1
|
Deng YH, Li B, Chen SN, Li JY, Liu LH, Liu Y, Nie P. Types I to IV IFNs and their receptors in white spotted bamboo shark (Chiloscyllium plagiosum). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105338. [PMID: 39947504 DOI: 10.1016/j.dci.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Interferons (IFNs) are a class of proteins with significant antiviral and antibacterial functions. To date, four distinct types of IFNs have been identified in vertebrates, including types I, II, III and IV IFNs. However, all these IFNs have not been reported together from any species of cartilaginous fish. In this study, types I, II, III and IV IFNs have been identified in white spotted bamboo shark (Chiloscyllium plagiosum). Type I IFNs were distributed in a conserved locus as reported in amphibian and zebrafish with seven duplicated genes. IFN-γ and IFN-υ genes were located in conserved loci as reported in other vertebrates, but four copies of IFN-υ genes were found in the bamboo shark as compared with a single gene in other vertebrates. However, a single IFN-λ gene was found in the bamboo shark, but not in the conserved gene locus as reported in other vertebrates. It is obvious that all these IFN genes were constitutively expressed in examined organs/tissue, and were induced following poly(I:C) stimulation. The findings of four types of IFNs in bamboo shark fill up the gap in relation with the composition of IFNs in cartilaginous fish, and contributes to the understanding of IFN system from an evolutionary point of view.
Collapse
Affiliation(s)
- Yu Hang Deng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, China
| | - Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jia Yi Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
2
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
3
|
Ghaderzadeh M, Rahimi-Mianji G, Nejati-Javaremi A, Shahbazian N. Transcriptomic and biometric parameters analysis in rainbow trout (Oncorhynchus mykiss) challenged with viral hemorrhagic septicemia virus (VHSV). BMC Genomics 2025; 26:204. [PMID: 40021981 PMCID: PMC11869454 DOI: 10.1186/s12864-025-11300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that poses a significant threat to the health of diverse marine species. Among these, trout species, particularly rainbow trout (Oncorhynchus mykiss), are highly susceptible. This study evaluated the effects of VHSV infection on the biometric traits of rainbow trout and investigated the molecular mechanisms associated with the disease. RESULTS Biometric traits of fish were collected and documented weekly during the fourth and fifth weeks of the experiment. A statistically significant difference in body weight was observed in the fifth week, particularly between the control group and the groups injected with either physiological saline or the virus. Additionally, body length-related attributes showed significant variation across all treatment groups within the designated timeframe. RNA was extracted from spleen tissue of the group injected with high doses of physiological saline and the group injected with high doses of the virus using the TRIzol protocol. Differential gene expression analysis revealed 1,726 genes with significant differences between the two groups. Several key immune-related genes were identified, including TLR2, TLR7, TLR8, TLR22, IRF5, IRF6, IRF7, IRF8, IRF10, IL11a, IL12B, IL1b, IL7R, ILR1 II, HSP90B1, HSP47, TNF-α, TRF3, SPRY1, CASP3, FN1, GAPDH, and IgGFc-binding proteins. Network-based analysis of differentially expressed genes was conducted using the GeneMANIA module in Cytoscape, and metabolic pathways were identified through the DAVID database. The results highlighted the involvement of key pathways, including the Toll-like receptor pathway, p53 signaling pathway, PPAR signaling pathway, and the cell cycle, in the infected group. Validation tests for selected upregulated (EPCAM, APOC2 and XDD4) and downregulated (TLR7, XDH, and TSPAN36) candidate genes, were conducted using qRT-PCR. The qPCR results showed a strong and statistically significant correlation with the RNA-seq data, confirming the reliability of the findings. CONCLUSIONS VHSV significantly impacts the growth of rainbow trout, affecting both body length and gene expression. This study underscores the substantial economic risks posed by the virus and the absence of an effective cure, highlighting the importance of preventative measures. Additionally, potential resistance genes and pathways were identified through RNA sequencing, providing valuable insights for improving trout breeding programs.
Collapse
Affiliation(s)
- Mohammad Ghaderzadeh
- Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Ghodrat Rahimi-Mianji
- Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ardeshir Nejati-Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Nastaran Shahbazian
- Aquatic Animal Health and Diseases Management Department, Iranian Veterinary Organization, Tehran, Iran
| |
Collapse
|
4
|
Huang S, Kang Y, Zheng R, Yang L, Gao J, Tang W, Jiang J, He J, Xie J. Two cytokine receptor family B (CRFB) members in orange-spotted grouper Epinephelus coioides, EcCRFB3 and EcCRFB4, negatively regulate interferon immune responses to assist nervous necrosis virus replication. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109718. [PMID: 38909635 DOI: 10.1016/j.fsi.2024.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.
Collapse
Affiliation(s)
- Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
6
|
Guan Y, Chen J, Guan H, Chen TT, Teng Y, Wei Z, Li Z, Ouyang S, Chen X. Structural and Functional Characterization of a Fish Type I Subgroup d IFN Reveals Its Binding to Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1207-1220. [PMID: 38345351 PMCID: PMC10944818 DOI: 10.4049/jimmunol.2300651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024]
Abstract
Teleost fish type I IFNs and the associated receptors from the cytokine receptor family B (CRFB) are characterized by remarkable diversity and complexity. How the fish type I IFNs bind to their receptors is still not fully understood. In this study, we demonstrate that CRFB1 and CRFB5 constitute the receptor pair through which type I subgroup d IFN (IFNd) from large yellow croaker, Larimichthys crocea, activates the conserved JAK-STAT signaling pathway as a part of the antiviral response. Our data suggest that L. crocea IFNd (LcIFNd) has a higher binding affinity with L. crocea CRFB5 (LcCRFB5) than with LcCRFB1. Furthermore, we report the crystal structure of LcIFNd at a 1.49-Å resolution and construct structural models of LcIFNd in binary complexes with predicted structures of extracellular regions of LcCRFB1 and LcCRFB5, respectively. Despite striking similarities in overall architectures of LcIFNd and its ortholog human IFN-ω, the receptor binding patterns between LcIFNd and its receptors show that teleost and mammalian type I IFNs may have differentially selected helices that bind to their homologous receptors. Correspondingly, key residues mediating binding of LcIFNd to LcCRFB1 and LcCRFB5 are largely distinct from the receptor-interacting residues in other fish and mammalian type I IFNs. Our findings reveal a ligand/receptor complex binding mechanism of IFNd in teleost fish, thus providing new insights into the function and evolution of type I IFNs.
Collapse
Affiliation(s)
- Yanyun Guan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingjie Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions–Fujian Province University, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Tao-Tao Chen
- Key Laboratory of Microbial Pathogenesis and Interventions–Fujian Province University, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuyun Wei
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zekai Li
- Key Laboratory of Microbial Pathogenesis and Interventions–Fujian Province University, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions–Fujian Province University, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
7
|
Shibasaki Y, Yabu T, Shiba H, Moritomo T, Mano N, Nakanishi T. Characterization of fish-specific IFNγ-related binding with a unique receptor complex and signaling through a novel pathway. FEBS Open Bio 2024; 14:532-544. [PMID: 38321830 PMCID: PMC10988753 DOI: 10.1002/2211-5463.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Unlike mammals, fish express two type II interferons, IFNγ and fish-specific IFNγ (IFNγ-related or IFNγrel). We previously reported the presence of two IFNγrel genes, IFNγrel 1 and IFNγrel 2, which exhibit potent antiviral activity in the Ginbuna crucian carp, Carassius auratus langsdorfii. We also found that IFNγrel 1 increased allograft rejection; however, the IFNγrel 1 receptor(s) and signaling pathways underlying this process have not yet been elucidated. In this study, we examined the unique signaling mechanism of IFNγrel 1 and its receptors. The phosphorylation and transcriptional activation of STAT6 in response to recombinant Ginbuna IFNγrel 1 (rgIFNγrel 1) was observed in Ginbuna-derived cells. Binding of rgIFNγrel 1 to Class II cytokine receptor family members (Crfbs), Crfb5 and Crfb17, which are also known as IFNAR1 and IFNGR1-1, respectively, was detected by flow cytometry. Expression of the IFNγrel 1-inducible antiviral gene, Isg15, was highest in Crfb5- and Crfb17-overexpressing GTS9 cells. Dimerization of Crfb5 and Crfb17 was detected by chemical crosslinking. The results indicate that IFNγrel 1 activates Stat6 through an interaction with unique pairs of receptors, Crfb5 and Crfb17. Indeed, this cascade is distinct from not only that of IFNγ but also that of known IFNs in other vertebrates. IFNs may be classified by their receptor and signal transduction pathways. Taken together, IFNγrel 1 may be classified as a novel type of IFN family member in vertebrates. Our findings provide important information on interferon gene evolution in bony fish.
Collapse
Affiliation(s)
| | - Takeshi Yabu
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Department of Food and NutritionNitobe Bunka CollegeNakanoJapan
| | - Hajime Shiba
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | | | - Nobuhiro Mano
- College of Bioresource SciencesNihon UniversityFujisawaJapan
| | - Teruyuki Nakanishi
- College of Bioresource SciencesNihon UniversityFujisawaJapan
- Goto Aquaculture Institute Co., Ltd.SayamaJapan
| |
Collapse
|
8
|
Li B, Chen SN, Huang L, Li L, Ren L, Hou J, Tian JY, Liu LH, Nie P. Characterization of type II IFNs and their receptors in a cyprinid fish, the blunt snout bream Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109402. [PMID: 38281613 DOI: 10.1016/j.fsi.2024.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Type II interferons (IFNs) are a key class of molecules regulating innate and adaptive immunity in vertebrates. In the present study, two members of the type II IFNs, IFN-γ and IFNγ-rel, were identified in the blunt snout bream (Megalobrama amblycephala). The open reading frame (ORF) of IFN-γ and IFNγ-rel was found to have 564 bp and 492 bp, encoding 187 and 163 amino acids, with the first 26 and 24 amino acids being the signal peptide, respectively. IFN-γ and IFNγ-rel genes showed a high degree of similarity to their zebrafish homologues, being 76.9 % and 58.9 %, respectively. In the phylogenetic tree, IFN-γ and IFNγ-rel were clustered with homologous genes in cyprinids. In blunt snout bream, IFN-γ and IFNγ-rel were constitutively expressed in trunk kidney, head kidney, spleen, liver, heart, muscle, gill, intestine and brain and were significantly up-regulated by poly (I:C) induction in head kidney, spleen, liver, gill and intestine. Using recombinant proteins of IFN-γ and IFNγ-rel, the surface plasmon resonance (SPR) results showed that IFN-γ was bound to CRFB6, CRFB13 and CRFB17, but mainly to CRFB6 and CRFB13, whereas IFN-γrel bound mainly to CRFB17 and had no affinity with CRFB6. These results contribute to a better understanding on type II IFNs and their receptor usage in teleost fish.
Collapse
Affiliation(s)
- Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, Guangxi Zhuang Autonomous Region, 530001, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Jing Hou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jing Yun Tian
- Marine Science Research Institute of Shandong Province & National Oceanographic Center, 7 Youyun Road, Qingdao, Shandong Province, 266104, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
9
|
Chen K, Tian J, Shi Y, Xie T, Huang W, Jia Z, Zhang Y, Yuan G, Yan H, Wang J, Zou J. Distinct antiviral activities of IFNφ1 and IFNφ4 in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109396. [PMID: 38244820 DOI: 10.1016/j.fsi.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Interferons (IFNs) are a group of secreted cytokines that play a crucial role in antiviral immunity. Type I IFNs display functional disparities. In teleosts, type I IFNs are categorized into two subgroups containing one or two pairs of disulfide bonds. However, their functional differences have not been fully elucidated. In this study, we comparatively characterized the antiviral activities of zebrafish IFNφ1 and IFNφ4 belonging to the group I type I IFNs. It was found that ifnφ1 and ifnφ4 were differentially modulated during viral infection. Although both IFNφ1 and IFNφ4 activated JAK-STAT signaling pathway via CRFB1/CRFB5 receptor complex, IFNφ4 was less potent in inducing phosphorylation of STAT1a, STAT1b and STAT2 and the expression of antiviral genes than IFNφ1, thereby conferring weaker antiviral resistance of target cells. Taken together, our results provide insights into the functional divergence of type I IFNs in lower vertebrates.
Collapse
Affiliation(s)
- Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiayin Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanjie Shi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Teng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
10
|
Wang T, Lin P, Wang Y, Lai X, Chen P, Li F, Feng J. CRFB5a, a Subtype of Japanese Eel ( Anguilla japonica) Type I IFN Receptor, Regulates Host Antiviral and Antimicrobial Functions through Activation of IRF3/IRF7 and LEAP2. Animals (Basel) 2023; 13:3157. [PMID: 37835763 PMCID: PMC10571807 DOI: 10.3390/ani13193157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
IFNAR1, one of the type I IFN receptors, is crucial to mammalian host defense against viral invasion. However, largely unknown is the immunological role of the fish teleost protein IFNAR1, also known as CRFB5. We have successfully cloned the whole cDNA of the Japanese eel's (Anguilla japonica) CRFB5a homolog, AjCRFB5a. The two fibronectin-3 domains and the transmembrane region (238-260 aa) of AjCRFB5a are normally present, and it shares a three-dimensional structure with zebrafish, Asian arowana, and humans. According to expression analyses, AjCRFB5a is highly expressed in all tissues found, particularly the liver and intestine. In vivo, Aeromonas hydrophila, LPS, and the viral mimic poly I:C all dramatically increased AjCRFB5a expression in the liver. Japanese eel liver cells were reported to express AjCRFB5a more strongly in vitro after being exposed to Aeromonas hydrophila or being stimulated with poly I: C. The membranes of Japanese eel liver cells contained EGFP-AjCRFB5a proteins, some of which were condensed, according to the results of fluorescence microscopy. Luciferase reporter assays showed that AjCRFB5a overexpression strongly increased the expression of immune-related genes in Japanese eel liver cells, such as IFN1, IFN2, IFN3, IFN4, IRF3, IRF5, and IRF7 of the type I IFN signaling pathway, as well as one of the essential antimicrobial peptides LEAP2, in addition to significantly inducing human IFN-promoter activities in HEK293 cells. Additionally, RNA interference (RNAi) data demonstrated that knocking down AjCRFB5a caused all eight of those genes to drastically lower their expression in Japanese eel liver cells, as well as to variable degrees in the kidney, spleen, liver, and intestine. Our findings together showed that AjCRFB5a participates in the host immune response to bacterial infection by inducing antimicrobial peptides mediated by LEAP2 and favorably modulates host antiviral immune responses by activating IRF3 and IRF7-driven type I IFN signaling pathways.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Xiaojian Lai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Pengyun Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Fuyan Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
| | - Jianjun Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (T.W.); (P.L.); (Y.W.); (X.L.); (P.C.); (F.L.)
- The Open Program of Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361000, China
| |
Collapse
|
11
|
Zhang M, Liu WQ, Wang Y, Yan X, Wang B, Wang GH. Identification, expression pattern and functional characterization of IFN-γ involved in activating JAK-STAT pathway in Sebastes schlegeli. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108936. [PMID: 37423401 DOI: 10.1016/j.fsi.2023.108936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
IFN-γ (interferon gamma) is a critical cytokine in the immune system involved both directly and indirectly in antiviral activity, stimulation of bactericidal activity, antigen presentation and activation of macrophages via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. The IFN-γ function is best described in cell defense against intracellular pathogens in mammals, but IFN-γ cytokine-induced metabolic change and its role in anti-infection remain unknown in teleost fish. In this study, a novel IFN-γ (SsIFN-γ) was identified from black rockfish (Sebastes schlegeli) by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of SsIFN-γ encoded a putative protein of 215 amino acids and shares 60.2%-93.5% overall sequence identities with other teleost IFN-γ. SsIFN-γ was distributed ubiquitously in all the detected tissues and immune cells, which was highly expressed in the spleen, gills, head kidney by quantitative real-time PCR. The mRNA expression of SsIFN-γ was significantly upregulated in the spleen, head kidney, head kidney (HK) macrophages and peripheral blood lymphocytes (PBLs) during pathogen infection. Meanwhile, the recombinant protein (rSsIFN-γ) exhibited an immunomodulatory function to enhance respiratory burst activity and nitric oxide response of HK macrophages. Furthermore, rSsIFN-γ could effectively upregulate the expression of macrophage proinflammatory cytokine, the expression of JAK-STAT signaling pathway related genes and interferon-related downstream genes in the head kidney and spleen. Luciferase assays showed ISRE and GAS activity were obviously enhanced after rSsIFN-γ treatment. These results indicated that SsIFN-γ possessed apparent immunoregulatory properties and played a role in fighting pathogen infection which will be helpful to further understanding of the immunologic mechanism of teleosts IFN-γ in innate immunity.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
12
|
Yan L, Zhang Y, Wang P, Zhao C, Zhang B, Qiu L. Antiviral functions of IFNd against ISKNV and interaction analysis of IFNd and its receptors in spotted seabass (Lateolabrax maculatus). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108935. [PMID: 37454880 DOI: 10.1016/j.fsi.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Type I interferons (IFNs) play a significant role in antiviral innate immunity. But, the antiviral function of IFNd is controversial in teleosts. Here, we identified three IFNd receptors belonging to cytokine receptor family B (LmCRFB1, LmCRFB2, and LmCRFB5) in spotted seabass (Lateolabrax maculatus). LmIFNd and its receptors were highly expressed in gill, spleen and head kidney tissues. Additionally, LmIFNd, its receptors, and their downstream signal genes (LmTYK2, LmJAK1, LmSTAT1, and LmSTAT2) were induced by infectious spleen and kidney necrosis virus (ISKNV) infection. Injection of recombinant protein (LmIFNd-His) in vivo and incubation with the LmIFNd-His in vitro both induced expressions of IFN-stimulated genes (LmISGs). IFNd-His had a dose-dependent protective effect on the activity of brain cells infected by ISKNV and reduced the number of ISNKV copies. LmIFNd-His also bound to extracellular domains of the three receptors in vitro in the pull-down assay. LmIFNd-His preferentially induced ISG expression through receptor complex LmCRFB1 and LmCRFB5, followed by LmCRFB2 and LmCRFB5, to induce the expressions of LmISGs. Our results show that LmIFNd can enhance the antiviral immune response of spotted seabass, and it uses receptor complex LmCRFB1 and LmCRFB5 as well as LmCRFB2 and LmCRFB5 to induce LmISG expression. It is the first study about the antiviral function of LmIFNd and its receptor complex in spotted seabass, and it provides a reference for further studies of the controversial anti-viral function of IFNd in teleosts.
Collapse
Affiliation(s)
- Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Yaqing Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Pengfei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Sanya Tropical Fisheries Research Institute, Sanya, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, China.
| |
Collapse
|
13
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
14
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
15
|
Deng YH, Li B, Chen SN, Ren L, Zhang BD, Liu LH, Liu S, Nie P. Molecular characterization of nineteen cytokine receptor family B (CRFB) members, CRFB1, CRFB2, CRFB4-17, with three CRFB9 and two CRFB14 in a cyprinid fish, the blunt snout bream Megalobrama amblycephala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104725. [PMID: 37146740 DOI: 10.1016/j.dci.2023.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
The class II cytokine receptor family members are receptors of class 2 helical cytokines in mammals, and are named cytokine receptor family B (CRFB) in fish. In zebrafish, sixteen members, including CRFB1, CRFB2 and CRFB4-17 were reported. With the availability of genome sequence, a total of nineteen CRFBs was identified in the blunt snout bream (Megalobrama amblycephala), including CRFB1, CRFB2, CRFB4-17 with the presence of three CRFB9 isoforms, and two CRFB14 isoforms. These CRFB molecules contain well conserved features, such as fibronectin type III (FNIII) domain, transmembrane and intracellular domains as other class II cytokine receptors, and are phylogenetically grouped into thirteen clades with their homologues from other species of fish. The CRFB genes were constitutively expressed in organs/tissues examined in the fish. The finding of more CRFB members in the bream may provide clues to understand possible receptor-ligand interaction and their diversity from an evolutionary point of view.
Collapse
Affiliation(s)
- Yu Hang Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Bai Dong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
16
|
Dang H, Hassan Z, Jia Z, Wu Y, Xiao H, Huang W, Guo X, Zhao X, Li Y, Zou J, Wang J. Grass carp IL-20 binds to IL-20R2 but induces STAT3 phosphorylation via IL-20R1. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108445. [PMID: 36414129 DOI: 10.1016/j.fsi.2022.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and has a variety of biological functions in tissue homeostasis and regulation of host immune defenses. It signals through a heterodimeric receptor composed of a subunit with a long intracellular domain (R1 type receptor) and a subunit with a short intracellular domain (R2 type receptor). In this study, the R1 type receptor (CiIL-20R1/CRFB8) and the R2 type receptor (CiIL-20R2/CRFB16) were identified in grass carp Ctenopharyngodon idella. Expression analysis revealed that IL-20R2 was highly expressed in the gills and skin in healthy fish. Infection with Flavobacterium columnare resulted in the downregulation of both receptors in the gill at 48 and 72 h, whilst infection with grass carp reovirus induced their expression in the head kidney and spleen at 72 h. In the primary head kidney leucocytes, the expression levels of IL-20R1 and IL-20R2 were decreased after stimulation with 250 ng/mL IL-1β but not affected by IFN-γ. Co-immunoprecipitation analysis showed that CiIL-20R2/CRFB16 but not CiIL-20R1/CRFB8 bound to CiIL-20L. Furthermore, it was shown that CiIL-20R1/CRFB8 was responsible for activating the phosphorylation of STAT3, whilst CiIL-20R2/CRFB16 was not involved. Structural modeling analysis showed that key residues involved in the interaction between IL-20 and receptors were highly conserved between grass carp and humans, suggesting that the signal transduction and functions of IL-20/IL-20R axis are evolutionarily conserved.
Collapse
Affiliation(s)
- Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Zeinab Hassan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Sahari, Airport Way, 81528, Egypt
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, University, Shanghai, 201306, China.
| |
Collapse
|
17
|
Whole genome assembly of the armored loricariid catfish Ancistrus triradiatus highlights herbivory signatures. Mol Genet Genomics 2022; 297:1627-1642. [PMID: 36006456 PMCID: PMC9596584 DOI: 10.1007/s00438-022-01947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
The catfish Ancistrus triradiatus belongs to the species-rich family Loricariidae. Loricariids display remarkable traits such as herbivory, a benthic lifestyle, the absence of scales but the presence of dermal bony plates. They are exported as ornamental fish worldwide, with escaped fishes becoming a threat locally. Although genetic and phylogenetic studies are continuously increasing and developmental genetic investigations are underway, no genome assembly has been formally proposed for Loricariidae yet. We report a high-quality genome assembly of Ancistrus triradiatus using long and short reads, and a newly assembled transcriptome. The genome assembly is composed of 9530 scaffolds, including 85.6% of ray-finned fish BUSCOs, and 26,885 predicted protein-coding genes. The genomic GC content is higher than in other catfishes, reflecting the higher metabolism associated with herbivory. The examination of the SCPP gene family indicates that the genes presumably triggering scale loss when absent, are present in the scaleless A. triradiatus, questioning their explanatory role. The analysis of the opsin gene repertoire revealed that gene losses associated to the nocturnal lifestyle of catfishes were not entirely found in A. triradiatus, as the UV-sensitive opsin 5 is present. Finally, most gene family expansions were related to immunity except the gamma crystallin gene family which controls pupil shape and sub-aquatic vision. Thus, the genome of A. triradiatus reveals that fish herbivory may be related to the photic zone habitat, conditions metabolism, photoreception and visual functions. This genome is the first for the catfish suborder Loricarioidei and will serve as backbone for future genetic, developmental and conservation studies.
Collapse
|
18
|
Chen J, Guan Y, Guan H, Mu Y, Ding Y, Zou J, Ouyang S, Chen X. Molecular and Structural Basis of Receptor Binding and Signaling of a Fish Type I IFN with Three Disulfide Bonds. THE JOURNAL OF IMMUNOLOGY 2022; 209:806-819. [DOI: 10.4049/jimmunol.2200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In mammals, type I IFNs, which commonly contain one or two disulfide bonds, activate the JAK-STAT signaling pathway through binding to the common cell surface receptor formed by IFN-α/β receptor (IFNAR)1 and IFNAR2 subunits. Although type I IFNs are also known to be essential for antiviral defense in teleost fish, very little is known about mechanisms underlying the recognition of fish type I IFNs by associated receptors. In this study, we demonstrate that a type I IFN of large yellow croaker Larimichthys crocea (LcIFNi), belonging to a new subgroup of fish type I IFNs, triggers antiviral response via the conserved JAK-STAT pathway through stable binding with a heterodimeric receptor comprising subunits LcCRFB5 and LcCRFB2. LcIFNi binds to LcCRFB5 with a much higher affinity than to LcCRFB2. Furthermore, we determined the crystal structure of LcIFNi at a 1.39 Å resolution. The high-resolution structure is, to our knowledge, the first reported structure of a type I IFN with three disulfide bonds, all of which were found to be indispensable for folding and stability of LcIFNi. Using structural analysis, mutagenesis, and biochemical assays, we identified key LcIFNi residues involved in receptor interaction and proposed a structural model of LcIFNi bound to the LcCRFB2–LcCRFB5 receptor. The results show that LcIFNi–LcCRFB2 exhibits a similar binding pattern to human IFN-ω–IFNAR2, whereas the binding pattern of LcIFNi–LcCRFB5 is quite different from that of IFN-ω–IFNAR1. Altogether, our findings reveal the structural basis for receptor interaction and signaling of a type I IFN with three disulfide bonds and provide new insights into the mechanisms underlying type I IFN recognition in teleosts.
Collapse
Affiliation(s)
- Jingjie Chen
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Guan
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongxin Guan
- †Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yinnan Mu
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Ding
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Zou
- ‡Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Songying Ouyang
- †Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xinhua Chen
- *Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- §Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
19
|
Wang Z, Xu J, Feng J, Wu K, Chen K, Jia Z, Zhu X, Huang W, Zhao X, Liu Q, Wang B, Chen X, Wang J, Zou J. Structural and Functional Analyses of Type I IFNa Shed Light Into Its Interaction With Multiple Receptors in Fish. Front Immunol 2022; 13:862764. [PMID: 35392096 PMCID: PMC8980424 DOI: 10.3389/fimmu.2022.862764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Teleost type I interferons (IFNs) are categorized into group I and II subgroups that bind to distinct receptors to activate antiviral responses. However, the interaction between ifn ligands and receptors has not fully been understood. In this study, the crystal structure of grass carp [Ctenopharyngodon idella (Ci)] IFNa has been solved at 1.58Å and consists of six helices. The CiIFNa displays a typical structure of type I IFNs with a straight helix F and lacks a helix element in the AB loop. Superposition modeling identified several key residues involved in the interaction with receptors. It was found that CiIFNa bound to cytokine receptor family B (CRFB) 1, CRFB2, and CRFB5, and the three receptors could form heterodimeric receptor complexes. Furthermore, mutation of Leu27, Glu103, Lys117, and His165 markedly decreased the phosphorylation of signal transducer and activator of transcription (STAT) 1a induced by CiIFNa in the Epithelioma papulosum cyprini (EPC) cells, and Glu103 was shown to be required for the CiIFNa-activated antiviral activity. Interestingly, wild-type and mutant CiIFNa proteins did not alter the phosphorylation levels of STAT1b. Our results demonstrate that fish type I IFNs, although structurally conserved, interact with the receptors in a manner that may differ from mammalian homologs.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jing Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Quiniou SMA, Crider J, Felch KL, Bengtén E, Boudinot P. Interferons and interferon receptors in the channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:442-452. [PMID: 35304241 DOI: 10.1016/j.fsi.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, we describe the complete repertoire of channel catfish, Ictalurus punctatus, IFNs and IFN receptor genes. Based on multiple genomic and transcriptomic resources we identified 16 type I IFN genes, which represent the six type I IFN subgroups previously defined in salmonids (a-f.) No representatives of subgroup h previously only found in percomorphs were identified. An expansion in copy numbers of subgroup d IFN genes was of particular interest, as this has not been reported in other fish species to date. Furthermore, we confirmed the presence of two type II ifn genes encoding orthologs of IFNγ and the teleost-specific IFNγRel. Six homologs of IFN type I receptor genes were found in an array that shows conserved synteny with human chromosome 21. Three homologs of type II IFN receptor genes were also identified. These type I and type II receptor sequences are compatible with the dual type I IFN receptors, and the potentially more complex type II IFN receptors described in teleosts. Our data provide a comprehensive resource for future studies of channel catfish innate antiviral immunity.
Collapse
Affiliation(s)
| | | | | | - Eva Bengtén
- UMMC, Department of Microbiology, 39211, Jackson, MS, USA
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
21
|
Chen SN, Gan Z, Hou J, Yang YC, Huang L, Huang B, Wang S, Nie P. Identification and establishment of type IV interferon and the characterization of interferon-υ including its class II cytokine receptors IFN-υR1 and IL-10R2. Nat Commun 2022; 13:999. [PMID: 35194032 PMCID: PMC8863823 DOI: 10.1038/s41467-022-28645-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Interferons (IFNs) are critical soluble factors in the immune system and are composed of three types, (I, II and III) that utilize different receptor complexes IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively. Here we identify IFN-υ from the genomic sequences of vertebrates. The members of class II cytokine receptors, IFN-υR1 and IL-10R2, are identified as the receptor complex of IFN-υ, and are associated with IFN-υ stimulated gene expression and antiviral activity in zebrafish (Danio rerio) and African clawed frog (Xenopus laevis). IFN-υ and IFN-υR1 are separately located at unique and highly conserved loci, being distinct from all other three-type IFNs. IFN-υ and IFN-υR1 are phylogenetically clustered with class II cytokines and class II cytokine receptors, respectively. Therefore, the finding of this IFN ligand-receptor system may be considered as a type IV IFN, in addition to the currently recognized three types of IFNs in vertebrates. Interferons are critical soluble components of the inflammatory process and are composed of three types with associated receptor complexes. Here the authors identify and characterise the type IV interferon, IFN-υ, and identify its associated receptors, denote functionality during in vivo infection and ascertain its genomic localisation.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yue Cong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Su Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China. .,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
22
|
Wang S, Chen SN, Sun Z, Pang AN, Wang S, Liu LH, Liu Y, Nie P. Four type I IFNs, IFNa1, IFNa2, IFNb, IFNc, and their receptor usage in an osteoglossomorph fish, the Asian arowana, Scleropages formosus. FISH & SHELLFISH IMMUNOLOGY 2021; 117:70-81. [PMID: 34274423 DOI: 10.1016/j.fsi.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In fish, type I IFNs are classified into three groups, i.e. Group I, Group II and Group III, which are further divided into seven subgroups according to the number of conservative cysteines, phylogenetic relationship, and probably their receptor complexes. In the present study, four type I IFNs and four cytokine receptor family B members (CRFBs) were identified in the Asian arowana, Scleropages formosus, an ancient species in the Osteoglossomorpha with commercial and conservation values. According to multiple sequence alignment and phylogenetic relationship, the four type I IFNs are named as IFNa1, IFNa2, IFNb and IFNc, with the former two belonging to Group I, and the latter two to Group II. The four receptors are named as CRFB1, CRFB2, CRFB5a and CRFB5b. The IFNs and their possible receptor genes are widely expressed in examined organs/tissues, and are induced following the stimulation of polyinosinic polycytidylic acid (polyI:C) in vivo. It was found that IFNa1, IFNa2, IFNb and IFNc use preferentially the receptor complexes, CRFB1 and CRFB5b, CRFB1 and CRFB5b, CRFB2 and CRFB5a, and CRFB2 and CRFB5b, respectively, indicating the evolutionary diversification in the interaction of type I IFNs and their receptors in this ancient fish species, S. formosus.
Collapse
Affiliation(s)
- Shuai Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zheng Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - An Ning Pang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lan Hao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
23
|
Xu Q, Deng D, Guo H, Yuan H, Zhang W, Wang B, Lu Y, Chen D, Zhang S. Comprehensive comparison of thirteen kinds of cytokine receptors from the endangered fish Chinese sturgeon (Acipenser sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104132. [PMID: 34038788 DOI: 10.1016/j.dci.2021.104132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The interferon receptor system in teleost fish is more complex than that in mammals. In the present study, we identified 13 cytokine receptor genes (10 interferon receptor genes and 3 IL10R2-like genes) from Chinese sturgeon (Acipenser sinensis) using RNA-sequencing. Sequence analysis indicated that these receptors had conserved domains, including signal peptides, FNⅢ, and transmembrane domains. Phylogenetic analysis suggested that they belonged to the cytokine receptor family. In the present study, we named them IFNAR1-like (CRFB5a, CRFB5b), IFNAR2-like (CRFB3a, CRFB3b), IFNGR1-like (IFNGR1), IFNGR2-like (CRFB6a, CRFB6b/IFNGR2-1, CRFB6c/IFNGR2-2, CRFB6d/IFNGR2-3, CRFB6e/IFNGR2-4) and IL10R2-like (CRFB4a, CRFB4b, CRFB4c), respectively. Constitutive expression analysis revealed that these receptor genes had potential functions in immune and non-immune tissue compartments. After stimulating with Poly (I:C), the expression fold changes of CRFB3a, CRFB4a, CRFB4b, CRFB5b, and CRFB6e/IFNGR2-4 in Chinese sturgeon were higher than those of other receptor genes, which revealed that these five genes had important functions in the immune process to resist virus invasion in the host. After stimulating with IFN gamma, the expression fold changes of CRFB3a, CRFB4a, and CRFB6b/IFNGR2-1 were higher than those other receptor genes. Based on other teleost fish interferon receptor models, we speculated that IFNAR1-like (CRFB5a, CRFB5b) and IFNAR2-like (CRFB3a, CRFB3b), comprised Chinese sturgeon type Ⅰ IFN receptors; and IFNGR1-like (IFNGR1) and IFNGR2-like (CRFB6/IFNGR2) comprised Chinese sturgeon type Ⅱ IFN receptors.
Collapse
Affiliation(s)
- Qiaoqing Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China.
| | - Dan Deng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Huizhi Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Hanwen Yuan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Wenbing Zhang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| | - Bei Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Yishan Lu
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524008, China
| | - Dunxue Chen
- Research Center of Fishery Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Shuhuan Zhang
- Sturgeon Healthy Breeding and Medicinal Value Research Center, Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
24
|
Hassan Z, Wang J, Qin Y, Wang W, Liu Q, Lei L, Sun Z, Yang Y, Wu K, Zhu X, Wang Z, Feng H, Zou J. Functional characterization of an interleukin 20 like homologue in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2021; 115:43-57. [PMID: 33992768 DOI: 10.1016/j.fsi.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
IL-20 is a pleiotropic cytokine that belongs to the IL-10 family and plays an important biological role in tissue homeostasis and regulation of host immune defenses. IL-20 homologues have recently been discovered in fish, but their functions have not been studied. In this study, an IL-20 like (IL-20L) cytokine was cloned in grass carp (Ctenopharyngodon idella) and its bioactivities were investigated. Expression analysis showed that the CiIL-20L gene was constitutively expressed in tissues with the highest expression detected in the head kidney. It was upregulated in the head kidney after infection with Flavobactrium columnare (F. cloumnare) and grass carp reovirus II (GCRV II). The recombinant CiIL-20L produced in E. coli cells was shown to be effective in inducing the expression of Th cytokine genes (IFN-γ, IL-4/13A, IL-4/13B and IL-10), macrophage marker genes (arginase 2, IRF4, KLF4 and SOCS3) and inflammatory genes (IL-1β, IL-6, IL-8 and TNFα) in the head kidney leukocytes when stimulated at 12 h. Long term culture (6 days) of head kidney macrophages in the presence of CiIL-20L leads to high expression of IRF4, TGFβ1 and arginase 2. Our data suggest that IL-20 may play regulatory roles in promoting Th responses, macrophage differentiation and inflammation.
Collapse
Affiliation(s)
- Zeinab Hassan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lina Lei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zixuan Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Gan Z, Cheng J, Chen S, Hou J, Li N, Xia H, Xia L, Lu Y, Nie P. Identification and characterization of tilapia CRFB1, CRFB2 and CRFB5 reveals preferential receptor usage of three IFN subtypes in perciform fishes. FISH & SHELLFISH IMMUNOLOGY 2020; 107:194-201. [PMID: 33011433 DOI: 10.1016/j.fsi.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Type I interferons are a subset of cytokines playing central roles in host antiviral defense, and their effects depend on the interaction with the heterodimeric receptor complex. Surprisingly, two pairs of the receptor subunits, CRFB1 and CRFB5, and CRFB2 and CRFB5, have been identified in fish, but the studies about preferential receptor usage of different fish IFN subtypes are rather limited. In this study, the three receptor chains of type I IFNs named as On-CRFB1, On-CRFB2 and On-CRFB5 were identified in Nile tilapia, Oreochromis niloticus. These three genes were constitutively expressed in all tissues examined, with the highest expression level observed in muscle and liver, and were rapidly induced in liver following the stimulation of poly(I:C). Interestingly, it is possible that all three subtypes of tilapia IFNs are able to signal through two pairs of the receptor subunits, On-CRFB1 and On-CRFB5, and On-CRFB2 and On-CRFB5. More importantly, tilapia group I IFNs (On-IFNd and On-IFNh) preferentially signal through a receptor complex composed of On-CRFB1 and On-CRFB5, and group II IFNs (On-IFNc) preferentially signal through a receptor complex comprised of On-CRFB2 and On-CRFB5. The present study thus provides new insights into the receptor usage of group I and group II IFNs in fish.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen, 518120, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
26
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
27
|
Li B, Chen SN, Ren L, Wang S, Liu L, Liu Y, Liu S, Nie P. Identification of type I IFNs and their receptors in a cyprinid fish, the topmouth culter Culter alburnus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:326-335. [PMID: 32387477 DOI: 10.1016/j.fsi.2020.04.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In fish, type I IFNs are classified into three groups, i.e. group one, group two and group three, and further separated into seven subgroups based on the number of conserved cysteines and phylogenetic relationships. In the present study, four type I IFNs, named as IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, as reported in zebrafish, were identified in a cyprinid, the topmouth culter, Culter alburnus, a species introduced recently into China's aquaculture. These IFNs may be classified as IFNa, IFNc, IFNc and IFNd in a recent nomenclature, with IFNa and IFNd having two cysteines in group one, and IFNc four cysteines in group two. These IFNs, together with their possible receptors, IFNϕ1, IFNϕ2, IFNϕ3, IFNϕ4, and CRFB1, CRFB2 and CRFB5 have an open reading frame (ORF) of 540, 552, 567, 516 bp, and 1572, 1392, 1125 bp, respectively. These IFNs have high amino acid sequence identities, being 91.1-93.6% and 66.9-77.3%, with those in grass carp and zebrafish, respectively, and are expressed constitutively in organs/tissues examined in the fish. The expression of these IFNs can be further induced following poly (I:C) stimulation. However, the possible function of these IFNs and their signalling pathway are of interest for further research.
Collapse
Affiliation(s)
- Bo Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Lanhao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan Province, China.
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
28
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
29
|
Tang ZZ, Wang TY, Chen YM, Chen TY. Cloning and characterisation of type I interferon receptor 1 in orange-spotted grouper (Epinephelus coioides) for response to nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 101:302-311. [PMID: 32335315 DOI: 10.1016/j.fsi.2020.04.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Grouper is known as a highly economical teleost species in the Asian aquaculture industry; however, intensive culture activities easily cause disease outbreak, especially viral disease. For the prevention of viral outbreaks, interferon (IFN) is among the major defence systems being studied in different species. Fish type I IFNs are known to possess antiviral properties similar to mammalian type I IFNs. In order to stimulate antiviral function, IFN will bind to its cognate receptor, the type I interferon receptor (IFNAR), composed of heterodimeric receptor subunits known as IFNAR1 and IFNΑR2. The binding of type I interferon to receptors assists in the transduction of signals from the external to internal environments of cells to activate biological responses. In order to study the function of IFN, we first need to understand IFN receptors. In this study, we cloned and identified IFNAR1 in orange-spotted grouper (osgIFNAR1) and noted the up-regulated mRNA expression of the receptor and downstream effectors in the head kidney cells with cytokine treatment. The transcriptional expression of osgIFNAR1, which is characterised using polyinosinic-polycytidylic acid (poly[I:C]) and lipopolysaccharide (LPS) treatments, indicated the involvement of osgIFNAR1 in the immune response of grouper. The subcellular localisation of osgIFNAR1 demonstrated scattering across the grouper cell. Viral infection showed the negative feedback regulation of osgIFNAR1 in grouper larvae. Further loss of function of IFNAR1 showed a decreased expression of the virus. This study reported the identification of osgIFNAR1 and characterisation of receptor sensitivity towards immunostimulants, cytokine response, and viral challenge in the interferon pathway of orange-spotted grouper and possible different role of the receptor in viral production. Together, these results provide a frontline report of the potential function of osgIFNAR1 in the innate immunity of teleost.
Collapse
Affiliation(s)
- Zhi Zhuang Tang
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ting-Yu Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Young-Mao Chen
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Tzong-Yueh Chen
- Laboratory of Molecular Genetics, Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Translational Center for Marine Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Agriculture Biotechnology Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
30
|
Li L, Chen SN, Laghari ZA, Huo HJ, Hou J, Huang L, Li N, Nie P. Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103604. [PMID: 31899304 DOI: 10.1016/j.dci.2019.103604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Interferons (IFNs) can induce the expression of IFN-stimulated genes (ISGs), such as myxovirus resistance (Mx) protein, to inhibit virus replication. In this study, the expression of Mx gene in mandarin fish, and the IFN-sensitive response elements (ISREs) and gamma-interferon activated sites (GASs) in the promoter of Mx gene were analyzed in relation to the stimulation of three distinct type I IFNs, IFNc, IFNd and IFNh, and two type II IFNs, IFN-γ and IFN-γ related molecule (IFN-γrel). A single Mx gene was found in mandarin fish, and its expression was highly and constitutively observed in all organs/tissues examined. The Mx gene was significantly induced in vivo for 120 h following infectious spleen and kidney necrosis virus (ISKNV) infection. Furthermore, the overexpression and recombinant of IFNh, IFNc, as well as IFN-γ can significantly induce Mx expression in MFF-1 cells at transcript and protein levels, although all the three type I IFNs and the two type II IFNs can activate the Mx promoter. In addition, ISRE1 which is the proximal one among the three predicted ISREs seems to be the important ISRE for the higher and efficient activation of the Mx promoter. However, the possible interaction between the GASs and type II IFN signalling molecules require further study.
Collapse
Affiliation(s)
- Li Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
31
|
Liu F, Wang T, Petit J, Forlenza M, Chen X, Chen L, Zou J, Secombes CJ. Evolution of IFN subgroups in bony fish - 2. analysis of subgroup appearance and expansion in teleost fish with a focus on salmonids. FISH & SHELLFISH IMMUNOLOGY 2020; 98:564-573. [PMID: 32001354 DOI: 10.1016/j.fsi.2020.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A relatively large repertoire of type I interferon (IFN) genes is apparent in rainbow trout/Atlantic salmon, that includes six different IFN subgroups (IFNa-IFNf) belonging to the three known type I IFN groups (1-3) in bony fish. Whether this is true for other salmonids, and how the various type I subgroups evolved in teleost fish was studied using the extensive genomic resources available for fish. This confirmed that salmonids, at least the Salmoninae, indeed have a complex (in terms of IFN subgroups present) and large (number of genes) IFN repertoire relative to other teleost fish. This is in part a consequence of the salmonid 4 R WGD that duplicated the growth hormone (GH) locus in which type I IFNs are generally located. Divergence of the IFN genes at the two GH loci was apparent but was not seen in common carp, a species that also underwent an independent 4 R WGD. However, expansion of IFN gene number can be found at the CD79b locus of some perciform fish (both freshwater and marine), with expansion of the IFNd gene repertoire. Curiously the primordial gene order of GH-IFNc-IFNb-IFNa-IFNe is largely retained in many teleost lineages and likely reflects the tandem duplications that are taking place to increase IFN gene number. With respect to the evolution of the IFN subgroups, a complex acquisition and/or loss has occurred in different teleost lineages, with complete loss of IFN genes at the GH or CD79b locus in some species, and reduction to a single IFN subgroup in others. It becomes clear that there are many variations to be discovered regarding the mechanisms by which fish elicit protective (antiviral) immune responses.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Jules Petit
- Wageningen University & Research, Aquaculture and Fisheries Group, Department of Animal Science, 6708WD, Wageningen, the Netherlands
| | - Maria Forlenza
- Wageningen University & Research, Cell Biology & Immunology Group, Department of Animal Science, 6708WD, Wageningen, the Netherlands
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK.
| |
Collapse
|
32
|
Li C, Zhu C, Ren B, Yin X, Shim SH, Gao Y, Zhu J, Zhao P, Liu C, Yu R, Xia X, Zhang L. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 2019; 183:111686. [DOI: 10.1016/j.ejmech.2019.111686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 01/20/2023]
|
33
|
Levraud JP, Jouneau L, Briolat V, Laghi V, Boudinot P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3361-3373. [DOI: 10.4049/jimmunol.1900804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
|
34
|
Li L, Chen SN, Laghari ZA, Huang B, Huo HJ, Li N, Nie P. Receptor complex and signalling pathway of the two type II IFNs, IFN-γ and IFN-γrel in mandarin fish or the so-called Chinese perch Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:98-112. [PMID: 30922782 DOI: 10.1016/j.dci.2019.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
IFN-γ, as the sole member of mammalian type II IFN, is a multifunctional cytokine which exerts its effects through two distinct IFN-γ receptors, IFNGR1 and IFNGR2. However, in teleost fish, another IFN-γ homologous gene, namely IFN-γ related gene (IFN-γrel), has been identified. Although IFN-γ and IFN-γrel genes have been described in some fish species, many important aspects remain poorly understood in relation with their signalling and function. In the present study, IFN-γ and IFN-γrel, as well as their receptors, cytokine receptor family B (CRFB) 17, CRFB13, two of which are homologous to IFNGR1 in mammals, and CRFB6, homolomous to IFNGR2, have been characterized in mandarin fish, Siniperca chuatsi. It was revealed that the two type IFN members exhibit antiviral activity, and IFN-γ transduces downstream signalling through CRFB13 and CRFB6, while IFN-γrel interacts with CRFB17 to activate downstream signalling. Moreover, IFN-γ and IFN-γrel have been shown to exert antiviral biological activity in a STAT1-dependent manner. Intracellular domain analysis of CRFB17 and CRFB13 demonstrated that the Y386 tyrosine residue of CRFB13 is required for the activation of the IFN-γ-mediated biologic response, and the Y324 and Y370 residues in CRFB17 are required to activate IFN-γrel signalling.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
35
|
Huo HJ, Chen SN, Li L, Nie P. Functional characterization of IL-10 and its receptor subunits in a perciform fish, the mandarin fish, Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:64-75. [PMID: 30935989 DOI: 10.1016/j.dci.2019.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Interleukin (IL)-10 is an immune-regulatory cytokine with multiple functions. In the current study, IL-10 and its two receptors, IL-10R1 and IL-10R2 were identified in mandarin fish, Siniperca chuatsi. The inhibitory effect of mandarin fish IL-10 was investigated on pro-inflammatory cytokine expression and the ligand-receptor relationship. This IL-10 possesses conserved cysteine residues, predicted α-helices and a typical IL-10 family signature motif, similar to its mammalian orthologue, and IL-10R1 harbours predicted JAK1 and STAT3 binding sites in the intracellular region. The fish IL-10 and IL-10R1 exhibit high expression levels in several immune-related organs/tissues, such as spleen, trunk kidney and head kidney, and IL-10R2 possesses a constitutive expression pattern. The expression of IL-10 shows significant increase in spleen from infectious spleen and kidney necrosis virus (ISKNV) infected mandarin fish, where the two receptors also exhibit different levels of induced expression. Mandarin fish IL-10 also exhibits significant response to the stimulation of LPS, PHA and PMA, with the two receptors exhibiting an interesting decrease in expression following the treatment of PMA. The pro-inflammatory cytokines, IL-6, IL-1β, IL-8, TNF-α, show diminished up-regulation in LPS-stimulated splenocytes pre-incubated with IL-10, indicating the anti-inflammatory roles of mandarin fish IL-10. In EPC cells transfected with different combinations of receptors, IL-10 can enhance the expression of suppressor of cytokine signalling 3 (SOCS3) only when IL-10R1 and IL-10R2 are both expressed, suggesting the participation of the two receptors in signal transduction of mandarin fish IL-10. Similar results are observed with the usage of chimeric receptors, IL-10R1/CRFB1 and IL-10R2/CRFB5. Overall, mandarin fish IL-10 shares conserved ligand-receptor system and the prototypical inhibitory activities on pro-inflammatory cytokine expression with mammalian IL-10, implying the evolutionary conservation of this cytokine.
Collapse
Affiliation(s)
- Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
36
|
Redmond AK, Zou J, Secombes CJ, Macqueen DJ, Dooley H. Discovery of All Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution of Interferons. Front Immunol 2019; 10:1558. [PMID: 31354716 PMCID: PMC6640115 DOI: 10.3389/fimmu.2019.01558] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Interferons orchestrate host antiviral responses in jawed vertebrates. They are categorized into three classes; IFN1 and IFN3 are the primary antiviral cytokine lineages, while IFN2 responds to a broader variety of pathogens. The evolutionary relationships within and between these three classes have proven difficult to resolve. Here, we reassess interferon evolution, considering key phylogenetic pitfalls including taxon sampling, alignment quality, model adequacy, and outgroup choice. We reveal that cartilaginous fishes, and hence the jawed vertebrate ancestor, possess(ed) orthologs of all three interferon classes. We show that IFN3 groups sister to IFN1, resolve the origins of the human IFN3 lineages, and find that intronless IFN3s emerged at least three times. IFN2 genes are highly conserved, except for IFN-γ-rel, which we confirm resulted from a teleost-specific duplication. Our analyses show that IFN1 phylogeny is highly sensitive to phylogenetic error. By accounting for this, we describe a new backbone IFN1 phylogeny that implies several IFN1 genes existed in the jawed vertebrate ancestor. One of these is represented by the intronless IFN1s of tetrapods, including mammalian-like repertoires of reptile IFN1s and a subset of amphibian IFN1s, in addition to newly-identified intron-containing shark IFN1 genes. IFN-f, previously only found in teleosts, likely represents another ancestral jawed vertebrate IFN1 family member, suggesting the current classification of fish IFN1s into two groups based on the number of cysteines may need revision. The providence of the remaining fish IFN1s and the coelacanth IFN1s proved difficult to resolve, but they may also be ancestral jawed vertebrate IFN1 lineages. Finally, a large group of amphibian-specific IFN1s falls sister to all other IFN1s and was likely also present in the jawed vertebrate ancestor. Our results verify that intronless IFN1s have evolved multiple times in amphibians and indicate that no one-to-one orthology exists between mammal and reptile IFN1s. Our data also imply that diversification of the multiple IFN1s present in the jawed vertebrate ancestor has occurred through a rapid birth-death process, consistent with functional maintenance over a 450-million-year host-pathogen arms race. In summary, this study reveals a new model of interferon evolution important to our understanding of jawed vertebrate antiviral immunity.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom.,Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Jun Zou
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Christopher J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Institute of Marine and Environmental Technology, Baltimore, MD, United States
| |
Collapse
|
37
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
38
|
García-Angulo A, Merlo MA, Rodríguez ME, Portela-Bens S, Liehr T, Rebordinos L. Genome and Phylogenetic Analysis of Genes Involved in the Immune System of Solea senegalensis - Potential Applications in Aquaculture. Front Genet 2019; 10:529. [PMID: 31244883 PMCID: PMC6579814 DOI: 10.3389/fgene.2019.00529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
Global aquaculture production continues to increase rapidly. One of the most important species of marine fish currently cultivated in Southern Europe is Solea senegalensis, reaching more than 300 Tn in 2017. In the present work, 14 Bacterial Artificial Chromosome (BAC) clones containing candidate genes involved in the immune system (b2m, il10, tlr3, tap1, tnfα, tlr8, trim25, lysg, irf5, hmgb2, calr, trim16, and mx), were examined and compared with other species using multicolor Fluorescence in situ Hybridization (mFISH), massive sequencing and bioinformatic analysis to determine the genomic surroundings and syntenic chromosomal conservation of the genomic region contained in each BAC clone. The mFISH showed that the groups of genes hmgb2-trim25-irf5-b2m; tlr3-lysg; tnfα-tap1, and il10-mx-trim16 were co-localized on the same chromosomes. Synteny results suggested that the studied BACs are placed in a smaller number of chromosomes in S. senegalensis that in other species. Phylogenetic analyses suggested that the evolutionary rate of immune system genes studied is similar among the taxa studied, given that the clustering obtained was in accordance with the accepted phylogenetic relationships among these species. This study contributes to a better understanding of the structure and function of the immune system of the Senegalese sole, which is essential for the development of new technologies and products to improve fish health and productivity.
Collapse
Affiliation(s)
- Aglaya García-Angulo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Manuel A. Merlo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - María E. Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Silvia Portela-Bens
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
39
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
40
|
Larochette V, Miot C, Poli C, Beaumont E, Roingeard P, Fickenscher H, Jeannin P, Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front Immunol 2019; 10:204. [PMID: 30809226 PMCID: PMC6379347 DOI: 10.3389/fimmu.2019.00204] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Interleukin 26 (IL-26) is the most recently identified member of the IL-20 cytokine subfamily, and is a novel mediator of inflammation overexpressed in activated or transformed T cells. Novel properties have recently been assigned to IL-26, owing to its non-conventional cationic, and amphipathic features. IL-26 binds to DNA released from damaged cells and, as a carrier molecule for extracellular DNA, links DNA to inflammation. This observation suggests that IL-26 may act both as a driver and an effector of inflammation, leading to the establishment of a deleterious amplification loop and, ultimately, sustained inflammation. Thus, IL-26 emerges as an important mediator in local immunity/inflammation. The dysregulated expression and extracellular DNA carrier capacity of IL-26 may have profound consequences for the chronicity of inflammation. IL-26 also exhibits direct antimicrobial properties. This review summarizes recent advances on the biology of IL-26 and discusses its roles as a novel kinocidin.
Collapse
Affiliation(s)
- Vincent Larochette
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Charline Miot
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Caroline Poli
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Elodie Beaumont
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Philippe Roingeard
- Inserm unit 1259, Medical School of the University of Tours, Tours, France
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,CHU Angers, Département d'Immunologie et Allergologie, Angers, France
| |
Collapse
|
41
|
Jiang R, Zhang GR, Zhu DM, Shi ZC, Liao CL, Fan QX, Wei KJ, Ji W. Molecular characterization and expression analysis of IL-22 and its two receptors genes in yellow catfish (Pelteobagrus filvidraco) in response to Edwardsiella ictaluri challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 80:250-263. [PMID: 29886141 DOI: 10.1016/j.fsi.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-22, as a member of the interleukin (IL)-10 family, is an important mediator between the immune cells and epithelial tissues during infection and inflammation. This study reported the characterization and mRNA expression patterns of Pf_IL-22 gene and its cell surface-associated receptors Pf_IL-22RA1 and soluble Pf_IL-22RA2 genes in yellow catfish (Pelteobagrus filvidraco). The open reading frames (ORFs) of the Pf_IL-22, Pf_IL-22RA1 and Pf_IL-22RA2 genes were 546 bp, 1740 bp and 690 bp in length, encoding 181, 579 and 229 amino acids, respectively. Alignments of the deduced amino acid sequences present that the Pf_IL-22 has a conserved IL-10 family signature motif, and the Pf_IL-22RA1 and Pf_IL-22RA2 have two conserved fibronectin type-III domains. Quantitative real-time PCR (qPCR) analyses showed that the Pf_IL-22 and Pf_IL-22RA1 mRNAs were highly expressed in mucosal tissues such as the fin, gill, intestine, skin mucus and stomach, and were weakly expressed in the kidney, liver and head kidney of adult yellow catfish, indicating that the Pf_IL-22 transcripts may be mainly produced by mucosal immune cells/tissues in healthy yellow catfish. The mRNA expression levels of the Pf_IL-22RA2 gene were high in the muscle and liver, and were relatively low in the spleen and kidney. The mRNA expression levels of the Pf_IL-22 and its two receptor genes were significantly up-regulated in both mucosal tissues (gill, hindgut, and skin mucus) and systemic immune tissues (spleen, head kidney and blood) after Edwardsiella ictaluri challenge. These results indicated that the Pf_IL-22 and its two receptors genes might play an important role in the innate immune defense against bacterial invasion.
Collapse
Affiliation(s)
- Rui Jiang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China
| | - Dong-Mei Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China
| | - Ze-Chao Shi
- Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 30223, PR China
| | - Chen-Lei Liao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China
| | - Qi-Xue Fan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, PR China.
| |
Collapse
|
42
|
Laghari ZA, Chen SN, Li L, Huang B, Gan Z, Zhou Y, Huo HJ, Hou J, Nie P. Functional, signalling and transcriptional differences of three distinct type I IFNs in a perciform fish, the mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:94-108. [PMID: 29432791 DOI: 10.1016/j.dci.2018.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Teleost fish are unique in having type I and type II interferons (IFNs) only, and the type I IFNs are classified into Group one and Group two based on the presence of two or four cysteines respectively, and are further classified into seven subgroups. In the present study, three distinct type I IFNs, IFNc, IFNd and IFNh, have been identified in the genome sequences of a perciform fish, the mandarin fish Siniperca chuatsi. These IFNs are induced following the stimulation of Polyinosinic polycytidylic acid (poly(I:C)) and Resiquimod (R848) either in vivo or in vitro. But, the infectious spleen and kidney necrosis virus (ISKNV) infection caused a delayed response of IFNs, which may be resulted from the viral inhibition of type I IFN production and related signalling. The three receptor subunits, cytokine receptor family B 1 (CRFB1), CRFB2 and CRFB5 are also expressed in a similar manner as observed for the IFNs, and IFNc, IFNd and IFNh use preferentially the receptor complex, CRFB2 and CRFB5, CRFB1 and CRFB5, CRFB1 and CRFB5 respectively for their effective signalling in the induction of IFN-stimulated genes (ISGs). Moreover, the IFNs are able to induce their own expression, and also the IRF3 and IRF7 expression, leading to the amplification of IFN cascade. It is further revealed that these three IFNs are transcribed differently by IRF7 and IRF3. The composition, function, signalling and transcription of type I IFNs have been investigated in detail in a teleost fish.
Collapse
Affiliation(s)
- Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Hui Jun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
43
|
Luo K, Zhang S, Tang D, Xia L, Gao W, Tian G, Qi Z, Xu Q, Zhang W. Analysis of the expression patterns of the cytokine receptor family B (CRFB) and interferon gamma receptor (IFNGR) in Dabry's sturgeon (Acipenser dabryanus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:420-426. [PMID: 29555551 DOI: 10.1016/j.dci.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Teleost fish have more complex interferon receptor systems than mammals. In the present study, genes encoding four cytokine receptor family B (CRFBs) and two interferon gamma receptors (IFNGRs) in Dabry's sturgeon (Acipenser dabryanus) were identified by RNA-sequencing. Sequence analysis revealed that the Dabry's sturgeon CRFBs and IFNGRs contained several conserved characteristics features, including signal peptides and a transmembrane domain. Phylogenetic analysis suggested that they belong to the CRFB3, CRFB5, and IFNGR protein families, and were named CRFB3a, CRFB3b, CRFB5a, CRFB5b, IFNGR1, and IFNGR2. The expression patterns of the CRFB and IFNGR genes were investigated in Dabry's sturgeon. The expression levels of CRFB5a, CRFB5b, and IFNGR1 showed no significant changes, suggesting that those genes do not mediate embryonic development. By contrast, the high expression levels of CRFB3a, CRFB3b, and IFNGR2 in the fertilized egg, 16-cell phase, and initial blastula stage implied the existence of maternally expression in the oocyte and association with embryonic development. Tissue distribution analysis revealed that the CRFB and IFNGR proteins have potential functions in immune and non-immune tissue compartments. Comprehensive analysis in Dabry's sturgeon revealed that the expression fold changes of CRFB3a, CRFB3b, CRFB5a, and CRFB5b in Dabry's sturgeon stimulated with poly I:C were higher than those in fish administrated with lipopolysaccharide (LPS). Conversely, the fold changes IFNGRs mRNA levels stimulated with LPS were higher than those in fish administrated with poly I: C. CRFB5a and IFNGR2 genes showed the earliest responses to the poly I: C, and the CRFB5a and IFNGR1 genes showed the earliest responses to LPS. These results implied that CRFB5a has important role in the IFN immune response. Our findings indicated that the Dabry's sturgeon CRFB and IFNGR genes have important functions in antiviral and antibacterial immune responses. The differential responses of these genes to poly I: C and LPS implied differences in the defense mechanisms against viruses and bacteria.
Collapse
Affiliation(s)
- Kai Luo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Shuhuan Zhang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Dongdong Tang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Lihai Xia
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Weihua Gao
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Zhitao Qi
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China.
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.
| |
Collapse
|
44
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
45
|
Velázquez J, Acosta J, Herrera N, Morales A, González O, Herrera F, Estrada MP, Carpio Y. Novel IFNγ homologue identified in Nile tilapia (Oreochromis niloticus) links with immune response in gills under different stimuli. FISH & SHELLFISH IMMUNOLOGY 2017; 71:275-285. [PMID: 29017941 DOI: 10.1016/j.fsi.2017.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Interferon gamma (IFN-γ) has important roles in both innate and adaptive immune responses. This cytokine plays a very important role in defining Th1 immune response in all vertebrates. In the present study, we identified and isolated for the first time the gene coding for Nile tilapia (Oreochromis niloticus) IFNγ from spleen lymphocytes. The isolated tilapia IFNγ has between 24 and 62% of amino acid identity as compared to reported sequences for other teleost fishes. It has close phylogenetic relationships with IFNγ molecules belonging to the group of Perciforms and presents the typical structural characteristics of gamma interferon molecules. The tissue expression analysis showed that IFNγ is expressed constitutively in head kidney, skin, intestine, muscle and brain. Its expression was not detected in gills by conventional RT-PCR. However, under conditions of stimulation with Poly I:C and LPS, IFNγ expression was up-regulated in gills after 24 h post-stimulation. IFNγ expression was also induced in gills 24 h after Edwardsiella tarda infection suggesting its important role in immunity against intracellular bacteria. The recombinant protein produced in Escherichia coli induced Mx gene transcription in head kidney primary culture cells. These results are the first steps to characterize the role of tilapia IFNγ in the defense against pathogens in tilapia. Furthermore, the isolation of this molecule provides a new tool to characterize the cellular immune response to various stimuli in this organism.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Jannel Acosta
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Naylin Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Fidel Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana 10600, Cuba.
| |
Collapse
|
46
|
Zhang QL, Xu B, Wang XQ, Yuan ML, Chen JY. Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget 2017; 9:83-95. [PMID: 29416598 PMCID: PMC5787515 DOI: 10.18632/oncotarget.22749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus is used to investigate the origin and evolution of vertebrates. To better understand the characteristics of genome evolution from cephalochordates to Osteichthyes, we conducted a genome-wide pairwise comparison of protein-coding genes within amphioxus (a comparable group) and parallel analyses within Osteichthyes (two comparable groups). A batch of fast-evolving genes in each comparable group was identified. Of these genes, the most fast-evolving genes (top 20) were scrutinized, most of which were involved in immune system. An analysis of the fast-evolving genes showed that they were enriched into gene ontology (GO) terms and pathways primarily involved in immune-related functions. Similarly, this phenomenon was detected within Osteichthyes, and more well-known and abundant GO terms and pathways involving innate immunity were found in Osteichthyes than in cephalochordates. Next, we measured the expression responses of four genes belonging to metabolism or energy production-related pathways to lipopolysaccharide challenge in the muscle, intestine or skin of B. belcheri; three of these genes (HMGCL, CYBS and MDH2) showed innate immune responses. Additionally, some genes involved in adaptive immunity showed fast evolution in Osteichthyes, such as those involving "intestinal immune network for IgA production" or "T-cell receptor signaling pathway". In this study, the fast evolution of immune-related genes in amphioxus and Osteichthyes was determined, providing insights into the evolution of immune-related genes in chordates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Bin Xu
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Xiu-Qiang Wang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jun-Yuan Chen
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Hu Y, Yoshikawa T, Chung S, Hirono I, Kondo H. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:7-10. [PMID: 28546019 DOI: 10.1016/j.fsi.2017.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Two novel type I interferon genes (JfIFN3 and JfIFN4) have been identified in Japanese flounder Paralichthys olivaceus. Open reading frames of JfIFN3 and JfIFN4 were 555bp and 528bp, encoding 184aa and 175aa, respectively. The genomic structures of JfIFN3 and JfIFN4 are composed of 5 exons and 4 introns. JfIFN4 has 2 conserved cysteine residues, while JfIFN3 has 4. JfIFN3 and JfIFN4 showed the highest amino acid sequence identities to turbot IFN1 (74%) and IFN2 (62%), respectively. Interestingly, JfIFN3 and JfIFN4 were clustered in distinct branches with JfIFN1 and JfIFN2, which have reported so far. The mRNA levels of JfIFN4 were apparently increased in the kidney and spleen at 3 h after ployI:C injection, while JfIFN1-3 were not detected by RT-PCR.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Takaki Yoshikawa
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Seangmin Chung
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.
| |
Collapse
|
48
|
Wendel ES, Yaparla A, Koubourli DV, Grayfer L. Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virology 2017; 503:12-20. [PMID: 28081430 DOI: 10.1016/j.virol.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
Abstract
Infections of amphibians by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to the amphibian declines, yet much remains unknown regarding amphibian antiviral immunity. Notably, amphibians represent an important step in the evolution of antiviral interferon (IFN) cytokines as they are amongst the first vertebrates to possess both type I and type III IFNs. Accordingly, we examined the roles of type I and III IFNs in the skin of FV3-challenged amphibian Xenopus laevis) tadpoles and adult frogs. Interestingly, FV3-infected tadpoles mounted type III IFN responses, whereas adult frogs relied on type I IFN immunity. Subcutaneous administration of type I or type III IFNs offered short-term protection of tadpoles against FV3 and these type I and type III IFNs induced the expression of distinct antiviral genes in the tadpole skin. Moreover, subcutaneous injection of tadpoles with type III IFN significantly extended their survival and reduced FV3 dissemination.
Collapse
Affiliation(s)
- Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
49
|
Santhakumar D, Rubbenstroth D, Martinez-Sobrido L, Munir M. Avian Interferons and Their Antiviral Effectors. Front Immunol 2017; 8:49. [PMID: 28197148 PMCID: PMC5281639 DOI: 10.3389/fimmu.2017.00049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon (IFN) responses, mediated by a myriad of IFN-stimulated genes (ISGs), are the most profound innate immune responses against viruses. Cumulatively, these IFN effectors establish a multilayered antiviral state to safeguard the host against invading viral pathogens. Considerable genetic and functional characterizations of mammalian IFNs and their effectors have been made, and our understanding on the avian IFNs has started to expand. Similar to mammalian counterparts, three types of IFNs have been genetically characterized in most avian species with available annotated genomes. Intriguingly, chickens are capable of mounting potent innate immune responses upon various stimuli in the absence of essential components of IFN pathways including retinoic acid-inducible gene I, IFN regulatory factor 3 (IRF3), and possibility IRF9. Understanding these unique properties of the chicken IFN system would propose valuable targets for the development of potential therapeutics for a broader range of viruses of both veterinary and zoonotic importance. This review outlines recent developments in the roles of avian IFNs and ISGs against viruses and highlights important areas of research toward our understanding of the antiviral functions of IFN effectors against viral infections in birds.
Collapse
Affiliation(s)
| | - Dennis Rubbenstroth
- Institute for Virology, Faculty of Medicine, University Medical Center, University of Freiburg , Freiburg , Germany
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | | |
Collapse
|
50
|
Boudinot P, Langevin C, Secombes CJ, Levraud JP. The Peculiar Characteristics of Fish Type I Interferons. Viruses 2016; 8:E298. [PMID: 27827855 PMCID: PMC5127012 DOI: 10.3390/v8110298] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/25/2022] Open
Abstract
Antiviral type I interferons (IFNs) have been discovered in fish. Genomic studies revealed their considerable number in many species; some genes encode secreted and non-secreted isoforms. Based on cysteine motifs, fish type I IFNs fall in two subgroups, which use two different receptors. Mammalian type I IFN genes are intronless while type III have introns; in fish, all have introns, but structurally, both subgroups belong to type I. Type I IFNs likely appeared early in vertebrates as intron containing genes, and evolved in parallel in tetrapods and fishes. The diversity of their repertoires in fish and mammals is likely a convergent feature, selected as a response to the variety of viral strategies. Several alternative nomenclatures have been established for different taxonomic fish groups, calling for a unified system. The specific functions of each type I gene remains poorly understood, as well as their interactions in antiviral responses. However, distinct induction pathways, kinetics of response, and tissue specificity indicate that fish type I likely are highly specialized, especially in groups where they are numerous such as salmonids or cyprinids. Unravelling their functional integration constitutes the next challenge to understand how these cytokines evolved to orchestrate antiviral innate immunity in vertebrates.
Collapse
Affiliation(s)
- Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Christelle Langevin
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Jean-Pierre Levraud
- Macrophages et Développement de l'Immunité, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3738, 75015 Paris, France.
| |
Collapse
|