cells leading to immunophenotypic changes that allow leukemia to evade this targeted therapy. Compounding these challenges are the limited ability to determine differences between various CAR T-cell constructs, understanding the generalizability of trial outcomes from multiple sites utilizing unique CAR manufacturing strategies, and comparing distinct criteria for toxicity grading while defining optimal management. Additionally, as understanding of CAR behavior in humans has developed, strategies have appropriately evolved to proactively mitigate toxicities. These challenges offer complimentary insights and guide next steps to enhance the efficacy of this novel therapeutic modality. With a focus on B-cell malignancies as the paradigm for effective CAR T-cell therapy, this review describes advances in the field as well as current challenges and future directions.
Collapse
Affiliation(s)
- Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shilpa A Shahani
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Cohen JW, Akshintala S, Kane E, Gnanapragasam H, Widemann BC, Steinberg SM, Shah NN. A Systematic Review of Pediatric Phase I Trials in Oncology: Toxicity and Outcomes in the Era of Targeted Therapies. Oncologist 2020; 25:532-540. [PMID: 31943534 DOI: 10.1634/theoncologist.2019-0615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pediatric phase I oncology trials have historically focused on safety and toxicity, with objective response rates (ORRs) <10%. Recently, with an emphasis on targeted approaches, response rates may have changed. We analyzed outcomes of recent phase I pediatric oncology trials. MATERIALS AND METHODS This was a systematic review of phase I pediatric oncology trials published in 2012-2017, identified through PubMed and EMBASE searches conducted on March 14, 2018. Selection criteria included full-text articles with a pediatric population, cancer diagnosis, and a dose escalation schema. Each publication was evaluated for patient characteristics, therapy type, trial design, toxicity, and response. RESULTS Of 3,431 citations, 109 studies (2,713 patients) met eligibility criteria. Of these, 78 (72%) trials incorporated targeted therapies. Median age at enrollment/trial was 11 years (range 3-21 years). There were 2,471 patients (91%) evaluable for toxicity, of whom 300 (12.1%) experienced dose-limiting toxicity (DLT). Of 2,143 patients evaluable for response, 327 (15.3%) demonstrated an objective response. Forty-three (39%) trials had no objective responses. Nineteen trials (17%) had an ORR >25%, of which 11 were targeted trials and 8 were combination cytotoxic trials. Targeted trials demonstrated a lower DLT rate compared with cytotoxic trials (10.6% vs. 14.7%; p = .003) with similar ORRs (15.0% vs. 15.9%; p = .58). CONCLUSION Pediatric oncology phase I trials in the current treatment era have an acceptable DLT rate and a pooled ORR of 15.3%. A subset of trials with target-specific enrollment or combination cytotoxic therapies showed high response rates, highlighting the importance of these strategies in early phase trials. IMPLICATIONS FOR PRACTICE Enrollment in phase I oncology trials is crucial for development of novel therapies. This systematic review of phase I pediatric oncology trials provides an assessment of outcomes of phase I trials in children, with a specific focus on the impact of targeted therapies. These data may aid in evaluating the landscape of current phase I options for patients and enable more informed communication regarding risk and benefit of phase I clinical trial participation. The results also suggest that, in the current treatment era, there is a rationale to increase earlier access to targeted therapy trials for this refractory patient population.
Collapse
Affiliation(s)
- Julia W Cohen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Eli Kane
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Helen Gnanapragasam
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Rockville, Maryland, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Deak D, Pop C, Zimta AA, Jurj A, Ghiaur A, Pasca S, Teodorescu P, Dascalescu A, Antohe I, Ionescu B, Constantinescu C, Onaciu A, Munteanu R, Berindan-Neagoe I, Petrushev B, Turcas C, Iluta S, Selicean C, Zdrenghea M, Tanase A, Danaila C, Colita A, Colita A, Dima D, Coriu D, Einsele H, Tomuleasa C. Let's Talk About BiTEs and Other Drugs in the Real-Life Setting for B-Cell Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:2856. [PMID: 31921126 PMCID: PMC6934055 DOI: 10.3389/fimmu.2019.02856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Therapy for acute lymphoblastic leukemia (ALL) are currently initially efficient, but even if a high percentage of patients have an initial complete remission (CR), most of them relapse. Recent data shows that immunotherapy with either bispecific T-cell engagers (BiTEs) of chimeric antigen receptor (CAR) T cells can eliminate residual chemotherapy-resistant B-ALL cells. Objective: The objective of the manuscript is to present improvements in the clinical outcome for chemotherapy-resistant ALL in the real-life setting, by describing Romania's experience with bispecific antibodies for B-cell ALL. Methods: We present the role of novel therapies for relapsed B-cell ALL, including the drugs under investigation in phase I-III clinical trials, as a potential bridge to transplant. Blinatumomab is presented in a critical review, presenting both the advantages of this drug, as well as its limitations. Results: Bispecific antibodies are discussed, describing the clinical trials that resulted in its approval by the FDA and EMA. The real-life setting for relapsed B-cell ALL is described and we present the patients treated with blinatumomab in Romania. Conclusion: In the current manuscript, we present blinatumomab as a therapeutic alternative in the bridge-to-transplant setting for refractory or relapsed ALL, to gain a better understanding of the available therapies and evidence-based data for these patients in 2019.
Collapse
Affiliation(s)
- Dalma Deak
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Ghiaur
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Angela Dascalescu
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Ion Antohe
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Bogdan Ionescu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Munteanu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bobe Petrushev
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Selicean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Catalin Danaila
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Anca Colita
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania.,Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andrei Colita
- Department of Hematology, Coltea Hospital, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Coriu
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania.,Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wurzburg, Würzburg, Germany
| | - Ciprian Tomuleasa
- Department of Hematology/Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Kreitman RJ, Pastan I. Contextualizing the Use of Moxetumomab Pasudotox in the Treatment of Relapsed or Refractory Hairy Cell Leukemia. Oncologist 2020; 25:e170-e177. [PMID: 31628266 PMCID: PMC6964124 DOI: 10.1634/theoncologist.2019-0370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy characterized by high initial sensitivity to purine analog chemotherapy, minimal residual disease (MRD) frequently accompanying complete remission (CR), and relapses requiring additional treatment. Repeat chemotherapy shows decreasing efficacy and increasing toxicity with each course. Newer therapies targeting BRAF/MEK or Bruton's tyrosine kinase are effective but generally leave MRD. Rituximab has modest activity as a single agent and can achieve MRD-negative CR in combination with purine analogs, but there is significant toxicity from the chemotherapy. Moxetumomab pasudotox-tdfk (Moxe) is a biologic containing an antibody fragment (Fv) binding to CD22, attached to a portion of Pseudomonas exotoxin A. Binding to CD22 enables the toxin to enter and kill cells. Moxe is administered by 30-minute infusions on days 1, 3, and 5 of up to six cycles spaced 4 weeks apart. In phase I testing, 64% of 33 patients at the highest dose level achieved CR, most without MRD. Lack of MRD correlated with prolonged CR duration; of 11 MRD-negative CRs, 10 were still in CR after a median of 42 months of observation. In pivotal testing, 75% of 80 patients had a hematologic response, 41% with CR; 82% (27/33) of CRs were MRD-negative, and only 4 of the 27 MRD-negative patients relapsed during the follow-up period. Hemolytic uremic syndrome and capillary leak syndrome were each observed in 9% of patients, all reversible. In September 2018, the U.S. Food and Drug Administration approved Moxe for the treatment of relapsed/refractory HCL after ≥2 prior therapies. Moxe is undergoing further development in combination with rituximab. IMPLICATIONS FOR PRACTICE: Hairy cell leukemia (HCL) has effective treatments including purine analogs with and without rituximab, and oral inhibitors of BRAF, MEK and Bruton's tyrosine kinase (BTK). Despite these therapies, relapse occurs, and moxetumomab pasudotox has an important role in relapsed and refractory HCL because of its ability to achieve high rates of complete remissions (CRs) without chemotherapy; most of these CRs are without minimal residual disease (MRD). CR duration is enhanced in patients who achieve eradication of MRD. To improve the efficacy of this recombinant immunotoxin, a phase I trial is underway in combination with rituximab to reduce tumor burden and decrease immunogenicity.
Collapse
Affiliation(s)
- Robert J. Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
26
|
Winters A, Gore L. Moving immunotherapy into the front line in ALL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:209-217. [PMID: 31808875 PMCID: PMC6913504 DOI: 10.1182/hematology.2019000017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although almost 90% of children with acute lymphoblastic leukemia (ALL) and ∼60% of children with acute myeloid leukemia are cured with frontline therapy, relapse and chemotherapy resistance are significant challenges that contribute to morbidity and mortality. Even with long-term survival, the acute and chronic burdens of therapy are major issues for patients and families. Long-term side effects occur, including cardiac, endocrinologic, neurcognitive, orthopedic, and psychosocial problems, and healthy survivorship is frequently compromised. With goals of minimizing relapse and/or decreasing traditional chemotherapy-associated toxicities, exploration of immunotherapeutic strategies has moved to the forefront in pediatric cancer. New immunotherapy approaches provide a major paradigm shift in oncology overall, often curing previously incurable patients. The past several years have yielded successful uses across a variety of malignancies, and enthusiasm continues to rise for applying these therapies more broadly. Herein we discuss current approaches incorporating the bispecific T-cell engager blinatumomab, the antibody-drug conjugate inotuzumab ozogamicin (InO), and CD19-directed chimeric antigen receptor T cells in children with relapsed/refractory B-cell ALL and discuss the potential for using these immunotherapies in the treatment of newly diagnosed children.
Collapse
Affiliation(s)
- Amanda Winters
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO; and
- Department of Pediatrics
- Department of Medical Oncology
| | - Lia Gore
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO; and
- Department of Pediatrics
- Department of Medical Oncology
- Department of Hematology, and
- Section of Pediatric Hematology/Oncology/Bone Marrow Transplant-Cellular Therapeutics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
27
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
28
|
Gorovits B, Peng K, Kromminga A. Current Considerations on Characterization of Immune Response to Multi-Domain Biotherapeutics. BioDrugs 2019; 34:39-54. [DOI: 10.1007/s40259-019-00389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Cerise A, Bera TK, Liu X, Wei J, Pastan I. Anti-Mesothelin Recombinant Immunotoxin Therapy for Colorectal Cancer. Clin Colorectal Cancer 2019; 18:192-199.e1. [PMID: 31345777 PMCID: PMC8317202 DOI: 10.1016/j.clcc.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mesothelin (MSLN) is a cell surface glycoprotein expressed at a high level on many malignancies, including pancreatic adenocarcinoma, serous ovarian cancer, and epithelioid mesothelioma. MSLN-targeted recombinant immunotoxins (RITs) consist of an anti-MSLN Fv fused to the catalytic domain of Pseudomonas exotoxin A. Recent data has also shown that MSLN is expressed at clinically relevant levels on the surface of colorectal cancer (CRC). In this study, CRC cell lines were tested for MSLN expression and susceptibility to MSLN-targeted RITs. MATERIALS AND METHODS CRC cell lines were tested for membranous MSLN expression via flow cytometry. Cell lines expressing MSLN were tested by WST-8 cell viability assay for sensitivity to various RITs and chemotherapeutic agents. CRC cell line SW-48 was tested in a mouse model for response to RIT as a single agent or in combination with actinomycin D and oxaliplatin. RESULTS CRC cell lines were susceptible to anti-MSLN RITs at half maximal inhibitory concentration levels comparable with those previously described in pancreatic cancer cell lines. In a nude mouse model, MSLN-targeted RIT treatment of SW48 CRC tumors resulted in a significant decrease in tumor volume. Although combination therapy with standard of care chemotherapeutic oxaliplatin did not improve tumor regressions, combination therapy with actinomycin D resulted in > 90% tumor volume reduction with 50% complete regressions. CONCLUSIONS These data support the development of anti-MSLN RITs as well as other MSLN-targeted therapies for CRC.
Collapse
Affiliation(s)
- Adam Cerise
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xiufen Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Junxia Wei
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
30
|
van Erp AEM, Versleijen-Jonkers YMH, van der Graaf WTA, Fleuren EDG. Targeted Therapy-based Combination Treatment in Rhabdomyosarcoma. Mol Cancer Ther 2019; 17:1365-1380. [PMID: 29967215 DOI: 10.1158/1535-7163.mct-17-1131] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
Targeted therapies have revolutionized cancer treatment; however, progress lags behind in alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS), a soft-tissue sarcoma mainly occurring at pediatric and young adult age. Insulin-like growth factor 1 receptor (IGF1R)-directed targeted therapy is one of the few single-agent treatments with clinical activity in these diseases. However, clinical effects only occur in a small subset of patients and are often of short duration due to treatment resistance. Rational selection of combination treatments of either multiple targeted therapies or targeted therapies with chemotherapy could hypothetically circumvent treatment resistance mechanisms and enhance clinical efficacy. Simultaneous targeting of distinct mechanisms might be of particular interest in this regard, as this affects multiple hallmarks of cancer at once. To determine the most promising and clinically relevant targeted therapy-based combination treatments for ARMS and ERMS, we provide an extensive overview of preclinical and (early) clinical data concerning a variety of targeted therapy-based combination treatments. We concentrated on the most common classes of targeted therapies investigated in rhabdomyosarcoma to date, including those directed against receptor tyrosine kinases and associated downstream signaling pathways, the Hedgehog signaling pathway, apoptosis pathway, DNA damage response, cell-cycle regulators, oncogenic fusion proteins, and epigenetic modifiers. Mol Cancer Ther; 17(7); 1365-80. ©2018 AACR.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands. .,The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Emmy D G Fleuren
- The Institute of Cancer Research, Division of Clinical Studies, Clinical and Translational Sarcoma Research, Sutton, United Kingdom.
| |
Collapse
|
31
|
Jacoby E. Relapse and Resistance to CAR-T Cells and Blinatumomab in Hematologic Malignancies. Clin Hematol Int 2019; 1:79-84. [PMID: 34595414 PMCID: PMC8432394 DOI: 10.2991/chi.d.190219.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
Application of immunotherapeutic modalities changed paradigms in the treatment of hematologic malignancies, with regards to drug manufacturing, treatment protocols, short- and long-term toxicities. FDA-approved therapies, including blinatumomab, tisagenlecleucel, and axicabtagene ciloleucel, target T cells to attack healthy and malignant cells expressing CD19, leading to high response rates in previously heavily treated patients, and to durable remissions in the absence of further therapies. Nevertheless, despite paucity of long-term data, some patients are resistant to these agents, and many relapse. This review will discuss the mechanisms of failure of these immune-based therapies, and offer guidelines to the practicing physician.
Collapse
Affiliation(s)
- Elad Jacoby
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Bumbaca B, Li Z, Shah DK. Pharmacokinetics of protein and peptide conjugates. Drug Metab Pharmacokinet 2019; 34:42-54. [PMID: 30573392 PMCID: PMC6378135 DOI: 10.1016/j.dmpk.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Protein and peptide conjugates have become an important component of therapeutic and diagnostic medicine. These conjugates are primarily designed to improve pharmacokinetics (PK) of those therapeutic or imaging agents, which do not possess optimal disposition characteristics. In this review we have summarized preclinical and clinical PK of diverse protein and peptide conjugates, and have showcased how different conjugation approaches are used to obtain the desired PK. We have classified the conjugates into peptide conjugates, non-targeted protein conjugates, and targeted protein conjugates, and have highlighted diagnostic and therapeutic applications of these conjugates. In general, peptide conjugates demonstrate very short half-life and rapid renal elimination, and they are mainly designed to achieve high contrast ratio for imaging agents or to deliver therapeutic agents at sites not reachable by bulky or non-targeted proteins. Conjugates made from non-targeted proteins like albumin are designed to increase the half-life of rapidly eliminating therapeutic or imaging agents, and improve their delivery to tissues like solid tumors and inflamed joints. Targeted protein conjugates are mainly developed from antibodies, antibody derivatives, or endogenous proteins, and they are designed to improve the contrast ratio of imaging agents or therapeutic index of therapeutic agents, by enhancing their delivery to the site-of-action.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA.
| |
Collapse
|
33
|
Jeong GH, Lee KH, Lee IR, Oh JH, Kim DW, Shin JW, Kronbichler A, Eisenhut M, van der Vliet HJ, Abdel-Rahman O, Stubbs B, Solmi M, Veronese N, Dragioti E, Koyanagi A, Radua J, Shin JI. Incidence of Capillary Leak Syndrome as an Adverse Effect of Drugs in Cancer Patients: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8020143. [PMID: 30691103 PMCID: PMC6406478 DOI: 10.3390/jcm8020143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Capillary leak syndrome (CLS) is a rare disease with profound vascular leakage, which can be associated with a high mortality. There have been several reports on CLS as an adverse effect of anti-cancer agents and therapy, but the incidence of CLS according to the kinds of anti-cancer drugs has not been systemically evaluated. Thus, the aim of our study was to comprehensively meta-analyze the incidence of CLS by different types of cancer treatment or after bone marrow transplantation (BMT). We searched the literatures (inception to July 2018) and among 4612 articles, 62 clinical trials (studies) were eligible. We extracted the number of patients with CLS, total cancer patients, name of therapeutic agent and dose, and type of cancer. We performed a meta-analysis to estimate the summary effects with 95% confidence interval and between-study heterogeneity. The reported incidence of CLS was categorized by causative drugs and BMT. The largest number of studies reported on CLS incidence during interleukin-2 (IL-2) treatment (n = 18), which yielded a pooled incidence of 34.7% by overall estimation and 43.9% by meta-analysis. The second largest number of studies reported on anti-cluster of differentiation (anti-CD) agents (n = 13) (incidence of 33.9% by overall estimation and 35.6% by meta-analysis) or undergoing BMT (n = 7 (21.1% by overall estimation and 21.7% by meta-analysis). Also, anti-cancer agents, including IL-2 + imatinib mesylate (three studies) and anti-CD22 monoclinal antibodies (mAb) (four studies), showed a dose-dependent increase in the incidence of CLS. Our study is the first to provide an informative overview on the incidence rate of reported CLS patients as an adverse event of anti-cancer treatment. This meta-analysis can lead to a better understanding of CLS and assist physicians in identifying the presence of CLS early in the disease course to improve the outcome and optimize management.
Collapse
Affiliation(s)
- Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, C.P.O., Box 8044, Seoul 03722, Korea.
- Division of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - I Re Lee
- Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, C.P.O., Box 8044, Seoul 03722, Korea.
- Division of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
| | - Ji Hyun Oh
- Wonkwang University School of Medicine, Iksan 54538, Korea.
| | - Dong Wook Kim
- Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, C.P.O., Box 8044, Seoul 03722, Korea.
| | - Jae Won Shin
- Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, C.P.O., Box 8044, Seoul 03722, Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Michael Eisenhut
- Luton& Dunstable University Hospital NHS Foundation Trust, Lewsey Road, Luton LU4 ODZ, UK.
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB T2N 1N4, Canada.
| | - Brendon Stubbs
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, UK.
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford CM1 1SQ, UK.
| | - Marco Solmi
- Department of Neuroscience, University of Padova, 35121 Padova, Italy.
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, 35128 Padova, Italy.
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, 08830 Barcelona, Spain.
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
- Mental Health Research Networking Center (CIBERSAM), 08036 Barcelona, Spain.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, 113 30 Stockholm, Sweden.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Yonsei-ro 50, Seodaemun-gu, C.P.O., Box 8044, Seoul 03722, Korea.
- Division of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
34
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
35
|
Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, Yuan CM, Haso W, Shern JF, Shah NN, Fry TJ. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Mol Ther Oncolytics 2018. [PMID: 30581986 DOI: 10.13039/100000002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Despite high remission rates following CAR-T cell therapy in B-ALL, relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may reduce the likelihood of antigen loss, thus improving sustained remission rates. A systematic approach to the generation of CAR constructs incorporating two target-binding domains led to several novel CD19/CD22 bivalent CAR constructs. Importantly, we demonstrate the challenges associated with the construction of a bivalent CAR format that preserves bifunctionality against both CD19 and CD22. Using the most active bivalent CAR constructs, we found similar transduction efficiency compared to that of either CD19 or CD22 single CARs alone. When expressed on human T cells, the optimized CD19/CD22 CAR construct induced comparable interferon γ and interleukin-2 in vitro compared to single CARs against dual-antigen-expressing as well as single-antigen-expressing cell lines. Finally, the T cells expressing CD19/CD22 CAR eradicated ALL cell line xenografts and patient-derived xenografts (PDX), including a PDX generated from a patient with CD19- relapse following CD19-directed CAR therapy. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce risk of antigen loss.
Collapse
Affiliation(s)
- Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sneha Ramakrishna
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sang Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas J Fountaine
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Anusha Ponduri
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Constance M Yuan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Waleed Haso
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
36
|
Vallera DA, Kreitman RJ. Immunotoxins Targeting B cell Malignancy-Progress and Problems With Immunogenicity. Biomedicines 2018; 7:biomedicines7010001. [PMID: 30577664 PMCID: PMC6466112 DOI: 10.3390/biomedicines7010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/26/2023] Open
Abstract
Few immunotoxins or targeted toxins have become mainline cancer therapies. Still immunotoxins continue to be of major interest and subject of research and development as alternative therapies for drug resistant cancer. A major matter of concern continues to be immunogenicity exemplified by the anti-toxin response of the treated patient. Since some of our most effective toxins are bacterial in nature and bacterial proteins are highly immunogenic, this review describes some efforts to address this pressing issue.
Collapse
Affiliation(s)
- Daniel A Vallera
- Laboratory of Molecular Cancer Therapeutics, Masonic Cancer Center, Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Kreitman
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Meyer SJ, Linder AT, Brandl C, Nitschke L. B Cell Siglecs-News on Signaling and Its Interplay With Ligand Binding. Front Immunol 2018; 9:2820. [PMID: 30559744 PMCID: PMC6286995 DOI: 10.3389/fimmu.2018.02820] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
CD22 and Siglec-G are members of the Siglec family. Both are inhibitory co-receptors on the surface of B cells and inhibit B-cell receptor induced signaling, characterized by inhibition of the calcium mobilization and cellular activation. CD22 functions predominantly as an inhibitor on conventional B cells, while Siglec-G is an important inhibitor on the B1a-cell subset. These two B-cell Siglecs do not only inhibit initial signaling, but also have an important function in preventing autoimmunity, as double deficient mice develop a lupus-like phenotype with age. Siglecs are characterized by their conserved ability to bind terminal sialic acid of glycans on the cell surface, which is important to regulate the inhibitory role of Siglecs. While CD22 binds α2,6-linked sialic acids, Siglec-G can bind both α2,6-linked and α2,3-linked sialic acids. Interestingly, ligand binding is differentially regulating the ability of CD22 and Siglec-G to control B-cell activation. Within the last years, quite a few studies focused on the different functions of B-cell Siglecs and the interplay of ligand binding and signal inhibition. This review summarizes the role of CD22 and Siglec-G in regulating B-cell receptor signaling, membrane distribution with the importance of ligand binding, preventing autoimmunity and the role of CD22 beyond the naïve B-cell stage. Additionally, this review article features the long time discussed interaction between CD45 and CD22 with highlighting recent data, as well as the interplay between CD22 and Galectin-9 and its influence on B-cell receptor signaling. Moreover, therapeutical approaches targeting human CD22 will be elucidated.
Collapse
Affiliation(s)
- Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Alexandra T Linder
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
38
|
Mallory N, Pierro J, Raetz E, Carroll WL. The potential of precision medicine for childhood acute lymphoblastic leukemia: opportunities and challenges. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicole Mallory
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Joanna Pierro
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - William L. Carroll
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| |
Collapse
|
39
|
Bokori-Brown M, Metz J, Petrov PG, Mussai F, De Santo C, Smart NJ, Saunders S, Knight B, Pastan I, Titball RW, Winlove CP. Interactions Between Pseudomonas Immunotoxins and the Plasma Membrane: Implications for CAT-8015 Immunotoxin Therapy. Front Oncol 2018; 8:553. [PMID: 30538953 PMCID: PMC6277520 DOI: 10.3389/fonc.2018.00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) remains the most frequent cause of cancer-related mortality in children and novel therapies are needed for the treatment of relapsed/refractory childhood ALL. One approach is the targeting of ALL blasts with the Pseudomonas immunotoxin CAT-8015. Although CAT-8015 has potent anti-leukemia activity, with a 32% objective response rate in a phase 1 study of childhood ALL, haemolytic-uremic syndrome (HUS) and vascular leak syndrome (VLS), major dose-limiting toxicities, have limited the use of this therapeutic approach in children. Investigations into the pathogenesis of CAT-8015-induced HUS/VLS are hindered by the lack of an adequate model system that replicates clinical manifestations, but damage to vascular endothelial cells (ECs) and blood cells are believed to be major initiating factors in both syndromes. Since there is little evidence that murine models replicate human HUS/VLS, and CAT-8015-induced HUS/VLS predominantly affects children, we developed human models and used novel methodologies to investigate CAT-8015 interactions with red blood cells (RBCs) from pediatric ALL patients and ECs of excised human mesenteric arteries. We provide evidence that CAT-8015 directly interacts with RBCs, mediated by Pseudomonas toxin. We also show correlation between the electrical properties of the RBC membrane and RBC susceptibility to CAT-8015-induced lysis, which may have clinical implication. Finally, we provide evidence that CAT-8015 is directly cytototoxic to ECs of excised human mesenteric arteries. In conclusion, the human models we developed constitutes the first, and very important, step in understanding the origins of HUS/VLS in immunotoxin therapy and will allow further investigations of HUS/VLS pathogenesis.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Jeremy Metz
- College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Peter G. Petrov
- College of Engineering, Mathematics and Physical Sciences, Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil J. Smart
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Sarah Saunders
- Histopathology Department, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Bridget Knight
- National Institute for Health Research Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, United Kingdom
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Richard W. Titball
- College of Life and Environmental Sciences, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - C. Peter Winlove
- College of Engineering, Mathematics and Physical Sciences, Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
40
|
Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, Yuan CM, Haso W, Shern JF, Shah NN, Fry TJ. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:127-137. [PMID: 30581986 PMCID: PMC6300726 DOI: 10.1016/j.omto.2018.10.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Despite high remission rates following CAR-T cell therapy in B-ALL, relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may reduce the likelihood of antigen loss, thus improving sustained remission rates. A systematic approach to the generation of CAR constructs incorporating two target-binding domains led to several novel CD19/CD22 bivalent CAR constructs. Importantly, we demonstrate the challenges associated with the construction of a bivalent CAR format that preserves bifunctionality against both CD19 and CD22. Using the most active bivalent CAR constructs, we found similar transduction efficiency compared to that of either CD19 or CD22 single CARs alone. When expressed on human T cells, the optimized CD19/CD22 CAR construct induced comparable interferon γ and interleukin-2 in vitro compared to single CARs against dual-antigen-expressing as well as single-antigen-expressing cell lines. Finally, the T cells expressing CD19/CD22 CAR eradicated ALL cell line xenografts and patient-derived xenografts (PDX), including a PDX generated from a patient with CD19- relapse following CD19-directed CAR therapy. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce risk of antigen loss.
Collapse
Affiliation(s)
- Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sneha Ramakrishna
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sang Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas J Fountaine
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Anusha Ponduri
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Constance M Yuan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Waleed Haso
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry J Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
41
|
Cheung LC, Tickner J, Hughes AM, Skut P, Howlett M, Foley B, Oommen J, Wells JE, He B, Singh S, Chua GA, Ford J, Mullighan CG, Kotecha RS, Kees UR. New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment. Leukemia 2018; 32:2326-2338. [PMID: 29740160 PMCID: PMC6224400 DOI: 10.1038/s41375-018-0144-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Abstract
The microenvironments of leukemia and cancer are critical for multiple stages of malignancies, and they are an attractive therapeutic target. While skeletal abnormalities are commonly seen in children with acute lymphoblastic leukemia (ALL) prior to initiating osteotoxic therapy, little is known about the alterations to the bone marrow microenvironment during leukemogenesis. Therefore, in this study, we focused on the development of precursor-B cell ALL (pre-B ALL) in an immunocompetent BCR-ABL1+ model. Here we show that hematopoiesis was perturbed, B lymphopoiesis was impaired, collagen production was reduced, and the number of osteoblastic cells was decreased in the bone marrow microenvironment. As previously found in children with ALL, the leukemia-bearing mice exhibited severe bone loss during leukemogenesis. Leukemia cells produced high levels of receptor activator of nuclear factor κB ligand (RANKL), sufficient to cause osteoclast-mediated bone resorption. In vivo administration of zoledronic acid rescued leukemia-induced bone loss, reduced disease burden and prolonged survival in leukemia-bearing mice. Taken together, we provide evidence that targeting leukemia-induced bone loss is a therapeutic strategy for pre-B ALL.
Collapse
Affiliation(s)
- Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Anastasia M Hughes
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Patrycja Skut
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Meegan Howlett
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Bree Foley
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Joyce Oommen
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Julia E Wells
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Bo He
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Sajla Singh
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Jette Ford
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Ursula R Kees
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
42
|
Bassan R, Bourquin JP, DeAngelo DJ, Chiaretti S. New Approaches to the Management of Adult Acute Lymphoblastic Leukemia. J Clin Oncol 2018; 36:JCO2017773648. [PMID: 30240326 DOI: 10.1200/jco.2017.77.3648] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic hematopoietic cell transplantation, result in an overall survival of approximately 40%, a figure hardly comparable with the extraordinary 80% to 90% cure rate currently reported in children. When translated to the adult setting, modern pediatric-type regimens improve the survival to approximately 60% in young adults. The addition of tyrosine kinase inhibitors for patients with Philadelphia chromosome-positive disease and the measurement of minimal residual disease to guide risk stratification and postremission approaches has led to additional improvements in outcomes. Relapsed disease and treatment toxicity-sparing no patient but representing a major concern especially in the elderly-are the most critical current issues awaiting further therapeutic advancement. Recently, there has been considerable progress in understanding the disease biology, specifically the Philadelphia-like signature, as well as other high-risk subgroups. In addition, there are several new agents that will undoubtedly contribute to additional improvement in the current outcomes. The most promising agents are monoclonal antibodies, immunomodulators, and chimeric antigen receptor T cells, and, to a lesser extent, several new drugs targeting key molecular pathways involved in leukemic cell growth and proliferation. This review examines the evidence supporting the increasing role of the new therapeutic tools and treatment options in different disease subgroups, including frontline and relapsed or refractory disease. It is now possible to define the best individual approach on the basis of the emerging concepts of precision medicine.
Collapse
Affiliation(s)
- Renato Bassan
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Jean-Pierre Bourquin
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Daniel J DeAngelo
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| | - Sabina Chiaretti
- Renato Bassan, Ospedale dell'Angelo, Mestre-Venezia; Sabina Chiaretti, "Sapienza" University, Rome, Italy; Jean-Pierre Bourquin, University Children's Hospital, Zurich, Switzerland; and Daniel J. DeAngelo, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
43
|
Domain II of Pseudomonas Exotoxin Is Critical for Efficacy of Bolus Doses in a Xenograft Model of Acute Lymphoblastic Leukemia. Toxins (Basel) 2018; 10:toxins10050210. [PMID: 29883379 PMCID: PMC5983266 DOI: 10.3390/toxins10050210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Moxetumomab pasudotox is a fusion protein of a CD22-targeting antibody and Pseudomonas exotoxin. Minutes of exposure to Moxetumomab achieves similar cell killing than hours of exposure to a novel deimmunized variant against some acute lymphoblastic leukemia (ALL). Because blood levels fall quickly, Moxetumomab is more than 1000-fold more active than the deimmunized variant in vivo. We aimed to identify which part of Moxetumomab increases in vivo efficacy and generated five immunotoxins, tested time-dependent activity, and determined the efficacy in a KOPN-8 xenograft model. Full domain II shortened the time cells had to be exposed to die to only a few minutes for some ALL; deimmunized domain III consistently extended the time. Against KOPN-8, full domain II accelerated time to arrest protein synthesis by three-fold and tripled PARP-cleavage. In vivo efficacy was increased by more than 10-fold by domain II and increasing size, and therefore half-life enhanced efficacy two- to four-fold. In summary, in vivo efficacy is determined by the time cells have to be exposed to immunotoxin to die and serum half-life. Thus, domain II is most critical for activity against some ALL treated with bolus doses; however, immunotoxins lacking all but the furin-cleavage site of domain II may be advantageous when treating continuously.
Collapse
|
44
|
The Glycoscience of Immunity. Trends Immunol 2018; 39:523-535. [PMID: 29759949 DOI: 10.1016/j.it.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
Carbohydrates, or glycans, are as integral to biology as nucleic acids and proteins. In immunology, glycans are well known to drive diverse functions ranging from glycosaminoglycan-mediated chemokine presentation and selectin-dependent leukocyte trafficking to the discrimination of self and non-self through the recognition of sialic acids by Siglec (sialic acid-binding Ig-like lectin) receptors. In recent years, a number of key immunological discoveries are driving a renewed and burgeoning appreciation for the importance of glycans. In this review, we highlight these findings which collectively help to define and refine our knowledge of the function and impact of glycans within the immune response.
Collapse
|
45
|
Rossi C, Chrétien ML, Casasnovas RO. Antibody–Drug Conjugates for the Treatment of Hematological Malignancies: A Comprehensive Review. Target Oncol 2018; 13:287-308. [DOI: 10.1007/s11523-018-0558-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Abstract
Cancer immunotherapies, widely heralded as transformational for many adult cancer patients, are becoming viable options for selected subsets of pediatric cancer patients. Many therapies are currently being investigated, from immunomodulatory agents to adoptive cell therapy, bispecific T-cell engagers, oncolytic virotherapy, and checkpoint inhibition. One of the most exciting immunotherapies recently FDA approved is the use of CD19 chimeric antigen receptor T cells for pre-B-cell acute lymphoblastic leukemia. With this approval and others, immunotherapy for pediatric cancers is gaining traction. One of the caveats to many of these immunotherapies is the challenge of predictive biomarkers; determining which patients will respond to a given therapy is not yet possible. Much research is being focused on which biomarkers will be predictive and prognostic for these patients. Despite many benefits of immunotherapy, including less long-term side effects, some treatments are fraught with immediate side effects that range from mild to severe, although most are manageable. With few downsides and the potential for disease cures, immunotherapy in the pediatric population has the potential to move to the front-line of therapeutic options.
Collapse
Affiliation(s)
- Mary Frances Wedekind
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Nicholas L. Denton
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Chun-Yu Chen
- 0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| | - Timothy P. Cripe
- 0000 0001 2285 7943grid.261331.4Division of Pediatric Hematology/Oncology/Bone and Marrow Transplant, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Columbus, OH 43205 USA ,0000 0001 2285 7943grid.261331.4Center for Childhood Cancer and Blood Disorders, The Research Institute, Nationwide Children’s Hospital, The Ohio State University, 700 Children’s Drive, Research Bldg II, Columbus, OH 43205 USA
| |
Collapse
|