1
|
Liu J, Huang H, An F, Wu S, Guo H, Wang B, Han Z, Tan J, Lin Z, Fang Y, Liu J, Ye H, Du Y, Mo K, Huang Y, Li M, Wang L, Mao Z, Ouyang H. FOXO4-SP6 axis controls surface epithelium commitment by mediating epigenomic remodeling. Stem Cell Reports 2025; 20:102445. [PMID: 40086444 DOI: 10.1016/j.stemcr.2025.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Proper development of surface epithelium (SE) is a requisite for the normal development and function of ectodermal appendages; however, the molecular mechanisms underlying SE commitment remain largely unexplored. Here, we developed a KRT8 reporter system and utilized it to identify FOXO4 and SP6 as novel, essential regulators governing SE commitment. We found that the FOXO4-SP6 axis governs SE fate and its abrogation markedly impedes SE fate determination. Mechanistically, FOXO4 regulates SE initiation by shaping the SE chromatin accessibility landscape and regulating the deposition of H3K4me3. SP6, as a novel effector of FOXO4, activates SE-specific genes through modulating the H3K27ac deposition across their super-enhancers. Our work highlights the regulatory function of the FOXO4-SP6 axis in SE development, contributing to an improved understanding of SE fate decisions and providing a research foundation for the therapeutic application of ectodermal dysplasia.
Collapse
Affiliation(s)
- Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yihang Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jinpeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hanning Ye
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yuru Du
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China.
| |
Collapse
|
2
|
Huang H, Liu J, An F, Wu S, Guo H, Wang B, Mo K, Huang Y, Tan J, Zhu J, Lin Z, Han Z, Li M, Wang L, Mao Z, Ouyang H. Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis. Cell Mol Life Sci 2024; 82:16. [PMID: 39725818 DOI: 10.1007/s00018-024-05525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes. Moreover, we find that TCF7, as a RA effector, regulates the transition from pluripotency to SE initiation by directly silencing pluripotency genes and activating SE genes. MSX2, a downstream activator of TCF7, primes the SE chromatin accessibility landscape and activates SE genes. Our work reveals the regulatory hierarchy between key morphogens RA and BMP4 in SE development, and demonstrates how the TCF7-MSX2 axis governs SE fate, providing novel insights into RA-mediated regulatory principles.
Collapse
Affiliation(s)
- Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Brocal-Ruiz R, Esteve-Serrano A, Mora-Martínez C, Franco-Rivadeneira ML, Swoboda P, Tena JJ, Vilar M, Flames N. Forkhead transcription factor FKH-8 cooperates with RFX in the direct regulation of sensory cilia in Caenorhabditis elegans. eLife 2023; 12:e89702. [PMID: 37449480 PMCID: PMC10393296 DOI: 10.7554/elife.89702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cilia, either motile or non-motile (a.k.a primary or sensory), are complex evolutionarily conserved eukaryotic structures composed of hundreds of proteins required for their assembly, structure and function that are collectively known as the ciliome. Ciliome gene mutations underlie a group of pleiotropic genetic diseases known as ciliopathies. Proper cilium function requires the tight coregulation of ciliome gene transcription, which is only fragmentarily understood. RFX transcription factors (TF) have an evolutionarily conserved role in the direct activation of ciliome genes both in motile and non-motile cilia cell-types. In vertebrates, FoxJ1 and FoxN4 Forkhead (FKH) TFs work with RFX in the direct activation of ciliome genes, exclusively in motile cilia cell-types. No additional TFs have been described to act together with RFX in primary cilia cell-types in any organism. Here we describe FKH-8, a FKH TF, as a direct regulator of the sensory ciliome genes in Caenorhabditis elegans. FKH-8 is expressed in all ciliated neurons in C. elegans, binds the regulatory regions of ciliome genes, regulates ciliome gene expression, cilium morphology and a wide range of behaviors mediated by sensory ciliated neurons. FKH-8 and DAF-19 (C. elegans RFX) physically interact and synergistically regulate ciliome gene expression. C. elegans FKH-8 function can be replaced by mouse FOXJ1 and FOXN4 but not by other members of other mouse FKH subfamilies. In conclusion, RFX and FKH TF families act jointly as direct regulators of ciliome genes also in sensory ciliated cell types suggesting that this regulatory logic could be an ancient trait predating functional cilia sub-specialization.
Collapse
Affiliation(s)
- Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Ainara Esteve-Serrano
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Carlos Mora-Martínez
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | | | - Peter Swoboda
- Department of Biosciences and Nutrition. Karolinska Institute. Campus FlemingsbergStockholmSweden
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de OlavideSevilleSpain
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| |
Collapse
|
5
|
Li C, Zhang Z, Wei Y, Qi K, Dou Y, Song C, Liu Y, Li X, Li X, Wang K, Qiao R, Yang F, Han X. Genome-Wide Analysis of MAMSTR Transcription Factor-Binding Sites via ChIP-Seq in Porcine Skeletal Muscle Fibroblasts. Animals (Basel) 2023; 13:1731. [PMID: 37889674 PMCID: PMC10252000 DOI: 10.3390/ani13111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 10/29/2023] Open
Abstract
Myocyte enhancer factor-2-activating motif and SAP domain-containing transcriptional regulator (MAMSTR) regulates its downstream through binding in its promoter regions. However, its molecular mechanism, particularly the DNA-binding sites, and coregulatory genes are quite unexplored. Therefore, to identify the genome-wide binding sites of the MAMSTR transcription factors and their coregulatory genes, chromatin immunoprecipitation sequencing was carried out. The results showed that MAMSTR was associated with 1506 peaks, which were annotated as 962 different genes. Most of these genes were involved in transcriptional regulation, metabolic pathways, and cell development and differentiation, such as AMPK signaling pathway, TGF-beta signaling pathway, transcription coactivator activity, transcription coactivator binding, adipocytokine signaling pathway, fat digestion and absorption, skeletal muscle fiber development, and skeletal muscle cell differentiation. Lastly, the expression levels and transcriptional activities of PID1, VTI1B, PRKAG1, ACSS2, and SLC28A3 were screened and verified via functional markers and analysis. Overall, this study has increased our understanding of the regulatory mechanism of MAMSTR during skeletal muscle fibroblast development and provided a reference for analyzing muscle development mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Novel data archival system for multi-omics data of human exposure to harmful substances. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Ghosh S, Raundhal M, Myers SA, Carr SA, Chen X, Petsko GA, Glimcher LH. Identification of RIOK2 as a master regulator of human blood cell development. Nat Immunol 2022; 23:109-121. [PMID: 34937919 DOI: 10.1038/s41590-021-01079-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
Anemia is a major comorbidity in aging, chronic kidney and inflammatory diseases, and hematologic malignancies. However, the transcriptomic networks governing hematopoietic differentiation in blood cell development remain incompletely defined. Here we report that the atypical kinase RIOK2 (right open reading frame kinase 2) is a master transcription factor (TF) that not only drives erythroid differentiation, but also simultaneously suppresses megakaryopoiesis and myelopoiesis in primary human stem and progenitor cells. Our study reveals the previously uncharacterized winged helix-turn-helix DNA-binding domain and two transactivation domains of RIOK2 that are critical to regulate key hematopoietic TFs GATA1, GATA2, SPI1, RUNX3 and KLF1. This establishes RIOK2 as an integral component of the transcriptional regulatory network governing human hematopoietic differentiation. Importantly, RIOK2 mRNA expression significantly correlates with these TFs and other hematopoietic genes in myelodysplastic syndromes, acute myeloid leukemia and chronic kidney disease. Further investigation of RIOK2-mediated transcriptional pathways should yield therapeutic approaches to correct defective hematopoiesis in hematologic disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Mahesh Raundhal
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA.,Jnana Therapeutics, Boston, MA, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xi Chen
- Department of Molecular & Cellular Biology, Lester and Sue Smith Breast Center, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Immunology, Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Indukuri R, Damdimopoulos A, Williams C. An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta. Methods Mol Biol 2022; 2418:203-221. [PMID: 35119668 DOI: 10.1007/978-1-0716-1920-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Estrogen regulates transcription through two nuclear receptors, ERα and ERβ, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein-DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERβ, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERβ antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERβ.
Collapse
Affiliation(s)
- Rajitha Indukuri
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Core, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH-Royal Institute of Technology, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
9
|
Xie J, Zhang X, Zheng J, Hong X, Tong X, Liu X, Xue Y, Wang X, Zhang Y, Liu S. Two novel RNA-binding proteins identification through computational prediction and experimental validation. Genomics 2021; 114:149-160. [PMID: 34921931 DOI: 10.1016/j.ygeno.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/05/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Since RBPs play important roles in the cell, it's particularly important to find new RBPs. We performed iRIP-seq and CLIP-seq to verify two proteins, CLIP1 and DMD, predicted by RBPPred whether are RBPs or not. The experimental results confirm that these two proteins have RNA-binding activity. We identified significantly enriched binding motifs UGGGGAGG, CUUCCG and CCCGU for CLIP1 (iRIP-seq), DMD (iRIP-seq) and DMD (CLIP-seq), respectively. The computational KEGG and GO analysis show that the CLIP1 and DMD share some biological processes and functions. Besides, we found that the SNPs between DMD and its RNA partners may be associated with Becker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy 3B and Cardiovascular phenotype. Among the thirteen cancers data, CLIP1 and another 300 oncogenes always co-occur, and 123 of these 300 genes interact with CLIP1. These cancers may be associated with the mutations occurred in both CLIP1 and the genes it interacts with.
Collapse
Affiliation(s)
- Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoli Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinfang Zheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoxue Tong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xudong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Wuhan, Hubei 430075, China
| | - Xuelian Wang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
10
|
Meiler A, Marchiano F, Haering M, Weitkunat M, Schnorrer F, Habermann BH. AnnoMiner is a new web-tool to integrate epigenetics, transcription factor occupancy and transcriptomics data to predict transcriptional regulators. Sci Rep 2021; 11:15463. [PMID: 34326396 PMCID: PMC8322331 DOI: 10.1038/s41598-021-94805-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression regulation requires precise transcriptional programs, led by transcription factors in combination with epigenetic events. Recent advances in epigenomic and transcriptomic techniques provided insight into different gene regulation mechanisms. However, to date it remains challenging to understand how combinations of transcription factors together with epigenetic events control cell-type specific gene expression. We have developed the AnnoMiner web-server, an innovative and flexible tool to annotate and integrate epigenetic, and transcription factor occupancy data. First, AnnoMiner annotates user-provided peaks with gene features. Second, AnnoMiner can integrate genome binding data from two different transcriptional regulators together with gene features. Third, AnnoMiner offers to explore the transcriptional deregulation of genes nearby, or within a specified genomic region surrounding a user-provided peak. AnnoMiner’s fourth function performs transcription factor or histone modification enrichment analysis for user-provided gene lists by utilizing hundreds of public, high-quality datasets from ENCODE for the model organisms human, mouse, Drosophila and C. elegans. Thus, AnnoMiner can predict transcriptional regulators for a studied process without the strict need for chromatin data from the same process. We compared AnnoMiner to existing tools and experimentally validated several transcriptional regulators predicted by AnnoMiner to indeed contribute to muscle morphogenesis in Drosophila. AnnoMiner is freely available at http://chimborazo.ibdm.univ-mrs.fr/AnnoMiner/.
Collapse
Affiliation(s)
- Arno Meiler
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Margaux Haering
- Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Aix-Marseille University, CNRS, IBDM UMR 7288, The Turing Centre for Living systems (CENTURI), Aix-Marseille University, Parc Scientifique de Luminy Case 907, 163, Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
11
|
Rewiring of lactate-IL-1β auto-regulatory loop with Clock-Bmal1: A feed-forward circuit in glioma. Mol Cell Biol 2021; 41:e0044920. [PMID: 34124933 DOI: 10.1128/mcb.00449-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De-synchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their inter-relationship in cancer etiology is largely unknown, we investigated the link between the three in glioma. Tumor metabolite lactate- mediated increase in pro-inflammatory cytokine IL-1β was concomitant with elevated levels of core circadian regulators Clock and Bmal1. siRNA mediated knockdown of Bmal1 and Clock decreased (i) LDHA and IL-1β levels and (ii) release of lactate and pro-inflammatory cytokines. Lactate mediated deacetylation of Bmal1 and its interaction with Clock, regulate IL-1β levels and vice versa. Site-directed mutagenesis and luciferase reporter assay indicated the functionality of E-box sites on LDHA and IL-1β promoters. ChIP-re-ChIP revealed that lactate-IL-1β crosstalk positively affects co-recruitment of Clock-Bmal1 to these E-box sites. Clock-Bmal1 enrichment was accompanied by decreased H3K9me3, and increased H3K9ac and RNA pol II occupancy. Lactate-IL-1β-Clock (LIC) loop positively regulated expression of genes associated with cell cycle, DNA damage and cytoskeletal organization involved in glioma progression. TCGA data analysis suggested the presence of lactate- IL-1β-crosstalk in other cancers. The responsiveness of stomach and cervical cancer cells to lactate inhibition followed the same trend exhibited by glioma cells. In addition, components of LIC loop were found to be correlated with (i) patient survival, (ii) clinically actionable genes, and (iii) anti-cancer drug sensitivity. Our findings provide evidence for a potential cancer-specific axis wiring of IL-1β and LDHA through Clock -Bmal1, the outcome of which is to fuel an IL-1β-lactate autocrine loop that drives pro-inflammatory and oncogenic signals.
Collapse
|
12
|
Welle A, Kasakow CV, Jungmann AM, Gobbo D, Stopper L, Nordström K, Salhab A, Gasparoni G, Scheller A, Kirchhoff F, Walter J. Epigenetic control of region-specific transcriptional programs in mouse cerebellar and cortical astrocytes. Glia 2021; 69:2160-2177. [PMID: 34028094 DOI: 10.1002/glia.24016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/07/2023]
Abstract
Astrocytes from the cerebral cortex (CTX) and cerebellum (CB) share basic molecular programs, but also form distinct spatial and functional subtypes. The regulatory epigenetic layers controlling such regional diversity have not been comprehensively investigated so far. Here, we present an integrated epigenome analysis of methylomes, open chromatin, and transcriptomes of astroglia populations isolated from the cortex or cerebellum of young adult mice. Besides a basic overall similarity in their epigenomic programs, cortical astrocytes and cerebellar astrocytes exhibit substantial differences in their overall open chromatin structure and in gene-specific DNA methylation. Regional epigenetic differences are linked to differences in transcriptional programs encompassing genes of region-specific transcription factor networks centered around Lhx2/Foxg1 in CTX astrocytes and the Zic/Irx families in CB astrocytes. The distinct epigenetic signatures around these transcription factor networks point to a complex interconnected and combinatorial regulation of region-specific transcriptomes. These findings suggest that key transcription factors, previously linked to temporal, regional, and spatial control of neurogenesis, also form combinatorial networks important for astrocytes. Our study provides a valuable resource for the molecular basis of regional astrocyte identity and physiology.
Collapse
Affiliation(s)
- Anna Welle
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Carmen V Kasakow
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Annemarie M Jungmann
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Laura Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Karl Nordström
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
| | - Jörn Walter
- Department of Genetics and EpiGenetics, University of Saarland, Saarbrücken, Germany
| |
Collapse
|
13
|
Patankar A, Gajbhiye R, Surve S, Parte P. Epigenetic landscape of testis specific histone H2B variant and its influence on sperm function. Clin Epigenetics 2021; 13:101. [PMID: 33933143 PMCID: PMC8088685 DOI: 10.1186/s13148-021-01088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Biological relevance of the major testis specific histone H2B variant (TH2B) in sperm is not fully understood. Studies in TH2A/TH2B double knockout male mice indicate its role in chromatin compaction and male fertility. Additionally, the presence of TH2B and TH2A reportedly generates more dynamic nucleosomes, leading to an open chromatin structure characteristic of transcriptionally active genome. Given that mature human sperm are transcriptionally and translationally inactive, the presence of TH2B in mature sperm is intriguing. To address its role in sperm, we investigated the genome-wide localization of TH2B in sperm of fertile men. RESULTS We have identified the genomic loci associated with TH2B in fertile human sperm by ChIP-seq analysis. Bioinformatic analysis revealed ~ 5% sperm genome and 5527 genes to be associated with TH2B. Out of these 105 (1.9%) and 144 (2.6%) genes showed direct involvement in sperm function and early embryogenesis, respectively. Chromosome wide analysis for TH2B distribution indicated its least distribution on X and Y chromosomes and varied distribution on autosomes. TH2B showed relatively higher percentage of gene association on chromosome 4, 18, 3 and 2. TH2B enrichment was more in promoter and gene body region. Gene Ontology (GO) analysis revealed signal transduction and associated kinase activity as the most enriched biological and molecular function, respectively. We also observed the enrichment of TH2B at developmentally important loci, such as HOXA and HOXD and on genes required for normal sperm function, few of which were validated by ChIP-qPCR. The relative expression of these genes was altered in particular subgroup of infertile men showing abnormal chromatin packaging. Chromatin compaction positively correlated with sperm- motility, concentration, viability and with transcript levels of PRKAG2 and CATSPER B. CONCLUSION ChIP-seq analysis of TH2B revealed a putative role of TH2B in sperm function and embryo development. Altered expression of TH2B associated genes in infertile individuals with sperm chromatin compaction defects indicates involvement of TH2B in transcriptional regulation of these genes in post meiotic male germ cells. This altered transcriptome may be a consequence or cause of abnormal nuclear remodeling during spermiogenesis.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Rahul Gajbhiye
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Suchitra Surve
- Department of Clinical Research, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR- National Institute for Research in Reproductive Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
14
|
Li M, Huang H, Li L, He C, Zhu L, Guo H, Wang L, Liu J, Wu S, Liu J, Xu T, Mao Z, Cao N, Zhang K, Lan F, Ding J, Yuan J, Liu Y, Ouyang H. Core transcription regulatory circuitry orchestrates corneal epithelial homeostasis. Nat Commun 2021; 12:420. [PMID: 33462242 PMCID: PMC7814021 DOI: 10.1038/s41467-020-20713-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell identity, plasticity, and homeostasis are precisely orchestrated by lineage-restricted epigenetic and transcriptional regulatory networks. Here, by integrating super-enhancer and chromatin accessibility landscapes, we delineate core transcription regulatory circuitries (CRCs) of limbal stem/progenitor cells (LSCs) and find that RUNX1 and SMAD3 are required for maintenance of corneal epithelial identity and homeostasis. RUNX1 or SMAD3 depletion inhibits PAX6 and induces LSCs to differentiate into epidermal-like epithelial cells. RUNX1, PAX6, and SMAD3 (RPS) interact with each other and synergistically establish a CRC to govern the lineage-specific cis-regulatory atlas. Moreover, RUNX1 shapes LSC chromatin architecture via modulating H3K27ac deposition. Disturbance of RPS cooperation results in cell identity switching and dysfunction of the corneal epithelium, which is strongly linked to various human corneal diseases. Our work highlights CRC TF cooperativity for establishment of stem cell identity and lineage commitment, and provides comprehensive regulatory principles for human stratified epithelial homeostasis and pathogenesis. Corneal epithelium shares similar molecular signatures to other stratified epithelia. Here, the authors map super-enhancers and accessible chromatin in corneal epithelium, identifying a transcription regulatory circuit, including RUNX1, PAX6, and SMAD3, required for corneal epithelial identity and homeostasis.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chenxi He
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Jingxin Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Tao Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Nan Cao
- Program of Stem Cells and Regenerative Medicine, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Kang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Lan
- Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences; Liver Cancer Institute, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.
| |
Collapse
|
15
|
Loss of FOXC1 contributes to the corneal epithelial fate switch and pathogenesis. Signal Transduct Target Ther 2021; 6:5. [PMID: 33414365 PMCID: PMC7791103 DOI: 10.1038/s41392-020-00378-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 11/08/2022] Open
Abstract
Forkhead box C1 (FOXC1) is required for neural crest and ocular development, and mutations in FOXC1 lead to inherited Axenfeld-Rieger syndrome. Here, we find that FOXC1 and paired box 6 (PAX6) are co-expressed in the human limbus and central corneal epithelium. Deficiency of FOXC1 and alternation in epithelial features occur in patients with corneal ulcers. FOXC1 governs the fate of the corneal epithelium by directly binding to lineage-specific open promoters or enhancers marked by H3K4me2. FOXC1 depletion not only activates the keratinization pathway and reprograms corneal epithelial cells into skin-like epithelial cells, but also disrupts the collagen metabolic process and interferon signaling pathways. Loss of interferon regulatory factor 1 and PAX6 induced by FOXC1 dysfunction is linked to the corneal ulcer. Collectively, our results reveal a FOXC1-mediated regulatory network responsible for corneal epithelial homeostasis and provide a potential therapeutic target for corneal ulcer.
Collapse
|
16
|
Wang H, Liu Y, Guan H, Fan GL. The Regulation of Target Genes by Co-occupancy of Transcription Factors, c-Myc and Mxi1 with Max in the Mouse Cell Line. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191106103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background:
The regulatory function of transcription factors on genes is not only related
to the location of binding genes and its related functions, but is also related to the methods of
binding.
Objective:
It is necessary to study the regulation effects in different binding methods on target genes.
Methods:
In this study, we provided a reliable theoretical basis for studying gene expression
regulation of co-binding transcription factors and further revealed the specific regulation of
transcription factor co-binding in cancer cells.
Results:
Transcription factors tend to combine with other transcription factors in the regulatory
region to form a competitive or synergistic relationship to regulate target genes accurately.
Conclusion:
We found that up-regulated genes in cancer cells were involved in the regulation of
their own immune system related to the normal cells.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Yuan Liu
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Hua Guan
- ENT Department, Huhhot First Hospital, Hohhot, China
| | - Guo-Liang Fan
- Department of Physics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| |
Collapse
|
17
|
Katahira J, Senokuchi K, Hieda M. Human THO maintains the stability of repetitive DNA. Genes Cells 2020; 25:334-342. [PMID: 32065701 DOI: 10.1111/gtc.12760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/31/2023]
Abstract
The evolutionarily conserved multiprotein complex THO/TREX is required for pre-mRNA processing, mRNA export and the maintenance of genome stability. In this study, we analyzed the genome-wide distribution of human THOC7, a component of human THO, by chromatin immunoprecipitation sequencing. The analysis revealed that human THOC7 occupies repetitive sequences, which include microsatellite repeats in genic and intergenic regions and telomeric repeats. The majority of the THOC7 ChIP peaks overlapped with those of the elongating form of RNA polymerase II and R-loops, indicating that THOC7 accumulates in transcriptionally active repeat regions. Knocking down THOC5, an RNA-binding component of human THO, by siRNA induced the accumulation of γH2AX in the repeat regions. We also observed an aberration in the telomeres in the THOC5-depleted condition. These results suggest that human THO restrains the transcription-associated instability of repeat regions in the human genome.
Collapse
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Kohei Senokuchi
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Iyo-gun, Japan
| |
Collapse
|
18
|
Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways. Aging (Albany NY) 2019; 11:12600-12623. [PMID: 31884422 PMCID: PMC6949066 DOI: 10.18632/aging.102590] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid-derived-2-like 2(NRF2) regulates its downstream genes through binding with antioxidant responsive elements in their promoter regions. Hyperactivation of NRF2 results in oncogenesis and drug resistance in various cancers including non-small cell lung cancer (NSCLC). However, identification of the genes and pathways regulated by NRF2 in NSCLC warrants further investigation. We investigated the global NRF2 genomic binding sites using the high-throughput ChIP-Seq technique in KEAP1 (Kelch-like ECH-associated protein 1)-mutated A549 (NSCLC) cells. We next carried out an integrated analysis of the ChIP-Seq data with transcriptomic data from A549 cells with NRF2-knockdown and RNA-Seq data from TCGA patients with altered KEAP1 to identify downstream and clinically-correlated genes respectively. Furthermore, we applied transcription factor enrichment analysis, generated a protein-protein interaction network, and used kinase enrichment analysis. Moreover, functional annotation of NRF2 binding sites using DAVID v7 identified the genes involved in focal adhesion. Putative focal adhesion genes regulated by NRF2 were validated using qRT-PCR. Further, we selected one novel conserved focal adhesion gene regulated by NRF2–LAMC1 (laminin subunit gamma 1) and validated it using a reporter assay. Overall, the identification of NRF2 target genes paves the way for identifying the molecular mechanism of NRF2 signaling in NSCLC development and therapy. Moreover, our data highlight the complexity of the pathways regulated by NRF2 in lung tumorigenesis.
Collapse
|
19
|
Li M, Tang L, Wu FX, Pan Y, Wang J. CSA: a web service for the complete process of ChIP-Seq analysis. BMC Bioinformatics 2019; 20:515. [PMID: 31874601 PMCID: PMC6929326 DOI: 10.1186/s12859-019-3090-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Chromatin immunoprecipitation sequencing (ChIP-seq) is a technology that combines chromatin immunoprecipitation (ChIP) with next generation of sequencing technology (NGS) to analyze protein interactions with DNA. At present, most ChIP-seq analysis tools adopt the command line, which lacks user-friendly interfaces. Although some web services with graphical interfaces have been developed for ChIP-seq analysis, these sites cannot provide a comprehensive analysis of ChIP-seq from raw data to downstream analysis. RESULTS In this study, we develop a web service for the whole process of ChIP-Seq Analysis (CSA), which covers mapping, quality control, peak calling, and downstream analysis. In addition, CSA provides a customization function for users to define their own workflows. And the visualization of mapping, peak calling, motif finding, and pathway analysis results are also provided in CSA. For the different types of ChIP-seq datasets, CSA can provide the corresponding tool to perform the analysis. Moreover, CSA can detect differences in ChIP signals between ChIP samples and controls to identify absolute binding sites. CONCLUSIONS The two case studies demonstrate the effectiveness of CSA, which can complete the whole procedure of ChIP-seq analysis. CSA provides a web interface for users, and implements the visualization of every analysis step. The website of CSA is available at http://CompuBio.csu.edu.cn.
Collapse
Affiliation(s)
- Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Li Tang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, SKS7N5A9, Saskatoon, Canada
| | - Yi Pan
- Department of Computer Science, Georgia State University, GA30303, Atlanta, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
20
|
Hepatocyte nuclear factor-1β regulates Wnt signaling through genome-wide competition with β-catenin/lymphoid enhancer binding factor. Proc Natl Acad Sci U S A 2019; 116:24133-24142. [PMID: 31712448 DOI: 10.1073/pnas.1909452116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is essential for normal kidney development and renal tubular function. Mutations of HNF-1β produce cystic kidney disease, a phenotype associated with deregulation of canonical (β-catenin-dependent) Wnt signaling. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells produces hyperresponsiveness to Wnt ligands and increases expression of Wnt target genes, including Axin2, Ccdc80, and Rnf43 Levels of β-catenin and expression of Wnt target genes are also increased in HNF-1β mutant mouse kidneys. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) in wild-type and mutant cells showed that ablation of HNF-1β increases by 6-fold the number of sites on chromatin that are occupied by β-catenin. Remarkably, 50% of the sites that are occupied by β-catenin in HNF-1β mutant cells colocalize with HNF-1β-occupied sites in wild-type cells, indicating widespread reciprocal binding. We found that the Wnt target genes Ccdc80 and Rnf43 contain a composite DNA element comprising a β-catenin/lymphoid enhancer binding factor (LEF) site overlapping with an HNF-1β half-site. HNF-1β and β-catenin/LEF compete for binding to this element, and thereby HNF-1β inhibits β-catenin-dependent transcription. Collectively, these studies reveal a mechanism whereby a transcription factor constrains canonical Wnt signaling through direct inhibition of β-catenin/LEF chromatin binding.
Collapse
|
21
|
Namani A, Zheng Z, Wang XJ, Tang X. Systematic Identification of Multi Omics-based Biomarkers in KEAP1 Mutated TCGA Lung Adenocarcinoma. J Cancer 2019; 10:6813-6821. [PMID: 31839815 PMCID: PMC6909944 DOI: 10.7150/jca.35489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023] Open
Abstract
Mutations in KEAP1 and/or NRF2 genes have been identified across many cancers and the dysregulation of the NRF2 pathway due to these mutations leads to drug and radioresistance in several cancers. Identification of biomarkers associated with these mutations allows the researchers and clinicians to identify the personalized medicine and quicker diagnosis. In this current study, we carried out an integrated, multi-omics, multi-database analysis of exome, transcriptomics data's of KEAP1 mutated TCGA- Lung adenocarcinoma (LUAD) patients against non-mutated counterparts. Finally, we discovered the gene signature associated with KEAP1 mutations, prognostic genes which were highly correlated with the upregulation of the NRF2 pathway in the KEAP1 mutated LUAD patients. Our finding might be useful to identify the early diagnosis of KEAP1 mutated LUAD patients.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Thoracic Surgery and Department of Biochemistry of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Zhaohong Zheng
- Department of Pharmacology, and Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, and Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Thoracic Surgery and Department of Biochemistry of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| |
Collapse
|
22
|
Jones DL, Haak AJ, Caporarello N, Choi KM, Ye Z, Yan H, Varelas X, Ordog T, Ligresti G, Tschumperlin DJ. TGFβ-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. J Cell Sci 2019; 132:jcs.233486. [PMID: 31527052 DOI: 10.1242/jcs.233486] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is a chronic disease driven by persistent fibroblast activation that has recently been linked to epigenetic modifications. Here, we screened a small library of epigenetic small-molecule modulators to identify compounds capable of inhibiting or reversing TGFβ-mediated fibroblast activation. We identified pracinostat, an HDAC inhibitor, as a potent attenuator of lung fibroblast activation and confirmed its efficacy in patient-derived fibroblasts isolated from fibrotic lung tissue. Mechanistically, we found that HDAC-dependent transcriptional repression was an early and essential event in TGFβ-mediated fibroblast activation. Treatment of lung fibroblasts with pracinostat broadly attenuated TGFβ-mediated epigenetic repression and promoted fibroblast quiescence. We confirmed a specific role for HDAC-dependent histone deacetylation in the promoter region of the anti-fibrotic gene PPARGC1A (PGC1α) in response to TGFβ stimulation. Finally, we identified HDAC7 as a key factor whose siRNA-mediated knockdown attenuates fibroblast activation without altering global histone acetylation. Together, these results provide novel mechanistic insight into the essential role HDACs play in TGFβ-mediated fibroblast activation via targeted gene repression.
Collapse
Affiliation(s)
- Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung M Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University, Boston, MA 02118, USA
| | - Tamas Ordog
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Iacovella MG, Bremang M, Basha O, Giacò L, Carotenuto W, Golfieri C, Szakal B, Dal Maschio M, Infantino V, Beznoussenko GV, Joseph CR, Visintin C, Mironov AA, Visintin R, Branzei D, Ferreira-Cerca S, Yeger-Lotem E, De Wulf P. Integrating Rio1 activities discloses its nutrient-activated network in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:7586-7611. [PMID: 30011030 PMCID: PMC6125641 DOI: 10.1093/nar/gky618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast’s protein–protein and protein–DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.
Collapse
Affiliation(s)
- Maria G Iacovella
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Michael Bremang
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Current address: Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Omer Basha
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Luciano Giacò
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Walter Carotenuto
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Cristina Golfieri
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barnabas Szakal
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Marianna Dal Maschio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valentina Infantino
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Chinnu R Joseph
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Clara Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Rosella Visintin
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology (IFOM), Via Adamello 16, 20139 Milan, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sébastien Ferreira-Cerca
- Lehrstuhl für Biochemie III, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
24
|
Colunga T, Hayworth M, Kreß S, Reynolds DM, Chen L, Nazor KL, Baur J, Singh AM, Loring JF, Metzger M, Dalton S. Human Pluripotent Stem Cell-Derived Multipotent Vascular Progenitors of the Mesothelium Lineage Have Utility in Tissue Engineering and Repair. Cell Rep 2019; 26:2566-2579.e10. [PMID: 30840882 PMCID: PMC6585464 DOI: 10.1016/j.celrep.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023] Open
Abstract
In this report we describe a human pluripotent stem cell-derived vascular progenitor (MesoT) cell of the mesothelium lineage. MesoT cells are multipotent and generate smooth muscle cells, endothelial cells, and pericytes and self-assemble into vessel-like networks in vitro. MesoT cells transplanted into mechanically damaged neonatal mouse heart migrate into the injured tissue and contribute to nascent coronary vessels in the repair zone. When seeded onto decellularized vascular scaffolds, MesoT cells differentiate into the major vascular lineages and self-assemble into vasculature capable of supporting peripheral blood flow following transplantation. These findings demonstrate in vivo functionality and the potential utility of MesoT cells in vascular engineering applications.
Collapse
Affiliation(s)
- Thomas Colunga
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Miranda Hayworth
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Sebastian Kreß
- Department of Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany
| | - David M Reynolds
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Luoman Chen
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Kristopher L Nazor
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Johannes Baur
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Amar M Singh
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
| | - Jeanne F Loring
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marco Metzger
- Translational Centre for Regenerative Therapies TLZ-RT, Fraunhofer Institute for Silicate Research ISC, Röntgenring 11, 97070 Würzburg, Germany
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology and Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA.
| |
Collapse
|
25
|
Zhang Q, Qin Y, Zhao J, Tang Y, Hu X, Zhong W, Li M, Zong S, Li M, Tao H, Zhang Z, Chen S, Liu H, Yang L, Zhou H, Liu Y, Sun T, Yang C. Thymidine phosphorylase promotes malignant progression in hepatocellular carcinoma through pentose Warburg effect. Cell Death Dis 2019; 10:43. [PMID: 30674871 PMCID: PMC6426839 DOI: 10.1038/s41419-018-1282-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
Tumor progression is dependent on metabolic reprogramming. Metastasis and vasculogenic mimicry (VM) are typical characteristics of tumor progression. The relationship among metastasis, VM, and metabolic reprogramming remains unclear. In this study, we identified the novel role of Twist1, a VM regulator, in the transcriptional regulation of thymidine phosphorylase (TP) expression. TP promoted the extracellular metabolism of thymidine into ATP and amino acids through the pentose Warburg effect by coupling the pentose phosphate pathway and glycolysis. Moreover, Twist1 relied on TP-induced metabolic reprogramming to promote hepatocellular carcinoma (HCC) metastasis and VM formation mediated by VE–Cad, VEGFR1, and VEGFR2 in vitro and in vivo. The TP inhibitor tipiracil reduced the effect of TP on promoting HCC VM formation and metastasis. Hence, TP, when transcriptionally activated by Twist1, promotes HCC VM formation and metastasis through the pentose Warburg effect and contributes to tumor progression.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuan Qin
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jianmin Zhao
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuanhao Tang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xuejiao Hu
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Weilong Zhong
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mimi Li
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shumin Zong
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honglian Tao
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhen Zhang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Tao Sun
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicine Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
26
|
Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan Z, Liu J, Kohalmi SE, Li C, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. PLANT DIRECT 2019; 3:e00100. [PMID: 31245749 PMCID: PMC6508855 DOI: 10.1002/pld3.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 05/25/2023]
Abstract
The Polycomb Group (PcG) proteins form two protein complexes, PcG Repressive Complex 1 (PRC1) and PRC2, which are key epigenetic regulators in eukaryotes. PRC2 represses gene expression by catalyzing the trimethylation of histone H3 lysine 27 (H3K27me3). In Arabidopsis (Arabidopsis thaliana), CURLY LEAF (CLF) and SWINGER (SWN) are two major H3K27 methyltransferases and core components of PRC2, playing essential roles in plant growth and development. Despite their importance, genome-wide binding profiles of CLF and SWN have not been determined and compared yet. In this study, we generated transgenic lines expressing GFP-tagged CLF/SWN under their respective native promoters and used them for ChIP-seq analyses to profile the genome-wide distributions of CLF and SWN in Arabidopsis seedlings. We also profiled and compared the global H3K27me3 levels in wild-type (WT) and PcG mutants (clf, swn, and clf swn). Our data show that CLF and SWN bind to almost the same set of genes, except that SWN has a few hundred more targets. Two short DNA sequences, the GAGA-like and Telo-box-like motifs, were found enriched in the CLF and SWN binding regions. The H3K27me3 levels in clf, but not in swn, were markedly reduced compared with WT; and the mark was undetectable in the clf swn double mutant. Further, we profiled the transcriptomes in clf, swn, and clf swn, and compared that with WT. Thus this work provides a useful resource for the plant epigenetics community for dissecting the functions of PRC2 in plant growth and development.
Collapse
Affiliation(s)
- Jie Shu
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Chen Chen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Raj Kumar Thapa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Shaomin Bian
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- College of Plant ScienceJilin UniversityChangchunChina
| | - Vi Nguyen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Kangfu Yu
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Ze‐Chun Yuan
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Jun Liu
- Guangdong Academy of Agricultural SciencesGuangzhouChina
| | | | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuhai Cui
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
27
|
Hall DD, Spitler KM, Grueter CE. Disruption of cardiac Med1 inhibits RNA polymerase II promoter occupancy and promotes chromatin remodeling. Am J Physiol Heart Circ Physiol 2018; 316:H314-H325. [PMID: 30461303 DOI: 10.1152/ajpheart.00580.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Mediator coactivator complex directs gene-specific expression by binding distal enhancer-bound transcription factors through its Med1 subunit while bridging to RNA polymerase II (Pol II) at gene promoters. In addition, Mediator scaffolds epigenetic modifying enzymes that determine local DNA accessibility. Previously, we found that deletion of Med1 in cardiomyocytes deregulates more than 5,000 genes and promotes acute heart failure. Therefore, we hypothesized that Med1 deficiency disrupts enhancer-promoter coupling. Using chromatin immunoprecipitation-coupled deep sequencing (ChIP-seq; n = 3/ChIP assay), we found that the Pol II pausing index is increased in Med1 knockout versus floxed control mouse hearts primarily due to a decrease in Pol II occupancy at the majority of transcriptional start sites without a corresponding increase in elongating species. Parallel ChIP-seq assays reveal that Med1-dependent gene expression correlates strongly with histone H3 K27 acetylation, which is indicative of open and active chromatin at transcriptional start sites, whereas H3 K27 trimethylated levels, representing condensed and repressed DNA, are broadly increased and inversely correlate with absolute expression levels. Furthermore, Med1 deletion leads to dynamic changes in acetyl-K27 associated superenhancer regions and their enriched transcription factor-binding motifs that are consistent with altered gene expression. Our findings suggest that Med1 is important in establishing enhancer-promoter coupling in the heart and supports the proposed role of Mediator in establishing preinitiation complex formation. We also found that Med1 determines chromatin accessibility within genes and enhancer regions and propose that the composition of transcription factors associated with superenhancer changes to direct gene-specific expression. NEW & NOTEWORTHY Based on our previous findings that transcriptional homeostasis and cardiac function are disturbed by cardiomyocyte deletion of the Mediator coactivator Med1 subunit, we investigated potential underlying changes in RNA polymerase II localization and global chromatin accessibility. Using chromatin immunoprecipitation sequencing, we found that disrupted transcription arises from a deficit in RNA polymerase II recruitment to gene promoters. Furthermore, active versus repressive chromatin marks are redistributed within gene loci and at enhancer regions correlated with gene expression changes.
Collapse
Affiliation(s)
- Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine , Iowa City, Iowa
| |
Collapse
|
28
|
Speth C, Szabo EX, Martinho C, Collani S, Zur Oven-Krockhaus S, Richter S, Droste-Borel I, Macek B, Stierhof YD, Schmid M, Liu C, Laubinger S. Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. eLife 2018; 7:37078. [PMID: 30152752 PMCID: PMC6135607 DOI: 10.7554/elife.37078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/22/2018] [Indexed: 01/16/2023] Open
Abstract
Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.
Collapse
Affiliation(s)
- Corinna Speth
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Emese Xochitl Szabo
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| | - Claudia Martinho
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Silvio Collani
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | | | - Sandra Richter
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | | | - Boris Macek
- Proteome Centre, University of Tuebingen, Tuebingen, Germany
| | - York-Dieter Stierhof
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Markus Schmid
- Department of Plant Physiology, Umea Plant Science Centre, Umeå University, Umea, Sweden
| | - Chang Liu
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Sascha Laubinger
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany.,Chemical Genomics Centre (CGC) of the Max Planck Society, Dortmund, Germany.,Max Planck Institute for Developmental Biology, Tuebingen, Germany.,Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
Grégoire MC, Leduc F, Morin MH, Cavé T, Arguin M, Richter M, Jacques PÉ, Boissonneault G. The DNA double-strand "breakome" of mouse spermatids. Cell Mol Life Sci 2018; 75:2859-2872. [PMID: 29417179 PMCID: PMC11105171 DOI: 10.1007/s00018-018-2769-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
De novo germline mutations arise preferentially in male owing to fundamental differences between spermatogenesis and oogenesis. Post-meiotic chromatin remodeling in spermatids results in the elimination of most of the nucleosomal supercoiling and is characterized by transient DNA fragmentation. Using three alternative methods, DNA from sorted populations of mouse spermatids was used to confirm that double-strand breaks (DSB) are created in elongating spermatids and repaired at later steps. Specific capture of DSB was used for whole-genome mapping of DSB hotspots (breakome) for each population of differentiating spermatids. Hotspots are observed preferentially within introns and repeated sequences hence are more prevalent in the Y chromosome. When hotspots arise within genes, those involved in neurodevelopmental pathways become preferentially targeted reaching a high level of significance. Given the non-templated DNA repair in haploid spermatids, transient DSBs formation may, therefore, represent an important component of the male mutation bias and the etiology of neurological disorders, adding to the genetic variation provided by meiosis.
Collapse
Affiliation(s)
- Marie-Chantal Grégoire
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin H Morin
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tiphanie Cavé
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélina Arguin
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Richter
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
30
|
Shen J, Cao B, Wang Y, Ma C, Zeng Z, Liu L, Li X, Tao D, Gong J, Xie D. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res 2018; 37:175. [PMID: 30055645 PMCID: PMC6064138 DOI: 10.1186/s13046-018-0850-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Focal adhesion plays an essential role in tumour invasiveness and metastasis. Hippo component YAP has been widely reported to be involved in many aspects of tumour biology. However, its role in focal adhesion regulation in breast cancer remains unexplored. METHODS Tissue microarray was used to evaluate YAP expression in clinical breast cancer specimens by immunohistochemical staining. Cell migration and invasion abilities were measured by Transwell assay. A cell adhesion assay was used to measure the ability of cell adhesion to gelatin. The focal adhesion was visualized through immunofluorescence. Phosphorylated FAK and other proteins were detected by Western blot analysis. Gene expression profiling was used to screen differently expressed genes, and gene ontology enrichment was performed using DAVID software. The gene mRNA levels were measured by quantitative real-time PCR. The activity of the THBS1-promoter was evaluated by dual luciferase assay. Chromatin immunoprecipitation (ChIP) was used to verify whether YAP could bind to the THBS1-promoter region. The prediction of potential protein-interaction was performed with the String program. The ChIP sequence data of TEAD was obtained from the ENCODE database and analysed via the ChIP-seek tool. The gene expression dataset (GSE30480) of purified tumour cells from primary breast tumour tissues and metastatic lymph nodes was used in the gene set enrichment analysis. Prognostic analysis of the TCGA dataset was performed by the SurvExpress program. Gene expression correlation of the TCGA dataset was analysed via R2: Genomics Analysis and Visualization Platform. RESULTS Our study provides evidence that YAP acts as a promoter of focal adhesion and tumour invasiveness via regulating FAK phosphorylation in breast cancer. Further experiments reveal that YAP could induce FAK phosphorylation through a TEAD-dependent manner. Using gene expression profiling and bioinformatics analysis, we identify the FAK upstream gene, thrombospondin 1, as a direct transcriptional target of YAP-TEAD. Silencing THBS1 could reverse the YAP-induced FAK activation and focal adhesion. CONCLUSION Our results unveil a new signal axis, YAP/THBS1/FAK, in the modulation of cell adhesion and invasiveness, and provides new insights into the crosstalk between Hippo signalling and focal adhesion.
Collapse
Affiliation(s)
- Jie Shen
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Beibei Cao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Yatao Wang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Chenshen Ma
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Zhuo Zeng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Liang Liu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Xiaolan Li
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Deding Tao
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Jianping Gong
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Av., Wuhan, Hubei 430030 People’s Republic of China
| |
Collapse
|
31
|
Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J, Simon Q, Thalmensi J, Baures A, Flühler V, Sakwa I, Stervbo U, Ries S, Jouneau L, Boudinot P, Tsubata T, Adachi T, Hutloff A, Dörner T, Zimber-Strobl U, de Vos AF, Dahlke K, Loh G, Korniotis S, Goosmann C, Weill JC, Reynaud CA, Kaufmann SHE, Walter J, Fillatreau S. LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells. Immunity 2018; 49:120-133.e9. [PMID: 30005826 PMCID: PMC6057275 DOI: 10.1016/j.immuni.2018.06.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
B lymphocytes can suppress immunity through interleukin (IL)-10 production in infectious, autoimmune, and malignant diseases. Here, we have identified a natural plasma cell subset that distinctively expresses the inhibitory receptor LAG-3 and mediates this function in vivo. These plasma cells also express the inhibitory receptors CD200, PD-L1, and PD-L2. They develop from various B cell subsets in a B cell receptor (BCR)-dependent manner independently of microbiota in naive mice. After challenge they upregulate IL-10 expression via a Toll-like receptor-driven mechanism within hours and without proliferating. This function is associated with a unique transcriptome and epigenome, including the lowest amount of DNA methylation at the Il10 locus compared to other B cell subsets. Their augmented accumulation in naive mutant mice with increased BCR signaling correlates with the inhibition of memory T cell formation and vaccine efficacy after challenge. These natural regulatory plasma cells may be of broad relevance for disease intervention. LAG-3 expression identifies natural regulatory plasma cells LAG-3+CD138hi plasma cells express IL-10 within hours of stimulation LAG-3+CD138hi plasma cells have a unique epigenome poised to express IL-10 LAG-3+CD138hi plasma cells develop via an antigen-specific mechanism
Collapse
Affiliation(s)
- Andreia C Lino
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Vicky Lampropoulou
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Anna Welle
- Department of EpiGenetics, Saarland University, Campus A2.4, Saarbrücken 66123, Germany
| | - Jara Joedicke
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Jessie Thalmensi
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Aurelia Baures
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Vinciane Flühler
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Imme Sakwa
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrik Stervbo
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Andreas Hutloff
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Department Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Center Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katja Dahlke
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Gastrointestinal Microbiology, 14558 Nuthetal, Germany
| | - Gunnar Loh
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Gastrointestinal Microbiology, 14558 Nuthetal, Germany
| | - Sarantis Korniotis
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Christian Goosmann
- Max Planck Institute of Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | | | - Stefan H E Kaufmann
- Max Planck Institute of Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörn Walter
- Department of EpiGenetics, Saarland University, Campus A2.4, Saarbrücken 66123, Germany
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany; Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
32
|
Wilson S, Filipp FV. A network of epigenomic and transcriptional cooperation encompassing an epigenomic master regulator in cancer. NPJ Syst Biol Appl 2018; 4:24. [PMID: 29977600 PMCID: PMC6026491 DOI: 10.1038/s41540-018-0061-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Coordinated experiments focused on transcriptional responses and chromatin states are well-equipped to capture different epigenomic and transcriptomic levels governing the circuitry of a regulatory network. We propose a workflow for the genome-wide identification of epigenomic and transcriptional cooperation to elucidate transcriptional networks in cancer. Gene promoter annotation in combination with network analysis and sequence-resolution of enriched transcriptional motifs in epigenomic data reveals transcription factor families that act synergistically with epigenomic master regulators. By investigating complementary omics levels, a close teamwork of the transcriptional and epigenomic machinery was discovered. The discovered network is tightly connected and surrounds the histone lysine demethylase KDM3A, basic helix-loop-helix factors MYC, HIF1A, and SREBF1, as well as differentiation factors AP1, MYOD1, SP1, MEIS1, ZEB1, and ELK1. In such a cooperative network, one component opens the chromatin, another one recognizes gene-specific DNA motifs, others scaffold between histones, cofactors, and the transcriptional complex. In cancer, due to the ability to team up with transcription factors, epigenetic factors concert mitogenic and metabolic gene networks, claiming the role of a cancer master regulators or epioncogenes. Significantly, specific histone modification patterns are commonly associated with open or closed chromatin states, and are linked to distinct biological outcomes by transcriptional activation or repression. Disruption of patterns of histone modifications is associated with the loss of proliferative control and cancer. There is tremendous therapeutic potential in understanding and targeting histone modification pathways. Thus, investigating cooperation of chromatin remodelers and the transcriptional machinery is not only important for elucidating fundamental mechanisms of chromatin regulation, but also necessary for the design of targeted therapeutics.
Collapse
Affiliation(s)
- Stephen Wilson
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Fabian Volker Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| |
Collapse
|
33
|
The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget 2018; 8:30328-30343. [PMID: 28416760 PMCID: PMC5444746 DOI: 10.18632/oncotarget.15681] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 01/07/2023] Open
Abstract
The lysine demethylase 3A (KDM3A, JMJD1A or JHDM2A) controls transcriptional networks in a variety of biological processes such as spermatogenesis, metabolism, stem cell activity, and tumor progression. We matched transcriptomic and ChIP-Seq profiles to decipher a genome-wide regulatory network of epigenetic control by KDM3A in prostate cancer cells. ChIP-Seq experiments monitoring histone 3 lysine 9 (H3K9) methylation marks show global histone demethylation effects of KDM3A. Combined assessment of histone demethylation events and gene expression changes presented major transcriptional activation suggesting that distinct oncogenic regulators may synergize with the epigenetic patterns by KDM3A. Pathway enrichment analysis of cells with KDM3A knockdown prioritized androgen signaling indicating that KDM3A plays a key role in regulating androgen receptor activity. Matched ChIP-Seq and knockdown experiments of KDM3A in combination with ChIP-Seq of the androgen receptor resulted in a gain of H3K9 methylation marks around androgen receptor binding sites of selected transcriptional targets in androgen signaling including positive regulation of KRT19, NKX3-1, KLK3, NDRG1, MAF, CREB3L4, MYC, INPP4B, PTK2B, MAPK1, MAP2K1, IGF1, E2F1, HSP90AA1, HIF1A, and ACSL3. The cancer systems biology analysis of KDM3A-dependent genes identifies an epigenetic and transcriptional network in androgen response, hypoxia, glycolysis, and lipid metabolism. Genome-wide ChIP-Seq data highlights specific gene targets and the ability of epigenetic master regulators to control oncogenic pathways and cancer progression.
Collapse
|
34
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
35
|
Kuznetsov NV, Almuzzaini B, Kritikou JS, Baptista MAP, Oliveira MMS, Keszei M, Snapper SB, Percipalle P, Westerberg LS. Nuclear Wiskott-Aldrich syndrome protein co-regulates T cell factor 1-mediated transcription in T cells. Genome Med 2017; 9:91. [PMID: 29078804 PMCID: PMC5660450 DOI: 10.1186/s13073-017-0481-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The Wiskott-Aldrich syndrome protein (WASp) family of actin-nucleating factors are present in the cytoplasm and in the nucleus. The role of nuclear WASp for T cell development remains incompletely defined. METHODS We performed WASp chromatin immunoprecipitation and deep sequencing (ChIP-seq) in thymocytes and spleen CD4+ T cells. RESULTS WASp was enriched at genic and intergenic regions and associated with the transcription start sites of protein-coding genes. Thymocytes and spleen CD4+ T cells showed 15 common WASp-interacting genes, including the gene encoding T cell factor (TCF)12. WASp KO thymocytes had reduced nuclear TCF12 whereas thymocytes expressing constitutively active WASpL272P and WASpI296T had increased nuclear TCF12, suggesting that regulated WASp activity controlled nuclear TCF12. We identify a putative DNA element enriched in WASp ChIP-seq samples identical to a TCF1-binding site and we show that WASp directly interacted with TCF1 in the nucleus. CONCLUSIONS These data place nuclear WASp in proximity with TCF1 and TCF12, essential factors for T cell development.
Collapse
Affiliation(s)
- Nikolai V Kuznetsov
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bader Almuzzaini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences Medical Genomic Research Department, MNGHA, Riyadh, Saudi Arabia
| | - Joanna S Kritikou
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marisa A P Baptista
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Institute for Virology and Immunobiology, University of Würzburg, 97078, Würzburg, Germany
| | - Mariana M S Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Scott B Snapper
- Gastroenterology Division, Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.,Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm, 171 77, Sweden.
| |
Collapse
|
36
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
37
|
Xu Z, Casaretto JA, Bi Y, Rothstein SJ. Genome-wide binding analysis of AtGNC and AtCGA1 demonstrates their cross-regulation and common and specific functions. PLANT DIRECT 2017; 1:e00016. [PMID: 31245665 PMCID: PMC6508505 DOI: 10.1002/pld3.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 05/26/2023]
Abstract
GATA transcription factors are involved in multiple processes in plant growth and development. Two GATA factors, NITRATE-INDUCIBLE,CARBON METABOLISM-INVOLVED (GNC) and CYTOKININ-RESPONSIVE GATA FACTOR 1 (CGA1, also named GNL), are important regulators in greening, flowering, senescence, and hormone signaling. However, their direct target genes related to these biological processes are poorly characterized. Here, GNC and CGA1 are shown to be transcription activators and by using chromatin immunoprecipitation sequencing (ChIP-seq), 1475 and 638 genes are identified to be associated with GNC and CGA1 binding, respectively. Enrichment of diverse motifs in the peak binding regions for GNC and CGA1 suggests the possibility that these two transcription factors also interact with other transcription factors and in addition genes coding for DNA-binding proteins are highly enriched among GNC- and CGA1-associated genes. Despite the fact that these two GATA factors are known to share a large portion of co-expressed genes, our analysis revealed a low percentage of overlapping binding-associated genes for these two homologues. This suggests a possible cross-regulation between these, which is verified using ChIP-qPCR. The common and specific biological processes regulated by GNC and CGA1 also support this notion. Functional analysis of the binding-associated genes revealed that those encoding transcription factors, E3 ligase, as well as genes with roles in plant development are highly enriched, indicating that GNC and CGA1 mediate complex genetic networks in regulating different aspects of plant growth and development.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - José A. Casaretto
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Yong‐Mei Bi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Steven J. Rothstein
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
38
|
YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun 2017; 8:15321. [PMID: 28504269 PMCID: PMC5440673 DOI: 10.1038/ncomms15321] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hippo effectors YAP/TAZ act as on–off mechanosensing switches by sensing modifications in extracellular matrix (ECM) composition and mechanics. The regulation of their activity has been described by a hierarchical model in which elements of Hippo pathway are under the control of focal adhesions (FAs). Here we unveil the molecular mechanism by which cell spreading and RhoA GTPase activity control FA formation through YAP to stabilize the anchorage of the actin cytoskeleton to the cell membrane. This mechanism requires YAP co-transcriptional function and involves the activation of genes encoding for integrins and FA docking proteins. Tuning YAP transcriptional activity leads to the modification of cell mechanics, force development and adhesion strength, and determines cell shape, migration and differentiation. These results provide new insights into the mechanism of YAP mechanosensing activity and qualify this Hippo effector as the key determinant of cell mechanics in response to ECM cues. The transcriptional co-activator YAP is known to operate downstream of mechanical signals arising from the cell niche. Here the authors demonstrate that YAP controls cell mechanics, force development and adhesion strength by promoting the transcription of genes related to focal adhesions.
Collapse
|
39
|
Lund RJ, Huhtinen K, Salmi J, Rantala J, Nguyen EV, Moulder R, Goodlett DR, Lahesmaa R, Carpén O. DNA methylation and Transcriptome Changes Associated with Cisplatin Resistance in Ovarian Cancer. Sci Rep 2017; 7:1469. [PMID: 28473707 PMCID: PMC5431431 DOI: 10.1038/s41598-017-01624-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022] Open
Abstract
High-grade serous ovarian cancer is the most common ovarian cancer type. Although the combination of surgery and platinum-taxane chemotherapy provide an effective treatment, drug resistance frequently occurs leading to poor outcome. In order to clarify the molecular mechanisms of drug resistance, the DNA methylation and transcriptomic changes, associated with the development of drug resistance in high-grade serous ovarian cancer, were examined from patient derived malignant ascites cells. In parallel with large-scale transcriptome changes, cisplatin resistance was associated with loss of hypermethylation at several CpG sites primarily localized in the intergenic regions of the genome. The transcriptome and CpG methylome changes in response to cisplatin treatment of both sensitive and resistant cells were minimal, indicating the importance of post-translational mechanisms in regulating death or survival of the cells. The response of resistant cells to high concentrations of cisplatin revealed transcriptomic changes in potential key drivers of drug resistance, such as KLF4. Among the strongest changes was also induction of IL6 in resistant cells and the expression was further increased in response to cisplatin. Also, several other components of IL6 signaling were affected, further supporting previous observations on its importance in malignant transformation and development of drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Kaisa Huhtinen
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Salmi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Juha Rantala
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland
| | - Elizabeth V Nguyen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - David R Goodlett
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli Carpén
- Department of Pathology, Medicity Research Unit, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
40
|
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res 2017; 353:6-15. [PMID: 28238834 DOI: 10.1016/j.yexcr.2017.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.
Collapse
|
41
|
Gerland TA, Sun B, Smialowski P, Lukacs A, Thomae AW, Imhof A. The Drosophila speciation factor HMR localizes to genomic insulator sites. PLoS One 2017; 12:e0171798. [PMID: 28207793 PMCID: PMC5312933 DOI: 10.1371/journal.pone.0171798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR’s function, we measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, we find HMR localizing to genomic insulator sites that can be classified into two groups. One group belongs to gypsy insulators and another one borders HP1a bound regions at active genes. The transcription of the latter group genes is strongly affected in larvae and ovaries of Hmr mutant flies. Our data suggest a novel link between HMR and insulator proteins, a finding that implicates a potential role for genome organization in the formation of species.
Collapse
Affiliation(s)
- Thomas Andreas Gerland
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bo Sun
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Computational Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andrea Lukacs
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas Walter Thomae
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
42
|
Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases. PLANT PHYSIOLOGY 2017; 173:1434-1452. [PMID: 27980017 PMCID: PMC5291017 DOI: 10.1104/pp.16.01734] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 05/17/2023]
Abstract
Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes.
Collapse
Affiliation(s)
- Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Alexandra Ageeva
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Jörg Bernhardt
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Keqiang Wu
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.)
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.)
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Munich/Neuherberg, Germany (A.M., A.A., E.G., J.D., C.L.);
- Institute for Microbiology, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany (J.B.);
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (K.W.); and
- Department of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany (J.D.)
| |
Collapse
|
43
|
Tet proteins influence the balance between neuroectodermal and mesodermal fate choice by inhibiting Wnt signaling. Proc Natl Acad Sci U S A 2016; 113:E8267-E8276. [PMID: 27930333 DOI: 10.1073/pnas.1617802113] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TET-family dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and oxidized methylcytosines in DNA. Here, we show that mouse embryonic stem cells (mESCs), either lacking Tet3 alone or with triple deficiency of Tet1/2/3, displayed impaired adoption of neural cell fate and concomitantly skewed toward cardiac mesodermal fate. Conversely, ectopic expression of Tet3 enhanced neural differentiation and limited cardiac mesoderm specification. Genome-wide analyses showed that Tet3 mediates cell-fate decisions by inhibiting Wnt signaling, partly through promoter demethylation and transcriptional activation of the Wnt inhibitor secreted frizzled-related protein 4 (Sfrp4). Tet1/2/3-deficient embryos (embryonic day 8.0-8.5) showed hyperactivated Wnt signaling, as well as aberrant differentiation of bipotent neuromesodermal progenitors (NMPs) into mesoderm at the expense of neuroectoderm. Our data demonstrate a key role for TET proteins in modulating Wnt signaling and establishing the proper balance between neural and mesodermal cell fate determination in mouse embryos and ESCs.
Collapse
|
44
|
Ambrosini G, Dreos R, Kumar S, Bucher P. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data. BMC Genomics 2016; 17:938. [PMID: 27863463 PMCID: PMC5116162 DOI: 10.1186/s12864-016-3288-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/15/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND ChIP-seq and related high-throughput chromatin profilig assays generate ever increasing volumes of highly valuable biological data. To make sense out of it, biologists need versatile, efficient and user-friendly tools for access, visualization and itegrative analysis of such data. RESULTS Here we present the ChIP-Seq command line tools and web server, implementing basic algorithms for ChIP-seq data analysis starting with a read alignment file. The tools are optimized for memory-efficiency and speed thus allowing for processing of large data volumes on inexpensive hardware. The web interface provides access to a large database of public data. The ChIP-Seq tools have a modular and interoperable design in that the output from one application can serve as input to another one. Complex and innovative tasks can thus be achieved by running several tools in a cascade. CONCLUSIONS The various ChIP-Seq command line tools and web services either complement or compare favorably to related bioinformatics resources in terms of computational efficiency, ease of access to public data and interoperability with other web-based tools. The ChIP-Seq server is accessible at http://ccg.vital-it.ch/chipseq/ .
Collapse
Affiliation(s)
- Giovanna Ambrosini
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - René Dreos
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Sunil Kumar
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Philipp Bucher
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| |
Collapse
|
45
|
REST regulation of gene networks in adult neural stem cells. Nat Commun 2016; 7:13360. [PMID: 27819263 PMCID: PMC5103073 DOI: 10.1038/ncomms13360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. The transcription factor REST plays a crucial role in maintaining the adult neural stem cell pool. To better understand how REST maintains quiescence in neural progenitors, the authors use ChIP-seq and RNA-seq and find that REST regulates represses ribosome biogenesis, cell cycle and neuronal genes.
Collapse
|
46
|
Pazienza V, Panebianco C, Rappa F, Memoli D, Borghesan M, Cannito S, Oji A, Mazza G, Tamburrino D, Fusai G, Barone R, Bolasco G, Villarroya F, Villarroya J, Hatsuzawa K, Cappello F, Tarallo R, Nakanishi T, Vinciguerra M. Histone macroH2A1.2 promotes metabolic health and leanness by inhibiting adipogenesis. Epigenetics Chromatin 2016; 9:45. [PMID: 27800025 PMCID: PMC5078890 DOI: 10.1186/s13072-016-0098-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Obesity has tremendous impact on the health systems. Its epigenetic bases are unclear. MacroH2A1 is a variant of histone H2A, present in two alternatively exon-spliced isoforms macroH2A1.1 and macroH2A1.2, regulating cell plasticity and proliferation, during pluripotency and tumorigenesis. Their role in adipose tissue plasticity is unknown. Results Here, we show evidence that macroH2A1.1 protein levels in the visceral adipose tissue of obese humans positively correlate with BMI, while macroH2A1.2 is nearly absent. We thus introduced a constitutive GFP-tagged transgene for macroH2A1.2 in mice, and we characterized their metabolic health upon being fed a standard chow diet or a high fat diet. Despite unchanged food intake, these mice exhibit lower adipose mass and improved glucose metabolism both under a chow and an obesogenic diet. In the latter regimen, transgenic mice display smaller pancreatic islets and significantly less inflammation. MacroH2A1.2 overexpression in the mouse adipose tissue induced dramatic changes in the transcript levels of key adipogenic genes; genomic analyses comparing pre-adipocytes to mature adipocytes uncovered only minor changes in macroH2A1.2 genomic distribution upon adipogenic differentiation and suggested differential cooperation with transcription factors. MacroH2A1.2 overexpression markedly inhibited adipogenesis, while overexpression of macroH2A1.1 had opposite effects. Conclusions MacroH2A1.2 is an unprecedented chromatin component powerfully promoting metabolic health by modulating anti-adipogenic transcriptional networks in the differentiating adipose tissue. Strategies aiming at enhancing macroH2A1.2 expression might counteract excessive adiposity in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0098-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Department of Legal, Society and Sport Sciences, University of Palermo, 90133 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, 84081 Baronissi, SA Italy
| | - Michela Borghesan
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy ; Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK
| | - Sara Cannito
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871 Japan
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK
| | - Domenico Tamburrino
- Centre for HPB Surgery and Liver Transplantation, Royal Free Hospital, London, NW3 2QG UK
| | - Giuseppe Fusai
- Centre for HPB Surgery and Liver Transplantation, Royal Free Hospital, London, NW3 2QG UK
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Giulia Bolasco
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), and CIBER Fisiopatologia de la Obesidad y Nutricion, University of Barcelona, Barcelona, 08007 Spain ; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) ISCIII, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquimica i Biologia Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), and CIBER Fisiopatologia de la Obesidad y Nutricion, University of Barcelona, Barcelona, 08007 Spain ; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) ISCIII, Madrid, Spain
| | | | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Schola Medica Salernitana', University of Salerno, 84081 Baronissi, SA Italy
| | - Tomoko Nakanishi
- Faculty of Medicine, Tottori University, Yonago, 683-8503 Japan ; The Institute of Medical Sciences, University of Tokyo, Tokyo, 108-8639 Japan
| | - Manlio Vinciguerra
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, 71013 San Giovanni Rotondo, Italy ; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy ; Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital, London, NW3 2PF UK ; Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, 656 91 Czech Republic
| |
Collapse
|
47
|
Wilson S, Qi J, Filipp FV. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci Rep 2016; 6:32611. [PMID: 27623747 PMCID: PMC5021938 DOI: 10.1038/srep32611] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/03/2016] [Indexed: 01/04/2023] Open
Abstract
Sequence motifs are short, recurring patterns in DNA that can mediate sequence-specific binding for proteins such as transcription factors or DNA modifying enzymes. The androgen response element (ARE) is a palindromic, dihexameric motif present in promoters or enhancers of genes targeted by the androgen receptor (AR). Using chromatin immunoprecipitation sequencing (ChIP-Seq) we refined AR-binding and AREs at a genome-scale in androgen-insensitive and androgen-responsive prostate cancer cell lines. Model-based searches identified more than 120,000 ChIP-Seq motifs allowing for expansion and refinement of the ARE. We classified AREs according to their degeneracy and their transcriptional involvement. Additionally, we quantified ARE utilization in response to somatic copy number amplifications, AR splice-variants, and steroid treatment. Although imperfect AREs make up 99.9% of the motifs, the degree of degeneracy correlates negatively with validated transcriptional outcome. Weaker AREs, particularly ARE half sites, benefit from neighboring motifs or cooperating transcription factors in regulating gene expression. Taken together, ARE full sites generate a reliable transcriptional outcome in AR positive cells, despite their low genome-wide abundance. In contrast, the transcriptional influence of ARE half sites can be modulated by cooperating factors.
Collapse
Affiliation(s)
- Stephen Wilson
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343, USA
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Cancer Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore MD 21201, USA
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
48
|
Almuzzaini B, Sarshad AA, Rahmanto AS, Hansson ML, Von Euler A, Sangfelt O, Visa N, Farrants AKÖ, Percipalle P. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J 2016; 30:2860-73. [PMID: 27127100 DOI: 10.1096/fj.201600280r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that β-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of β-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In β-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type β-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of β-actin in Pol I transcription. The rRNA synthesis defects in the β-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated β-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.
Collapse
Affiliation(s)
- Bader Almuzzaini
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; and
| | - Aishe A Sarshad
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Aldwin S Rahmanto
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Magnus L Hansson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Anne Von Euler
- King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Neus Visa
- King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | | | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia Division of Science, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
49
|
MEF2B mutations in non-Hodgkin lymphoma dysregulate cell migration by decreasing MEF2B target gene activation. Nat Commun 2015; 6:7953. [PMID: 26245647 PMCID: PMC4918335 DOI: 10.1038/ncomms8953] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/30/2015] [Indexed: 02/05/2023] Open
Abstract
Myocyte enhancer factor 2B (MEF2B) is a transcription factor with mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL). To provide insight into the regulatory network of MEF2B, in this study, we analyse global gene expression and DNA-binding patterns. We find that candidate MEF2B direct target genes include RHOB, RHOD, CDH13, ITGA5 and CAV1, and that indirect target genes of MEF2B include MYC, TGFB1, CARD11, MEF2C, NDRG1 and FN1. MEF2B overexpression increases HEK293A cell migration and epithelial-mesenchymal transition, and decreases DLBCL cell chemotaxis. K4E, Y69H and D83V MEF2B mutations decrease the capacity of MEF2B to activate transcription and decrease its' effects on cell migration. The K4E and D83V mutations decrease MEF2B DNA binding. In conclusion, our map of the MEF2B regulome connects MEF2B to drivers of oncogenesis.
Collapse
|
50
|
Almuzzaini B, Sarshad AA, Farrants AKÖ, Percipalle P. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol 2015; 13:35. [PMID: 26044184 PMCID: PMC4486089 DOI: 10.1186/s12915-015-0147-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/02/2015] [Indexed: 12/11/2022] Open
Abstract
Background Nuclear myosin 1c (NM1) is emerging as a regulator of transcription and chromatin organization. Results Using chromatin immunoprecipitation and deep sequencing (ChIP-Seq) in combination with molecular analyses, we investigated the global association of NM1 with the mammalian genome. Analysis of the ChIP-Seq data demonstrates that NM1 binds across the entire mammalian genome with occupancy peaks correlating with distributions of RNA Polymerase II (Pol II) and active epigenetic marks at class II gene promoters. In mouse embryonic fibroblasts subjected to RNAi mediated NM1 gene silencing, we show that NM1 synergizes with polymerase-associated actin to maintain active Pol II at the promoter. NM1 also co-localizes with the nucleosome remodeler SNF2h at class II promoters where they assemble together with WSTF as part of the B-WICH complex. A high resolution micrococcal nuclease (MNase) assay and quantitative real time PCR shows that this mechanism is required for local chromatin remodeling. Following B-WICH assembly, NM1 mediates physical recruitment of the histone acetyl transferase PCAF and the histone methyl transferase Set1/Ash2 to maintain and preserve H3K9acetylation and H3K4trimethylation for active transcription. Conclusions We propose a novel genome-wide mechanism where myosin synergizes with Pol II-associated actin to link the polymerase machinery with permissive chromatin for transcription activation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0147-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bader Almuzzaini
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77, Stockholm, Sweden.
| | - Aishe A Sarshad
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77, Stockholm, Sweden. .,Present address: National Institute of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892-3675, USA.
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77, Stockholm, Sweden.
| |
Collapse
|