1
|
Liang W, Li M, Chen F, Wang Y, Wang K, Wu C, Zhu J. A venom serpin from the assassin bug Sycanus croceovittatus exhibiting inhibitory effects on melanization, development, and insecticidal activity towards its prey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106322. [PMID: 40082049 DOI: 10.1016/j.pestbp.2025.106322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
Serine protease inhibitors (SPIs) have been identified as main common components in the venom of the predatory bugs, while their functional roles remain unexplored. In this study, we identified 35 SPI genes belonging to three subfamilies of serpin, canonical SPI, and A2M in genome of the assassin bug, Sycanus croceovittatus. The amino acid sequences of these SPI genes reveal conserved functional regions, albeit with mutations or deletions at certain active site residues. Transcriptomic and qPCR analyses of gene expression patterns in various tissues across developmental stages indicate that most SPI genes exhibit high expression levels in venom apparatus, suggesting their role as venom proteins. Notably, the ScSPI5 gene from the serpin class was found to be most abundantly expressed in all three distinct venom glands, indicating its significant role as a venomous protein. Functional characterization demonstrated that this venom serpin effectively inhibits trypsin activity in vitro and suppresses phenoloxidase activity, thereby blocking hemolymph melanization in preys, including Spodoptera frugiperda, Achelura yunnanensis, and Tenebrio molitor. When ingested, it reduces the larval and pupal weight of the fall armyworm by impeding trypsin activity in the midgut. Upon injection, ScSPI5 exhibits a dose-dependent insecticidal effect against T. molitor, with an LD50 of 5.6 ± 1.1 μg/g. These findings elucidate the specific functions of SPIs in the venom of predatory bugs, enhancing our understanding of their predation efficiency, and highlighting the potential application of venomous SPIs as protease inhibitors in pest management strategies.
Collapse
Affiliation(s)
- Wenkai Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Meijiao Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Fenlian Chen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuqin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Kong WW, Yan YL, Hou CP, Hong T, Wang YS, Xu X, Liu SH, Xu JP. A novel digestive protease chymotrypsin-like serine contributes to anti-BmNPV activity in silkworm (Bombyxmori). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105301. [PMID: 39674304 DOI: 10.1016/j.dci.2024.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Serine proteases (SPs) are important proteases in the digestive system of lepidopteran insects. They play important roles in protein digestion, coagulation, signal transduction, hormone activation, inflammation and development. Blood-borne pyosis caused by Bombyx mori nuclear polyhedrosis virus (BmNPV) has caused serious harm to sericulture. At present, the scientific problems of BmNPV infection and silkworm resistance to BmNPV infection have been the focus of many scientists, but the molecular mechanism needs further research and exploration. Based on the results of label-free quantitative protein proteomics of the midgut digestive juice of different resistant strains in our laboratory, we successfully screened a differentially expressed candidate protein (DEP), B. mori chymotrypsin-like serine protease (BmCLSP), and comprehensively analyzed the biological characteristics and anti-BmNPV function of BmCLSP. The open reading frame (ORF) of BmCLSP is 891 bp, encoding 296 amino acid residues. The analysis of the domain structure showed that there was a signal peptide and a trypsin-like serine protease domain, Tryp_SPC, in the BmCLSP protein. Semi-quantitative and real-time fluorescence quantitative PCR analysis showed that the BmCLSP gene was highly expressed in the fifth instar larvae of silkworm, and specifically expressed in the midgut. The expression level of BmCLSP in the BmNPV resistant strain A35 was higher than that in the sensitive strain P50. Virus amplification analysis showed that the relative expression level of VP39 was significantly lower than that of the control group after infection of silkworm larvae and BmN cells with BmNPV treated with recombinant BmCLSP at an appropriate concentration. Furthermore, our overexpression of BmCLSP in BmN cells significantly inhibited the expansion of BmNPV. In summary, the results of this study indicate that BmCLSP has anti-BmNPV activity in silkworm, and can significantly inhibit the proliferation of BmNPV in silkworm. It offers a promising avenue for silkworm anti-virus breeding.
Collapse
Affiliation(s)
- Wei-Wei Kong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Yu-Liang Yan
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Cai-Ping Hou
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Tao Hong
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Yi-Sheng Wang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Xin Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China.
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China.
| |
Collapse
|
3
|
Yadav P, Seth RK, Reynolds SE. A sperm-activating trypsin-like protease from the male reproductive tract of Spodoptera litura: Proteomic identification, sequence characterization, gene expression profile, RNAi and the effects of ionizing radiation. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104664. [PMID: 38897288 DOI: 10.1016/j.jinsphys.2024.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Like other lepidopteran insects, males of the tobacco cutworm moth, Spodoptera litura produce two kinds of spermatozoa, eupyrene (nucleate) and apyrene (anucleate) sperm. Formed in the testis, both kinds of sperm are released into the male reproductive tract in an immature form and are stored in the duplex region of the tract. Neither type of sperm is motile at this stage. When stored apyrene sperm from the duplex are treated in vitro with an extract of the prostatic region of the male tract, or with mammalian trypsin, they become motile; activation is greater and achieved more rapidly with increasing concentration of extract or enzyme. The activating effect of prostatic extract is blocked by soybean trypsin inhibitor (SBTI), also in a dose-dependent way. These results suggest that the normal sperm-activating process is due to an endogenous trypsin-like protease produced in the prostatic region. Proteomic analysis of S. litura prostatic extracts revealed a Trypsin-Like Serine Protease, TLSP, molecular weight 27 kDa, whose 199-residue amino acid sequence is identical to that of a predicted protein from the S. litura genome and is highly similar to predicted proteins encoded by genes in the genomes of several other noctuid moth species. Surprisingly, TLSP is only distantly related to Serine Protease 2 (initiatorin) of the silkmoth, Bombyx mori, the only identified lepidopteran protein so far shown to activate sperm. TLSP has features typical of secreted proteins, probably being synthesized as an inactive precursor zymogen, which is later activated by proteolytic cleavage. cDNA was synthesized from total RNA extracted from the prostatic region and was used to examine TLSP expression using qPCR. tlsp mRNA was expressed in both the prostatic region and the accessory glands of the male tract. Injection of TLSP-specific dsRNA into adult males caused a significant reduction after 24 h in tlsp mRNA levels in both locations. The number of eggs laid by females mated to adult males that were given TLSP dsRNA in 10 % honey solution, and the fertility (% hatched) of the eggs were reduced. Injecting pupae with TLSP dsRNA caused the later activation of apyrene sperm motility by adult male prostatic extracts to be significantly reduced compared to controls. Exposure of S. litura pupae to ionizing radiation significantly reduced expression of tlsp mRNA in the prostatic part and accessory gland of irradiated males in both the irradiated generation and also in their (unirradiated) F1 progeny. The implications of these findings for the use of the inherited sterility technique for the control of S. litura and other pest Lepidoptera are discussed.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Stuart E Reynolds
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Zhiganov NI, Vinokurov KS, Salimgareev RS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Elpidina EN. The Set of Serine Peptidases of the Tenebrio molitor Beetle: Transcriptomic Analysis on Different Developmental Stages. Int J Mol Sci 2024; 25:5743. [PMID: 38891931 PMCID: PMC11172050 DOI: 10.3390/ijms25115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.
Collapse
Affiliation(s)
- Nikita I. Zhiganov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Konstantin S. Vinokurov
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budejovice, Czech Republic;
| | - Ruslan S. Salimgareev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (N.I.Z.); (Y.E.D.); (M.A.B.)
| |
Collapse
|
5
|
Lin S, Li XW, Liu JL, Ou-Yang YY, Zhang B, Zhao SJ, Chai XQ, Ma YL, Liu J. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. PEST MANAGEMENT SCIENCE 2024; 80:1193-1205. [PMID: 37888855 DOI: 10.1002/ps.7849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Wen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian-Li Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yu-Ying Ou-Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shu-Jiao Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Qing Chai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yong-le Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian Liu
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Orange, Australia
| |
Collapse
|
6
|
Yang L, Cheng Y, Wang Q, Dong H, Shen T, Gong J, Xia Q, Hou Y. Distinct enzyme activities of serine protease p37k in silkworm midgut and molting fluid. Int J Biol Macromol 2024; 261:129778. [PMID: 38296126 DOI: 10.1016/j.ijbiomac.2024.129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Serine proteases possess various biological functions. The serine protease p37k exhibits gelatinolytic activity in the silkworm midgut and degrades cuticular proteins in the molting fluid. In this study, we analyzed the activity changes of recombinant p37k (re-p37k) and p37k in the midgut and molting fluid of Bombyx mori. Firstly, in vitro-expressed re-p37k was activated when a 22 kDa band was observed by western blot. Re-p37k exhibits strong gelatinolytic activity, with the highest activity observed at pH 7.0-9.0 and 45 °C. Compared to p37k in the midgut, re-p37k loses thermal stability but can be restored by midgut extract or ions. E64, AEBSF, and an inhibitor cocktail inhibited the hydrolytic activity of re-p37k on epidermal proteins but did not inhibit the gelatinolytic activity. Subsequently, zymography showed that the positions of gelatinolytic band produced by p37k in the midgut and molting fluid were different, 35 kDa and 40 kDa, respectively. Finally, when heated midgut extract was added to re-p37k or molting fluid, the gelatinolytic band shifted from 40 kDa to 35 kDa, and the proteolytic activity of p37k in the molting fluid was inhibited. Collectively, our results demonstrate that p37k exhibits different activities in various tissues, suggesting its distinct tissue-specific functions during insect metamorphosis.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Taixia Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Jing Gong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
He F, Gao YW, Ye ZX, Huang HJ, Tian CH, Zhang CX, Chen JP, Li JM, Lu JB. Comparative transcriptomic analysis of salivary glands between the zoophytophagous Cyrtorhinus lividipennis and the phytozoophagous Apolygus lucorum. BMC Genomics 2024; 25:53. [PMID: 38212677 PMCID: PMC10785411 DOI: 10.1186/s12864-023-09956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.
Collapse
Affiliation(s)
- Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Yang-Wei Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Zhengzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
- Institute of Insect Science, Zhejiang University, 310058, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
8
|
Kashung S, Bhardwaj P, Saikia M, Mazumdar-Leighton S. Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb. FRONTIERS IN INSECT SCIENCE 2023; 3:1169596. [PMID: 38469493 PMCID: PMC10926435 DOI: 10.3389/finsc.2023.1169596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/10/2023] [Indexed: 03/13/2024]
Abstract
Dietary change influenced the life-history traits, nutritional utilization, and midgut serine proteinases in the larvae of the domesticated polyphagous S. ricini, transferred from R. communis (common name: castor; family Euphorbiaceae; the host plant implicated in its domestication) to A. excelsa (common name: Indian tree of heaven; family Simaroubaceae; an ancestral host of wild Samia species). Significantly higher values for fecundity and body weight were observed in larvae feeding on R. communis (Scr diet), and they took less time to reach pupation than insects feeding on A. excelsa (Scai diet). Nevertheless, the nutritional index for efficiency of conversion of digested matter (ECD) was similar for larvae feeding on the two plant species, suggesting the physiological adaptation of S. ricini (especially older instars) to an A. excelsa diet. In vitro protease assays and gelatinolytic zymograms using diagnostic substrates and protease inhibitors revealed significantly elevated levels (p ≤ 0.05) of digestive trypsins, which may be associated with the metabolic costs influencing slow growth in larvae feeding on A. excelsa. RT-PCR with semidegenerate serine proteinase gene-specific primers, and cloning and sequencing of 3' cDNA ends identified a large gene family comprising at least two groups of putative chymotrypsins (i.e., Sr I and Sr II) resembling invertebrate brachyurins/collagenases with wide substrate specificities, and five groups of putative trypsins (i.e., Sr III, Sr IV, Sr V, Sr VII, and Sr VIII). Quantitative RT-PCR indicated that transcripts belonging to the Sr I, Sr III, Sr IV, and Sr V groups, especially the Sr IV group (resembling achelase I from Lonomia achelous), were expressed differentially in the midguts of fourth instars reared on the two plant species. Sequence similarity indicated shared lineages with lepidopteran orthologs associated with expression in the gut, protein digestion, and phytophagy. The results obtained are discussed in the context of larval serine proteinases in dietary adaptations, domestication, and exploration of new host plant species for commercial rearing of S. ricini.
Collapse
|
9
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
10
|
Dong Y, Hou Q, Ye M, Li Z, Li J, You M, Yuchi Z, Lin J, You S. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104737. [PMID: 37236330 DOI: 10.1016/j.dci.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Qing Hou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Min Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Jingge Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Junhan Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China; Department of Food and Biological Engineering, Fujian Vocational College of Bioengineering, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Yang L, Xu X, Wei W, Chen X, Peng C, Wang X, Xu J. Identification and gene expression analysis of serine proteases and their homologs in the Asian corn borer Ostrinia furnacalis. Sci Rep 2023; 13:4766. [PMID: 36959303 PMCID: PMC10036332 DOI: 10.1038/s41598-023-31830-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Serine proteases (SPs) and their homologs (SPHs) are among the best-characterized gene families. They are involved in several physiological processes, including digestion, embryonic development and immunity. In the current study, a total of 177 SPs-related genes were characterized in the genome of Ostrinia furnacalis. The activation site of SPs/SPHs and enzyme specificity of SPs were identified, and the findings showed that most of the SPs analyzed possessed trypsin substrate specificity. Several SPs/SPHs with similar simple gene structures had tandem repeat-like distributions on the scaffold, indicated that gene expansion has occurred in this large family. Furthermore, we constructed 30 RNA sequencing libraries including four with developmental stage and four middle larval stage tissues to study the transcript levels of these genes. Differentially upregulated and downregulated genes were obtained via data analysis. More than one-quarter of the genes were specifically identified as highly expressed in the midgut in compared to the other three tissues evaluated. In the current study, the domain structure, gene location and phylogenetic relationship of genes in O. furnacalis were explored. Orthologous comparisons of SPs/SPHs between model insects and O. furnacalis indicated their possible functions. This information provides a basis for understanding the functional roles of this large family.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Zakhia R, Osta MA. CLIPA7 Exhibits Pleiotropic Roles in the Anopheles gambiae Immune Response. J Innate Immun 2022; 15:317-332. [PMID: 36423593 PMCID: PMC10643895 DOI: 10.1159/000526486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 10/30/2023] Open
Abstract
Clip domain serine proteases and clip domain serine protease homologs (cSPHs) are key components of serine protease cascades that drive the melanization response. Despite lacking catalytic activity, cSPHs play essential roles in regulating melanization, but the spectrum of functions they catalyze within and outside these cascades is not fully understood. Aside from their classical role as cofactors for PPO activation, we have previously revealed an unprecedented complexity in the function and molecular organization of these cSPHs in the immune response of the malaria vector Anopheles gambiae. Here, we add yet another dimension to the complex roles underpinning the contributions of cSPHs to mosquito immunity by showing that CLIPA7, a member of the expanded cSPH family, defines a novel branch within the cSPH network that is essential for the melanization of Escherichia coli but not Plasmodium ookinetes or Gram-positive bacteria. Despite its dispensability for the melanization of Gram-positive bacteria, we show that CLIPA7 is required for the clearance of systemic infections with Staphylococcus aureus. CLIPA7 is produced by hemocytes and associates with the surfaces of live E. coli and S. aureus cells in vivo as well as with those of melanized cells. Based on its RNAi phenotypes and its unique domain architecture among A. gambiae cSPHs including the presence of an RGD motif, we propose that CLIPA7 exhibits pleiotropic roles in mosquito immunity that extend beyond the regulation of melanization to microbial clearance.
Collapse
Affiliation(s)
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Li GY, Yang L, Xiao KR, Song QS, Stanley D, Wei SJ, Zhu JY. Characterization and expression profiling of serine protease inhibitors in the yellow mealworm Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21948. [PMID: 35749627 DOI: 10.1002/arch.21948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Serine protease inhibitors (SPIs) act in diverse biological processes in insects such as immunity, development, and digestion by preventing the unwanted proteolysis. So far, the repertoire of genes encoding SPIs has been identified from few insect species. In this study, 62 SPI genes were identified from the genome of the yellow mealworm, Tenebrio molitor. According to their modes of action, they were classified into three families, serpin (26), canonical SPI (31), and α-macroglobulins (A2M) (5). These SPIs feature eight domains including serpin, Kazal, TIL, Kunitz, WAP, Antistasin, pacifastin, and A2M. In total, 39 SPIs contain a single SPI domain, while the others encode at least two inhibitor units. Based on the amino acids in the cleaved reactive sites, the abilities of these SPIs to inhibit trypsin, chymotrypsin, or elastase-like enzymes are predicted. The expression profiling based on the RNA-seq data showed that these genes displayed stage-specific expression patterns during development, suggesting to us their significance in development. Some of the SPI genes were exclusively expressed in particular tissues such as hemocyte, fat body, gut, ovary, and testis, which may be involved in biological processes specific to the indicated tissues. These findings provide necessary information for further investigation of insect SPIs.
Collapse
Affiliation(s)
- Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
15
|
Wu CY, Xiao KR, Wang LZ, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Identification and expression profiling of serine protease-related genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21963. [PMID: 36039637 DOI: 10.1002/arch.21963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.
Collapse
Affiliation(s)
- Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Long-Zhang Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
16
|
Heng J, Liu H, Xu J, Huang X, Sun X, Yang R, Xia Q, Zhao P. KPI5 Is Involved in the Regulation of the Expression of Antibacterial Peptide Genes and Hemolymph Melanization in the Silkworm, Bombyx mori. Front Immunol 2022; 13:907427. [PMID: 35669774 PMCID: PMC9164257 DOI: 10.3389/fimmu.2022.907427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Kunitz-type protease inhibitors (KPIs) are ubiquitously found in many organisms, and participate in various physiological processes. However, their function in insects remains to be elucidated. In the present study, we characterized and functionally analyzed silkworm KPI5. Sequence analysis showed that KPI5 contains 85 amino acids with six conserved cysteine residues, and the P1 site is a phenylalanine residue. Inhibitory activity and stability analyses indicated that recombinant KPI5 protein significantly inhibited the activity of chymotrypsin and was highly tolerant to temperature and pH. The spatio-temporal expression profile analysis showed that KPI5 was synthesized in the fat body and secreted into the hemolymph. In vivo induction analysis showed that the expression of KPI5 in the fat body was significantly upregulated by pathogen-associated molecular patterns (PAMPs). Binding assays suggested that KPI5 can bind to pathogens and PAMPs. In vitro pathogen growth inhibition assay and encapsulation analysis indicated that KPI5 can neither kill pathogenic bacteria directly nor promote the encapsulation of agarose beads by silkworm hemocytes. Recombinant protein injection test and CRISPR/Cas9-mediated knockdown showed that KPI5 promotes the expression of antimicrobial peptides (AMPs) in the fat body. Moreover, the survival rate of individuals in the KPI5 knockdown group was significantly lower than that of the control group after pathogen infection. Phenoloxidase (PO) activity assays showed that KPI5 significantly inhibited the hemolymph PO activity and melanization induced by PAMPs. These findings suggested that KPI5 plays a dual regulatory role in innate immunity by promoting the expression of antimicrobial peptides in the fat body and inhibiting hemolymph melanization. Our study furthers the understanding of the function of insect KPIs and provides new insights into the regulatory mechanism of insect immune homeostasis.
Collapse
Affiliation(s)
- Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Jiahui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaotong Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Runze Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Feng M, Swevers L, Sun J. Hemocyte Clusters Defined by scRNA-Seq in Bombyx mori: In Silico Analysis of Predicted Marker Genes and Implications for Potential Functional Roles. Front Immunol 2022; 13:852702. [PMID: 35281044 PMCID: PMC8914287 DOI: 10.3389/fimmu.2022.852702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Within the hemolymph, insect hemocytes constitute a heterogeneous population of macrophage-like cells that play important roles in innate immunity, homeostasis and development. Classification of hemocytes in different subtypes by size, morphology and biochemical or immunological markers has been difficult and only in Drosophila extensive genetic analysis allowed the construction of a coherent picture of hemocyte differentiation from pro-hemocytes to granulocytes, crystal cells and plasmatocytes. However, the advent of high-throughput single cell technologies, such as single cell RNA sequencing (scRNA-seq), is bound to have a high impact on the study of hemocytes subtypes and their phenotypes in other insects for which a sophisticated genetic toolbox is not available. Instead of averaging gene expression across all cells as occurs in bulk-RNA-seq, scRNA-seq allows high-throughput and specific visualization of the differentiation status of individual cells. With scRNA-seq, interesting cell types can be identified in heterogeneous populations and direct analysis of rare cell types is possible. Next to its ability to profile the transcriptomes of individual cells in tissue samples, scRNA-seq can be used to propose marker genes that are characteristic of different hemocyte subtypes and predict their functions. In this perspective, the identities of the different marker genes that were identified by scRNA-seq analysis to define 13 distinct cell clusters of hemocytes in larvae of the silkworm, Bombyx mori, are discussed in detail. The analysis confirms the broad division of hemocytes in granulocytes, plasmatocytes, oenocytoids and perhaps spherulocytes but also reveals considerable complexity at the molecular level and highly specialized functions. In addition, predicted hemocyte marker genes in Bombyx generally show only limited convergence with the genes that are considered characteristic for hemocyte subtypes in Drosophila.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Shen Y, Chen G, Zhao S, Wu X. Genome-wide identification of lipases in silkworm (Bombyx mori) and their spatio-temporal expression in larval midgut. Gene 2021; 813:146121. [PMID: 34915049 DOI: 10.1016/j.gene.2021.146121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023]
Abstract
Lipases play crucial roles in food digestion by degrading dietary lipids into free fatty acids and glycerols. The domesticated silkworm (Bombyx mori) has been widely used as an important Lepidopteran model for decades. However, little is known about the lipase gene family in the silkworm, especially their hydrolytic activities as digestive enzymes. In this study, a total of 38 lipase genes were identified in the silkworm genome. Phylogenetic analysis indicated that they were divided into three major groups. Twelve lipases were confirmed to be expressed in the midgut at both transcriptional and translational levels. They were grouped into the same gene cluster, suggesting that they could have similar physiological functions. Quantitative real-time PCR (qRT-PCR) analyses indicated that lipases were mainly expressed in anterior and middle midgut regions, and their expression levels varied greatly along the length of midgut. A majority of lipases were down-regulated in the midgut when larvae stopped feeding. However, a unique lipase gene (Bmlip10583) showed low expression level during feeding stage, but it was significantly up-regulated during the larvae-pupae transition. These results demonstrated that expression of silkworm lipases was spatially and temporally regulated in the midgut during larval development. Taken together, our results provide a fundamental research of the lipase gene family in the silkworm.
Collapse
Affiliation(s)
- Yunwang Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
19
|
Cao HH, Zhang SZ, Zhu LB, Wang J, Liu YX, Wang YL, Kong X, You LL, Toufeeq S, Liu SH, Xu JP. The digestive proteinase trypsin, alkaline A contributes to anti-BmNPV activity in silkworm (Bombyx mori). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104035. [PMID: 33535067 DOI: 10.1016/j.dci.2021.104035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.
Collapse
Affiliation(s)
- Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Shang-Zhi Zhang
- Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China
| | - Shi-Huo Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, 230036, China.
| |
Collapse
|
20
|
de Almeida Barros R, Meriño-Cabrera Y, Vital CE, da Silva Júnior NR, de Oliveira CN, Lessa Barbosa S, Marques Gonçalves Assis JV, Ramos HJ, de Almeida Oliveira MG. Small peptides inhibit gut trypsin-like proteases and impair Anticarsia gemmatalis (Lepidoptera: Noctuidae) survival and development. PEST MANAGEMENT SCIENCE 2021; 77:1714-1723. [PMID: 33200876 DOI: 10.1002/ps.6191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Anticarsia gemmatalis larvae are key defoliating pests of soybean plants. Inorganic insecticides, harmful to the environment and human health, are the main molecules used in the control of this pest. To apply more sustainable management methods, organic molecules with high specificities, such as proteinaceous protease inhibitors, have been sought. Thus, molecular docking studies, kinetics assays, and biological tests were performed to evaluate the inhibitory activity of two peptides (GORE1 and GORE2) rationally designed to inhibit trypsin-like enzymes, which are the main proteases of A. gemmatalis midgut. RESULTS The molecular docking simulations revealed critical hydrogen bonding patterns of the peptides with key active site residues of trypsin-like proteases of A. gemmatalis and other Lepidopteran insects. The negative values of binding energy indicate that hydrogen bonds potentiate the tight binding of the peptides with trypsin-like proteases, predicting an effective inhibition. The inhibition's rate constants (Ki) were 0.49 and 0.10 mM for GORE1 and GORE2, resulting in effective inhibition of the activity trypsin on the L-BApNA substrate in the in vitro tests, indicating that the peptide GORE2 has higher inhibitory capacity on the A. gemmatalis trypsins. In addition, the two peptides were determined to be reversible competitive inhibitors. The in vivo test demonstrated that the peptides harm the survival and development of A. gemmatalis larvae. CONCLUSION These results suggest that these peptides are potential candidates in the management of A. gemmatalis larvae and provide baseline information for the design of new trypsin-like inhibitors based on peptidomimetic tools. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Yaremis Meriño-Cabrera
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Camilo E Vital
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Neilier R da Silva Júnior
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Cauê N de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Samuel Lessa Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - João V Marques Gonçalves Assis
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| | - Humberto Jo Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
- Center of Analysis of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto de Biotecnologia Aplicada à Agropecuária, BIOAGRO-UFV, Viçosa, Brazil
| |
Collapse
|
21
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
22
|
Shakeel M. Molecular identification, characterization, and expression analysis of a serine protease inhibitor gene from cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). BRAZ J BIOL 2021; 81:516-525. [PMID: 32876160 DOI: 10.1590/1519-6984.223579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Serine protease inhibitors (serpins), a superfamily of protease inhibitors, are known to be involved in several physiological processes, such as development, metamorphosis, and innate immunity. In our study, a full-length serpin cDNA, designated Haserpin1, was isolated from the cotton bollworm Helicoverpa armigera. The cDNA sequence of Haserpin1 is 1176 nt long, with an open reading frame encoding 391 amino acids; there is one exon and no intron. The predicted molecular weight of Haserpin1 is 43.53 kDa, with an isoelectric point of 4.98. InterProScan was employed for Haserpin1 functional characterization, which revealed that Haserpin1 contains highly conserved signature motifs, including a reactive center loop (RCL) with a hinge region (E341-N350), the serpin signature, (F367-F375) and a predicted P1-P1' cleavage site (L357-S358), which are useful for identifying serpins. Transcripts of Haserpin1 were constitutively expressed in the fat body, suggesting that it is the major site for serpin synthesis. During the developmental stages, a fluctuation in the expression level of Haserpin1 was observed, with low expression detected at the 5th-instar larval stage. In contrast, relatively high expression was detected at the prepupal stage, suggesting that Haserpin1 might play a critical role at the H. armigera wandering stage. Although the detailed function of this serpin (Haserpin1) needs to be elucidated, our study provides a perspective for the functional investigation of serine protease inhibitor genes.
Collapse
Affiliation(s)
- Muhammad Shakeel
- South China Agricultural University, College of Agriculture, Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
23
|
Murad NF, Silva-Brandão KL, Brandão MM. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194687. [PMID: 33561559 DOI: 10.1016/j.bbagrm.2021.194687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
A dataset of gene expression from Spodoptera frugiperda, a highly generalist pest moth, was used to understand how gene regulation is related to larval host plant preference. Transcriptomic data of corn and rice strains of S. frugiperda larvae, reared on different diets, were analysed with three different approaches of gene network inference, namely co-expression, weighted co-expression and Bayesian networks, since each methodology provides a different visualization of the data. Using these approaches, it was possible to identify two loosely interconnected co-expression networks, one of them responsible for fast response to herbivory and anti-herbivory mechanisms and the other related to housekeeping genes, which present slower response to environmental variations. Integrating different levels of information such as gene expression patterns, gene assembly, transcriptomics, relationship among genes and phenotypes, functional relationships, among other information, enabled a wider visualization of S. frugiperda response to diet stimuli. The biological properties in the proposed networks are here described and discussed, as well as patterns of gene expression related to larval performance attributes.
Collapse
Affiliation(s)
- Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. CEP 09210-580 Santo André, SP, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil.
| |
Collapse
|
24
|
Licciardi S, Loire E, Cardinale E, Gislard M, Dubois E, Cêtre-Sossah C. In vitro shared transcriptomic responses of Aedes aegypti to arboviral infections: example of dengue and Rift Valley fever viruses. Parasit Vectors 2020; 13:395. [PMID: 32758286 PMCID: PMC7404916 DOI: 10.1186/s13071-020-04253-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Arthropod borne virus infections are the cause of severe emerging diseases. Among the diseases due to arboviruses, dengue (DEN) and Rift Valley fever (RVF) are in the top ten in the list of diseases responsible of severe human cases worldwide. Understanding the effects of viral infection on gene expression in competent vectors is a challenge for the development of early diagnostic tools and may enable researchers and policy makers to better anticipate outbreaks in the next future. Methods In this study, alterations in gene expression across the entire Aedes aegypti genome during infection with DENV and RVFV were investigated in vitro at two time points of infection, the early phase (24 h) and the late phase (6 days) of infection using the RNA sequencing approach Results A total of 10 upregulated genes that share a similar expression profile during infection with both viruses at early and late phases of infection were identified. Family B and D clip-domain serine proteases (CLIP) were clearly overrepresented as well as C-type lectins and transferrin. Conclusions Our data highlight the presence of 10 viral genes upregulated in Ae. aegypti during infection. They may also be targeted in the case of the development of broad-spectrum anti-viral diagnostic tools focusing the mosquito vectors rather than the mammalian hosts as they may predict the emergence of outbreaks.![]()
Collapse
Affiliation(s)
- Séverine Licciardi
- CIRAD, UMR ASTRE, 97490, Sainte Clotilde, La Réunion, France.,ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | - Etienne Loire
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France.,CIRAD, UMR ASTRE, 34395, Montpellier, France
| | - Eric Cardinale
- CIRAD, UMR ASTRE, 97490, Sainte Clotilde, La Réunion, France.,ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | - Marie Gislard
- MGX-Montpellier Genomix, IGF, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier Genomix, IGF, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, 97490, Sainte Clotilde, La Réunion, France. .,ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France.
| |
Collapse
|
25
|
Zhang SZ, Zhu LB, Yu D, You LL, Wang J, Cao HH, Liu YX, Wang YL, Kong X, Toufeeq S, Xu JP. Identification and Functional Analysis of BmNPV-Interacting Proteins From Bombyx mori (Lepidoptera) Larval Midgut Based on Subcellular Protein Levels. Front Microbiol 2020; 11:1481. [PMID: 32695093 PMCID: PMC7338592 DOI: 10.3389/fmicb.2020.01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Dong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China.,Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
26
|
Liu H, Heng J, Wang L, Tang X, Guo P, Li Y, Xia Q, Zhao P. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103584. [PMID: 31863792 DOI: 10.1016/j.dci.2019.103584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Clip-domain serine proteases (CLIPs), characterized by regulatory module clip domains, constitute an important serine protease family identified in insects and other arthropods. They participate in host immune response and embryonic development in a cascade-activated manner. Here, we present a genome-wide identification and expression analysis of CLIP genes in the silkworm, Bombyx mori. A total of 26 CLIP genes were identified in the silkworm genome. Bioinformatics analysis indicated that these CLIPs clustered into four subfamilies (CLIPA-D), and exhibit a close evolutionary relationship with CLIPs of Manduca sexta. Tissue expression profiling revealed that silkworm CLIP genes are mainly expressed in the integument, head, fat body, and hemocytes. Temporal expression profiles showed that 15 CLIP genes were predominantly expressed during the fifth-instar larval stage, early and later period of the pupal stage, and adult stage, whereas 10 CLIP genes were mainly expressed in the wandering stage and middle to later period of the pupal stage in the integument. Pathogens and 20-hydroxyecdysone (20E) induction analysis indicated that 14 CLIP genes were positively regulated by 20E, 9 were negatively regulated by 20E but positively regulated by pathogens, and 5 were positively regulated by both factors in the integument. Together, these results suggested that silkworm CLIP genes may play multiple functions in integument development, including melanization of new cuticle, molting and immune defense. Our data provide a comprehensive understanding of CLIP genes in the silkworm integument and lays a foundation for further functional studies of CLIP genes in the silkworm.
Collapse
Affiliation(s)
- Huawei Liu
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jingya Heng
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Luoling Wang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Xin Tang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi Province, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
27
|
Zhang SZ, Zhu LB, You LL, Wang J, Cao HH, Liu YX, Toufeeq S, Wang YL, Kong X, Xu JP. A Novel Digestive Proteinase Lipase Member H-A in Bombyx mori Contributes to Digestive Juice Antiviral Activity Against B. mori Nucleopolyhedrovirus. INSECTS 2020; 11:insects11030154. [PMID: 32121517 PMCID: PMC7143000 DOI: 10.3390/insects11030154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 11/23/2022]
Abstract
Previous studies have revealed that some proteins in Bombyx mori larvae digestive juice show antiviral activity. Here, based on the label-free proteomics data, BmLipase member H-A (BmLHA) was identified as being involved in the response to BmNPV infection in B. mori larvae digestive juice. In the present study, a gene encoding the BmLHA protein in B. mori was characterized. The protein has an open reading fragment of 999 bp, encoding a predicted 332 amino acid residue-protein with a molecular weight of approximately 35.9 kDa. The phylogenetic analysis revealed that BmLHA shares a close genetic distance with Papilio xuthus Lipase member H-A. BmLHA was highly expressed in the middle part of the B. mori gut, and the expression level increased with instar rising in larvae. There was higher expression of BmLHA in A35 than in P50 strains, and it was upregulated in both A35 and P50 strains, following BmNPV infection. The expression level of VP39 decreased significantly in appropriate recombinant-BmLHA-treated groups compared with the PBS-treated group in B. mori larvae and BmN cells. Meanwhile, overexpression of BmLHA significantly reduced the infectivity of BmNPV in BmN cells. These results indicated that BmLHA did not have digestive function but had anti-BmNPV activity. Taken together, our work provides valuable data for the clarification of the molecular characterization BmLHA and supplements research on proteins of anti-BmNPV activity in B. mori.
Collapse
Affiliation(s)
- Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ling-Ling You
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Yu-Ling Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Xue Kong
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (S.-Z.Z.); (L.-B.Z.); (L.-L.Y.); (J.W.); (H.-H.C.); (Y.-X.L.); (S.T.); (Y.-L.W.); (X.K.)
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
- Correspondence: ; Tel.: +86-0551-65786691
| |
Collapse
|
28
|
Yang WJ, Chen CX, Yan Y, Xu KK, Li C. Clip-Domain Serine Protease Gene ( LsCLIP3) Is Essential for Larval-Pupal Molting and Immunity in Lasioderma serricorne. Front Physiol 2020; 10:1631. [PMID: 32082184 PMCID: PMC7005593 DOI: 10.3389/fphys.2019.01631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022] Open
Abstract
Clip-domain serine proteases (CLIPs) play crucial roles in insect development and innate immunity. In this study, we identified a CLIP gene (designated LsCLIP3) from the cigarette beetle Lasioderma serricorne. LsCLIP3 contains a 1,773-bp open reading frame (ORF) encoding a 390-amino-acid protein and shows a conserved clip domain and a trypsin-like serine protease domain. Phylogenetic analysis indicated that LsCLIP3 was orthologous to the CLIP-B subfamily. LsCLIP3 was prominently expressed in larva, pupa, and early adult stages. In larval tissues, it was highly expressed in the integument and fat body. The expression of LsCLIP3 was induced by 20-hydroxyecdysone. A similar induction was also found by peptidoglycans from Escherichia coli and Staphylococcus aureus. RNA interference (RNAi)-mediated silencing of LsCLIP3 disrupted larval–pupal molting and specifically reduced the expression of genes in 20-hydroxyecdysone synthesis and signaling pathway. The chitin amounts of LsCLIP3 RNAi larvae were greatly decreased, and expressions of six chitin metabolic-related genes were significantly reduced. Knockdown of LsCLIP3 increased larval sensitivity to Gram-negative and Gram-positive bacteria. There was significantly decreased expression of four antimicrobial peptide (AMP) genes. The results suggest that LsCLIP3 is an important component of the larva to pupa molt and for the immunity of L. serricorne.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Chun-Xu Chen
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yi Yan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
29
|
Mendonça EG, de Almeida Barros R, Cordeiro G, da Silva CR, Campos WG, de Oliveira JA, de Almeida Oliveira MG. Larval development and proteolytic activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) exposed to different soybean protease inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21637. [PMID: 31625209 DOI: 10.1002/arch.21637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Anticarsia gemmatalis represents a relevant factor for lowering soybean and other legume crop productivities. Protease inhibitors affect protein degradation and reduce the availability of amino acids, impairing the development and survival of insect pests. To evaluate the possible use of proteinaceous protease inhibitors in the management of this pest, the activities of midgut proteases and the growth and development of A. gemmatalis larvae exposed to soybean Bowman-Birk trypsin-chymotrypsin inhibitor (SBBI) and soybean Kunitz trypsin inhibitor (SKTI) were determined. The survival curves obtained using Kaplan-Meier estimators indicated that SKTI and SBBI stimulated larval survival. However, the development of A. gemmatalis was delayed, and prepupal weight decreased in the presence of both inhibitors. The results showed that SKTI and SBBI inhibited the trypsin-like and total proteolytic activities of larvae on the 12th day after eclosion. On the 15th day after eclosion, larvae exposed to SKTI increased the activities of trypsin and total proteases. Although SKTI and SBBI did not affect the survival of the insect, they had effects on midgut proteases in a stage wherein A. gemmatalis fed voraciously, increased the larval cycle, and decreased prepupal weight. These findings provide baseline information about the potential of proteinaceous protease inhibitors to manage the velvetbean caterpillar, avoiding chemical pesticides.
Collapse
Affiliation(s)
- Eduardo G Mendonça
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Gláucia Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Carolina R da Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| | - Welligton G Campos
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| | | | - Maria G de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
30
|
Abstract
Insects possess powerful immune systems that have evolved to defend against wounding and environmental pathogens such as bacteria, fungi, protozoans, and parasitoids. This surprising sophistication is accomplished through the activation of multiple immune pathways comprised of a large array of components, many of which have been identified and studied in detail using both genetic manipulations and traditional biochemical techniques. Recent advances indicate that certain pathways activate arrays of proteins that interact to form large functional complexes. Here we discuss three examples from multiple insects that exemplify such processes, including pathogen recognition, melanization, and coagulation. The functionality of each depends on integrating recognition with the recruitment of immune effectors capable of healing wounds and destroying pathogens. In both melanization and coagulation, protein interactions also appear to be essential for enzymatic activities tied to the formation of melanin and for the recruitment of hemocytes. The importance of these immune complexes is highlighted by the evolution of mechanisms in pathogens to disrupt their formation, an example of which is provided. While technically difficult to study, and not always readily amenable to dissection through genetics, modern mass spectrometry has become an indispensable tool in the study of these higher-order protein interactions. The formation of immune complexes should be viewed as an essential and emerging frontier in the study of insect immunity.
Collapse
|
31
|
iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Int J Mol Sci 2019; 20:ijms20246113. [PMID: 31817210 PMCID: PMC6940845 DOI: 10.3390/ijms20246113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023] Open
Abstract
The silkworm is an oligophagous insect for which mulberry leaves are the sole diet. The nutrients needed for vital activities of the egg, pupal, and adult stages, and the proteins formed in the cocoon, are all derived from the larval stages. The silkworm feeds and grows quickly during the larval stages. In particular, the amount of leaf ingested and digested quickly increases from the ecdysis to the gluttonous stage in the fifth instar period. In this study, we used the iTRAQ proteomic technique to identify and analyze silkworm larval digestive juice proteins during this period. A total of 227 proteins were successfully identified. These were primarily serine protease activity, esterase activity, binding, and serine protease inhibitors, which were mainly involved in the digestion and overcoming the detrimental effects of mulberry leaves. Moreover, 30 genes of the identified proteins were expressed specifically in the midgut. Temporal proteomic analysis of digestive juice revealed developmental dynamic features related to molecular mechanisms of the principal functions of digesting, resisting pathogens, and overruling the inhibitory effects of mulberry leaves protease inhibitors (PIs) with a dynamic strategy, although overruling the inhibitory effects has not yet been confirmed by previous study. These findings will help address the potential functions of digestive juice in silkworm larvae.
Collapse
|
32
|
Salah Eldein E, Abdalla M, Eltayb WA, El-Arabey AA, Ganash M, Alshammari FD, Barreto G, Ashraf GM. Molecular cloning, expression, purification, and functional characterization of SP-22 gene from Bombyx mori. J Cell Biochem 2019; 120:15594-15603. [PMID: 31099441 DOI: 10.1002/jcb.28826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/09/2022]
Abstract
Serine protease (SPs) is one of the immune enzyme's molecules that play a main role in the variation of a physiological process by controlling protease actions in vertebrates. For example, signaling cells, protector and improvement, which are included in melanization, are utilized to cascade with the meddling pathogens and defense the harmed tissue in insects. In this study, we explore the biochemical process of (SP-22) from Bombyx mori. Reverse-transcription polymerase chain reaction (RT-PCR) discloses that BmSP-22 is expressed in all tissues including the fat body. The formative expression profile of BmSP-22 reveal that BmSP-22 messenger RNA is expressed constitutively in larvae. Injection of recombinant BmSP-22 into B. mori larvae reduces significantly the transcript levels of antimicrobial peptides in the fat body. Our results suggest that BmSP-22 plays an important role in the innate immunity of B. mori and possibly in other insects.
Collapse
Affiliation(s)
- Elshareef Salah Eldein
- College of Life Science, Anhui Agricultural University, Hefei, China
- Institute of Africa City of Technology Khartoum, Khartoum, Sudan
| | - Mohnad Abdalla
- Qingdao Institute of Bioenergy and Bioprocess Technology, Qingdao Shi, Shandong Sheng, People's Republic of China
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Nher Anile, Sudan
| | - Amr Ahmed El-Arabey
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Magdah Ganash
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fawaz D Alshammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Kingdom of Saudi Arabia
| | - George Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Chen S, Dong Z, Ren X, Zhao D, Zhang Y, Tang M, Han J, Ye L, Zhao P. Proteomic Identification of Immune-Related Silkworm Proteins Involved in the Response to Bacterial Infection. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5538637. [PMID: 31343690 PMCID: PMC6657664 DOI: 10.1093/jisesa/iez056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 05/03/2023]
Abstract
Bombyx mori (Lepidoptera: Bombycidae) is an important economic insect and a classic Lepidopteran model system. Although immune-related genes have been identified at a genome-wide scale in the silkworm, proteins involved in immune defense of the silkworm have not been comprehensively characterized. In this study, two types of bacteria were injected into the silkworm larvae, Gram-negative Escherichia coli (Enterobacteriales: Enterobacteriaceae), or Gram-positive Staphylococcus aureus (Bacillales: Staphylococcaceae). After injection, proteomic analyses of hemolymph were performed by liquid chromatography-tandem mass spectrometry. In total, 514 proteins were identified in the uninduced control group, 540 were identified in the E. coli-induced group, and 537 were identified in the S. aureus-induced group. Based on Uniprot annotations, 32 immunological recognition proteins, 28 immunological signaling proteins, and 21 immunological effector proteins were identified. We found that 127 proteins showed significant upregulation, including 10 immunological recognition proteins, 4 immunological signaling proteins, 11 immunological effector proteins, and 102 other proteins. Using real-time quantitative polymerase chain reaction in the fat body, we verified that immunological recognition proteins, signaling proteins, and effector proteins also showed significant increases at the transcriptional level after infection with E. coli and S. aureus. Five newly identified proteins showed upregulation at both protein and transcription levels after infection, including 30K protein, yellow-d protein, chemosensory protein, and two uncharacterized proteins. This study identified many new immune-related proteins, deepening our understanding of the immune defense system in B. mori. The data have been deposited to the iProX with identifier IPX0001337000.
Collapse
Affiliation(s)
- Shiyi Chen
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Xiu Ren
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Dongchao Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Yan Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
- College of Biotechnology, Southwest University, Chongqing, China
| | - Muya Tang
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Jiaxuan Han
- College of Biotechnology, Southwest University, Chongqing, China
| | - Lin Ye
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, China
- Corresponding author, e-mail:
| |
Collapse
|
34
|
Napoleão TH, Albuquerque LP, Santos ND, Nova IC, Lima TA, Paiva PM, Pontual EV. Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. PEST MANAGEMENT SCIENCE 2019; 75:1212-1222. [PMID: 30306668 DOI: 10.1002/ps.5233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/29/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The midgut of insects is involved in digestion, osmoregulation and immunity. Although several defensive strategies are present in this organ, its organization and function may be disturbed by some insecticidal agents, including bioactive proteins like lectins and protease inhibitors (PIs) from plants. PIs interfere with digestion, leading to poor nutrient absorption and decreasing amino acid bioavailability. Intake of PIs can delay development, cause deformities and reduce fertility. Ingestion of PIs may lead to changes in the set of proteases secreted in the insect gut, but this response is often insufficient and results in aggravation of the malnutrition status. Lectins are proteins that are able to interact with glycoconjugates, including those linked to cell surfaces. Their effects on the midgut include disruption of the peritrophic matrix, brush border and secretory cell layer; induction of apoptosis and oxidative stress; interference with nutrient absorption and transport proteins; and damaging effects on symbionts. In addition, lectins can cross the intestinal barrier and reach the hemolymph. The establishment of resistant insect populations due to selective pressure resulting from massive use of a bioactive protein is an actual possibility, but this can be minimized by the multiple mode-of-action of these proteins, mainly the lectins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane P Albuquerque
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, Brazil
| | - Nataly Dl Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isabella Cv Nova
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thâmarah A Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Patrícia Mg Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
35
|
Zhang M, Wei J, Ni X, Zhang J, Jurat-Fuentes JL, Fabrick JA, Carrière Y, Tabashnik BE, Li X. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2019; 75:1099-1106. [PMID: 30264537 DOI: 10.1002/ps.5224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Field-evolved resistance of Helicoverpa zea to Bacillus thuringiensis (Bt) toxin Cry1Ac was first reported more than a decade ago, yet the underlying mechanisms remain elusive. Towards understanding the mechanisms of resistance to Cry1Ac, we analyzed a susceptible (LAB-S) and two resistant (GA and GA-R) strains of H. zea. The GA strain was derived from Georgia and exposed to Bt toxins only in the field. The GA-R strain was derived from the GA strain and selected for increased resistance to Cry1Ac in the laboratory. RESULTS Resistance to MVPII, a liquid formulation containing a hybrid protoxin similar to Cry1Ac, was 110-fold for GA-R and 7.8-fold for GA relative to LAB-S. In midgut brush border membrane vesicles, activity of alkaline phosphatase and aminopeptidase N did not vary significantly among strains. The activity of total proteases, trypsin-like proteases and chymotrypsin-like proteases was significantly lower for GA-R and GA than LAB-S, but did not differ between GA-R and GA. When H. zea midgut cells were exposed to Cry1Ac protoxin that had been digested with midgut extracts, toxicity was significantly lower for extracts from GA-R and GA relative to extracts from LAB-S, but did not differ between GA-R and GA. Transcriptional analysis showed that none of the five protease genes examined was associated with the decline in Cry1Ac activation in GA-R and GA relative to LAB-S. CONCLUSION The results suggest that decreased Cry1Ac activation is a contributing field-selected mechanism of resistance that helps explain the reduced susceptibility of the GA-R and GA strains. Relative to the LAB-S strain, the two Cry1Ac-resistant strains had lower total protease, trypsin and chymotrypsin activities, a lower Cry1Ac activation rate, and Cry1Ac protoxin incubated with their midgut extracts was less toxic to H. zea midgut cells. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Jizhen Wei
- Department of Entomology, University of Arizona, Tucson, AZ
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Jeffrey A Fabrick
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
36
|
Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:53-69. [PMID: 30367934 PMCID: PMC6358214 DOI: 10.1016/j.ibmb.2018.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/15/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) play essential roles in insect physiological processes including digestion, defense and development. Studies of insect genomes, transcriptomes and proteomes have generated a vast amount of information on these proteins, dwarfing the biological data acquired from a few model species. The large number and high diversity of homologous sequences makes it a challenge to use the limited functional information for making predictions across a broad taxonomic group of insects. In this work, we have extensively updated the framework of knowledge on the SP-related proteins in Drosophila melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups (CLIP, gut, single- and multi-domain SPs/SPHs), and detecting inherent connections among phylogenetic relationships, genomic locations and expression profiles for 99 of the genes. Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to facilitate future research. More importantly, we have developed an approach to reveal close homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional studies in these and other holometabolous insects. This approach is useful for tackling similar problems on large and diverse protein families in other groups of organisms.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
37
|
Zhou Y, Wang Y, Li X, Peprah FA, Wang X, Liu H, Lin F, Gu J, Yu F, Shi H. Applying microarray-based technique to study and analyze silkworm (Bombyx mori) transcriptomic response to long-term high iron diet. Genomics 2018; 111:1504-1513. [PMID: 30391296 DOI: 10.1016/j.ygeno.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
To investigate the biological processes affected by long-term iron supplementation, newly hatched silkworms were exposed to high iron mulberry diet (10 and 100 ppm) and its effect on silkworm transcriptom was determined. The results showed that the silkworm was responsive to iron by increasing iron concentration and ferritin levels in the hemolymph and by regulating the expression of many other genes. A total of 523 and 326 differentially expressed genes were identified in 10 and 100 ppm Fe group compared to the control, respectively. Of these genes, 249 were shared between in both the 10 ppm and 100 ppm Fe group, including 152 up-regulated and 97 down-regulated genes. These shared genes included 19 known Fe regulated, 24 immune-related, 12 serine proteases and serine proteases homologs, 41 cuticular and cuticle genes. Ten genes (carboxypeptidases A, serine protease homologs 85, fibrohexamerin/P25, transferrin, sex-specific storage-protein 2, fungal protease inhibitor F, insect intestinal mucin, peptidoglycan recognition protein B, cuticle protein CPH45, unknown gene) were involved in the regulation of iron overload responses.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaochen Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haitao Liu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
38
|
Selection and validation of reference genes for reverse transcription quantitative real-time PCR (RT-qPCR) in silkworm infected with Bombyx mori bidensovirus. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0086-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Lee KS, Kim BY, Choo YM, Jin BR. Dual role of the serine protease homolog BmSPH-1 in the development and immunity of the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:170-176. [PMID: 29684723 DOI: 10.1016/j.dci.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leading to melanization. The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dual role of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting and during the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed in hemocytes and cleaved in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was cleaved in the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reduced BmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticular melanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, and proPO-activating enzyme. Our findings demonstrate that BmSPH-1 paticipates larval-pupal transformation, pupal cuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.
Collapse
Affiliation(s)
- Kwang Sik Lee
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Bo Yeon Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Young Moo Choo
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Byung Rae Jin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea.
| |
Collapse
|
40
|
Wang RX, Tong XL, Gai TT, Li CL, Qiao L, Hu H, Han MJ, Xiang ZH, Lu C, Dai FY. A serine protease homologue Bombyx mori scarface induces a short and fat body shape in silkworm. INSECT MOLECULAR BIOLOGY 2018; 27:319-332. [PMID: 29441628 DOI: 10.1111/imb.12373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Body shape is one of the most prominent and basic characteristics of any organism. In insects, abundant variations in body shape can be observed both within and amongst species. However, the molecular mechanism underlying body shape fine-tuning is very complex and has been largely unknown until now. In the silkworm Bombyx mori, the tubby (tub) mutant has an abnormal short fat body shape and the abdomen of tub larvae expands to form a fusiform body shape. Morphological investigation revealed that the body length was shorter and the body width was wider than that of the Dazao strain. Thus, this mutant is a good model for studying the molecular mechanisms of body shape fine-tuning. Using positional cloning, we identified a gene encoding the serine protease homologue, B. mori scarface (Bmscarface), which is associated with the tub phenotype. Sequence analysis revealed a specific 312-bp deletion from an exon of Bmscarface in the tub strain. In addition, recombination was not observed between the tub and Bmscarface loci. Moreover, RNA interference of Bmscarface resulted in the tub-like phenotype. These results indicate that Bmscarface is responsible for the tub mutant phenotype. This is the first study to report that mutation of a serine protease homologue can induce an abnormal body shape in insects.
Collapse
Affiliation(s)
- R-X Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - X-L Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - T-T Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C-L Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - L Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - H Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - M-J Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Z-H Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - F-Y Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
41
|
Liu L, Qu M, Yang J, Yang Q. The physiological differentiation along the midgut of Bombyx mori - inspirations from proteomics and gene expression patterns of the secreted proteins in the ectoperitrophic space. INSECT MOLECULAR BIOLOGY 2018; 27:247-259. [PMID: 29251378 DOI: 10.1111/imb.12368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ectoperitrophic space (EcPS) between the insect midgut epithelial cells and the peritrophic matrix is an unexplored, clean resource for concentrated proteins secreted by the midgut epithelial cells, which offers an ideal opportunity to uncover the midgut functions. In this study, we used Bombyx mori as a model organism and performed comparative proteomic analyses of the secreted proteins in the EcPS at the feeding and wandering stages. A total of 372 proteins were identified from both stages and 70 proteins were predicted to be secreted. Amongst these proteins, 17 secreted digestive proteins were identified and their temporal and spatial transcriptional expression patterns demonstrated that all these proteins were up-regulated at the feeding stage and differentially expressed in different parts of the midgut. Proteins with nutrient reservoir activity and defence activity were found to be up-regulated at the wandering stage. This work is the first to show the presence of digestive enzymes in the EcPS of the insect midgut using a proteomic approach, which provides evidence that suggests a physiological functional differentiation of the insect midgut. It is very clear that the EcPS undergoes dynamic changes in its composition of proteins in response to the changing needs of the insect at different developmental stages.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - M Qu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - J Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
Yang L, Lin Z, Fang Q, Wang J, Yan Z, Zou Z, Song Q, Ye G. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:56-68. [PMID: 28713011 DOI: 10.1016/j.dci.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In insects, serine proteases (SPs) and serine protease homologs (SPHs) constitute a large family of proteins involved in multiple physiological processes such as digestion, development, and immunity. Here we identified 145 SPs and 38 SPHs in the genome of an endoparasitoid, Pteromalus puparum. Gene duplication and tandem repeats were observed in this large SPs/SPHs family. We then analyzed the expression profiles of SP/SPH genes in response to different microbial infections (Gram-positive bacterium Micrococcus luteus, Gram-negative bacterium Escherichia coli, and entomopathogenic fungus Beauveria bassiana), as well as in different developmental stages and tissues. Some SPs/SPHs also displayed distinct expression patterns in venom gland, suggesting their specific physiological functions as venom proteins. Our finding lays groundwork for further research of SPs and SPHs expressed in the venom glands.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Liu HW, Wang LL, Meng Z, Tang X, Li YS, Xia QY, Zhao P. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori: cloning, characterization, expression patterns and functional analysis. INSECT MOLECULAR BIOLOGY 2017; 26:507-521. [PMID: 28597953 DOI: 10.1111/imb.12312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clip domain serine proteases (CLIPs), characterized by one or more conserved clip domains, are essential components of extracellular signalling cascades in various biological processes, especially in innate immunity and the embryonic development of insects. Additionally, CLIPs may have additional non-immune functions in insect development. In the present study, the clip domain serine protease gene Bombyx mori serine protease 95 (BmSP95), which encodes a 527-residue protein, was cloned from the integument of B. mori. Bioinformatics analysis indicated that BmSP95 is a typical CLIP of the subfamily D and possesses a clip domain at the N terminus, a trypsin-like serine protease (tryp_spc) domain at the C terminus and a conserved proline-rich motif between these two domains. At the transcriptional level, BmSP95 is expressed in the integument during moulting and metamorphosis, and the expression pattern is consistent with the fluctuating 20-hydroxyecdysone (20E) titre in B. mori. At the translational level, BmSP95 protein is synthesized in the epidermal cells, secreted as a zymogen and activated in the moulting fluid. Immunofluorescence revealed that BmSP95 is distributed into the old endocuticle in the moulting stage. The expression of BmSP95 was upregulated by 20E. Moreover, expression of BmSP95 was downregulated by pathogen infection. RNA interference-mediated silencing of BmSP95 led to delayed moulting from pupa to moth. These results suggest that BmSP95 is involved in integument remodelling during moulting and metamorphosis.
Collapse
Affiliation(s)
- H-W Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - L-L Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Z Meng
- College of Biotechnology, Southwest University, Chongqing, China
| | - X Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Y-S Li
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Q-Y Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Liu HW, Li YS, Tang X, Guo PC, Wang DD, Zhou CY, Xia QY, Zhao P. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. INSECT SCIENCE 2017; 24:753-767. [PMID: 27311916 DOI: 10.1111/1744-7917.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Serine proteases play important roles in digestion and immune responses during insect development. In the present study, the serine protease gene BmSP36, which encodes a 292-residue protein, was cloned from the midgut cells of Bombyx mori. BmSP36 contains an intact catalytic triad (H57, D102 and S195) and a conserved substrate-binding site (G189, H216 and G226), suggesting that it is a serine protease with chymotrypsin-like specificity. The temporal and spatial expression patterns of BmSP36 indicated that its messenger RNA and protein expression mainly occurred in the midgut at the feeding stages. Western blotting, immunofluorescence and liquid chromatography-tandem mass spectrometry analyses revealed secretion of BmSP36 protein from epithelial cells into the midgut lumen. The transcriptional and translational expression of BmSP36 was down-regulated after starvation but up-regulated after refeeding. Moreover, expression of the BmSP36 gene could be up-regulated by a juvenile hormone analogue. These results enable us to better define the potential role of BmSP36 in dietary protein digestion at the feeding stages during larval development.
Collapse
Affiliation(s)
- Hua-Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - You-Shan Li
- Vitamin D Research Institute, Shaanxi Sci-Tech University, Hanzhong, Shaanxi Province, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng-Chao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dan-Dan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Yan Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, Hilliou F, Durand N, Montagné N, Darboux I, Kuwar S, Chertemps T, Siaussat D, Bretschneider A, Moné Y, Ahn SJ, Hänniger S, Grenet ASG, Neunemann D, Maumus F, Luyten I, Labadie K, Xu W, Koutroumpa F, Escoubas JM, Llopis A, Maïbèche-Coisne M, Salasc F, Tomar A, Anderson AR, Khan SA, Dumas P, Orsucci M, Guy J, Belser C, Alberti A, Noel B, Couloux A, Mercier J, Nidelet S, Dubois E, Liu NY, Boulogne I, Mirabeau O, Le Goff G, Gordon K, Oakeshott J, Consoli FL, Volkoff AN, Fescemyer HW, Marden JH, Luthe DS, Herrero S, Heckel DG, Wincker P, Kergoat GJ, Amselem J, Quesneville H, Groot AT, Jacquin-Joly E, Nègre N, Lemaitre C, Legeai F, d'Alençon E, Fournier P. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep 2017; 7:11816. [PMID: 28947760 PMCID: PMC5613006 DOI: 10.1038/s41598-017-10461-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.
Collapse
Affiliation(s)
- Anaïs Gouin
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France
| | - Anthony Bretaudeau
- INRA, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, Rennes, 35042, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Kiwoong Nam
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Sylvie Gimenez
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Jean-Marc Aury
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Bernard Duvic
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Nicolas Durand
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | | | - Suyog Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Thomas Chertemps
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - David Siaussat
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Yves Moné
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | | | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Luyten
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Karine Labadie
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Wei Xu
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150, Australia
| | - Fotini Koutroumpa
- INRA, Institute of Ecology and Environmental Sciences, 78000, Versailles, France.,Laboratory of Mammalian Genetics, Center for DNA Fingerprinting and Diagnostics (CDFD), Lab block: Tuljaguda (Opp. MJ Market), Nampally, Hyderabad, 500 001, India
| | | | - Angel Llopis
- Department of Genetics, Universitat de València, 46100, Burjassot, Valencia, Spain.,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Martine Maïbèche-Coisne
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Fanny Salasc
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France.,EPHE, PSL Research University, UMR1333 - DGIMI, Pathologie comparée des Invertébrés CC101, F-34095, Montpellier cedex 5, France
| | - Archana Tomar
- Laboratory of Mammalian Genetics, Center for DNA Fingerprinting and Diagnostics (CDFD), Lab block: Tuljaguda (Opp. MJ Market), Nampally, Hyderabad, 500 001, India
| | - Alisha R Anderson
- CSIRO Ecosystem Sciences, Black Mountain, Canberra, ACT 2600, Australia
| | - Sher Afzal Khan
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Pascaline Dumas
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marion Orsucci
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France
| | - Julie Guy
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | | | | | - Benjamin Noel
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Arnaud Couloux
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France
| | | | - Sabine Nidelet
- Plateforme MGX, C/o institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France
| | - Emeric Dubois
- Plateforme MGX, C/o institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier cedex 05, France
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Isabelle Boulogne
- Sorbonne Universités, UPMC University Paris 06, Institute of Ecology and Environmental Sciences of Paris, 75005, Paris, France
| | - Olivier Mirabeau
- INRA, Institute of Ecology and Environmental Sciences, 78000, Versailles, France
| | - Gaelle Le Goff
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Karl Gordon
- CSIRO, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601, Australia
| | - John Oakeshott
- CSIRO, Clunies Ross St, (GPO Box 1700), Acton, ACT 2601, Australia
| | - Fernando L Consoli
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, Brazil
| | | | - Howard W Fescemyer
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - James H Marden
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - Dawn S Luthe
- Department of Plant Science, 102 Tyson Building, The Pennsylvania State University, University Park, 16802, Pennsylvania, USA
| | - Salvador Herrero
- Department of Genetics, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Patrick Wincker
- CEA, Genoscope, 2 rue Gaston Crémieux, 91000, Evry, France.,CNRS UMR 8030, 2 rue Gaston Crémieux, 91000, Evry, France.,Université d'Evry Val D'Essonne, 91000, Evry, France
| | - Gael J Kergoat
- INRA, UMR1062 CBGP, IRD, CIRAD, Montpellier SupAgro, 755 Avenue du campus Agropolis, 34988, Montferrier/Lez, France
| | - Joelle Amselem
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | | | - Astrid T Groot
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | | | - Nicolas Nègre
- DGIMI, INRA, Univ. Montpellier, 34095, Montpellier, France.
| | - Claire Lemaitre
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France.
| | - Fabrice Legeai
- INRIA, IRISA, GenScale, Campus de Beaulieu, Rennes, 35042, France
| | | | | |
Collapse
|
46
|
Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:48-62. [PMID: 28780069 PMCID: PMC5586530 DOI: 10.1016/j.ibmb.2017.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip1-5-PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD0-1. While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD≥1) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
47
|
He X, Cao X, He Y, Bhattarai K, Rogers J, Hartson S, Jiang H. Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:110-124. [PMID: 28431895 PMCID: PMC5531190 DOI: 10.1016/j.dci.2017.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection.
Collapse
Affiliation(s)
- Xuesong He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
48
|
Wang D, Dong Z, Zhang Y, Guo K, Guo P, Zhao P, Xia Q. Proteomics Provides Insight into the Interaction between Mulberry and Silkworm. J Proteome Res 2017; 16:2472-2480. [PMID: 28503925 DOI: 10.1021/acs.jproteome.7b00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mulberry leaves have been selected as a food source for the silkworm (Bombyx mori) for over 5000 years. However, the interaction mechanisms of mulberry-silkworm remain largely unknown. We explore the interaction between mulberry and silkworm at the protein level. Total proteins were extracted from mulberry leaves and silkworm feces on day 5 of the fifth larval instar and analyzed on shotgun liquid chromatography-tandem mass spectrometry, respectively. In total, 2076 and 210 foliar proteins were identified from mulberry leaves and silkworm feces, respectively. These proteins were classified into four categories according to their subcellular location: chloroplast proteins, mitochondrial proteins, secretory-pathway proteins, and proteins of other locations. Chloroplast proteins accounted for 68.3% in mulberry leaves but only 23.2% in the feces. In contrast, secretory-pathway proteins had low abundance in mulberry leaves (7.3%) but were greatly enriched to the largest component in the feces (60.1%). Most of the foliar secretory-pathway proteins in the feces were found to be resistant to silkworm feeding by becoming involved in primary metabolite, proteinase inhibition, cell-wall remodeling, redox regulation, and pathogen-resistant processes. On the contrary, only six defensive proteins were identified in the fecal chloroplast proteins including two key proteins responsible for synthesizing jasmonic acid, although chloroplast proteins were the second largest component in the feces. Collectively, the comparative proteomics analyses indicate that mulberry leaves not only provide amino acids to the silkworm but also display defense against silkworm feeding, although the silkworm grows very well by feeding on mulberry leaves, which provides new insights into the interactions between host-plant and insect herbivores.
Collapse
Affiliation(s)
- Dandan Wang
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, ‡Chongqing Engineering and Technology Research Center for Novel Silk Materials, and §College of Biotechnology, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
49
|
Li G, Zhou Q, Qiu L, Yao Q, Chen K, Tang Q, Hu Z. Serine protease Bm-SP142 was differentially expressed in resistant and susceptible Bombyx mori strains, involving in the defence response to viral infection. PLoS One 2017; 12:e0175518. [PMID: 28414724 PMCID: PMC5393580 DOI: 10.1371/journal.pone.0175518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
Bm-SP142 is a 35 kDa protease in the silkworm, but its exact functions remain unknown. In this study, sequence alignment revealed that the His-Asp-Ser catalytic triad is embedded in the TAAHC-DIAL-GDSGGP sequence motif, establishing Bm-SP142 as a serine protease. Soluble recombinant GST-BmSP142 was expressed and purified, and serine protease activity was confirmed in vitro. RT-qPCR results indicated that Bm-SP142 was mainly expressed in the middle part of the silkworm midgut, and Bm-SP142 transcripts were significantly up-regulated at 24 hours post infection (hpi) in BmBDV-resistant strains (798) inoculated with BmBDV and BmNPV-resistant strains (NB) inoculated with BmNPV, but not in BmBDV-susceptible strains (306). Surprisingly, transcripts were significantly down-regulated at 12 hpi in BmNPV-susceptible strains (HuaBa 35) inoculated with BmNPV, compared with healthy silkworms. Recombinant BmNPV treated with purified Bm-SP142 effectively impaired its ability to infect BmN cells, and Bm-SP142 decreases the efficiency of BmNPV and BmBDV propagation in silkworms. Furthermore, overexpression of Bm-SP142 in BmN cells inhibited viral propagation.
Collapse
Affiliation(s)
- Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- * E-mail: (ZH); (QT)
| |
Collapse
|
50
|
Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS One 2017; 12:e0171447. [PMID: 28199361 PMCID: PMC5310873 DOI: 10.1371/journal.pone.0171447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Collapse
|