1
|
Alikarami F, Xie HM, Riedel SS, Goodrow HT, Barrett DR, Mahdavi L, Lenard A, Chen C, Yamauchi T, Danis E, Cao Z, Tran VL, Jung MM, Li Y, Huang H, Shi J, Tan K, Teachey DT, Bresnick EH, Neff TA, Bernt KM. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Blood 2025; 145:2179-2195. [PMID: 39841459 DOI: 10.1182/blood.2024025761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3-driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.
Collapse
MESH Headings
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Animals
- Mice
- Doxorubicin/pharmacology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2/metabolism
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hongbo M Xie
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Simone S Riedel
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haley T Goodrow
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Declan R Barrett
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Mahdavi
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexandra Lenard
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Experimental Hematology, State Key Laboratory, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Taylor Yamauchi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhendong Cao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Junwei Shi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T Teachey
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tobias A Neff
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathrin M Bernt
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Polaki US, Gilpin TE, Patil AT, Chiu E, Baker R, Liu P, Pavletich TS, Seifi M, Mañán-Mejías PM, Morrissey J, Port J, Welch Schwartz R, Ong IM, El-Rayes D, Khalifa MA, Hui P, Horner VL, Virumbrales-Muñoz M, Erickson BK, Barroilhet L, McGregor SM, Bresnick EH, Matson DR. Loss of GATA2 promotes invasion and predicts cancer recurrence and survival in uterine serous carcinoma. JCI Insight 2025; 10:e187073. [PMID: 40168074 DOI: 10.1172/jci.insight.187073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUNDA priori knowledge of recurrence risk in patients with nonmetastatic (International Federation of Gynecology and Obstetrics [FIGO] stage I) uterine serous carcinoma (USC) would enable a risk-stratified approach to the use of adjuvant chemotherapy. This would greatly reduce treatment-related morbidity and be predicted to improve survival.METHODSGATA2 expression was scored by IHC across a retrospective multiinstitutional cohort of 195 primary USCs. Associations between GATA2 levels and clinicopathologic metrics were evaluated using Student's t test, Fisher's exact test, Kaplan-Meier method, and Cox proportional hazard ratio. Invasion in patient-derived USC cells was assessed by Student's t test. RNA-Seq, anti-GATA2 ChIP-Seq, and confirmatory Western blotting enabled identification of GATA2 targets.RESULTSPatients with FIGO stage I GATA2hi USCs had 100% recurrence-free and 100% cancer-related survival, which was significantly better than patients with GATA2lo USCs. In patients for whom adjuvant chemotherapy was omitted, patients with GATA2hi USC had 100% recurrence-free 5-year survival compared with 60% recurrence-free survival in patients with GATA2lo USC. Depletion of GATA2 in patient-derived USC cells increased invasion in vitro.CONCLUSIONRoutine GATA2 IHC identifies 33% of patients with FIGO stage I USC who have a greatly reduced risk of posthysterectomy USC recurrence. Our results suggest that a GATA2-guided personalized medicine approach could be rapidly implemented in most hospital settings, would reduce treatment-related morbidity, and would likely improve outcomes in patients with USC.FUNDINGNIH grants R01 DK068634, P30 CA014520, S10 OD023526, K08 DK127244, T32 HL007899, the UW-Madison Department of Pathology and Laboratory Medicine, the UW-Madison Centennial Scholars Program, the Diane Lindstrom Foundation, the American Cancer Society, the V Foundation, The Hartwell Foundation, and the UMN Department of Obstetrics, Gynecology, and Women's Health.
Collapse
Affiliation(s)
| | | | | | - Emily Chiu
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Ruth Baker
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Morteza Seifi
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paula M Mañán-Mejías
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin USA
| | | | - Jenna Port
- Department of Pathology and Laboratory Medicine and
| | | | - Irene M Ong
- Department of Biostatistics and Medical Informatics and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dina El-Rayes
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahmoud A Khalifa
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vanessa L Horner
- Department of Pathology and Laboratory Medicine and
- Wisconsin State Laboratory of Hygiene, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - María Virumbrales-Muñoz
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomedical Engineering and
| | - Britt K Erickson
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin USA
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Minaeva M, Domingo J, Rentzsch P, Lappalainen T. Specifying cellular context of transcription factor regulons for exploring context-specific gene regulation programs. NAR Genom Bioinform 2025; 7:lqae178. [PMID: 39781510 PMCID: PMC11704787 DOI: 10.1093/nargab/lqae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and TF binding data, we generated regulons for 40 common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving TF knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable pipeline and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.
Collapse
Affiliation(s)
- Mariia Minaeva
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Júlia Domingo
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Philipp Rentzsch
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Tuuli Lappalainen
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| |
Collapse
|
4
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
5
|
Yu P, Xiao L, Hu K, Ling J, Chen Y, Liang R, Liu X, Zhang D, Liu Y, Weng T, Jiang H, Zhang J, Wang W. Comprehensive exploration of programmed cell death landscape in lung adenocarcinoma combining multi-omic analysis and experimental verification. Sci Rep 2025; 15:5364. [PMID: 39948103 PMCID: PMC11825851 DOI: 10.1038/s41598-025-87982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The mortality and therapeutic failure in lung adenocarcinoma (LUAD) are mainly resulted from the wide metastasis and chemotherapy resistance. Up to now, accurate and stable predictive prognostic indicator for revealing the progress and novel therapeutic strategies of LUAD is infrequent, nonetheless. Diversified programmed cell death (PCD) has been widely confirmed that participated in the occurrence and development of various malignant tumors, respectively. In this research, we integrated fourteen types of PCD, bulk multi-omic data from TCGA-LUAD and other cohorts in gene expression omnibus (GEO) and clinical LUAD patients to develop our analysis. Consequently, pivotal fourteen PCD genes, especially CAMP, CDK5R1, CTSW, DAPK2, GAB2, GAPDH, GATA2, HGF, MAPT, NAPSA, NUPR1, PIK3CG, PLA2G3, and SLC7A11, were utilized to establish the prognostic signature, namely cell death index (CDI). The validation in several external cohorts indicated that CDI can be regarded as a potential risk factor of LUAD patients. Combined with other common clinical information, a nomogram with potential predictive ability was constructed. Besides, according to the CDI signature, the tumor microenvironment (TME) and sensitivity to some potential chemotherapeutic drugs were further and deeply explored. Notably, verification and functional experiments further demonstrated the remarkable correlation between CDI and unfold protein response. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of LUAD patients.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruiqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinyu Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Yuzhen Liu
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Tongchun Weng
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Hongfa Jiang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuming Wang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China.
| |
Collapse
|
6
|
Arza-Apalategi S, Heuts BMH, Bergevoet SM, Meering R, Gilissen D, Jansen PWTC, Krippner-Heidenreich A, Valk PJM, Vermeulen M, Heidenreich O, Haferlach T, Jansen JH, Martens JHA, van der Reijden BA. HMX3 is a critical vulnerability in MECOM-negative KMT2A::MLLT3 acute myelomonocytic leukemia. Leukemia 2025; 39:371-380. [PMID: 39633068 DOI: 10.1038/s41375-024-02485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
KMT2A::MLLT3 acute myelomonocytic leukemia (AML) comes in two clinically and biologically different subtypes. One is characterized by inferior outcome, older age, and MECOM oncogene expression. The other is mainly observed in children and young adults, associates with better clinical outcome, but lacks MECOM. To identify cell fate determining transcription factors downstream of KMT2A::MLLT3, we applied a bioinformatic algorithm that integrates gene and enhancer expression from primary MECOM-positive and -negative KMT2A::MLLT3 AML samples. This identified MECOM to be most influential in the MECOM-positive group, while neuronal transcription factor HMX3 was most influential in the MECOM-negative group. In large AML cohorts, HMX3 expression associated with a unique gene expression profile, younger age (p < 0.002) and KMT2A-rearranged and KAT6A-CREBBP leukemia (p < 0.00001). HMX3 was not expressed in other major genetic risk groups and healthy blood cells. RNA-sequencing analyses following forced HMX3 expression in healthy CD34+ cells and its silencing in KMT2A::MLT3 cells showed that HMX3 drives cancer-associated E2F and MYC gene programs (p < 0.001). HMX3 expression in healthy CD34+ cells blocked monocytic but not granulocytic colony formation. Strikingly, HMX3 silencing in KMT2A::MLLT3 patient cells resulted in cell cycle arrest, monocytic differentiation and apoptosis. Thus, the neuronal transcription factor HMX3 is a leukemia-specific vulnerability in KMT2A::MLLT3 AML.
Collapse
Affiliation(s)
- Saioa Arza-Apalategi
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roos Meering
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | | | - Peter J M Valk
- Department Hematology, Erasmus MC, Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, The Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Largeaud L, Fregona V, Jamrog LA, Hamelle C, Dufrechou S, Prade N, Sellam E, Enfedaque P, Bayet M, Hébrard S, Bouttier M, Didier C, Gerby B, Delabesse E, Pasquet M, Broccardo C. GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome. Blood Cancer J 2025; 15:7. [PMID: 39885120 PMCID: PMC11782539 DOI: 10.1038/s41408-025-01213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
GATA2 germline mutations lead to a syndrome characterized by immunodeficiency, vascular disorders and myeloid malignancies. To elucidate how these mutations affect hematopoietic homeostasis, we created a knock-in mouse model expressing the recurrent Gata2 R396Q missense mutation. Employing molecular and functional approaches, we investigated the mutation's impact on hematopoiesis, revealing significant alterations in the hematopoietic stem and progenitor (HSPC) compartment in young age. These include increased LT-HSC numbers, reduced self-renewal potential, and impaired response to acute inflammatory stimuli. The mature HSPC compartment was primarily affected at the CMP sub-population level. In the mutant LT-HSC population, we identified an aberrant subpopulation strongly expressing CD150, resembling aging, but occurring prematurely. This population showed hyporesponsiveness, accumulated over time, and exhibited allele-specific expression (ASE) favoring the mutated Gata2 allele, also observed in GATA2 mutated patients. Our findings reveal the detrimental impact of a Gata2 recurrent missense mutation on the HSC compartment contributing to its functional decline. Defects in the CMP mature compartment, along with the inflammatory molecular signature, explain the loss of heterogeneity in HPC compartment observed in patients. Finally, our study provides a valuable model that recapitulates the ASE-related pathology observed in GATA2 deficiency, shedding light on the mechanisms contributing to the disease's natural progression.
Collapse
Affiliation(s)
- Laetitia Largeaud
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Vincent Fregona
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Laura A Jamrog
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Camille Hamelle
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Stéphanie Dufrechou
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Naïs Prade
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Esmaa Sellam
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Pauline Enfedaque
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Manon Bayet
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Sylvie Hébrard
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Mathieu Bouttier
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Christine Didier
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Bastien Gerby
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Eric Delabesse
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Marlène Pasquet
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France.
- Department of pediatric oncology, CHU Toulouse, 31059, Toulouse, France.
| | - Cyril Broccardo
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France.
- Université de Toulouse 3 Paul Sabatier, CREFRE-ANEXPLO, UMS006 INSERM, ENVT, 31037, Toulouse, France.
| |
Collapse
|
8
|
Liu YC, Eldomery MK, Maciaszek JL, Klco JM. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications. ANNUAL REVIEW OF PATHOLOGY 2025; 20:87-114. [PMID: 39357070 PMCID: PMC12048009 DOI: 10.1146/annurev-pathmechdis-111523-023420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
9
|
Zea-Verano AF, Fernandes-Pineda M. Second part. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:263-270. [PMID: 39836831 PMCID: PMC11896597 DOI: 10.7705/biomedica.7813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 10/02/2024] [Indexed: 01/23/2025]
Affiliation(s)
- Andrés F Zea-Verano
- Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, ColombiaUniversidad del ValleUniversidad del ValleCaliColombia
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USANational Institute of Allergy and Infectious DiseasesNational Institute of Allergy and Infectious DiseasesUSA
| | - Mónica Fernandes-Pineda
- Departamento de Medicina Interna, Universidad del Valle, Cali, ColombiaUniversidad del ValleUniversidad del ValleCaliColombia
| |
Collapse
|
10
|
Rukerd MRZ, Mirkamali H, Nakhaie M, Alizadeh SD. GATA2 deficiency and hemophagocytic lymphohistiocytosis (HLH): a systematic review of reported cases. BMC Infect Dis 2024; 24:1239. [PMID: 39497062 PMCID: PMC11536883 DOI: 10.1186/s12879-024-10145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
PURPOSE GATA2 deficiency is an autosomal dominant disease that manifests with a range of clinical symptoms, including increased susceptibility to viral, bacterial, and fungal infections. Furthermore, the increased susceptibility to infections in GATA2 deficiency can trigger hemophagocytic lymphohistiocytosis (HLH) in these patients. Our systematic review evaluates reported cases of GATA2 deficiency and HLH in the literature. METHODS A systematic review of case reports was conducted following PRISMA 2020 guidelines, encompassing studies retrieved from Ovid MEDLINE ALL, Embase via Ovid SP, Scopus, Web of Science, and Google Scholar from inception until June 14, 2024. This review included studies reporting patients diagnosed with GATA2 deficiency or having a documented history of the condition, who subsequently developed or were concurrently diagnosed with HLH. Various study types were considered, such as case reports, case series, letters to editors, original articles, correspondences, and commentaries, without any restrictions on language. RESULTS In our systematic review, 15 studies from 2016 to 2024 were analyzed, encompassing 23 patients with GATA2 deficiency and HLH. the mean (SD) age of patients was 23.48 (10.54) years, ranging from 7 to 57 years. These patients exhibited diverse genetic mutations and a spectrum of infections, particularly Mycobacterium avium (M. avium), Mycobacterium kansasii (M. kansasii), Epstein-Barr virus (EBV), cytomegalovirus (CMV), varicella-zoster virus (VZV), herpes simplex virus (HSV), and influenza A, often leading to HLH. Family histories of GATA2-deficient patients with HLH occasionally reveal confirmed GATA2 mutations or suspicious cases among first-degree relatives. Hematopoietic stem cell transplantation (HSCT) was performed in 8 patients with GATA2 deficiency and HLH. Among them, 6 patients survived post-therapy, while 2 patients died following HSCT. Currently, 1 patient is being considered for HSCT. The overall mortality rate among GATA2 deficiency patients who experienced HLH was 39.13%. CONCLUSIONS This systematic review highlights GATA2 deficiency's association with diverse infections triggering HLH, emphasizing early infection management to mitigate mortality risks. This comprehensive analysis contributes to scientific knowledge, offering important insights for clinicians and researchers in diagnosing and managing this rare condition.
Collapse
Affiliation(s)
- Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hanieh Mirkamali
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Danial Alizadeh
- Sina Trauma and Surgery Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
12
|
Zhuansun Y, He P, Du Y, Lin L, Chen R, Li J. High frequency of GATA2 variants in patients with pulmonary fungal disease without immunocompromised risk factors: a retrospective study. J Thorac Dis 2024; 16:5180-5189. [PMID: 39268106 PMCID: PMC11388249 DOI: 10.21037/jtd-24-583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/05/2024] [Indexed: 09/15/2024]
Abstract
Background The global incidence of pulmonary fungal diseases is on the rise. Individuals harboring underlying immunocompromised conditions such as human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), malignant tumors, or those who have undergone organ transplantation, among others, are particularly susceptible to fungal infections. However, in clinical practice, certain patients diagnosed with pulmonary fungal infections exhibit no discernible risk factors for immunosuppression. GATA2, a pivotal transcription factor governing hematopoiesis, is implicated in GATA2 deficiency, predisposing individuals to fungal infections. This study aims to scrutinize GATA2 variants in adult patients afflicted with pulmonary fungal infections devoid of recognized risk factors for immunosuppression. Methods A cohort of adult patients (aged 18-65 years old, n=22) diagnosed with pulmonary fungal diseases lacking underlying immunosuppression risk factors, treated at Sun Yat-sen Memorial Hospital from January 2016 to December 2021, underwent Sanger sequencing of the GATA2 gene. Results Among the 22 patients devoid of immunocompromised risk factors and diagnosed with pulmonary fungal diseases, 17 patients (77.3%) exhibited single nucleotide variants (SNVs) within the exons of the GATA2 gene. Notably, exon 3 variants were present in 7 cases (41.2%), exon 4 variants in 10 cases (58.8%), and exon 5 variants in 11 cases (64.7%), emerging as the most prevalent exonic variants within GATA2. Among the 17 patients harboring GATA2 SNVs, a total of 28 SNVs were identified. Of these, eight variants (NM_001145661.2:c.33G>A, NM_001145661.2:c.523C>T, NM_001145661.2:c.77A>G, NM_001145661.2:c.545C>T, NM_001145661.2:c.7G>A, NM_001145661.2:c.1406A>G, NM_001145661.2:c.977A>G, NM_001145661.2:c.742A>C) were identified as missense mutations with the potential to alter the structure and function of the GATA2 protein on the basis of multiple in silico predictive programs interpretation. One nonsense mutation (NM_001145661.2:c.664A>T) was classified as "likely pathogenic" according to 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Conclusions GATA2 variants are prevalent among patients afflicted with pulmonary fungal infections in the absence of traditional immunosuppressive risk factors. Further investigations are warranted to elucidate the impact of GATA2 variants on the expression and functionality of the GATA2 protein.
Collapse
Affiliation(s)
- Yongxun Zhuansun
- Department of Respirology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng He
- Department of Intensive Care Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumo Du
- Department of Respirology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Lin
- Department of Respirology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Chen
- Department of Respirology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianguo Li
- Department of Respirology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
14
|
Tang S, Cui X, Wang R, Li S, Li S, Huang X, Chen S. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Nat Commun 2024; 15:1629. [PMID: 38388573 PMCID: PMC10884038 DOI: 10.1038/s41467-024-46045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Single-cell chromatin accessibility sequencing (scCAS) has emerged as a valuable tool for interrogating and elucidating epigenomic heterogeneity and gene regulation. However, scCAS data inherently suffers from limitations such as high sparsity and dimensionality, which pose significant challenges for downstream analyses. Although several methods are proposed to enhance scCAS data, there are still challenges and limitations that hinder the effectiveness of these methods. Here, we propose scCASE, a scCAS data enhancement method based on non-negative matrix factorization which incorporates an iteratively updating cell-to-cell similarity matrix. Through comprehensive experiments on multiple datasets, we demonstrate the advantages of scCASE over existing methods for scCAS data enhancement. The interpretable cell type-specific peaks identified by scCASE can provide valuable biological insights into cell subpopulations. Moreover, to leverage the large compendia of available omics data as a reference, we further expand scCASE to scCASER, which enables the incorporation of external reference data to improve enhancement performance.
Collapse
Affiliation(s)
- Songming Tang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Xuejian Cui
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Rongxiang Wang
- Department of Computer Science, University of Virginia, Charlottesville, VA, 22903, USA
| | - Sijie Li
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China
| | - Siyu Li
- School of Statistics and Data Science, Nankai University, Tianjin, 300071, China
| | - Xin Huang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Shengquan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Minaeva M, Domingo J, Rentzsch P, Lappalainen T. Specifying cellular context of transcription factor regulons for exploring context-specific gene regulation programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573765. [PMID: 38260658 PMCID: PMC10802353 DOI: 10.1101/2023.12.31.573765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the role of transcription and transcription factors in cellular identity and disease, such as cancer and autoimmunity, is essential. However, comprehensive data resources for cell line-specific transcription factor-to-target gene annotations are currently limited. To address this, we developed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and transcription factor binding data, we generated regulons for four common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving transcription factor knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable tool and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.
Collapse
Affiliation(s)
- Mariia Minaeva
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, 17165, Sweden
| | | | - Philipp Rentzsch
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, 17165, Sweden
| | - Tuuli Lappalainen
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Solna, 17165, Sweden
- New York Genome Center, New York, NY 10013, USA
| |
Collapse
|
16
|
Soukup AA, Bresnick EH. Gata2 noncoding genetic variation as a determinant of hematopoietic stem/progenitor cell mobilization efficiency. Blood Adv 2023; 7:7564-7575. [PMID: 37871305 PMCID: PMC10761364 DOI: 10.1182/bloodadvances.2023011003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
17
|
West RR, Bauer TR, Tuschong LM, Embree LJ, Calvo KR, Tillo D, Davis J, Holland SM, Hickstein DD. A novel GATA2 distal enhancer mutation results in MonoMAC syndrome in 2 second cousins. Blood Adv 2023; 7:6351-6363. [PMID: 37595058 PMCID: PMC10587712 DOI: 10.1182/bloodadvances.2023010458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Mutations in the transcription factor GATA2 can cause MonoMAC syndrome, a GATA2 deficiency disease characterized by several findings, including disseminated nontuberculous mycobacterial infections, severe deficiencies of monocytes, natural killer cells, and B lymphocytes, and myelodysplastic syndrome. GATA2 mutations are found in ∼90% of patients with a GATA2 deficiency phenotype and are largely missense mutations in the conserved second zinc-finger domain. Mutations in an intron 5 regulatory enhancer element are also well described in GATA2 deficiency. Here, we present a multigeneration kindred with the clinical features of GATA2 deficiency but lacking an apparent GATA2 mutation. Whole genome sequencing revealed a unique adenine-to-thymine variant in the GATA2 -110 enhancer 116,855 bp upstream of the GATA2 ATG start site. The mutation creates a new E-box consensus in position with an existing GATA-box to generate a new hematopoietic regulatory composite element. The mutation segregates with the disease in several generations of the family. Cell type-specific allelic imbalance of GATA2 expression was observed in the bone marrow of a patient with higher expression from the mutant-linked allele. Allele-specific overexpression of GATA2 was observed in CRISPR/Cas9-modified HL-60 cells and in luciferase assays with the enhancer mutation. This study demonstrates overexpression of GATA2 resulting from a single nucleotide change in an upstream enhancer element in patients with MonoMAC syndrome. Patients in this study were enrolled in the National Institute of Allergy and Infectious Diseases clinical trial and the National Cancer Institute clinical trial (both trials were registered at www.clinicaltrials.gov as #NCT01905826 and #NCT01861106, respectively).
Collapse
Affiliation(s)
- Robert R. West
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas R. Bauer
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura M. Tuschong
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. Embree
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Desiree Tillo
- Genomics Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency–Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Chin HL, Lam JCM, Christopher D, Michelle PL, Junrong BY. Challenges associated with the identification of germline variants on myeloid malignancy genomic profiling-a Singaporean experience. Front Oncol 2023; 13:1182639. [PMID: 37860182 PMCID: PMC10582742 DOI: 10.3389/fonc.2023.1182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Genomic profiling to identify myeloid-malignancy-related gene mutations is routinely performed for patients with suspected or definite myeloid malignancies. The most common specimen types in our experience are peripheral blood and bone marrow aspirates. Although primarily intended to identify somatic mutations, not infrequently, potentially clinically significant germline variants are also identified. Confirmation of the germline status of these variants is typically performed by hair follicle or skin fibroblast testing. If the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene known to be associated with a disease relevant to the patient's phenotype (for example, the identification of a DDX41 pathogenic variant in an individual with acute myeloid leukemia), the management algorithm is typically quite straightforward. Challenging situations may occur such as when the germline variant is classified as a pathogenic or likely pathogenic variant and occurs in a gene not known to be associated with the patient's phenotype/presenting complaint. We have encountered several such challenging cases in which potentially clinically significant germline variants were identified on the initial genomic profiling of peripheral blood or bone marrow aspirate. In this article, we present these cases and discuss the genetic counseling and management approaches.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Khoo Teck Puat National University Children's Medical Institute, Department of Paediatrics, National University Hospital, Singapore, Singapore
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Joyce Ching Mei Lam
- Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Dheepa Christopher
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Poon Limei Michelle
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| | - Benedict Yan Junrong
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
19
|
Langston RG, Pinckard-Dover H, Guzman G, Wardell CP, Gokden M, Morris TW, Day JD, Rodriguez A. Intracranial hematolymphoid malignancies: A case series with molecular characterization. Clin Neurol Neurosurg 2023; 233:107928. [PMID: 37573681 DOI: 10.1016/j.clineuro.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Central nervous system (CNS) manifestations of hematologic malignancies are uncommon and often have a poor prognosis. As hematologic neoplasms are typically chemotherapy- and radiotherapy-sensitive, surgical resection is usually not indicated; thus, opportunities for in-depth characterization of CNS hematologic tumors are limited. Here, we report four cases of rare intracranial hematologic tumors requiring surgical intervention, allowing for histopathologic and genomic characterization. METHODS The clinical course, genetic perturbations, and histopathological features are described for a case of 1) primary marginal zone B-cell lymphoma of the dura as well as cases of brain metastases of 2) cutaneous T-cell lymphoma, 3) acute myeloid leukemia/myeloid sarcoma, and 4) multiple myeloma. Targeted DNA sequencing, fluorescence in situ hybridization, cytogenetic analysis, flow cytometry and immunohistochemical staining were used to assess the lesions. RESULT Molecular and histopathological characterizations of four unusual presentations of hematolymphoid diseases involving the CNS are presented. Genetic abnormalities were identified in each lesion, including chromosomal aberrations and single nucleotide variants resulting in missense or nonsense mutations in oncogenes. CONCLUSIONS Our case series provides insight into unique pathological phenotypes of hematologic neoplasms with atypical CNS involvement. We offer targets for future studies by identifying potentially pathogenic genetic variants in these lesions, as the full implications of the novel molecular abnormalities described remain unclear.
Collapse
Affiliation(s)
- Rebekah G Langston
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Heather Pinckard-Dover
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T W Morris
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J D Day
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
20
|
Huang X, Wu B, Wu D, Huang X, Shen M. Case Report: Missing zinc finger domains: hemophagocytic lymphohistiocytosis in a GATA2 deficiency patient triggered by non-tuberculous mycobacteriosis. Front Immunol 2023; 14:1191757. [PMID: 37680631 PMCID: PMC10482092 DOI: 10.3389/fimmu.2023.1191757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Haploinsufficiency of GATA2, also known as GATA2 deficiency, leads to a wide spectrum of clinical manifestations. Here we described another 28-year-old man with a GATA2 variant who also suffered from hemophagocytic lymphohistiocytosis(HLH), who was finally diagnosed with HLH triggered by Mycobacterium avium bloodstream infection due to primary immunodeficiency. We reviewed GATA2 deficiency patients with HLH and found that GATA2 variants causing loss of zinc finger domains were associated with HLH, and erythema nodosa might be an accompanying symptom.
Collapse
Affiliation(s)
- Xin Huang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Bingxuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaoming Huang
- Department of General Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Min Shen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Wang S, Tan S, Chen F, An Y. Identification of immune-related biomarkers co-occurring in acute ischemic stroke and acute myocardial infarction. Front Neurol 2023; 14:1207795. [PMID: 37662030 PMCID: PMC10469875 DOI: 10.3389/fneur.2023.1207795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Background Acute ischemic stroke (AIS) and acute myocardial infarction (AMI) share several features on multiple levels. These two events may occur in conjunction or in rapid succession, and the occurrence of one event may increase the risk of the other. Owing to their similar pathophysiologies, we aimed to identify immune-related biomarkers common to AIS and AMI as potential therapeutic targets. Methods We identified differentially expressed genes (DEGs) between the AIS and control groups, as well as AMI and control groups using microarray data (GSE16561 and GSE123342). A weighted gene co-expression network analysis (WGCNA) approach was used to identify hub genes associated with AIS and/or AMI progression. The intersection of the four gene sets identified key genes, which were subjected to functional enrichment and protein-protein interaction (PPI) network analyses. We confirmed the expression levels of hub genes using two sets of gene expression profiles (GSE58294 and GSE66360), and the ability of the genes to distinguish patients with AIS and/or AMI from control patients was assessed by calculating the receiver operating characteristic values. Finally, the investigation of transcription factor (TF)-, miRNA-, and drug-gene interactions led to the discovery of therapeutic candidates. Results We identified 477 and 440 DEGs between the AIS and control groups and between the AMI and control groups, respectively. Using WGCNA, 2,776 and 2,811 genes in the key modules were identified for AIS and AMI, respectively. Sixty key genes were obtained from the intersection of the four gene sets, which were used to identify the 10 hub genes with the highest connection scores through PPI network analysis. Functional enrichment analysis revealed that the key genes were primarily involved in immunity-related processes. Finally, the upregulation of five hub genes was confirmed using two other datasets, and immune infiltration analysis revealed their correlation with certain immune cells. Regulatory network analyses indicated that GATA2 and hsa-mir-27a-3p might be important regulators of these genes. Conclusion Using comprehensive bioinformatics analyses, we identified five immune-related biomarkers that significantly contributed to the pathophysiological mechanisms of both AIS and AMI. These biomarkers can be used to monitor and prevent AIS after AMI, or vice versa.
Collapse
Affiliation(s)
- Shan Wang
- Emergency Station, Dougezhuang Community Health Service Center, Beijing, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangni Chen
- Department of Nuclear Medicine, The Fifth Medical Center of the General Hospital of the People's Liberation Army, Beijing, China
| | - Yihua An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Reinig EF, Rubinstein JD, Patil AT, Schussman AL, Horner VL, Kanagal-Shamanna R, Churpek JE, Matson DR. Needle in a haystack or elephant in the room? Identifying germline predisposition syndromes in the setting of a new myeloid malignancy diagnosis. Leukemia 2023; 37:1589-1599. [PMID: 37393344 PMCID: PMC10529926 DOI: 10.1038/s41375-023-01955-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Myeloid malignancies associated with germline predisposition syndromes account for up to 10% of myeloid neoplasms. They are classified into three categories by the proposed 5th Edition of the World Health Organization Classification of Hematolymphoid Tumors: (1) neoplasms with germline predisposition without a pre-existing platelet disorder or organ dysfunction, (2) neoplasms with germline predisposition and pre-existing platelet disorder, or (3) neoplasms with germline predisposition and potential organ dysfunction. Recognizing these entities is critical because patients and affected family members benefit from interfacing with hematologists who specialize in these disorders and can facilitate tailored treatment strategies. However, identification of these syndromes in routine pathology practice is often challenging, as characteristic findings associated with these diagnoses at baseline are frequently absent, nonspecific, or impossible to evaluate in the setting of a myeloid malignancy. Here we review the formally classified germline predisposition syndromes associated with myeloid malignancies and summarize practical recommendations for pathologists evaluating a new myeloid malignancy diagnosis. Our intent is to empower clinicians to better screen for germline disorders in this common clinical setting. Recognizing when to suspect a germline predisposition syndrome, pursue additional ancillary testing, and ultimately recommend referral to a cancer predisposition clinic or hematology specialist, will ensure optimal patient care and expedite research to improve outcomes for these individuals.
Collapse
Affiliation(s)
- Erica F Reinig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Apoorva T Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda L Schussman
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Vanessa L Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jane E Churpek
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Blood Cancer Research Institute, Madison, WI, USA.
| |
Collapse
|
23
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
24
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
25
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
26
|
Santiago M, Liquori A, Such E, Zúñiga Á, Cervera J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers (Basel) 2023; 15:cancers15051590. [PMID: 36900380 PMCID: PMC10000430 DOI: 10.3390/cancers15051590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary myeloid malignancy syndromes (HMMSs) are rare but are becoming increasingly significant in clinical practice. One of the most well-known syndromes within this group is GATA2 deficiency. The GATA2 gene encodes a zinc finger transcription factor essential for normal hematopoiesis. Insufficient expression and function of this gene as a result of germinal mutations underlie distinct clinical presentations, including childhood myelodysplastic syndrome and acute myeloid leukemia, in which the acquisition of additional molecular somatic abnormalities can lead to variable outcomes. The only curative treatment for this syndrome is allogeneic hematopoietic stem cell transplantation, which should be performed before irreversible organ damage happens. In this review, we will examine the structural characteristics of the GATA2 gene, its physiological and pathological functions, how GATA2 genetic mutations contribute to myeloid neoplasms, and other potential clinical manifestations. Finally, we will provide an overview of current therapeutic options, including recent transplantation strategies.
Collapse
Affiliation(s)
- Marta Santiago
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Alessandro Liquori
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| | - Esperanza Such
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ángel Zúñiga
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| | - José Cervera
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain; (M.S.); (E.S.); (J.C.)
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Genetics Unit, Hospital La Fe, 46026 Valencia, Spain;
| |
Collapse
|
27
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
28
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Atluri H, Gerstein YS, DiNardo CD. Approach Toward Germline Predisposition Syndromes in Patients with Hematologic Malignancies. Curr Hematol Malig Rep 2022; 17:275-285. [PMID: 36279069 DOI: 10.1007/s11899-022-00684-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Hematologic malignancies were previously thought to be primarily sporadic cancers without germline predispositions. However, over the last two decades, with the widespread use of next generation sequencing (NGS), there have been several genes have been identified that carry a risk of inheriting hematologic malignancies. Identification of individuals with hereditary hematologic malignancies (HHM) involves a high index of suspicion and careful attention to family history, clinical features, and variant allele frequency on somatic NGS panels. RECENT FINDINGS Over the last several years, many genetic predisposition syndromes have been recognized to have unique features with both hematologic and non-hematologic co-morbidities. Multidisciplinary evaluation, including genetic counseling, is critical to optimizing diagnostic testing of individuals and at-risk family members. Prompt recognition of affected patients is imperative not only for personalized surveillance strategies but also for proper donor selection for those undergoing stem cell transplantation to avoid familial donors who also may share the same germline mutation. Herein, we describe our approach to recognizing patients suspected to carry a germline predisposition to hematologic malignancies and evaluation within a hereditary hematologic malignancies clinic (HHMC).
Collapse
Affiliation(s)
- Himachandana Atluri
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Kotmayer L, Romero‐Moya D, Marin‐Bejar O, Kozyra E, Català A, Bigas A, Wlodarski MW, Bödör C, Giorgetti A. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol 2022; 199:482-495. [PMID: 35753998 PMCID: PMC9796058 DOI: 10.1111/bjh.18330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
The importance of predisposition to leukaemia in clinical practice is being increasingly recognized. This is emphasized by the establishment of a novel WHO disease category in 2016 called "myeloid neoplasms with germline predisposition". A major syndrome within this group is GATA2 deficiency, a heterogeneous immunodeficiency syndrome with a very high lifetime risk to develop myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). GATA2 deficiency has been identified as the most common hereditary cause of MDS in adolescents with monosomy 7. Allogenic haematopoietic stem cell transplantation is the only curative option; however, chances of survival decrease with progression of immunodeficiency and MDS evolution. Penetrance and expressivity within families carrying GATA2 mutations is often variable, suggesting that co-operating extrinsic events are required to trigger the disease. Predictive tools are lacking, and intrafamilial heterogeneity is poorly understood; hence there is a clear unmet medical need. On behalf of the ERAPerMed GATA2 HuMo consortium, in this review we describe the genetic, clinical, and biological aspects of familial GATA2-related MDS, highlighting the importance of developing robust disease preclinical models to improve early detection and clinical decision-making of GATA2 carriers.
Collapse
Affiliation(s)
- Lili Kotmayer
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Damia Romero‐Moya
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Oskar Marin‐Bejar
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Emilia Kozyra
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Albert Català
- Department of Hematology and OncologyInstitut de Recerca Sant Joan de DéuHospital Sant Joan de DeuBarcelonaSpain,Biomedical Network Research Centre on Rare DiseasesInstituto de Salud Carlos IIIMadridSpain
| | - Anna Bigas
- Cancer Research ProgramInstitut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Hospital del MarBarcelonaSpain,Josep Carreras Research Institute (IJC), BadalonaBarcelonaSpain
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany,Department of HematologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Csaba Bödör
- HCEMM‐SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Alessandra Giorgetti
- Regenerative Medicine ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain,Fondazione Pisana Per la Scienza ONLUS (FPS)San Giuliano TermeItaly,Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health SciencesBarcelona UniversityBarcelonaSpain
| |
Collapse
|
31
|
Perrard N, Pokeerbux MR, Quesnel B, Duployez N, Fenwarth L, Preudhomme C, Lefèvre G, Baillet C, Launay D, Terriou L. [GATA2 gene mutations: 3 cases]. Rev Med Interne 2022; 43:677-682. [PMID: 36041908 DOI: 10.1016/j.revmed.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Heterozygous germline mutations of GATA2 gene (guanine-adenine-thymine-adenine binding protein 2) are hereditary mutations that can be pathogenic, sometimes occurring sporadically, responsible for a florid clinical-biological picture, sometimes serious and quickly leading to the death. CASE REPORTS We reported two women and one man with germline mutations in the GATA2 gene. The first patient, aged 19, initially presented with monocytopenia and chronic lymphedema of the four limbs, suggestive of Emberger syndrome. The second patient, 28-years-old, presented with a disseminated atypical mycobacterium (Mycobacterium kansasii) infection, raising suspicion of an immune deficiency such as MonoMAC syndrome (deficiency syndrome of dendritic cells, monocytes, B lymphocytes and NK cells). The last patient, 30-years-old, presented with pancytopenia, leading to the diagnosis of a family form of myelodysplastic syndromes and acute myeloid leukemia characterized by a mutation of the GATA2 gene. CONCLUSIONS Each case illustrates a typical clinical presentation of GATA2 deficiency, although the evolution of these syndromes ultimately reveals a complex, heterogeneous and intricate picture of hematological, dermatological, infectious, pulmonary, ENT or oncological symptoms. Mutations in the GATA2 gene remain a diagnostic and therapeutic challenge for the internist, and require multidisciplinary management given the florid picture that can be of interest to all specialties. The clinical spectrum of these GATA2 mutations as well as the latest management recommendations from the recent litterature and the "GATA2 club" are described in this article.
Collapse
Affiliation(s)
- N Perrard
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France.
| | - M R Pokeerbux
- Service de médecine, clinique Sainte-Clotilde, 97400 Saint-Denis, Réunion
| | - B Quesnel
- Service des maladies du sang, CHU de Lille, Lille, France; U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France
| | - N Duployez
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - L Fenwarth
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - C Preudhomme
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - G Lefèvre
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France; Pôle de biologie-pathologie-génétique - institut d'immunologie, CHU de Lille, Lille, France
| | - C Baillet
- Médecine nucléaire et imagerie fonctionnelle, CHU de Lille, Lille, France
| | - D Launay
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France
| | - L Terriou
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France
| |
Collapse
|
32
|
Fabozzi F, Mastronuzzi A, Ceglie G, Masetti R, Leardini D. GATA 2 Deficiency: Focus on Immune System Impairment. Front Immunol 2022; 13:865773. [PMID: 35769478 PMCID: PMC9234111 DOI: 10.3389/fimmu.2022.865773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
GATA2 deficiency is a disease with a broad spectrum of clinical presentation, ranging from lymphedema, deafness, pulmonary dysfunction to miscarriage and urogenital anomalies, but it is mainly recognized as an immune system and bone marrow disorder. It is caused by various heterozygous mutations in the GATA2 gene, encoding for a zinc finger transcription factor with a key role for the development and maintenance of a pool of hematopoietic stem cells; notably, most of these mutations arise de novo. Patients carrying a mutated allele usually develop a loss of some cell populations, such as B-cell, dendritic cell, natural killer cell, and monocytes, and are predisposed to disseminated human papilloma virus and mycobacterial infections. Also, these patients have a predisposition to myeloid neoplasms, including myelodysplastic syndromes, myeloproliferative neoplasms, chronic myelomonocytic leukaemia. The age of symptoms onset can vary greatly even also within the same family, ranging from early childhood to late adulthood; incidence increases by age and most frequently clinical presentation is between the second and third decade of life. Currently, haematopoietic stem cell transplantation represents the only curative treatment, restoring both the hematopoietic and immune system function.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatrics, Università degli Studi di Roma Tor Vergata, Rome, Italy
- *Correspondence: Francesco Fabozzi,
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatrics, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Li L, Kim JH, Lu W, Williams DM, Kim J, Cope L, Rampal RK, Koche RP, Xian L, Luo LZ, Vasiljevic M, Matson DR, Zhao ZJ, Rogers O, Stubbs MC, Reddy K, Romero AR, Psaila B, Spivak JL, Moliterno AR, Resar LMS. HMGA1 chromatin regulators induce transcriptional networks involved in GATA2 and proliferation during MPN progression. Blood 2022; 139:2797-2815. [PMID: 35286385 PMCID: PMC9074401 DOI: 10.1182/blood.2021013925] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.
Collapse
Affiliation(s)
- Liping Li
- Division of Hematology, Department of Medicine, and
| | | | - Wenyan Lu
- Division of Hematology, Department of Medicine, and
| | | | - Joseph Kim
- Division of Hematology, Department of Medicine, and
| | - Leslie Cope
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Raajit K Rampal
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Institute, New York, NY
| | - Richard P Koche
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Institute, New York, NY
| | | | - Li Z Luo
- Division of Hematology, Department of Medicine, and
| | | | - Daniel R Matson
- Blood Cancer Research Institute, Department of Cell and Regenerative Biology, UW Carbone Cancer Center, University of Wisconsin School of Medicine, Madison, WI
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Karen Reddy
- Department of Biologic Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Antonio-Rodriguez Romero
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institutes of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; and
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institutes of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; and
| | - Jerry L Spivak
- Division of Hematology, Department of Medicine, and
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Linda M S Resar
- Division of Hematology, Department of Medicine, and
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Cellular and Molecular Medicine Graduate Program and
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Johnson KD, Soukup AA, Bresnick EH. GATA2 deficiency elevates interferon regulatory factor-8 to subvert a progenitor cell differentiation program. Blood Adv 2022; 6:1464-1473. [PMID: 35008108 PMCID: PMC8905696 DOI: 10.1182/bloodadvances.2021006182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.
Collapse
Affiliation(s)
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
35
|
Mendes-de-Almeida DP, Andrade FG, dos Santos-Bueno FV, Saraiva Freitas DF, Soares-Lima SC, Zancopé-Oliveira RM, Pombo-de-Oliveira MS. GATA2 variants in patients with non-tuberculous mycobacterial or fungal infections without known immunodeficiencies. Hematol Transfus Cell Ther 2022:S2531-1379(22)00035-9. [DOI: 10.1016/j.htct.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022] Open
|
36
|
West RR, Calvo KR, Embree LJ, Wang W, Tuschong LM, Bauer TR, Tillo D, Lack J, Droll S, Hsu AP, Holland SM, Hickstein DD. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv 2022; 6:793-807. [PMID: 34529785 PMCID: PMC8945308 DOI: 10.1182/bloodadvances.2021005065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Patients with GATA2 deficiencyharbor de novo or inherited germline mutations in the GATA2 transcription factor gene, predisposing them to myeloid malignancies. There is considerable variation in disease progression, even among family members with the same mutation in GATA2. We investigated somatic mutations in 106 patients with GATA2 deficiency to identify acquired mutations that are associated with myeloid malignancies. Myelodysplastic syndrome (MDS) was the most common diagnosis (∼44%), followed by GATA2 bone marrow immunodeficiency disorder (G2BMID; ∼37%). Thirteen percent of the cohort had GATA2 mutations but displayed no disease manifestations. There were no correlations between age or sex with disease progression or survival. Cytogenetic analyses showed a high incidence of abnormalities (∼43%), notably trisomy 8 (∼23%) and monosomy 7 (∼12%), but the changes did not correlate with lower survival. Somatic mutations in ASXL1 and STAG2 were detected in ∼25% of patients, although the mutations were rarely concomitant. Mutations in DNMT3A were found in ∼10% of patients. These somatic mutations were found similarly in G2BMID and MDS, suggesting clonal hematopoiesis in early stages of disease, before the onset of MDS. ASXL1 mutations conferred a lower survival probability and were more prevalent in female patients. STAG2 mutations also conferred a lower survival probability, but did not show a statistically significant sex bias. There was a conspicuous absence of many commonly mutated genes associated with myeloid malignancies, including TET2, IDH1/2, and the splicing factor genes. Notably, somatic mutations in chromatin-related genes and cohesin genes characterized disease progression in GATA2 deficiency.
Collapse
Affiliation(s)
- Robert R. West
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | | | - Lisa J. Embree
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Weixin Wang
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Laura M. Tuschong
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Thomas R. Bauer
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| | - Desiree Tillo
- Genomics Core, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Justin Lack
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Stephenie Droll
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | - Dennis D. Hickstein
- Immune Deficiency-Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda MD
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Myeloid diseases are often characterized by a disturbed regulation of myeloid cell proliferation, survival, and maturation. This may either result in a severe paucity of functional neutrophils (neutropenia), an excess production of mature cells (myeloproliferative disorders) or in clonal expansions of dysplastic or immature myeloid cells (myelodysplasia and acute myeloid leukemia). Although these conditions can be regarded as separate entities, caused by the accumulation of distinct sets of somatic gene mutations, it becomes increasingly clear that they may also evolve as the prime consequence of a congenital defect resulting in severe neutropenia. Prominent examples of such conditions include the genetically heterogeneous forms of severe congenital neutropenia (SCN) and Shwachman-Diamond Syndrome. CSF3 treatment is a successful therapy to alleviate neutropenia in the majority of these patients but does not cure the disease nor does it prevent malignant transformation. Allogeneic stem cell transplantation is currently the only therapeutic option to cure SCN, but is relatively cumbersome, e.g., hampered by treatment-related mortality and donor availability. Hence, there is a need for new therapeutic approaches. RECENT FINDINGS Developments in disease modeling, amongst others based on induced pluripotent stem cell and CRISPR/Cas9 based gene-editing technologies, have created new insights in disease biology and possibilities for treatment. In addition, they are fueling expectations for advanced disease monitoring to prevent malignant transformation. SUMMARY This review highlights the recent progress made in SCN disease modeling and discusses the challenges that are still ahead of us to gain a better understanding of the biological heterogeneity of the disease and its consequences for patient care.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Belohlavkova P, Hrochova K, Fatorova I, Zak P. MonoMAC syndrome with GATA2 novel mutation: A case report. Leuk Res Rep 2022; 18:100346. [PMID: 36119727 PMCID: PMC9472051 DOI: 10.1016/j.lrr.2022.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
GATA2 deficiency is a grouping of several disorders caused by common defect in GATA2 genes. Age at disease onset ranges from early childhood to late adulthood, and clinical presentations range from asymptomatic to life-threatening infections, leukemia, and respiratory failure. GATA2 mutations were identified as a significant MDS/AML genetic predisposition.
GATA2 deficiency was first identified in 2011 and have been reported over 500 individuals with GATA2 mutations. The onset of symptoms ranges from early childhood to late adulthood but very often the diagnosis is made between adolescence and early adulthood. These patients can be relatively asymptomatic or have life threatening diseaseas (myelodysplastic syndrome, acute leukemia). We describe case of 30-years old women with GATA2 novel mutation who present by primary lymphedema, myelodysplastic changes in bone marrow, monocytopenia and history of several recurrent infections (bacterial, mycobacterial). The case illustrates the diagnostic difficulties in identifying GATA2 deficiencies.
Collapse
Affiliation(s)
- Petra Belohlavkova
- 4th Department of Internal Medicine – Haematology, Charles University Hospital Hradec Kralove, Czech Republic
- Corresponding author.
| | - Katerina Hrochova
- Institute of Clinical Biochemistry and Diagnostics, Charles University Hospital Hradec Kralove, Czech Republic
| | - Ilona Fatorova
- 4th Department of Internal Medicine – Haematology, Charles University Hospital Hradec Kralove, Czech Republic
| | - Pavel Zak
- 4th Department of Internal Medicine – Haematology, Charles University Hospital Hradec Kralove, Czech Republic
| |
Collapse
|
39
|
Jørgensen SF, Buechner J, Myhre AE, Galteland E, Spetalen S, Kulseth MA, Sorte HS, Holla ØL, Lundman E, Alme C, Heier I, Flægstad T, Fløisand Y, Benneche A, Fevang B, Aukrust P, Stray-Pedersen A, Gedde-Dahl T, Nordøy I. A Nationwide Study of GATA2 Deficiency in Norway-the Majority of Patients Have Undergone Allo-HSCT. J Clin Immunol 2021; 42:404-420. [PMID: 34893945 PMCID: PMC8664000 DOI: 10.1007/s10875-021-01189-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023]
Abstract
Purpose GATA2 deficiency is a rare primary immunodeficiency that has become increasingly recognized due to improved molecular diagnostics and clinical awareness. The only cure for GATA2 deficiency is allogeneic hematopoietic stem cell transplantation (allo-HSCT). The inconsistency of genotype–phenotype correlations makes the decision regarding “who and when” to transplant challenging. Despite considerable morbidity and mortality, the reported proportion of patients with GATA2 deficiency that has undergone allo-HSCT is low (~ 35%). The purpose of this study was to explore if detailed clinical, genetic, and bone marrow characteristics could predict end-point outcome, i.e., death and allo-HSCT. Methods All medical genetics departments in Norway were contacted to identify GATA2 deficient individuals. Clinical information, genetic variants, treatment, and outcome were subsequently retrieved from the patients’ medical records. Results Between 2013 and 2020, we identified 10 index cases or probands, four additional symptomatic patients, and no asymptomatic patients with germline GATA2 variants. These patients had a diverse clinical phenotype dominated by cytopenia (13/14), myeloid neoplasia (10/14), warts (8/14), and hearing loss (7/14). No valid genotype–phenotype correlations were found in our data set, and the phenotypes varied also within families. We found that 11/14 patients (79%), with known GATA2 deficiency, had already undergone allo-HSCT. In addition, one patient is awaiting allo-HSCT. The indications to perform allo-HSCT were myeloid neoplasia, disseminated viral infection, severe obliterating bronchiolitis, and/or HPV-associated in situ carcinoma. Two patients died, 8 months and 7 years after allo-HSCT, respectively. Conclusion Our main conclusion is that the majority of patients with symptomatic GATA2 deficiency will need allo-HSCT, and a close surveillance of these patients is important to find the “optimal window” for allo-HSCT. We advocate a more offensive approach to allo-HSCT than previously described. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01189-y.
Collapse
Affiliation(s)
- Silje F Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway. .,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Jochen Buechner
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders E Myhre
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Eivind Galteland
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Hanne S Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Charlotte Alme
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Heier
- Department of Paediatric Haematology and Oncology, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Trond Flægstad
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Yngvar Fløisand
- Department of Haematology, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.,Centre for Cancer Cell Reprogramming, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.,Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Nordøy
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
40
|
Soukup AA, Matson DR, Liu P, Johnson KD, Bresnick EH. Conditionally pathogenic genetic variants of a hematopoietic disease-suppressing enhancer. SCIENCE ADVANCES 2021; 7:eabk3521. [PMID: 34890222 PMCID: PMC8664263 DOI: 10.1126/sciadv.abk3521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/22/2021] [Indexed: 05/11/2023]
Abstract
Human genetic variants are classified on the basis of potential pathogenicity to guide clinical decisions. However, mechanistic uncertainties often preclude definitive categorization. Germline coding and enhancer variants within the hematopoietic regulator GATA2 create a bone marrow failure and leukemia predisposition. The conserved murine enhancer promotes hematopoietic stem cell (HSC) genesis, and a single-nucleotide human variant in an Ets motif attenuates chemotherapy-induced hematopoietic regeneration. We describe “conditionally pathogenic” (CP) enhancer motif variants that differentially affect hematopoietic development and regeneration. The Ets motif variant functioned autonomously in hematopoietic cells to disrupt hematopoiesis. Because an epigenetically silenced normal allele can exacerbate phenotypes of a pathogenic heterozygous variant, we engineered a bone marrow failure model harboring the Ets motif variant and a severe enhancer mutation on the second allele. Despite normal developmental hematopoiesis, regeneration in response to chemotherapy, inflammation, and a therapeutic HSC mobilizer was compromised. The CP paradigm informs mechanisms underlying phenotypic plasticity and clinical genetics.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R. Matson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
41
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Martelli F, Verachi P, Zingariello M, Mazzarini M, Vannucchi AM, Lonetti A, Bacci B, Sarli G, Migliaccio AR. hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1 low Mutation in Mice. Front Genet 2021; 12:720552. [PMID: 34707640 PMCID: PMC8542976 DOI: 10.3389/fgene.2021.720552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
The phenotype of mice carrying the Gata1low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a μLCR/β-globin promoter to rescue the phenotype induced by the Gata1low mutation in mice. Double hGATA1/Gata1low/0 mice were viable at birth with hematocrits greater than those of their Gata1low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1low/0 mice expressed greater levels of GATA1 protein and of α- and β-globin mRNA than cells from Gata1low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1+/0 littermates, Gata1low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/β-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1low/0 mutation.
Collapse
Affiliation(s)
- Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, Center of Research and Innovation of Myeloproliferative neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, New York, NY, United States.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
43
|
Miano M, Grossi A, Dell'Orso G, Lanciotti M, Fioredda F, Palmisani E, Lanza T, Guardo D, Beccaria A, Ravera S, Cossu V, Terranova P, Giona F, Santopietro M, Cappelli E, Ceccherini I, Dufour C. Genetic screening of children with marrow failure. The role of primary Immunodeficiencies. Am J Hematol 2021; 96:1077-1086. [PMID: 34000087 DOI: 10.1002/ajh.26242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
The differential diagnosis of marrow failure (MF) is crucial in the diagnostic work-up, since genetic forms require specific care. We retrospectively studied all patients with single/multi-lineage MF evaluated in a single-center to identify the type and incidence of underlying molecular defects. The diepoxybutane test was used to screen Fanconi Anemia. Other congenital MFs have been searched using Sanger and/or Next Generation Sequencing analysis, depending on the available tools over the years. Between 2009-2019, 97 patients (aged 0-32 years-median 5) with single-lineage (29%) or multilineage (68%) MF were evaluated. Fifty-three (54%) and 28 (29%) were diagnosed with acquired and congenital MF, respectively. The remaining 16 (17%), with trilinear (n=9) and monolinear (n=7) MF, were found to have an underlying primary immunodeficiency (PID) and showed clinical and biochemical signs of immune-dysregulation in 10/16 (62%) and in 14/16 (87%) of cases, respectively. Clinical signs were also found in 22/53 (41%) and 8/28 (28%) patients with idiopathic and classical cMF, respectively. Eight out of 16 PIDs patients were successfully transplanted, four received immunosuppression, two did not require treatment, and the remaining two died. We show that patients with single/multi-lineage MF may have underlying PIDs in a considerable number of cases and that MF may represent a relevant clinical sign in patients with PIDs, thus widening their clinical phenotype. An accurate immunological work-up should be performed in all patients with MF, and PID-related genes should be considered when screening MF in order to identify disorders that may receive targeted treatments and/or appropriate conditioning regimens before transplant.
Collapse
Affiliation(s)
- Maurizio Miano
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Alice Grossi
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | | | | | - Tiziana Lanza
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Daniela Guardo
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | - Silvia Ravera
- Department of Experimental Medicine University of Genoa Genoa Italy
| | - Vanessa Cossu
- Department of Health Sciences University of Genoa Genoa Italy
| | | | - Fiorina Giona
- Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Michelina Santopietro
- Hematology and Hematopoietic Stem Cells Transplant Unit AO San Camillo‐Forlanini Rome Italy
| | | | - Isabella Ceccherini
- UOSD Genetics and Genomics of Rare Diseases IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Carlo Dufour
- Hematology Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| |
Collapse
|
44
|
Takai J, Shimada T, Nakamura T, Engel JD, Moriguchi T. Gata2 heterozygous mutant mice exhibit reduced inflammatory responses and impaired bacterial clearance. iScience 2021; 24:102836. [PMID: 34471858 PMCID: PMC8390858 DOI: 10.1016/j.isci.2021.102836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases continually pose global medical challenges. The transcription factor GATA2 establishes gene networks and defines cellular identity in hematopoietic stem/progenitor cells and in progeny committed to specific lineages. GATA2-haploinsufficient patients exhibit a spectrum of immunodeficiencies associated with bacterial, viral, and fungal infections. Despite accumulating clinical knowledge of the consequences of GATA2 haploinsufficiency in humans, it is unclear how GATA2 haploinsufficiency compromises host anti-infectious defenses. To address this issue, we examined Gata2-heterozygous mutant (G2 Het) mice as a model for human GATA2 haploinsufficiency. In vivo inflammation imaging and cytokine multiplex analysis demonstrated that G2 Het mice had attenuated inflammatory responses with reduced levels of inflammatory cytokines, particularly IFN-γ, IL-12p40, and IL-17A, during lipopolysaccharide-induced acute inflammation. Consequently, bacterial clearance was significantly impaired in G2 Het mice after cecal ligation and puncture-induced polymicrobial peritonitis. These results provide direct molecular insights into GATA2-directed host defenses and the pathogenic mechanisms underlying observed immunodeficiencies in GATA2-haploinsufficient patients.
Collapse
Affiliation(s)
- Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Takashi Shimada
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - James Douglas Engel
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
45
|
Fabozzi F, Strocchio L, Mastronuzzi A, Merli P. GATA2 and marrow failure. Best Pract Res Clin Haematol 2021; 34:101278. [PMID: 34404529 DOI: 10.1016/j.beha.2021.101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
GATA2 gene encodes a zinc finger transcription factor crucial for normal hematopoiesis. Its haploinsufficiency, caused by a great variety of heterozygous loss-of-function mutations, underlies one of the most common causes of inherited bone marrow failure, recognized as GATA2 deficiency. Its phenotype is characterized by a broad spectrum of clinical presentations, including: haematological malignancies; immunodeficiency leading to invasive viral, mycobacterial and fungal infections; recurrent warts; lymphedema; pulmonary alveolar proteinosis; deafness; and miscarriage. The onset of symptoms ranges from early childhood to late adulthood, more frequently between adolescence and early adulthood. The only curative treatment is allogenic hematopoietic stem cell transplantation (HSCT), that can restore the function of both hematopoietic and immune system and prevent lung deterioration. Currently, there are no consensus guidelines about the management of patients affected by GATA2 deficiency, especially with regard to the optimal time to proceed to HSCT.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| |
Collapse
|
46
|
Homan CC, Venugopal P, Arts P, Shahrin NH, Feurstein S, Rawlings L, Lawrence DM, Andrews J, King-Smith SL, Harvey NL, Brown AL, Scott HS, Hahn CN. GATA2 deficiency syndrome: A decade of discovery. Hum Mutat 2021; 42:1399-1421. [PMID: 34387894 PMCID: PMC9291163 DOI: 10.1002/humu.24271] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
GATA2 deficiency syndrome (G2DS) is a rare autosomal dominant genetic disease predisposing to a range of symptoms, of which myeloid malignancy and immunodeficiency including recurrent infections are most common. In the last decade since it was first reported, there have been over 480 individuals identified carrying a pathogenic or likely pathogenic germline GATA2 variant with symptoms of G2DS, with 240 of these confirmed to be familial and 24 de novo. For those that develop myeloid malignancy (75% of all carriers with G2DS disease symptoms), the median age of onset is 17 years (range 0-78 years) and myelodysplastic syndrome is the first diagnosis in 75% of these cases with acute myeloid leukemia in a further 9%. All variant types appear to predispose to myeloid malignancy and immunodeficiency. Apart from lymphedema in which haploinsufficiency seems necessary, the mutational requirements of the other less common G2DS phenotypes is still unclear. These predominantly loss-of-function variants impact GATA2 expression and function in numerous ways including perturbations to DNA binding, protein structure, protein:protein interactions, and gene transcription, splicing, and expression. In this review, we provide the first expert-curated ACMG/AMP classification with codes of published variants compatible for use in clinical or diagnostic settings.
Collapse
Affiliation(s)
- Claire C Homan
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Nur H Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Simone Feurstein
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - David M Lawrence
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - James Andrews
- Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia
| | - Sarah L King-Smith
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Natasha L Harvey
- Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Australian Cancer Research Foundation Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Specialist Genomics, Australian Genomics, 50 Flemington Road, Parkville, Victoria, 3052, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Frome Road, Adelaide, South Australia, 5000, Australia.,Molecular Pathology Research Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Clinical Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
47
|
Fang F, Xu J, Kang Y, Ren H, Muyey DM, Chen X, Tan Y, Xu Z, Wang H. GATA2 rs2335052 and GATA2 rs78245253 single-nucleotide polymorphisms in Chinese patients with acute myelocytic leukemia. Int J Lab Hematol 2021; 43:1491-1500. [PMID: 34374210 DOI: 10.1111/ijlh.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION GATA binding protein 2 (GATA2) gene, involved in progression of hematologic malignancies and various solid tumors, is a susceptibility gene for inherited acute myeloid leukemia (AML). However, the influence of its single-nucleotide polymorphisms (SNPs) on AML remains unknown. METHODS We used allele-specific PCR to genotype GATA2 rs2335052 and rs78245253 in 159 newly diagnosed AML (non-M3) patients and 300 healthy volunteers, and all of participants came from China. And 34 common hematological tumor gene mutations in 159 AML patients were detected by next-generation sequencing. Kaplan-Meier survival analysis and Cox proportional hazard regression were used to analyze the association between the two SNPs and the prognosis of AML. RESULTS We found GATA2 rs2335052 C/T genotype, rs2335052 T/T genotype and rs78245253 G/C genotype in 51.6%, 13.8% and 11.3% AML patients. Our results demonstrated that GATA2 rs2335052 and rs78245253 were associated with certain laboratory features in AML patients, which had no effect on the pathogeny, chemotherapy response and recurrence of patients. Nevertheless, Kaplan-Meier survival analysis showed that, compared with rs78245253 G/G genotype, rs78245253 G/C genotype was significantly related to a decrease in overall survival (OS) (P = .020). Additionally, multivariate cox regression analysis showed that GATA2 rs78245253 was an independent risk factor for OS of AML patients in China. CONCLUSION GATA2 rs78245253 was an independent predictor for prognosis of AML patients in China and may be used as a potential indicator to predict the survival of AML patients in China. Further studies are needed to validate these findings and clarify the underlying mechanism.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Xu
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yefang Kang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huanying Ren
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Daniel Muteb Muyey
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Tan
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifang Xu
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
48
|
Zeng X, Liu R, Li Y, Li J, Zhao Q, Li X, Bao J. Excessive ammonia inhalation causes liver damage and dysfunction by altering gene networks associated with oxidative stress and immune function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112203. [PMID: 33873080 DOI: 10.1016/j.ecoenv.2021.112203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ammonia (NH3) is a major gaseous pollutant in livestock production and has adverse effects on production, health and welfare of animals. The liver is one of the target organs of NH3, and excessive NH3 inhalation can induce liver damage. However, the toxicity assessment of NH3 on pig liver and its mechanism have not been reported yet. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. Therefore, in the present study, we examined the effects of excessive NH3 inhalation on the liver of fattening pig through chemical analysis, ELISA, transcriptome analysis and real-time quantitative PCR (qRT-PCR). Our results showed that the transcriptome analysis database of fattening pig liver under excessive NH3 exposure, and 449 differentially expressed genes (DEGs) (including 181 up-regulated DEGs and 168 down-regulated DEGs) were found. Some genes associated with the 3 Gene Ontology (GO) terms (liver function, immune, antioxidant defense) were validated by quantitative real-time PCR. In addition, the activities of GPT and GOT in NH3 group were significantly increased by 63.5% and 37.4% (P < 0.05), respectively. Our results indicated that NH3 exposure could cause changes in transcriptional profiles and liver function, and induce liver damage in fattening pigs through oxidative stress and immune dysfunction. Our study results not only provide a new perspective for the toxicity assessment of NH3, but also enrich the toxicological mechanism of NH3.
Collapse
Affiliation(s)
- Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
49
|
Bruzzese A, Leardini D, Masetti R, Strocchio L, Girardi K, Algeri M, Del Baldo G, Locatelli F, Mastronuzzi A. GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers (Basel) 2020; 12:2962. [PMID: 33066218 PMCID: PMC7602110 DOI: 10.3390/cancers12102962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic disorders rare in childhood, often occurring in patients with inherited bone marrow failure syndromes or germinal predisposition syndromes. Among the latter, one of the most frequent involves the gene GATA binding protein 2 (GATA2), coding for a transcriptional regulator of hematopoiesis. The genetic lesion as well as the clinical phenotype are extremely variable; many patients present hematological malignancies, especially MDS with the possibility to evolve into acute myeloid leukemia. Variable immune dysfunction, especially resulting in B- and NK-cell lymphopenia, lead to severe infections, including generalized warts and mycobacterial infection. Defects of alveolar macrophages lead to pulmonary alveolar proteinosis through inadequate clearance of surfactant proteins. Currently, there are no clear guidelines for the monitoring and treatment of patients with GATA2 mutations. In patients with MDS, the only curative treatment is allogeneic hematopoietic stem cell transplantation (HSCT) that restores normal hematopoiesis preventing the progression to acute myeloid leukemia and clears long-standing infections. However, to date, the donor type, conditioning regimen, and the optimal time to proceed to HSCT, as well as the level of chimerism needed to reverse the phenotype, remain unclear highlighting the need for consensus guidelines.
Collapse
Affiliation(s)
- Antonella Bruzzese
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Davide Leardini
- Pediatric Hematology/Oncology, Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (D.L.); (R.M.)
| | - Riccardo Masetti
- Pediatric Hematology/Oncology, Sant’Orsola Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (D.L.); (R.M.)
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Katia Girardi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.S.); (K.G.); (M.A.); (G.D.B.); (F.L.); (A.M.)
| |
Collapse
|