1
|
Capel KCC, Ayalon I, Simon-Blecher N, Zweifler Zvifler A, Benichou ICJ, Eyal G, Avisar D, Roth J, Bongaerts P, Levy O. Depth-structured lineages in the coral Stylophora pistillata of the Northern Red Sea. NPJ BIODIVERSITY 2025; 4:13. [PMID: 40188306 PMCID: PMC11972390 DOI: 10.1038/s44185-025-00083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Coral reefs are biodiversity hotspots, where new species continue to be discovered. Stylophora pistillata, a depth-generalist coral, is widely distributed throughout the Indo-Pacific and has long been considered the poster child for phenotypic plasticity. It occupies a wide range of reef habitats and exhibits a myriad of gross morphologies. Here, we used reduced representation genome sequencing (nextRAD) to assess the genetic structure of adults and recruits of S. pistillata across shallow and mesophotic populations in the northern Red Sea (Gulf of Aqaba). Across analytical approaches, we observed a complex genetic structure with at least four genetically divergent lineages occurring sympatrically with little to no admixture and structured by depth. Morphological and physiological differences previously documented suggest that the long-considered ecological opportunism of S. pistillata in the Red Sea may, in fact, have a genetic basis. Assessment of both adult colonies and recruits within each of the lineages also revealed the prevalence of local recruitment and genetic structuring across the eight-kilometer section of the Israeli Red Sea coastline. Overall, the observed patterns confirm the presence of undescribed diversity within this model organism for coral physiology and corroborate a broader pattern of extensive undescribed diversity within scleractinian corals.
Collapse
Affiliation(s)
- K C C Capel
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
- Center for Marine Biology, University of São Paulo, São Sebastiaão, São Paulo, Brazil.
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - I Ayalon
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - N Simon-Blecher
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - A Zweifler Zvifler
- School of Earth Sciences, The University of Western Australia, Perth, WA, 6000, Australia
| | - I C J Benichou
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
| | - G Eyal
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel
- School of the Environment, The university of Queensland, St Lucia QLD 4072, Queensland, Australia
| | - D Avisar
- Faculty of Exact Sciences, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - J Roth
- DNA and Forensic Biology Laboratory, Division of Identification and Forensic Science, Israel Police National HQ, Jerusalem, Israel
| | - P Bongaerts
- California Academy of Sciences, San Francisco, CA, USA
| | - O Levy
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 529000, Israel.
- The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel.
| |
Collapse
|
2
|
Jia S, Shen T, Cai W, Zhang J, Chen S. Complete Mitochondrial Genome of Platygyra daedalea and Characteristics Analysis of the Mitochondrial Genome in Merulinidae. Genes (Basel) 2025; 16:304. [PMID: 40149455 PMCID: PMC11942114 DOI: 10.3390/genes16030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The Merulinidae family belonging to the order Scleractinia is mainly distributed in the Indo-Pacific and Caribbean regions and often constitute the most dominant species of coral reefs. Mitochondrial genome is a key tool for studying the phylogeny and adaptation. Only a few studies have conducted the characteristics analyses of mitochondrial genome in the Merulinidae family. METHODS Therefore, we used high-throughput sequencing technology to describe the mitochondrial genome of Platygyra daedalea, a member of this family. Bioinformatics was used to analyze the composition characteristics of the mitochondrial genome of 10 Merulinidae species. RESULTS The mitochondrial genome of P. daedalea had a total length of 16,462 bp and a GC content of 33.0%. Thirteen unique protein-coding genes (PCGs), two transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes were annotated. Each species of Merulinidae had 13 unique PCGs in the mitochondrial genome. In contrast, the number of tRNAs and rRNAs significantly varied in Merulinidae species. Collinearity and gene rearrangement analyses indicated that the mitochondrial evolution of species in the Merulinidae family was relatively conserved. Divergence time analysis indicated that Merulinidae originated in the Oligocene, whereas the Platygyra genus originated in the Miocene. The formation and intraspecific divergence of coral species were consistent with geological changes in the ocean. CONCLUSIONS The results of this study help better understand the characteristics of the mitochondrial genome in the Merulinidae family and provide insights into the utility of mitochondrial genes as molecular markers of phylogeny.
Collapse
Affiliation(s)
- Shuwen Jia
- Qukou Scientific Research Base, Institute of Marine Ecology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571136, China; (S.J.); (T.S.); (W.C.); (J.Z.)
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
- Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 571136, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Tongtong Shen
- Qukou Scientific Research Base, Institute of Marine Ecology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571136, China; (S.J.); (T.S.); (W.C.); (J.Z.)
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
- Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 571136, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Wenqi Cai
- Qukou Scientific Research Base, Institute of Marine Ecology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571136, China; (S.J.); (T.S.); (W.C.); (J.Z.)
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
- Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 571136, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Jian Zhang
- Qukou Scientific Research Base, Institute of Marine Ecology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571136, China; (S.J.); (T.S.); (W.C.); (J.Z.)
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
- Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 571136, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| | - Shiquan Chen
- Qukou Scientific Research Base, Institute of Marine Ecology, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571136, China; (S.J.); (T.S.); (W.C.); (J.Z.)
- Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan Province, Yazhou Bay Innovation Institute, College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
- Dongzhaigang, Conservation and Restoration of Seagrass Bed Resources, Hainan Observation and Research Station, Haikou 571136, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education, Sanya 572022, China
| |
Collapse
|
3
|
Terraneo TI, Benzoni F, Arrigoni R, Berumen ML, Mariappan KG, Antony CP, Harrison HB, Payri C, Huang D, Baird AH. A genomic approach to Porites (Anthozoa: Scleractinia) megadiversity from the Indo-Pacific. Mol Phylogenet Evol 2025; 203:108238. [PMID: 39551223 DOI: 10.1016/j.ympev.2024.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Porites corals are vital components of tropical reef ecosystems worldwide, serving as ecosystem engineers and hubs of biodiversity in shallow water coral reefs. Despite their ecological significance and the widespread use of Porites spp. as models for research, the richness and evolutionary relationships of species within the genus remain elusive. In this study, we analyzed genomic data from 330 colonies of Porites from 17 localities across the Indo-Pacific region based on the reduced representation genomic approach ezRAD. We retrieved 25,163 SNPs and provided a phylogenomic hypothesis for 29 nominal species and 10 unknown morphologies, recovering 15 deeply rooted molecular clades. Among these, 12 clades included samples corresponding to single distinct morphospecies. One did not match any nominal species. The remaining two clades comprised species complexes, which included various massive and encrusting morphologies commonly used in experimental biology. Within these complexes, we observed additional geographic or morphological structure, indicating complex evolutionary dynamics, possibly reflecting distinct species, isolated populations or hybridization. Additionally, a series of divergent samples underscored the importance of more sampling to define species boundaries and refine phylogenomic relationships. We also integrated our findings with previous phylogenetic datasets and their respective sampling localities, challenging traditional notions about Porites species geographic distributions. Overall, our findings indicate a need to revise past synonymies and to formally establish new species. A precise understanding of Porites species and their diversity and distributions is necessary for effective reef conservation and management.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa 16126, Italy
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chakkiath P Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hugo B Harrison
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Claude Payri
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, Nouméa, New-Caledonia, France
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
4
|
Gutierrez L, Polidoro B, Obura D, Cabada-Blanco F, Linardich C, Pettersson E, Pearce-Kelly P, Kemppinen K, Alvarado JJ, Alvarez-Filip L, Banaszak A, Casado de Amezua P, Crabbe J, Croquer A, Feingold J, Goergen E, Goffredo S, Hoeksema B, Huang D, Kennedy E, Kersting D, Kitahara M, Kružić P, Miller M, Nunes F, Quimbayo JP, Rivera-Sosa A, Rodríguez-Martínez R, Santodomingo N, Sweet M, Vermeij M, Villamizar E, Aeby G, Alliji K, Bayley D, Couce E, Cowburn B, Nuñez Lendo CI, Porter S, Samimi-Namin K, Shlesinger T, Wilson B. Half of Atlantic reef-building corals at elevated risk of extinction due to climate change and other threats. PLoS One 2024; 19:e0309354. [PMID: 39546544 PMCID: PMC11567617 DOI: 10.1371/journal.pone.0309354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/09/2024] [Indexed: 11/17/2024] Open
Abstract
Atlantic reef-building corals and coral reefs continue to experience extensive decline due to increased stressors related to climate change, disease, pollution, and numerous anthropogenic threats. To understand the impact of ocean warming and reef loss on the estimated extinction risk of shallow water Atlantic reef-building scleractinians and milleporids, all 85 valid species were reassessed under the IUCN Red List Categories and Criteria, updating the previous Red List assessment of Atlantic corals published in 2008. For the present assessment, individual species declines were estimated based on the modeled coral cover loss (1989-2019) and projected onset of annual severe bleaching events (2020-2050) across the Atlantic. Species traits were used to scale species' relative vulnerability to the modeled cover declines and forecasted bleaching events. The updated assessments place 45.88%-54.12% of Atlantic shallow water corals at an elevated extinction risk compared to the previous assessments conducted in 2008 (15.19%-40.51%). However, coral cover loss estimates indicate an improvement in reef coverage compared to the historic time-series used for the 2008 assessments. Based on this, we infer that, although remaining dangerously high, the rate of Atlantic reef coral cover decline has surprisingly slowed in recent decades. However, based on modeled projections of sea-surface temperature that predict the onset of annual severe bleaching events within the next 30 years, we listed 26 (out of 85) species as Critically Endangered in the IUCN Red List. Each of these species had previously been listed under a lower threatened category and this result alone highlights the severe threat future bleaching events pose to coral survival and the reef ecosystems they support.
Collapse
Affiliation(s)
- Luis Gutierrez
- Arizona State University, Tempe, Arizona, United States of America
| | - Beth Polidoro
- Arizona State University, Tempe, Arizona, United States of America
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
| | - David Obura
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
- Coastal Oceans Research and Development in the Indian Ocean East Africa, Mombasa, Kenya
| | - Francoise Cabada-Blanco
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
- Institute of Marine Sciences, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Christi Linardich
- Old Dominion University, Norfolk, Virginia, United States of America
| | - Emma Pettersson
- Species Survival Commission, Coral Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland
| | | | - Krista Kemppinen
- Arizona State University, Tempe, Arizona, United States of America
| | | | - Lorenzo Alvarez-Filip
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | - Anastazia Banaszak
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | | | - James Crabbe
- University of Bedfordshire, Wolfson College, Oxford, United Kingdom
| | | | - Joshua Feingold
- Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Elizabeth Goergen
- Department of Biology and Environmental Science, Qatar University, Doha, Qatar
| | | | - Bert Hoeksema
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Danwei Huang
- National University of Singapore, Singapore, Singapore
| | | | - Diego Kersting
- Spanish National Research Council, Instituto de Acuicultura de Torre de la Sal, Castellón de la Plana, Spain
| | - Marcelo Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Margaret Miller
- SECORE International, Hilliard, Ohio, United States of America
| | - Flavia Nunes
- Institut Français pour la Recherche et Exploitation de la Mer, Plouzané, France
| | | | - Andrea Rivera-Sosa
- Coral Reef Alliance, San Francisco, California, United States of America
| | - Rosa Rodríguez-Martínez
- Unidad Academia de Sistemas Arrecificales, Universidad Nacional Autónoma de México, México, Mexico
| | | | | | | | - Estrella Villamizar
- Ecología en la Facultad de Ciencias, Universidad Central de Venezuela, Caracas, venezuela
| | - Greta Aeby
- The Hawaiʻi Institute of Marine Biology, Kaneohe, Hawaiʻi, United States of America
| | - Khatija Alliji
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Daniel Bayley
- Fauna & Flora International, Cambridge, United Kingdom
| | - Elena Couce
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Benjamin Cowburn
- Centre for Environmental, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | | | - Sean Porter
- Oceanographic Research Institute, Durban, KwaZulu-Natal, South Africa
| | | | | | | |
Collapse
|
5
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Vaga CF, Seiblitz IGL, Stolarski J, Capel KCC, Quattrini AM, Cairns SD, Huang D, Quek RZB, Kitahara MV. 300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia). INVERTEBR SYST 2024; 38:IS23053. [PMID: 38744500 DOI: 10.1071/is23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.
Collapse
Affiliation(s)
- C F Vaga
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - I G L Seiblitz
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - K C C Capel
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Invertebrate Department, National Museum of Rio de Janeiro, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - D Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Conservatory Drive, Singapore 117377, Singapore; and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - R Z B Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; and Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| | - M V Kitahara
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
7
|
Combosch DJ, Burdick D, Primov K, Rios D, Rios K, Fernandez J. Barcoding and mitochondrial phylogenetics of Porites corals. PLoS One 2024; 19:e0290505. [PMID: 38359055 PMCID: PMC10868756 DOI: 10.1371/journal.pone.0290505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 02/17/2024] Open
Abstract
Coral reefs are the most diverse ecosystem on the planet based on the abundance and diversity of phyla and higher taxa. However, it is still difficult to assess the diversity of lower taxa, especially at the species level. One tool for improving the identification of lower taxa are genetic markers that can distinguish cryptic species and assess species boundaries. Here, we present one such approach for an important and challenging group of reef-building corals. Porites corals are the main reef-builders of many coral reefs in the Indo-Pacific, owing to the massive growth forms of some species. The current number of valid Porites species is controversial, inflated with many synonymies, and often based on gross colony morphology although several morphospecies believed to be widespread and common can only be distinguished based on detailed microstructure analyses by taxonomic experts. Here, we test the suitability of multiple regions of mtDNA as genetic barcodes to identify suitable markers for species differentiation and unambiguous identification. Resulting sequencing data was further used for the first phylogenetic analysis of Guam's Porites species. We tested eight different mitochondrial markers and analyzed four in detail for 135 Porites specimens: mtDNA markers were amplified for 67 Porites specimens from Guam, representing 12 nominal Porites species, and combined with 69 mitochondrial genomes, mostly from Hawaii. The combination of all 4 markers distinguished 10 common and 7 uncommon Central-West Pacific Porites species. Most clades separate species along taxonomic boundaries, which is uncommon for Porites corals and testifies to the suitability of our multi-marker approach, and a combination of the two most promising barcodes distinguished 8/10 common species. These barcodes are thus suitable to distinguish virtually cryptic species in one of the most important and challenging coral genera. They offer a cheap, fast and reliable way to identify Porites species for species-level research, monitoring and conservation.
Collapse
Affiliation(s)
| | - David Burdick
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Karim Primov
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Dareon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Kireon Rios
- Marine Laboratory, University of Guam, Mangilao, Guam
| | | |
Collapse
|
8
|
Capel KCC, Zilberberg C, Carpes RM, Morrison CL, Vaga CF, Quattrini AM, Zb Quek R, Huang D, Cairns SD, Kitahara MV. How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia). Mol Phylogenet Evol 2024; 191:107994. [PMID: 38113961 DOI: 10.1016/j.ympev.2023.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.
Collapse
Affiliation(s)
- Kátia C C Capel
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil.
| | - Carla Zilberberg
- Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Raphael M Carpes
- Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cheryl L Morrison
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, Kearneysville, United States
| | - Claudia F Vaga
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Randolph Zb Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Stephen D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Marcelo V Kitahara
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States.
| |
Collapse
|
9
|
Chukaew T, Isomura N, Mezaki T, Matsumoto H, Kitano YF, Nozawa Y, Tachikawa H, Fukami H. Molecular Phylogeny and Taxonomy of the Coral Genus Cyphastrea (Cnidaria, Scleractinia, Merulinidae) in Japan, With the First Records of Two Species. Zoolog Sci 2023; 40:326-340. [PMID: 37522604 DOI: 10.2108/zs230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023]
Abstract
The scleractinian coral genus Cyphastrea is widely distributed in the Indo-Pacific region and is common from the subtropical to the warm-temperate regions in Japan. Three new species in this genus have recently been reported from south-eastern Australia or the Red Sea. However, taxonomic and species diversity have been little studied so far in Japan. In this study, we analyzed 112 specimens of Cyphastrea collected from the subtropical to the warm-temperate regions in Japan to clarify the species diversity in the country. This analysis was based on skeletal morphological and molecular analyses using three genetic markers of the nuclear 28S rDNA, histone H3 gene, and the mitochondrial noncoding intergenic region between COI and tRNAmet. The molecular phylogenetic trees showed that our specimens are separated mainly into four clades. Considering the morphological data with the molecular phylogenetic relationships, we confirmed a total of nine species, including two species, C. magna and C. salae, recorded for the first time in Japan. Although eight out of nine species were genetically included within Cyphastrea, one species, C. agassizi, was genetically distant from all other species and was closely related to the genus Leptastrea, suggesting the return of this species to the genus to which it was originally ascribed. Two newly recorded species were reciprocally monophyletic, while the other six species (excluding C. agassizi) clustered in two clades without forming species-specific lineages, including three polyphyletic species. Thus, the species boundary between species in Cyphastrea remains unclear in most species using these three sequenced loci.
Collapse
Affiliation(s)
- Thanapat Chukaew
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2155, Japan
| | - Naoko Isomura
- Bioresources Engineering, Institute of Technology, Okinawa College, Nago-city, Okinawa 905-2192, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Kochi 788-0333, Japan
| | | | - Yuko F Kitano
- Japan Wildlife Research Center, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Hiroyuki Tachikawa
- Coastal Branch of Natural History Museum and Institute, Katsuura, Chiba 299-5242, Japan
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2155, Japan,
| |
Collapse
|
10
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
11
|
Kawakami R, Taguchi T, Vacarizas J, Ito M, Mezaki T, Tominaga A, Kubota S. Karyotypic analysis and isolation of four DNA markers of the scleractinian coral Favitespentagona (Esper, 1795) (Scleractinia, Anthozoa, Cnidaria). COMPARATIVE CYTOGENETICS 2022; 16:77-92. [PMID: 35437459 PMCID: PMC9005458 DOI: 10.3897/compcytogen.v16.i1.79953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/05/2022] [Indexed: 05/29/2023]
Abstract
We performed conventional and molecular cytogenetic studies on the Favitespentagona Esper, 1795, a scleractinian coral mostly found along the west coast of Japan. Karyotype analysis of F.pentagona by G-banding revealed a karyogram containing a homogenously staining region (HSR) on chromosome 10 in more than 50% of the examined metaphase spreads. This HSR consisted of sequences from 18S ribosomal RNA (rRNA) genes, as demonstrated by fluorescence in situ hybridization (FISH) and DNA sequencing. We highlighted the development of four chromosomal FISH markers from repetitive genes such as U2 small nuclear RNA linked to 5S rRNA sequence (U2 snRNA-5S), 18S rRNA, histone H3, and uncharacterized gene FP-9X. The chromosomal locations of the U2 snRNA-5S and 18S RNA were on the terminal end of long arm of chromosomes 2 and 10, respectively, while the histone H3 and the uncharacterized gene were located near the centromeres of chromosomes 1 and 9, respectively. These FISH markers will improve the karyotyping of F.pentagona from mitotic preparations which helps in widening our understanding of coral genetic structure and chromosome organization. In addition, these improvements in karyotyping will provide the basis in constructing of chromosome-level genome assembly for F.pentagona.
Collapse
Affiliation(s)
- Rei Kawakami
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi 783-8505, Japan
| | - Takahiro Taguchi
- Department of Nutrition, Faculty of Health Science, Kochi Gakuen University, 292-26 Asahitenjin-Cho, Kochi 780-0955, Japan
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi 783-8505, Japan
| | - Joshua Vacarizas
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi 783-8505, Japan
| | - Masumi Ito
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Kochi 783-8502, Japan
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-Cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, Otsuki, Hata County, Kochi 788-0333, Japan
| | - Akira Tominaga
- Kuroshio Science Program, Graduate School of Integrated Arts and Sciences, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi 783-8505, Japan
| | - Satoshi Kubota
- Kuroshio Science Unit, Multidisciplinary Science Cluster, Kochi University, Kohasu, Oko-Cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
12
|
Juszkiewicz DJ, White NE, Stolarski J, Benzoni F, Arrigoni R, Baird AH, Hoeksema BW, Wilson NG, Bunce M, Richards ZT. Full Title: Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Mol Phylogenet Evol 2022; 172:107469. [DOI: 10.1016/j.ympev.2022.107469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
13
|
Xiao J, Tian P, Guo F, Yu S, Wang W, Wang X, Niu W. Characterization of the complete mitochondrial genome of Diploastrea heliopora and phylogeny of the scleractinia species which have group I introns in their COI genes. Saudi J Biol Sci 2021; 28:7054-7060. [PMID: 34867006 PMCID: PMC8626255 DOI: 10.1016/j.sjbs.2021.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial genome DNA is a powerful marker for resolving phylogenetic relationships among scleractinian corals. Here, we decode the complete mitochondrial genome of Diploastrea heliopora (Lamarck, 1816) for the first time. The general features are 18 363 bp in length, and conventionally, with 13 protein coding genes, two ribosomal RNAs, and two transfer RNAs. Gene arrangement and distribution are similar to other scleractinian corals. Moreover, the COI gene of D. heliopora is broken up into two parts by a complex group I intron. This intron is 1076 bases in length and contains helical structures (P1-P10, except P2) and four conserved regions (P, Q, R, and S). The mitochondrial genome of D. heliopora has asymmetric base composition (13.03% C, 20.29% G, 25.91% A, and 40.77% for T). Based on concatenated protein coding genes, ML and BI trees show similar phylogenetic relationship: D. heliopora clustered closely with Sclerophyllia maxima and Echinophyllia aspera into the robust branch. The data and conclusion in this study are reference for further phylogenetic studies of corals.
Collapse
Affiliation(s)
- Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Feng Guo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuangen Yu
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaolei Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
14
|
Baron-Szabo RC. Scleractinian corals of the Albian (uppermost Lower Cretaceous)—overview, revision, evaluation. P BIOL SOC WASH 2021. [DOI: 10.2988/0006-324x-134.1.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Rosemarie C. Baron-Szabo
- Smithsonian Institution, Department of Invertebrate Zoology, Washington, DC, 20013, U.S.A., e-mail:
| |
Collapse
|
15
|
Cannon SE, Aram E, Beiateuea T, Kiareti A, Peter M, Donner SD. Coral reefs in the Gilbert Islands of Kiribati: Resistance, resilience, and recovery after more than a decade of multiple stressors. PLoS One 2021; 16:e0255304. [PMID: 34379665 PMCID: PMC8357116 DOI: 10.1371/journal.pone.0255304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coral reefs are increasingly affected by a combination of acute and chronic disturbances from climate change and local stressors. The coral reefs of the Republic of Kiribati's Gilbert Islands are exposed to frequent heat stress caused by central-Pacific type El Niño events, and may provide a glimpse into the future of coral reefs in other parts of the world, where the frequency of heat stress events will likely increase due to climate change. Reefs in the Gilbert Islands experienced a series of acute disturbances over the past fifteen years, including mass coral bleaching in 2004-2005 and 2009-2010, and an outbreak of the corallivorous sea star Acanthaster cf solaris, or Crown-of-Thorns (CoTs), in 2014. The local chronic pressures including nutrient loading, sedimentation and fishing vary within the island chain, with highest pressures on the reefs in urbanized South Tarawa Atoll. In this study, we examine how recovery from acute disturbances differs across a gradient of human influence in neighboring Tarawa and Abaiang Atolls from 2012 through 2018. Benthic cover and size frequency data suggests that local coral communities have adjusted to the heat stress via shifts in the community composition to more temperature-tolerant taxa and individuals. In densely populated South Tarawa, we document a phase shift to the weedy and less bleaching-sensitive coral Porites rus, which accounted for 81% of all coral cover by 2018. By contrast, in less populated Abaiang, coral communities remained comparatively more diverse (with higher percentages of Pocillopora and the octocoral Heliopora) after the disturbances, but reefs had lower overall hard coral cover (18%) and were dominated by turf algae (41%). The CoTs outbreak caused a decline in the cover and mean size of massive Porites, the only taxa that was a 'winner' of the coral bleaching events in Abaiang. Although there are signs of recovery, the long-term trajectory of the benthic communities in Abaiang is not yet clear. We suggest three scenarios: they may remain in their current state (dominated by turf algae), undergo a phase shift to dominance by the macroalgae Halimeda, or recover to dominance by thermally tolerant hard coral genera. These findings provide a rare glimpse at the future of coral reefs around the world and the ways they may be affected by climate change, which may allow scientists to better predict how other reefs will respond to increasing heat stress events across gradients of local human disturbance.
Collapse
Affiliation(s)
- Sara E. Cannon
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Erietera Aram
- Ministry of Fisheries and Marine Resource Development, Coastal Fisheries Division, Bikenibeui, Tarawa, Republic of Kiribati
| | - Toaea Beiateuea
- Ministry of Fisheries and Marine Resource Development, Coastal Fisheries Division, Bikenibeui, Tarawa, Republic of Kiribati
| | - Aranteiti Kiareti
- Ministry of Fisheries and Marine Resource Development, Coastal Fisheries Division, Bikenibeui, Tarawa, Republic of Kiribati
| | - Max Peter
- Ministry of Fisheries and Marine Resource Development, Coastal Fisheries Division, Bikenibeui, Tarawa, Republic of Kiribati
| | - Simon D. Donner
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Pang HE, Poquita-Du RC, Jain SS, Huang D, Todd PA. Among-genotype responses of the coral Pocillopora acuta to emersion: implications for the ecological engineering of artificial coastal defences. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105312. [PMID: 33848694 DOI: 10.1016/j.marenvres.2021.105312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Stony corals are promising transplant candidates for the ecological engineering of artificial coastal defences such as seawalls as they attract and host numerous other organisms. However, seawalls are exposed to a wide range of environmental stressors associated with periods of emersion during low tide such as desiccation and changes in salinity, temperature, and solar irradiance. All of these variables have known deleterious effects on coral physiology, growth, and fitness. In this study, we performed parallel experiments (in situ and ex situ) to examine among-genotype responses of Pocillopora acuta to emersion by quantifying growth, photophysiological metrics (Fv/Fm, non-photochemical quenching [NPQ], endosymbiont density, and chlorophyll [chl] a concentration) and survival, following different emersion periods. Results showed that coral fragments emersed for longer durations (>2 h) exhibited reduced growth and survival. Endosymbiont density and NPQ, but not Fv/Fm and chl a concentration, varied significantly among genotypes across different durations of emersion. Overall, the ability of P. acuta to tolerate emersion for up to 2 h suggests its potential to serve as a 'starter species' for transplantation efforts on seawalls. Further, careful characterisation and selection of genotypes with a high capacity to withstand emersion can help maximise the efficacy of ecological engineering using coral transplants.
Collapse
Affiliation(s)
- Hui En Pang
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Rosa Celia Poquita-Du
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Sudhanshi Sanjeev Jain
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Danwei Huang
- Reef Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
17
|
Dietzel A, Bode M, Connolly SR, Hughes TP. The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nat Ecol Evol 2021; 5:663-669. [PMID: 33649542 DOI: 10.1038/s41559-021-01393-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Knowledge of a species' abundance is critically important for assessing its risk of extinction, but for the vast majority of wild animal and plant species such data are scarce at biogeographic scales. Here, we estimate the total number of reef-building corals and the population sizes of more than 300 individual species on reefs spanning the Pacific Ocean biodiversity gradient, from Indonesia to French Polynesia. Our analysis suggests that approximately half a trillion corals (0.3 × 1012-0.8 × 1012) inhabit these coral reefs, similar to the number of trees in the Amazon. Two-thirds of the examined species have population sizes exceeding 100 million colonies, and one-fifth of the species even have population sizes greater than 1 billion colonies. Our findings suggest that, while local depletions pose imminent threats that can have ecologically devastating impacts to coral reefs, the global extinction risk of most coral species is lower than previously estimated.
Collapse
Affiliation(s)
- Andreas Dietzel
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
| | - Michael Bode
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sean R Connolly
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Terry P Hughes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
18
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|
19
|
Terraneo TI, Benzoni F, Arrigoni R, Baird AH, Mariappan KG, Forsman ZH, Wooster MK, Bouwmeester J, Marshell A, Berumen ML. Phylogenomics of Porites from the Arabian Peninsula. Mol Phylogenet Evol 2021; 161:107173. [PMID: 33813021 DOI: 10.1016/j.ympev.2021.107173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia.
| | - Francesca Benzoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; European Commission, Joint Research Centre (JRC), Ispra, Italy; Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia
| | - Kiruthiga G Mariappan
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zac H Forsman
- Hawaii Institute of Marine Biology, Kaneohe 96744, HI, USA
| | - Michael K Wooster
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Michael L Berumen
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Alidoost Salimi P, Ghavam Mostafavi P, Chen CA, Pichon M, Alidoost Salimi M. Molecular phylogeny of some coral species from the Persian Gulf. Mol Biol Rep 2021; 48:2993-2999. [PMID: 33675466 DOI: 10.1007/s11033-021-06251-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
As evolutionary relationships among some coral species still remain unclear, studies on unstudied area such as the Persian Gulf (PG), as part of the western Indo-Pacific, may reveal a better understanding of phylogenetic positions and relationships of corals. In the present study, the phylogenetic relationships of eight common coral species (Favites pentagona, Platygyra daedalea, Cyphastrea microphthalma, Siderastrea savignyana, Pavona decussata, Pavona cactus, Goniopora columna, and Goniopora djiboutiensis) collected from two Iranian Islands were compared with the congeneric sequences from the Indo-Pacific (IP) using rDNA region. The result shows that some coral species which were hitherto considered as representatives of widespread species from IP are related to distinct lineages. Further, it appears that morphological convergence between the taxa leads to an underestimation of the real coral species diversity in the PG. The current study is the first attempt to investigate the phylogenetic position of coral species from the PG in comparison to their counterparts from the IP. As conservation planning hinges on the identification of species, taxonomic revisions have to be undertaken in order to obtain a more reliable picture of coral species diversity in the PG.
Collapse
Affiliation(s)
- Parisa Alidoost Salimi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Pargol Ghavam Mostafavi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei, 11529, Taiwan
| | - Michel Pichon
- Biodiversity and Geosciences, Queensland Museum, Townsville, QLD, 4810, Australia
| | - Mahsa Alidoost Salimi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Arrigoni R, Huang D, Berumen ML, Budd AF, Montano S, Richards ZT, Terraneo TI, Benzoni F. Integrative systematics of the scleractinian coral genera
Caulastraea
,
Erythrastrea
and
Oulophyllia. ZOOL SCR 2021. [DOI: 10.1111/zsc.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica Anton Dohrn Napoli Italy
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore Singapore Singapore
| | - Michael L. Berumen
- Reef Ecology Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Ann F. Budd
- Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano − Bicocca Milano Italy
- Marine Research and High Education Center Magoodhoo Island Faafu Atoll Maldives
| | - Zoe T. Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Tullia I. Terraneo
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Francesca Benzoni
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
22
|
Mitsuki Y, Isomura N, Nozawa Y, Tachikawa H, Huang D, Fukami H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). INVERTEBR SYST 2021. [DOI: 10.1071/is21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.
Collapse
|
23
|
Seiblitz IGL, Capel KCC, Stolarski J, Quek ZBR, Huang D, Kitahara MV. The earliest diverging extant scleractinian corals recovered by mitochondrial genomes. Sci Rep 2020; 10:20714. [PMID: 33244171 PMCID: PMC7693180 DOI: 10.1038/s41598-020-77763-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging "Basal" lineage remains poorly studied compared to "Robust" and "Complex" corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confirm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as well as its microstructural differences with Gardineriidae. The fact that both families share features with family Kilbuchophylliidae ultimately points towards a Middle Ordovician origin for Scleractinia.
Collapse
Affiliation(s)
- Isabela G L Seiblitz
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil.
| | - Kátia C C Capel
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | | | | | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Marcelo V Kitahara
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| |
Collapse
|
24
|
Dietzel A, Bode M, Connolly SR, Hughes TP. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proc Biol Sci 2020; 287:20201432. [PMID: 33049171 PMCID: PMC7657849 DOI: 10.1098/rspb.2020.1432] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
The age or size structure of a population has a marked influence on its demography and reproductive capacity. While declines in coral cover are well documented, concomitant shifts in the size-frequency distribution of coral colonies are rarely measured at large spatial scales. Here, we document major shifts in the colony size structure of coral populations along the 2300 km length of the Great Barrier Reef relative to historical baselines (1995/1996). Coral colony abundances on reef crests and slopes have declined sharply across all colony size classes and in all coral taxa compared to historical baselines. Declines were particularly pronounced in the northern and central regions of the Great Barrier Reef, following mass coral bleaching in 2016 and 2017. The relative abundances of large colonies remained relatively stable, but this apparent stability masks steep declines in absolute abundance. The potential for recovery of older fecund corals is uncertain given the increasing frequency and intensity of disturbance events. The systematic decline in smaller colonies across regions, habitats and taxa, suggests that a decline in recruitment has further eroded the recovery potential and resilience of coral populations.
Collapse
Affiliation(s)
- Andreas Dietzel
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Michael Bode
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Sean R. Connolly
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- College of Science and Engineering, James Cook University, Townsville, Australia
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Terry P. Hughes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
25
|
Quek RZB, Jain SS, Neo ML, Rouse GW, Huang D. Transcriptome-based target-enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Ecol Resour 2020; 20:807-818. [PMID: 32077619 PMCID: PMC7468246 DOI: 10.1111/1755-0998.13150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Despite the ecological and economic significance of stony corals (Scleractinia), a robust understanding of their phylogeny remains elusive due to patchy taxonomic and genetic sampling, as well as the limited availability of informative markers. To increase the number of genetic loci available for phylogenomic analyses in Scleractinia, we designed 15,919 DNA enrichment baits targeting 605 orthogroups (mean 565 ± SD 366 bp) over 1,139 exon regions. A further 236 and 62 barcoding baits were designed for COI and histone H3 genes respectively for quality and contamination checks. Hybrid capture using these baits was performed on 18 coral species spanning the presently understood scleractinian phylogeny, with two corallimorpharians as outgroup. On average, 74% of all loci targeted were successfully captured for each species. Barcoding baits were matched unambiguously to their respective samples and revealed low levels of cross-contamination in accordance with expectation. We put the data through a series of stringent filtering steps to ensure only scleractinian and phylogenetically informative loci were retained, and the final probe set comprised 13,479 baits, targeting 452 loci (mean 531 ± SD 307 bp) across 865 exon regions. Maximum likelihood, Bayesian and species tree analyses recovered maximally supported, topologically congruent trees consistent with previous phylogenomic reconstructions. The phylogenomic method presented here allows for consistent capture of orthologous loci among divergent coral taxa, facilitating the pooling of data from different studies and increasing the phylogenetic sampling of scleractinians in the future.
Collapse
Affiliation(s)
- Randolph Z. B. Quek
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Sudhanshi S. Jain
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Mei Lin Neo
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| | - Greg W. Rouse
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCAUSA
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
26
|
Niu W, Xiao J, Tian P, Yu S, Guo F, Wang J, Huang D. Characterization of the complete mitochondrial genome sequences of three Merulinidae corals and novel insights into the phylogenetics. PeerJ 2020; 8:e8455. [PMID: 32002337 PMCID: PMC6984341 DOI: 10.7717/peerj.8455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, modern coral taxonomy, combining morphology and molecular sequence data, has resolved many long-standing questions about scleractinian corals. In this study, we sequenced the complete mitochondrial genomes of three Merulinidae corals (Dipsastraea rotumana, Favites pentagona, and Hydnophora exesa) for the first time using next-generation sequencing. The obtained mitogenome sequences ranged from 16,466 bp (D. rotumana) to 18,006 bp (F. pentagona) in length, and included 13 unique protein-coding genes (PCGs), two transfer RNA genes, and two ribosomal RNA genes . Gene arrangement, nucleotide composition, and nucleotide bias of the three Merulinidae corals were canonically identical to each other and consistent with other scleractinian corals. We performed a Bayesian phylogenetic reconstruction based on 13 protein-coding sequences of 86 Scleractinia species. The results showed that the family Merulinidae was conventionally nested within the robust branch, with H. exesa clustered closely with F. pentagona and D. rotumana clustered closely with Favites abdita. This study provides novel insight into the phylogenetics of species within the family Merulinidae and the evolutionary relationships among different Scleractinia genera.
Collapse
Affiliation(s)
- Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Shuangen Yu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Feng Guo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Jianjia Wang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Dingyong Huang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| |
Collapse
|
27
|
Ip YCA, Tay YC, Gan SX, Ang HP, Tun K, Chou LM, Huang D, Meier R. From marine park to future genomic observatory? Enhancing marine biodiversity assessments using a biocode approach. Biodivers Data J 2019; 7:e46833. [PMID: 31866739 PMCID: PMC6917626 DOI: 10.3897/bdj.7.e46833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022] Open
Abstract
Few tropical marine sites have been thoroughly characterised for their animal species, even though they constitute the largest proportion of multicellular diversity. A number of focused biodiversity sampling programmes have amassed immense collections to address this shortfall, but obstacles remain due to the lack of identification tools and large proportion of undescribed species globally. These problems can be partially addressed with DNA barcodes ("biocodes"), which have the potential to facilitate the estimation of species diversity and identify animals to named species via barcode databases. Here, we present the first results of what is intended to be a sustained, systematic study of the marine fauna of Singapore's first marine park, reporting more than 365 animal species, determined based on DNA barcodes and/or morphology represented by 931 specimens (367 zooplankton, 564 macrofauna including 36 fish). Due to the lack of morphological and molecular identification tools, only a small proportion could be identified to species solely based on either morphology (24.5%) or barcodes (24.6%). Estimation of species numbers for some taxa was difficult because of the lack of sufficiently clear barcoding gaps. The specimens were imaged and added to "Biodiversity of Singapore" (http://singapore.biodiversity.online), which now contains images for > 13,000 species occurring in the country.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Ywee Chieh Tay
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
- Temasek Life Sciences Laboratory, Singapore, SingaporeTemasek Life Sciences LaboratorySingaporeSingapore
| | - Su Xuan Gan
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Hui Ping Ang
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Karenne Tun
- National Parks Board, Singapore, SingaporeNational Parks BoardSingaporeSingapore
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore, SingaporeDepartment of Biological Sciences, National University of SingaporeSingaporeSingapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, SingaporeTropical Marine Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
28
|
Leveque S, Afiq-Rosli L, Ip YCA, Jain SS, Huang D. Searching for phylogenetic patterns of Symbiodiniaceae community structure among Indo-Pacific Merulinidae corals. PeerJ 2019; 7:e7669. [PMID: 31565579 PMCID: PMC6746223 DOI: 10.7717/peerj.7669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022] Open
Abstract
Over half of all extant stony corals (Cnidaria: Anthozoa: Scleractinia) harbour endosymbiotic dinoflagellates of the family Symbiodiniaceae, forming the foundational species of modern shallow reefs. However, whether these associations are conserved on the coral phylogeny remains unknown. Here we aim to characterise Symbiodiniaceae communities in eight closely-related species in the genera Merulina, Goniastrea and Scapophyllia, and determine if the variation in endosymbiont community structure can be explained by the phylogenetic relatedness among hosts. We perform DNA metabarcoding of the nuclear internal transcribed spacer 2 using Symbiodiniaceae-specific primers on 30 coral colonies to recover three major endosymbiont clades represented by 23 distinct types. In agreement with previous studies on Southeast Asian corals, we find an abundance of Cladocopium and Durusdinium, but also detect Symbiodinium types in three of the eight coral host species. Interestingly, differences in endosymbiont community structure are dominated by host variation at the intraspecific level, rather than interspecific, intergeneric or among-clade levels, indicating a lack of phylogenetic constraint in the coral-endosymbiont association among host species. Furthermore, the limited geographic sampling of four localities spanning the Western and Central Indo-Pacific preliminarily hints at large-scale spatial structuring of Symbiodiniaceae communities. More extensive collections of corals from various regions and environments will help us better understand the specificity of the coral-endosymbiont relationship.
Collapse
Affiliation(s)
- Sébastien Leveque
- National University of Singapore, Singapore, Singapore.,Université de La Rochelle, La Rochelle, Singapore
| | | | | | | | - Danwei Huang
- National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Cunha RL, Forsman ZH, Belderok R, Knapp ISS, Castilho R, Toonen RJ. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol Biol 2019; 19:153. [PMID: 31340762 PMCID: PMC6657087 DOI: 10.1186/s12862-019-1476-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. Results All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05–2.6] Myr) or assuming rate homogeneity (0.4 [0.14–0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. Conclusions Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms. Electronic supplementary material The online version of this article (10.1186/s12862-019-1476-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina L Cunha
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Roy Belderok
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ingrid S S Knapp
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
30
|
Afiq-Rosli L, Huang D, Toh TC, Taira D, Ng CSL, Song T, Chou LM. Maximising genetic diversity during coral transplantation from a highly impacted source reef. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Montgomery AD, Fenner D, Toonen RJ. Annotated checklist for stony corals of American Sāmoa with reference to mesophotic depth records. Zookeys 2019; 849:1-170. [PMID: 31171897 PMCID: PMC6538593 DOI: 10.3897/zookeys.849.34763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 11/12/2022] Open
Abstract
An annotated checklist of the stony corals (Scleractinia, Milleporidae, Stylasteridae, and Helioporidae) of American Sāmoa is presented. A total of 377 valid species has been reported from American Sāmoa with 342 species considered either present (251) or possibly present (91). Of these 342 species, 66 have a recorded geographical range extension and 90 have been reported from mesophotic depths (30-150 m). Additionally, four new species records (Acanthastreasubechinata Veron, 2000, Favitesparaflexuosus Veron, 2000, Echinophylliaechinoporoides Veron & Pichon, 1980, Turbinariairregularis Bernard, 1896) are presented. Coral species of concern include species listed under the US Endangered Species Act (ESA) and the International Union for Conservation of Nature's (IUCN) Red List of threatened species. Approximately 17.5% of the species present or possibly present are categorized as threatened by IUCN compared to 27% of the species globally. American Sāmoa has seven ESA-listed or ESA candidate species, including Acroporaglobiceps (Dana, 1846), Acroporajacquelineae Wallace, 1994, Acroporaretusa (Dana, 1846), Acroporaspeciosa (Quelch, 1886), Fimbriaphylliaparadivisa (Veron, 1990), Isoporacrateriformis (Gardiner, 1898), and Pocilloporameandrina Dana, 1846. There are two additional species possibly present, i.e., Pavonadiffluens (Lamarck, 1816) and Poritesnapopora Veron, 2000.
Collapse
Affiliation(s)
- Anthony D. Montgomery
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI 96744, USAUniversity of Hawaiʻi at MānoaKāneʻoheUnited States of America
- U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd. Honolulu, HI 96850, USAU.S. Fish and Wildlife ServiceHonoluluUnited States of America
| | - Douglas Fenner
- Ocean Associates, Inc., NOAA Fisheries Service, Pacific Islands Regional Office, Pago Pago, AS, USANOAA Fisheries Service, Pacific Islands Regional OfficePago PagoAmerican Samoa
| | - Robert J. Toonen
- Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI 96744, USAUniversity of Hawaiʻi at MānoaKāneʻoheUnited States of America
| |
Collapse
|
32
|
Effects of missing data and data type on phylotranscriptomic analysis of stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Phylogenet Evol 2019; 134:12-23. [DOI: 10.1016/j.ympev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
|
33
|
Anokhin BA, Kuznetsova VG. FISH-based karyotyping of Pelmatohydraoligactis (Pallas, 1766), Hydraoxycnida Schulze, 1914, and H.magnipapillata Itô, 1947 (Cnidaria, Hydrozoa). COMPARATIVE CYTOGENETICS 2018; 12:539-548. [PMID: 30613371 PMCID: PMC6308218 DOI: 10.3897/compcytogen.v12i2.32120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
An account is given of the karyotypes of Hydramagnipapillata Itô, 1947, H.oxycnida Schulze, 1914, and Pelmatohydraoligactis (Pallas, 1766) (Cnidaria, Hydrozoa, Hydridae). A number of different techniques were used: conventional karyotype characterization by standard staining, DAPI-banding and C-banding was complemented by the physical mapping of the ribosomal RNA (18S rDNA probe) and H3 histone genes, and the telomeric (TTAGGG) n sequence by fluorescence in situ hybridization (FISH). We found that the species studied had 2n = 30; constitutive heterochromatin was present in the centromeric regions of the chromosomes; the "vertebrate" telomeric (TTAGGG) n motif was located on both ends of each chromosome and no interstitial sites were detected; 18S rDNA was mapped on the largest chromosome pair in H.magnipapillata and on one of the largest chromosome pairs in H.oxycnida and P.oligactis; in H.magnipapillata, the major rRNA and H3 histone multigene families were located on the largest pair of chromosomes, on their long arms and in the centromeric areas respectively. This is the first chromosomal mapping of H3 in hydras.
Collapse
Affiliation(s)
- Boris A. Anokhin
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, RussiaZoological Institute of Russian Academy of SciencesSt. PetersburgRussia
| | - Valentina G. Kuznetsova
- Zoological Institute of Russian Academy of Sciences, St. Petersburg, 199034, RussiaZoological Institute of Russian Academy of SciencesSt. PetersburgRussia
| |
Collapse
|
34
|
Niu W, Yu S, Tian P, Xiao J. Complete mitochondrial genome of Echinophylliaaspera (Scleractinia, Lobophylliidae): Mitogenome characterization and phylogenetic positioning. Zookeys 2018; 793:1-14. [PMID: 30405308 PMCID: PMC6218560 DOI: 10.3897/zookeys.793.28977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022] Open
Abstract
Lack of mitochondrial genome data of Scleractinia is hampering progress across genetic, systematic, phylogenetic, and evolutionary studies concerning this taxon. Therefore, in this study, the complete mitogenome sequence of the stony coral Echinophylliaaspera (Ellis & Solander, 1786), has been decoded for the first time by next generation sequencing and genome assembly. The assembled mitogenome is 17,697 bp in length, containing 13 protein coding genes (PCGs), two transfer RNAs and two ribosomal RNAs. It has the same gene content and gene arrangement as in other Scleractinia. All genes are encoded on the same strand. Most of the PCGs use ATG as the start codon except for ND2, which uses ATT as the start codon. The A+T content of the mitochondrial genome is 65.92% (25.35% A, 40.57% T, 20.65% G, and 13.43% for C). Bayesian and maximum likelihood phylogenetic analysis have been performed using PCGs, and the result shows that E.aspera clustered closely with Sclerophylliamaxima (Sheppard & Salm, 1988), both of which belong to Lobophylliidae, when compared with species belonging to Merulinidae and other scleractinian taxa used as outgroups. The complete mitogenome of E.aspera provides essential and important DNA molecular data for further phylogenetic and evolutionary analyses of corals.
Collapse
Affiliation(s)
- Wentao Niu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Shuangen Yu
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Peng Tian
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| | - Jiaguang Xiao
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, ChinaLaboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic AdministrationXiamenChina
| |
Collapse
|
35
|
Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Taira D, Bauman AG, Todd PA. Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. MARINE POLLUTION BULLETIN 2018; 135:654-681. [PMID: 30301085 DOI: 10.1016/j.marpolbul.2018.07.041] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 05/28/2023]
Abstract
Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban coral reefs, including "reef compression" (a decline in bathymetric range with increasing turbidity and decreasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in urban areas.
Collapse
Affiliation(s)
- Eliza C Heery
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Bert W Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, the Netherlands.
| | - Nicola K Browne
- Molecular and Life Sciences, Faculty of Science and Engineering, Bentley Campus, Curtin University, Perth, WA 6102, Australia; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Put O Ang
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Loke Ming Chou
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore
| | - Lynette H L Loke
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Poonam Saksena-Taylor
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Nadia Alsagoff
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Thamasak Yeemin
- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Huamark, Bangkok 10240, Thailand
| | - Si Tuan Vo
- Institute of Oceanography, Vietnam Academy of Science and Technology, 1 Cau Da, Nha Trang, Khanh Hoa, Viet Nam
| | - Arthur R Bos
- Department of Biology, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
| | - Girley S Gumanao
- Marine Biology Department, Davao del Norte State College, New Visayas, 8105 Panabo City, the Philippines
| | - Muhammad Ali Syed Hussein
- Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Zarinah Waheed
- Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - David J W Lane
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Ofri Johan
- Research Institute for Ornamental Fish Culture, Jl. Perikanan No. 13, Pancoran Mas, Kota Depok, Jawa Barat 16436, Indonesia
| | - Andreas Kunzmann
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany
| | - Jamaluddin Jompa
- Department of Marine Science, Hasanuddin University, Makassar, Indonesia
| | - Daisuke Taira
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Andrew G Bauman
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Peter A Todd
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
36
|
Johnston EC, Forsman ZH, Toonen RJ. A simple molecular technique for distinguishing species reveals frequent misidentification of Hawaiian corals in the genus Pocillopora. PeerJ 2018; 6:e4355. [PMID: 29441239 PMCID: PMC5807929 DOI: 10.7717/peerj.4355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Species within the scleractinian genus Pocillopora Lamarck 1816 exhibit extreme phenotypic plasticity, making identification based on morphology difficult. However, the mitochondrial open reading frame (mtORF) marker provides a useful genetic tool for identification of most species in this genus, with a notable exception of P. eydouxi and P. meandrina. Based on recent genomic work, we present a quick and simple, gel-based restriction fragment length polymorphism (RFLP) method for the identification of all six Pocillopora species occurring in Hawai‘i by amplifying either the mtORF region, a newly discovered histone region, or both, and then using the restriction enzymes targeting diagnostic sequences we unambiguously identify each species. Using this approach, we documented frequent misidentification of Pocillopora species based on colony morphology. We found that P. acuta colonies are frequently mistakenly identified as P. damicornis in Kāne‘ohe Bay, O‘ahu. We also found that P. meandrina likely has a northern range limit in the Northwest Hawaiian Islands, above which P. ligulata was regularly mistaken for P. meandrina.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| |
Collapse
|
37
|
Luzon KS, Lin MF, Ablan Lagman MCA, Licuanan WRY, Chen CA. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphyllidae; clade V). PeerJ 2017; 5:e4074. [PMID: 29226032 PMCID: PMC5719963 DOI: 10.7717/peerj.4074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups that await phylogenetic resolution. Multiple genetic markers were used to construct the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E. glabrescens, E. paraancora, E. paradivisa, and E. yaeyamaensis. The phylogeny guided the inferences on the contributions of the colony structure, polyp morphology, and life history traits to the systematics of the largest genus in Euphyllidae (clade V) and, by extension, to the rest of clade V. RESULTS Analyses of cytochrome oxidase 1 (cox1), cytochrome b (cytb), and β-tubulin genes of 36 colonies representing Euphyllia and a confamilial species, Galaxea fascicularis, reveal two distinct groups in the Euphyllia that originated from different ancestors. Euphyllia glabrescens formed a separate group. Euphyllia ancora, E. divisa, E. paraancora, E. paradivisa, and E. yaeyamaensis clustered together and diverged from the same ancestor as G. fascicularis. The 3'-end of the cox1 gene of Euphyllia was able to distinguish morphospecies. DISCUSSION Species of Euphyllia were traditionally classified into two subgenera, Euphyllia and Fimbriaphyllia, which represented a dichotomy on colony structure. The paraphyletic groups retained the original members of the subgenera providing a strong basis for recognizing Fimbriaphyllia as a genus. However, colony structure was found to be a convergent trait between Euphyllia and Fimbriaphyllia, while polyp shape and length, sexuality, and reproductive mode defined the dichotomy better. Species in a genus are distinguished by combining polyp morphology and colony form. The cluster of E. glabrescens of the Euphyllia group is a hermaphroditic brooder with long, tubular tentacles with knob-like tips, and a phaceloid colony structure. The Fimbriaphyllia group, with F. paraancora, F. paradivisa, F. ancora, F. divisa, and F. yaeyamaensis, are gonochoric broadcast spawners with short polyps, mixed types of tentacle shapes, and a phaceloid or flabello-meandroid skeleton. Soft-tissue morphology of G. fascicularis and Ctenella chagius were found to be consistent with the dichotomy. CONCLUSIONS The paraphyly of the original members of the previous subgenera justify recognizing Fimbriaphyllia as a genus. The integrated approach demonstrates that combining polyp features, reproductive traits, and skeletal morphology is of high systematic value not just to Euphyllia and Fimbriaphyllia but also to clade V; thus, laying the groundwork for resolving the phylogeny of clade V.
Collapse
Affiliation(s)
- Katrina S. Luzon
- Biology Department, De La Salle University, Manila, Philippines
- Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
- Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD), Los Baños, Laguna, Philippines
| | - Mei-Fang Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Molecular and Cell Biology, James Cook University, Townsville, Australia
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ma. Carmen A. Ablan Lagman
- Biology Department, De La Salle University, Manila, Philippines
- Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines
| | - Wilfredo Roehl Y. Licuanan
- Biology Department, De La Salle University, Manila, Philippines
- Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Baird AH, Hoogenboom MO, Huang D. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). Zookeys 2017; 662:49-66. [PMID: 28769608 PMCID: PMC5539699 DOI: 10.3897/zookeys.662.11454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
A new zooxanthellate reef-dwelling scleractinian coral species, Cyphastrea salaesp. n. (Scleractinia, Merulinidae), is described from Lord Howe Island Australia. The new species can be distinguished morphologically from the only other congeneric species on Lord Howe Island, C. microphthalma, by the number of primary septa (12 vs. 10) and the much taller corallites (mean ± SE: 1.0 ± 0.07 mm v 0.4 ± 0.04 mm). The relationship of C. salae to four of the other eleven currently accepted species in the genus was explored through analyses of nuclear (28S rDNA) and mitochondrial (noncoding intergenic region) gene sequences. Cyphastrea salaesp. n. forms a strongly supported clade that is distinct from a clade containing three species found commonly in Australia, C. chalcidicum, C. serailia, and C. microphthalma. One specimen was also found in the Solitary Islands, another high latitude location in south-eastern Australia. The discovery of a new species in the genus Cyphastrea on high latitude reefs in south-eastern Australia suggests that other new species might be found among more diverse genera represented here and that the scleractinian fauna of these isolated locations is more distinct than previously recognised.
Collapse
Affiliation(s)
- Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Mia O. Hoogenboom
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Danwei Huang
- Department of Biological Sciences & Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
39
|
Arrigoni R, Berumen ML, Huang D, Terraneo TI, Benzoni F. Cyphastrea (Cnidaria : Scleractinia : Merulinidae) in the Red Sea: phylogeny and a new reef coral species. INVERTEBR SYST 2017. [DOI: 10.1071/is16035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The scleractinian coral Cyphastrea is a common and widespread genus throughout the coral reefs of the Indo-Pacific. Little is known about the phylogenetic relationships within this taxon and species identification is based mainly on traditional skeletal characters, such as the number of septa, septa cycles, growth form and corallite dimensions. Here we present the first focussed reconstruction of phylogenetic relationships among Cyphastrea species, analysing 57 colonies from the Red Sea, where five morphospecies live in sympatry. Analyses based on three loci (nuclear histone H3, 28S rDNA and a mitochondrial intergenic region) reveal the existence of three well-supported molecular lineages. None of the five previously defined morphospecies are monophyletic and they cluster into two clades, suggesting the need of a systematic revision in Cyphastrea. The third lineage is described as C. magna Benzoni & Arrigoni, sp. nov., a new reef coral species collected from the northern and central Red Sea. Cyphastrea magna Benzoni & Arrigoni, sp. nov. is characterised by the largest corallite diameter among known Cyphastrea species, a wide trabecular columella >1/4 of calice width, and 12 equal primary septa. This study suggests that morphology-based taxonomy in Cyphastrea may not identify monophyletic units and strengthens the application of genetics in coral systematics.
Collapse
|
40
|
Huang D, Arrigoni R, Benzoni F, Fukami H, Knowlton N, Smith ND, Stolarski J, Chou LM, Budd AF. Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute; National University of Singapore; Singapore 117543 Singapore
| | - Roberto Arrigoni
- Red Sea Research Center; Division of Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Science; University of Miyazaki; Miyazaki 889-2192 Japan
| | - Nancy Knowlton
- Department of Invertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington DC 20013 USA
| | - Nathan D. Smith
- The Dinosaur Institute; Natural History Museum of Los Angeles County; 900 Exposition Boulevard Los Angeles CA 90007 USA
| | - Jarosław Stolarski
- Institute of Paleobiology; Polish Academy of Sciences; Twarda 51/55 PL-00-818 Warsaw Poland
| | - Loke Ming Chou
- Department of Biological Sciences and Tropical Marine Science Institute; National University of Singapore; Singapore 117543 Singapore
| | - Ann F. Budd
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
| |
Collapse
|
41
|
Okubo N. Restructuring the Traditional Suborders in the Order Scleractinia Based on Embryogenetic Morphological Characteristics. Zoolog Sci 2016; 33:116-23. [PMID: 26853877 DOI: 10.2108/zs150094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The order Scleractinia includes two distinct groups, which are termed "complex" and "robust" as indicated by the molecular phylogeny of mitochondrial 16S ribosomal gene sequences. Since this discovery, coral taxonomists have been seeking morphological characters for grouping this deep division in the order Scleractinia. Recently, morphological characteristics during embryogenesis that facilitate grouping the two clades as "complex" and "robust" were reported, thus clarifying a deep division in the Scleractinia. In the present report, I establish two new suborders, Refertina and Vacatina, on the basis of the embryogenetic morphological characteristics, molecular data, and new observations of Tubastraea coccinea and Cyphastrea serailia embryogenesis. In particular, the embryo of T. coccinea has a possible fertilization membrane that was first observed in the phylum Cnidaria. The new suborder Refertina consists of the families that belong to the "complex" clade and have no or little blastocoel. The new suborder Vacatina is composed of the families that fall into the "robust" clade and have an apparent blastocoel.
Collapse
Affiliation(s)
- Nami Okubo
- Department of Economics, Tokyo Keizai University, 1-7-34 Minamimachi, Kokubunji, Tokyo 185-8502, Japan
| |
Collapse
|
42
|
Bellwood DR, Goatley CHR, Bellwood O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol Rev Camb Philos Soc 2016; 92:878-901. [PMID: 26970292 DOI: 10.1111/brv.12259] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66-34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34-5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene-Miocene is marked by the appearance of new fish and coral taxa associated with high-turnover fast-growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio-Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent diversification. However, the presence of pigment patterns in the Eocene suggests that colour may not have driven recent diversification. Furthermore, the lack of functional changes in fishes or corals over the last 5 Myr raises questions over the role and importance of biodiversity in shaping the future of coral reefs.
Collapse
Affiliation(s)
- David R Bellwood
- College of Marine and Environmental Sciences and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Christopher H R Goatley
- College of Marine and Environmental Sciences and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Orpha Bellwood
- College of Marine and Environmental Sciences and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
43
|
Cryptic genetic divergence within threatened species of Acropora coral from the Indian and Pacific Oceans. CONSERV GENET 2016. [DOI: 10.1007/s10592-015-0807-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Combosch DJ, Vollmer SV. Trans-Pacific RAD-Seq population genomics confirms introgressive hybridization in Eastern Pacific Pocillopora corals. Mol Phylogenet Evol 2015; 88:154-62. [DOI: 10.1016/j.ympev.2015.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/30/2023]
|
45
|
Arrigoni R, Berumen ML, Terraneo TI, Caragnano A, Bouwmeester J, Benzoni F. Forgotten in the taxonomic literature: resurrection of the scleractinian coral genusSclerophyllia(Scleractinia, Lobophylliidae) from the Arabian Peninsula and its phylogenetic relationships. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.978915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Parkinson JE, Baums IB. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations. Front Microbiol 2014; 5:445. [PMID: 25202306 PMCID: PMC4142987 DOI: 10.3389/fmicb.2014.00445] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022] Open
Abstract
Reef-building corals owe much of their success to a symbiosis with dinoflagellate microalgae in the genus Symbiodinium. In this association, the performance of each organism is tied to that of its partner, and together the partners form a holobiont that can be subject to selection. Climate change affects coral reefs, which are declining globally as a result. Yet the extent to which coral holobionts will be able to acclimate or evolve to handle climate change and other stressors remains unclear. Selection acts on individuals and evidence from terrestrial systems demonstrates that intraspecific genetic diversity plays a significant role in symbiosis ecology and evolution. However, we have a limited understanding of the effects of such diversity in corals. As molecular methods have advanced, so too has our recognition of the taxonomic and functional diversity of holobiont partners. Resolving the major components of the holobiont to the level of the individual will help us assess the importance of intraspecific diversity and partner interactions in coral-algal symbioses. Here, we hypothesize that unique combinations of coral and algal individuals yield functional diversity that affects not only the ecology and evolution of the coral holobiont, but associated communities as well. Our synthesis is derived from reviewing existing evidence and presenting novel data. By incorporating the effects of holobiont extended phenotypes into predictive models, we may refine our understanding of the evolutionary trajectory of corals and reef communities responding to climate change.
Collapse
Affiliation(s)
| | - Iliana B. Baums
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|
47
|
Pinzón C. JH, Beach-Letendre J, Weil E, Mydlarz LD. Relationship between phylogeny and immunity suggests older Caribbean coral lineages are more resistant to disease. PLoS One 2014; 9:e104787. [PMID: 25133685 PMCID: PMC4136782 DOI: 10.1371/journal.pone.0104787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022] Open
Abstract
Diseases affect coral species fitness and contribute significantly to the deterioration of coral reefs. The increase in frequency and severity of disease outbreaks has made evaluating and determining coral resistance a priority. Phylogenetic patterns in immunity and disease can provide important insight to how corals may respond to current and future environmental and/or biologically induced diseases. The purpose of this study was to determine if immunity, number of diseases and disease prevalence show a phylogenetic signal among Caribbean corals. We characterized the constitutive levels of six distinct innate immune traits in 14 Caribbean coral species and tested for the presence of a phylogenetic signal on each trait. Results indicate that constitutive levels of some individual immune related processes (i.e. melanin concentration, peroxidase and inhibition of bacterial growth), as well as their combination show a phylogenetic signal. Additionally, both the number of diseases affecting each species and disease prevalence (as measures of disease burden) show a significant phylogenetic signal. The phylogenetic signal of immune related processes, combined with estimates of species divergence times, indicates that among the studied species, those belonging to older lineages tend to resist/fight infections better than more recently diverged coral lineages. This result, combined with the increasing stressful conditions on corals in the Caribbean, suggest that future reefs in the region will likely be dominated by older lineages while modern species may face local population declines and/or geographic extinction.
Collapse
Affiliation(s)
- Jorge H. Pinzón C.
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
- * E-mail:
| | - Joshuah Beach-Letendre
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| | - Ernesto Weil
- Department of Marine Sciences University of Puerto Rico, Mayagüez, Puerto Rico, United States of America
| | - Laura D. Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, Texas, United States of America
| |
Collapse
|
48
|
Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, Galli P, Montano S, Castoldi E, Benzoni F. A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. ZOOL SCR 2014. [DOI: 10.1111/zsc.12072] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto Arrigoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
| | - Yuko F. Kitano
- Faculty of Agriculture; University of Miyazaki; 1-1 Gakuenkibanadai-Nishi Miyazaki 889-2192 Japan
| | - Jaroslaw Stolarski
- Institute of Paleobiology; Polish Academy of Sciences; Twarda 51/55 PL-00-818 Warsaw Poland
| | - Bert W. Hoeksema
- Department of Marine Zoology; Naturalis Biodiversity Center; P.O. Box 9517 2300 RA Leiden the Netherlands
| | - Hironobu Fukami
- Faculty of Agriculture; University of Miyazaki; 1-1 Gakuenkibanadai-Nishi Miyazaki 889-2192 Japan
| | - Fabrizio Stefani
- Water Research Institute-National Research Council (IRSA-CNR); Via del Mulino 19 20861 Brugherio (MB) Italy
| | - Paolo Galli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
- MaRHE Center (Marine Research and High Education Center); Magoodhoo Island, Faafu Atoll Maldives
| | - Simone Montano
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
- MaRHE Center (Marine Research and High Education Center); Magoodhoo Island, Faafu Atoll Maldives
| | - Elisa Castoldi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan Italy
- Institut de Recherche pour le Développement; Noumea Cedex New Caledonia
| |
Collapse
|
49
|
Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER, Meier R, Todd PA, Budd AF. Towards a phylogenetic classification of reef corals: the Indo-Pacific generaMerulina,GoniastreaandScapophyllia(Scleractinia, Merulinidae). ZOOL SCR 2014. [DOI: 10.1111/zsc.12061] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Danwei Huang
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
- Scripps Institution of Oceanography; University of California; San Diego La Jolla CA 92093 USA
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Roberto Arrigoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Michael L. Berumen
- Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Jeddah 23955 Kingdom of Saudi Arabia
| | - Jessica Bouwmeester
- Red Sea Research Center; King Abdullah University of Science and Technology; Thuwal Jeddah 23955 Kingdom of Saudi Arabia
| | - Loke Ming Chou
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Science; University of Miyazaki; Miyazaki 889-2192 Japan
| | - Wilfredo Y. Licuanan
- Br. Alfred Shields FSC Ocean Research Center and Biology Department; De La Salle University; Manila 1004 The Philippines
| | - Edward R. Lovell
- School of Marine Studies; University of the South Pacific; Laucala Campus Suva Fiji
| | - Rudolf Meier
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Peter A. Todd
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Ann F. Budd
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
| |
Collapse
|
50
|
Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF. Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12140] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Danwei Huang
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
- Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093 USA
- Department of Biological Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Francesca Benzoni
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Hironobu Fukami
- Department of Marine Biology and Environmental Science; University of Miyazaki; Miyazaki 889-2192 Japan
| | - Nancy Knowlton
- Scripps Institution of Oceanography; University of California, San Diego; La Jolla CA 92093 USA
- Department of Invertebrate Zoology; National Museum of Natural History; Smithsonian Institution; Washington, DC 20013 USA
| | - Nathan D. Smith
- Department of Biology; Howard University; Washington, DC 20059 USA
- Department of Paleobiology; National Museum of Natural History; Smithsonian Institution; Washington, DC 20013 USA
| | - Ann F. Budd
- Department of Earth and Environmental Sciences; University of Iowa; Iowa City IA 52242 USA
| |
Collapse
|