1
|
Maniyappan KK, Girijan SK, Krishnan R, Gopan A, Pillai D. Assessing multi-drug resistance in Streptococcus agalactiae infecting farmed Nile Tilapia: Findings from Kerala, India. Microb Pathog 2025; 205:107666. [PMID: 40324601 DOI: 10.1016/j.micpath.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/18/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Streptococcus agalactiae infections in tilapia are indeed a major concern in the global aquaculture industry, leading to significant economic losses. This study describes the isolation, virulence factors, pathogenicity and antibiotic susceptibility pattern of S. agalactiae in cultured Nile tilapia (Oreochromis niloticus) from aquaculture farms in Kerala, India. The diseased fish showed erratic swimming, lethargy, eye opacity, exophthalmia, darkened body, ascites and haemorrhages. Histopathological findings revealed hepatocytic vacuolization and meningitis. Molecular serotyping of the S. agalactiae isolates identified the serotype Ia. In terms of virulence characteristics, the S. agalactiae isolate obtained from tilapia sample had fbsA, cfB and pbp1A/ponA genes, and they were moderate biofilm producers. It is a matter of concern that the isolates were resistant to the tested macrolides, glycopeptides, chloramphenicol, tetracycline, sulphonamides, lincosamides, oxazolidinones and beta lactam group of antibiotics. Pathogenicity of the isolated strain was tested by experimental challenge through intraperitoneal injection of the isolated strain in Nile tilapia.100 %, 80 %, 40 % and 20 % mortality at doses of 1.0 × 108, 1.0 × 106, 1.0 × 104 and 1.0 × 102 CFU/ml, respectively were recorded in the challenged fish. Level of liver enzymes such as Aspartate aminotransferase (AST) and Alanine Aminotransferase (ALT), and glucose were significantly increased compared to that in control. The haematological indices such as RBC and haemoglobin counts were significantly reduced, while WBC count increased in the challenged fish. The haemolysis test on blood agar plate showed beta haemolysis (β). The emergence of multidrug-resistant pathogen S. agalactiae in tilapia farms in the state is an early warning for appropriate preventive measures to be taken to control their spread across farms as tilapia culture is widely popular in the state.
Collapse
Affiliation(s)
- Keerthana Kalathil Maniyappan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India
| | - Sneha Kalasseril Girijan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India
| | - Rahul Krishnan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India
| | - Asha Gopan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.
| |
Collapse
|
2
|
Boyanov VS, Alexandrova AS, Hristova PM, Hitkova HY, Gergova RT. Antibiotic Resistance and Serotypes Distribution in Streptococcus agalactiae Bulgarian Clinical Isolates During the Years of 2021-2024. Pol J Microbiol 2024; 73:505-514. [PMID: 39670636 PMCID: PMC11639287 DOI: 10.33073/pjm-2024-042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is an important human and animal pathogen. In recent years, the number of streptococcal isolates resistant to antimicrobial agents has increased in many parts of the world. Various mechanisms of antimicrobial resistance and capsular serotypes of GBS with different geographical distributions can be found. A prospective cross-sectional study was conducted from September 2021 to May 2024. The survey included 257 GBS isolates from Bulgarian inpatients and outpatients with streptococcal infections. Antibiotic resistance genes and capsular serotypes were detected and evaluated using polymerase chain reaction (PCR). We classified GBS isolates into groups according to their source as vaginal samples (191) and extra-vaginal samples (66), subdivided as invasive (36) and non-invasive specimens (30). The most common serotypes were Ia (26.5%), III (20.2%), and V (19.8%). Antimicrobial susceptibility testing revealed that all examined isolates were susceptible to penicillin and vancomycin. Resistance to macrolides, lincosamides, and tetracyclines was observed in 60.3%, 24.9%, and 89.1% of the isolates. The distribution of phenotypes was cMLSb 47.4%, iMLSb 30.8%, M-type 21.2%, and L-type 0.6%. PCR analysis revealed nine genes associated with macrolide and lincosamide resistance: ermB (54.2%), ermA/TR (30.3%), mefA (20.7%), ermC (18.1%), msrD (14.8%), mefE (8.4%), IsaC (8.4%), InuB (7.7%), and IsaE (6.5%). Two genes linked to tetracycline resistance tetM (89.1%) and tetO (14.4%) were detected. Compared to the previous period, we observed increased antibiotic resistance. There was no statistical significance between the distribution of serotypes and antimicrobial non-susceptibility depending on the sample source.
Collapse
Affiliation(s)
- Vasil S. Boyanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Alexandra S. Alexandrova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Preslava M. Hristova
- Department of Microbiology and Virology, Medical University − Pleven, Pleven, Bulgaria
| | - Hristina Y. Hitkova
- Department of Microbiology and Virology, Medical University − Pleven, Pleven, Bulgaria
| | - Raina T. Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
3
|
Reis FYT, Rocha VP, Janampa-Sarmiento PC, Santos ÁF, Leibowitz MP, Luz RK, Pierezan F, Gallani SU, Tavares GC, Figueiredo HCP. Susceptibility of Tambaqui ( Colossoma macropomum) to Nile Tilapia-Derived Streptococcus agalactiae and Francisella orientalis. Microorganisms 2024; 12:2440. [PMID: 39770643 PMCID: PMC11676801 DOI: 10.3390/microorganisms12122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Nile tilapia (Oreochromis niloticus) and tambaqui (Colossoma macropomum) are the two most produced freshwater fishes in Brazil. This study investigated the potential pathogenicity of Streptococcus agalactiae and Francisella orientalis, previously isolated from diseased Nile tilapia, to tambaqui. Experimental infection trials were conducted in juvenile tambaqui at a dose of approximately 107 CFU fish-1, assessing clinical signs, mortality, bacterial recovery, and histopathological changes. Results demonstrated that S. agalactiae exhibited high pathogenicity to tambaqui, causing rapid disease progression, high mortality (83.33%) within 48 h post-infection, and severe lesions in multiple organs, under the experimental conditions. In contrast, F. orientalis infection did not result in mortality or clinical signs, despite bacterial recovery and granulomatous inflammation observed in the tissues. This study highlights the need to consider the potential impact of these pathogens in tambaqui farming.
Collapse
Affiliation(s)
- Francisco Yan Tavares Reis
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Victória Pontes Rocha
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Peter Charrie Janampa-Sarmiento
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ágna Ferreira Santos
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Márcia Pimenta Leibowitz
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Ronald Kennedy Luz
- Aquaculture Laboratory, Department of Animal Science, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Felipe Pierezan
- Department of Veterinary Clinics and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (Á.F.S.); (F.P.)
| | - Sílvia Umeda Gallani
- Postgraduate Program in Aquaculture, Nilton Lins University, Manaus 69058-030, Amazonas, Brazil;
| | - Guilherme Campos Tavares
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| | - Henrique César Pereira Figueiredo
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (F.Y.T.R.); (V.P.R.); (P.C.J.-S.); (M.P.L.); (G.C.T.)
| |
Collapse
|
4
|
Abdallah ESH, Metwally WGM, Abdel-Rahman MAM, Albano M, Mahmoud MM. Streptococcus agalactiae Infection in Nile Tilapia ( Oreochromis niloticus): A Review. BIOLOGY 2024; 13:914. [PMID: 39596869 PMCID: PMC11591708 DOI: 10.3390/biology13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Streptococcus agalactiae (Group B Lancefield) has emerged as a significant pathogen affecting both humans and animals, including aquatic species. Infections caused by S. agalactiae are becoming a growing concern in aquaculture and have been reported globally in various freshwater and marine fish species, particularly those inhabiting warm water environments. This has led to numerous outbreaks with high morbidity and mortality in fish. Nile tilapia (Oreochromis niloticus), a member of the Cichlid family, is one of the severely affected fish species by S. agalactiae. The current study aims to focus on S. agalactiae infection in cultured O. niloticus with reference to its transmission and sources of infection; risk factors influencing GBS infection, disease clinical signs, lesions, and pathogenesis; S. agalactiae virulence factors; and how to diagnose, treat, control, and prevent infection including vaccination and herbal extract medication.
Collapse
Affiliation(s)
- Ebtsam Sayed Hassan Abdallah
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71529, Egypt; (E.S.H.A.); (M.M.M.)
| | | | | | - Marco Albano
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell’Annunziata, 98168 Messina, Italy
| | - Mahmoud Mostafa Mahmoud
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71529, Egypt; (E.S.H.A.); (M.M.M.)
| |
Collapse
|
5
|
Zhang L, Hong Y, Sun K, Zhao S, Bai Y, Yang S, Tao J, Shi F, Zhan F, Lin L, Qin Z. Passive protection of chicken egg yolk immunoglobulin (IgY) against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109923. [PMID: 39326687 DOI: 10.1016/j.fsi.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
IgY is an immunoglobulin primarily found in the serum and egg yolk of birds, amphibians, and reptiles. Recent years, IgY is considered to have a good application prospect in the immunodiagnostics and passive immunotherapy of aquatic diseases. In this study, we prepared a specific IgY against Streptococcus agalactiae in tilapia after immunizing the hens for 4 times. The result of ELISA detection showed that the IgY titers in water-soluble fraction (WSF) after 6 weeks of immunization reached 1:51200 and last for 4 weeks. Western blot (WB) analysis data showed that the specific IgY could recognize the target band, the specific IgY showed a concentration-dependent inhibitory effect on the growth of S. agalactiae, altered cell wall structure and aggluted of S. agalactiae. The quantitative reverse transcription PCR (qRT-PCR) analysis data suggested that the specific IgY downregulated the expression of pro-inflammatory factors (IL-8, TNF-α), upregulated the anti-inflammatory factors (IL-10, TGF-β). In addition, the histopathological results showed that the specific IgY significantly decreased the pathological manifestations, dramatically improved the survival rates of tilapia in injection, feeding, and immersion experiments. Collectively, our findings demonstrated that the broad potential of specific IgY for the prevention and treatment of S. agalactiae infection in tilapia.
Collapse
Affiliation(s)
- Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Kaihui Sun
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Li Lin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Ocean Biotechnology Co., Ltd, Jieyang, Guangdong, 515500, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
6
|
Fyrand K, Xu C, Evensen Ø. Characterization of Streptococcus agalactiae 1a isolated from farmed Nile tilapia (Oreochromis niloticus) in North America, Central America, and Southeast Asia. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109919. [PMID: 39317296 DOI: 10.1016/j.fsi.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Streptococcosis caused by Streptococcus agalactiae 1a in Nile tilapia (Oreochromis niloticus) is a severe disease challenge for the global supply of tilapia. Currently, the extensive use of antibiotics is the primary curative tool used to minimize the impact of the disease. Vaccination is a prophylactic measure that has been shown to reduce antibiotic use in the aquaculture sector substantially. However, no commercially licensed vaccine against Streptococcus agalactiae 1a is currently available. This study aimed to investigate, through molecular and immunological methods, if Streptococcus agalactiae 1a isolates collected from North America (NAM), Central America (CAM), and Southeast Asia (SEA) were similarly suitable for the development of a potentially effective vaccine to serve the global tilapia farming industry. Our comparative data showed that the Streptococcus agalactiae 1a isolates from NAM, CAM and SEA had similar biochemical profiles, and genetic multi-locus sequence typing (MLST) analysis showed that the NAM and CAM isolates belonged to sequence type 7 (ST-7) and clonal complex 1, while isolates from SEA grouped into three sequence types (ST-1650, ST-500, and ST-7) and two distinct clonal complexes (CC1 and CC12). Isolates from NAM, CAM, and SEA displayed similar antigenic profiles determined by western blotting with polyclonal rabbit antisera, which was supported by in vivo cross-protection studies, showing that fish immunized with vaccines based on SEA and CAM isolates with different genetic MLST profiles were highly protected against cross-challenge using the same bacterial strains for challenge. Overall, the data obtained from our investigations provide strong indications that Streptococcus agalactiae 1a distributed in NAM, CAM, and SEA are serologically uniform pathogens, and vaccines based on isolates of Streptococcus agalactiae 1a from these regions may be suited for vaccination of tilapia worldwide.
Collapse
Affiliation(s)
- Kjetil Fyrand
- PHARMAQ (Part of Zoetis), P.O Box 267, N-0213, Skøyen, Oslo, Norway.
| | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
7
|
Liu K, Liu X, Yang J, Gu X, Zhang L, Qu W. Streptococcus agalactiae isolated from clinical mastitis cases on large dairy farms in north China: phenotype, genotype of antimicrobial resistance and virulence genes. Front Cell Infect Microbiol 2024; 14:1417299. [PMID: 39295731 PMCID: PMC11409094 DOI: 10.3389/fcimb.2024.1417299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024] Open
Abstract
Streptococcus agalactiae (Strep. agalactiae) is bovine mastitis pathogen and has thus became a matter of concern to dairy farms worldwide in terms of economic loss. The aims of this study were to (a) determine virulence genes, and (b) characterize the antimicrobial resistance (AMR) profiles and AMR genes and (c) figure out the relationship between AMR phenotypes and genotypes of Strep. agalactiae isolated from dairy cows in north China. A total of 20 virulence genes and 23 AMR genes of 140 isolates collected from 12 farms in six provinces were studied. The antimicrobial susceptibility of 10 veterinary commonly used antimicrobials were tested using the broth microdilution method. Results showed that all the isolates harbored the virulence genes lacIV, gapC, and dltA. The isolates that harbored the genes lacIII, fbsA, hylB, and cfb exhibited the high prevalence (99.29%), followed by isolates that harbored lacI (98.57%), bibA (97.86%), cylE (97.14%), lacII (92.14%), cspA (52.14%), pavA (25%), bca (2.14%), and scpB (0.71%). The fbsB, lmb, spbI, bac, and rib genes were not detected. The virulence patterns of B (fbsA_cfb_cylE_ hylB_bibA_cspA_ gapC_dltA_lacIII/IV) and C (fbsA_cfb_ bibA _ gapC_ dltA_lacIV) were dominant, accounting for 97.86% of the isolates. The following AMR genes were prevalent: pbp1A (97.14%), tet(M) (95.00%), lnu (A) (80.71%), erm (B) (75.00%), tet(O) (72.14%), blaZ (49.29%), tet(S) (29.29%), blaTEM (25.71%), erm (A) (17.14%), erm (C) (13.57%), tet (L) (10.71%), linB (2.86%), and erm (TR) (2.86%). The pbp2b, mecA1, mecC, lnu (D), erm (F/G/Q), and mef (A) genes were not detected. Eighty percent of the isolates harbored AMR genes and were highly resistant to tetracycline, followed by macrolides (10.71%), lincosamides (9.29%) and β-lactams (4.29%). In conclusion, isolates only exhibited well correlation between tetracyclines resistance phenotype and genotype, and almost all isolates harbored intact combination of virulence genes.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jieyan Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xiaolong Gu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Crestani C, Forde TL, Bell J, Lycett SJ, Oliveira LMA, Pinto TCA, Cobo-Ángel CG, Ceballos-Márquez A, Phuoc NN, Sirimanapong W, Chen SL, Jamrozy D, Bentley SD, Fontaine M, Zadoks RN. Genomic and functional determinants of host spectrum in Group B Streptococcus. PLoS Pathog 2024; 20:e1012400. [PMID: 39133742 PMCID: PMC11341095 DOI: 10.1371/journal.ppat.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John Bell
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | | | - Nguyen N. Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wanna Sirimanapong
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | | | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
9
|
Garbarino CA, Bariselli S, Pupillo G, Bassi P, Luppi A, Taddei R, Reggiani A, Massella E, Ricchi M, Carra E, Zadoks RN. Emergence of Group B Streptococcus Disease in Pigs and Porcupines, Italy. Emerg Infect Dis 2024; 30:1228-1231. [PMID: 38782033 PMCID: PMC11138975 DOI: 10.3201/eid3006.231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We describe group B Streptococcus linked to disease in farmed pigs and wild porcupines in Italy. Occurrence in pigs was attributed to transmission from nonpasteurized bovine milk whey. Antimicrobial-resistance profiles in isolates from porcupines suggest no common source of infection. Our findings expand the known host range for group B Streptococcus disease.
Collapse
Affiliation(s)
| | | | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Patrizia Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Roberta Taddei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Alessandro Reggiani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Elisa Massella
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Matteo Ricchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | | | | |
Collapse
|
10
|
Yang L, Wu Z, Ma TY, Zeng H, Chen M, Zhang YA, Zhou Y. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Vet Res 2024; 55:60. [PMID: 38750480 PMCID: PMC11094935 DOI: 10.1186/s13567-024-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Tian-Yu Ma
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hui Zeng
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ming Chen
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
11
|
de Oliveira LMA, Simões LC, Crestani C, Costa NS, Pantoja JCDF, Rabello RF, Teixeira LM, Khan UB, Bentley S, Jamrozy D, Pinto TDCA, Zadoks RN. Long-Term Co-Circulation of Host-Specialist and Host-Generalist Lineages of Group B Streptococcus in Brazilian Dairy Cattle with Heterogeneous Antimicrobial Resistance Profiles. Antibiotics (Basel) 2024; 13:389. [PMID: 38786118 PMCID: PMC11117364 DOI: 10.3390/antibiotics13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Group B Streptococcus (GBS) is a major cause of contagious bovine mastitis (CBM) in Brazil. The GBS population is composed of host-generalist and host-specialist lineages, which may differ in antimicrobial resistance (AMR) and zoonotic potential, and the surveillance of bovine GBS is crucial to developing effective CBM control and prevention measures. Here, we investigated bovine GBS isolates (n = 156) collected in Brazil between 1987 and 2021 using phenotypic testing and whole-genome sequencing to uncover the molecular epidemiology of bovine GBS. Clonal complex (CC) 61/67 was the predominant clade in the 20th century; however, it was replaced by CC91, with which it shares a most common recent ancestor, in the 21st century, despite the higher prevalence of AMR in CC61/67 than in CC91, and high selection pressure for AMR from indiscriminate antimicrobial use in the Brazilian dairy industry. CC103 also emerged as a dominant CC in the 21st century, and a considerable proportion of herds had two or more GBS strains, suggesting poor biosecurity and within-herd evolution due to the chronic nature of CBM problems. The majority of bovine GBS belonged to serotype Ia or III, which was strongly correlated with CCs. Ninety-three isolates were resistant to tetracycline (≥8 μg/mL; tetO = 57, tetM = 34 or both = 2) and forty-four were resistant to erythromycin (2.0 to >4 μg/mL; ermA = 1, ermB = 38, mechanism unidentified n = 5). Only three isolates were non-susceptible to penicillin (≥8.0 μg/mL), providing opportunities for improved antimicrobial stewardship through the use of narrow-spectrum antimicrobials for the treatment of dairy cattle. The common bovine GBS clades detected in this study have rarely been reported in humans, suggesting limited risk of interspecies transmission of GBS in Brazil. This study provides new data to support improvements to CBM and AMR control, bovine GBS vaccine design, and the management of public health risks posed by bovine GBS in Brazil.
Collapse
Affiliation(s)
- Laura Maria Andrade de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Leandro Correia Simões
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | - Natália Silva Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | | | | | - Lucia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Uzma Basit Khan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Stephen Bentley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Dorota Jamrozy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; (U.B.K.); (S.B.); (D.J.)
| | - Tatiana de Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.C.S.); (N.S.C.); (L.M.T.); (T.d.C.A.P.)
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
12
|
Duodu S, Ayiku ANA, Adelani AA, Daah DA, Amoako EK, Jansen MD, Cudjoe KS. Serotype distribution, virulence and antibiotic resistance of Streptococcus agalactiae isolated from cultured tilapia Oreochromis niloticus in Lake Volta, Ghana. DISEASES OF AQUATIC ORGANISMS 2024; 158:27-36. [PMID: 38661135 DOI: 10.3354/dao03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.
Collapse
Affiliation(s)
- Samuel Duodu
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Angela N A Ayiku
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Abigail A Adelani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Derrick A Daah
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Mona D Jansen
- Norwegian Veterinary Institute, Elizabeth Stephansons vei 1, 1433 Ås, Norway
| | - Kofitsyo S Cudjoe
- Norwegian Veterinary Institute, Elizabeth Stephansons vei 1, 1433 Ås, Norway
| |
Collapse
|
13
|
Leal CAG, Silva BA, Colombo SA. Susceptibility Profile and Epidemiological Cut-Off Values Are Influenced by Serotype in Fish Pathogenic Streptococcus agalactiae. Antibiotics (Basel) 2023; 12:1726. [PMID: 38136760 PMCID: PMC10741021 DOI: 10.3390/antibiotics12121726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Streptococcus agalactiae is a major health concern in tilapia farming worldwide. In contrast to the availability of susceptibility profile results, interpretative criteria for disk diffusion assays and the influence of serotypes on resistance profiles are not available. To address this, sixty isolates (thirty of each serotype, Ib and III) were evaluated using the disk diffusion assay against six antibiotics, and the epidemiological cut-off value (ECV) was calculated. All the isolates were classified as non-wild type (NWT) for sulfamethoxazole (SUT) and norfloxacin (NOR). The inhibition zones for oxytetracycline (OXY) and doxycycline (DOX) were largely distinct; all serotype Ib and III isolates were classified as wild-type (WT) and NWT, respectively. The results for serotype III of fish group B Streptococcus (GBS) were comparable to the NWT tetracycline profile of human GBS available in EUCAST, suggesting the presence of resistance mechanisms in these fish isolates. The calculation of the cut-off wild type (COWT) values for OXY and DOX was appropriate for both serotypes. Differences between the distribution of florfenicol (FLO) and amoxicillin (AMO) were found, and we attribute this to the faster growth rate of serotype III, which promotes smaller inhibition zones. Therefore, using separate COWT for each serotype is necessary. In conclusion, the serotype of fish GBS affects its susceptibility profile, and it is recommended to use serotype-specific COWT values as interpretative criteria for disk diffusion assays against FLO and AMO.
Collapse
Affiliation(s)
- Carlos Augusto Gomes Leal
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (B.A.S.); (S.A.C.)
| | | | | |
Collapse
|
14
|
Schar D, Zhang Z, Pires J, Vrancken B, Suchard MA, Lemey P, Ip M, Gilbert M, Van Boeckel T, Dellicour S. Dispersal history and bidirectional human-fish host switching of invasive, hypervirulent Streptococcus agalactiae sequence type 283. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002454. [PMID: 37856430 PMCID: PMC10586614 DOI: 10.1371/journal.pgph.0002454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Human group B Streptococcus (GBS) infections attributable to an invasive, hypervirulent sequence type (ST) 283 have been associated with freshwater fish consumption in Asia. The origin, geographic dispersion pathways and host transitions of GBS ST283 remain unresolved. We gather 328 ST283 isolate whole-genome sequences collected from humans and fish between 1998 and 2021, representing eleven countries across four continents. We apply Bayesian phylogeographic analyses to reconstruct the dispersal history of ST283 and combine ST283 phylogenies with genetic markers and host association to investigate host switching and the gain and loss of antimicrobial resistance and virulence factor genes. Initial dispersal within Asia followed ST283 emergence in the early 1980s, with Singapore, Thailand and Hong Kong observed as early transmission hubs. Subsequent intercontinental dispersal originating from Vietnam began in the decade commencing 2001, demonstrating ST283 holds potential to expand geographically. Furthermore, we observe bidirectional host switching, with the detection of more frequent human-to-fish than fish-to-human transitions, suggesting that sound wastewater management, hygiene and sanitation may help to interrupt chains of transmission between hosts. We also show that antimicrobial resistance and virulence factor genes were lost more frequently than gained across the evolutionary history of ST283. Our findings highlight the need for enhanced surveillance, clinical awareness, and targeted risk mitigation to limit transmission and reduce the impact of an emerging pathogen associated with a high-growth aquaculture industry.
Collapse
Affiliation(s)
- Daniel Schar
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Joao Pires
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
| | - Bram Vrancken
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marius Gilbert
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Thomas Van Boeckel
- Institute for Environmental Decisions, ETH Zurich, Zurich, Switzerland
- Center for Diseases Dynamics, Economics, and Policy, New Delhi, India
| | - Simon Dellicour
- Spatial Epidemiology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Snoek L, Karampatsas K, Bijlsma MW, Henneke P, Jauneikaite E, Khan UB, Zadoks RN, Le Doare K. Meeting report: Towards better risk stratification, prevention and therapy of invasive GBS disease, ESPID research meeting May 2022. Vaccine 2023; 41:6137-6142. [PMID: 37699783 DOI: 10.1016/j.vaccine.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The European Society of Pediatric Infectious Diseases (ESPID) hosted the third Group B Streptococcus (GBS) Research Session in Athens on 11th May 2022, providing researchers and clinicians from around the world an opportunity to share and discuss recent advances in GBS pathophysiology, molecular and genetic epidemiology and how these new insights can help in improving prevention and control of early- and late-onset GBS disease. The meeting provided a state-of-the-art overview of the existing GBS prevention strategies and their limitations, and an opportunity to share the latest research findings. The first presentation provided an overview of current GBS prevention and treatment strategies. In the second presentation, the genomic and antimicrobial resistance profiles of invasive and colonizing GBS strains were presented. The third presentation explained the association of intrapartum antibiotic prophylaxis (IAP) with the development of late-onset disease (LOD) and the interplay of host innate immunity and GBS. The fourth presentation evaluated the role of genomics in understanding horizontal GBS transmission. The fifth presentation focused on the zoonotic links for certain GBS lineages and the last presentation described the protective role of breastmilk. Talks were followed with interactive discussions and concluded with recommendations on what is needed to further GBS clinical research; these included: (i) the development of better risk stratification methods by combining GBS virulence factors, serological biomarkers and clinical risk factors; (ii) further studies on the interplay of perinatal antimicrobials, disturbances in the development of host immunity and late-onset GBS disease; (iii) routine submission of GBS isolates to reference laboratories to help in detecting potential clusters by using genomic sequencing; (iv) collaboration in animal and human GBS studies to detect and prevent the emergence of new pathogenic sequence types; and (v) harnessing the plethora of immune factors in the breastmilk to develop adjunct therapies.
Collapse
Affiliation(s)
- Linde Snoek
- Department of Neurology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands.
| | - Konstantinos Karampatsas
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| | - Merijn W Bijlsma
- Amsterdam Neuroscience, Neuroinfection and Inflammation, Amsterdam, Netherlands; Department of Paediatrics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center and Faculty of Medicine, Freiburg, Germany; Institute for Infection Prevention and Control, University Medical Center and Faculty of Medicine, Freiburg, Germany
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uzma B Khan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom; Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
16
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
17
|
Muthanna A, Desa MNM, Alsalemi W, Liyana Abd Aziz NA, Dzaraly ND, Baharin NHZ, Aziz NA, Ali MM, Nor LAM, Ismail Z, Ahmad NH, Shan CH, Azmai MNA, Amin-Nordin S. Phenotypic and genotypic comparison of pathogenic group B Streptococcus isolated from human and cultured tilapia (Oreochromis species) in Malaysia. Comp Immunol Microbiol Infect Dis 2023; 97:101993. [PMID: 37167694 DOI: 10.1016/j.cimid.2023.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Group B Streptococcus (GBS) is a major cause of several infectious diseases in humans and fish. This study was conducted to compare human and fish-derived GBS in terms of their antimicrobial susceptibility, serotype, virulence and pili genes and sequence type (ST), and to determine whether there is a potential linkage of zoonotic transmission in Malaysia. GBS isolated from humans and fish had similar phenotypic characteristics and differed in virulence gene profile, antimicrobial susceptibility, serotype and sequence type. Fish GBS isolates had lower genetic diversity and higher antibiotic susceptibility than human isolates. We report a rare detection of the potentially fish-adapted ST283 in human GBS isolates. Both human and fish ST283 shared several phenotypic and genotypic features, including virulence and pilus genes and antimicrobial susceptibility, illustrating the value of monitoring GBS within the One Health scope. In this study, two human GBS ST283 isolates belonging to the variant common in fish hosts were identified, raising awareness of the zoonotic potential between the different species in Malaysia.
Collapse
Affiliation(s)
- AbdulRahman Muthanna
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Wardah Alsalemi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Diana Dzaraly
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nurul Hana Zainal Baharin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Afiza Aziz
- Department of Pathology, Sultanah Aminah Hospital, Johor Bahru, Johor, Malaysia
| | - Marlindawati Mohd Ali
- Department of Pathology, Tuanku Ja'afar Seremban Hospital, Seremban, Negeri Sembilan, Malaysia
| | | | - Zalina Ismail
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nur Hanani Ahmad
- Department of Pathology, Sungai Buloh Hospital, Sungai Buloh, Selangor, Malaysia
| | - Chua Hui Shan
- Department of Pathology, Melaka General Hospital, Melaka, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; Department of Medical Microbiology, Sultan Abdul Aziz Shah Hospital, Universiti Putra Malaysia, Persiaran MARDI - UPM, 43400, Selangor, Malaysia.
| |
Collapse
|
18
|
Megat Mazhar Khair MH, Tee AN, Wahab NF, Othman SS, Goh YM, Masarudin MJ, Chong CM, In LLA, Gan HM, Song AAL. Comprehensive Characterization of a Streptococcus agalactiae Phage Isolated from a Tilapia Farm in Selangor, Malaysia, and Its Potential for Phage Therapy. Pharmaceuticals (Basel) 2023; 16:ph16050698. [PMID: 37242481 DOI: 10.3390/ph16050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Streptococcus agalactiae outbreak in tilapia has caused huge losses in the aquaculture industry worldwide. In Malaysia, several studies have reported the isolation of S. agalactiae, but no study has reported the isolation of S. agalactiae phages from tilapia or from the culture pond. Here, the isolation of the S. agalactiae phage from infected tilapia is reported and it is named as vB_Sags-UPM1. Transmission electron micrograph (TEM) revealed that this phage showed characteristics of a Siphoviridae and it was able to kill two local S. agalactiae isolates, which were S. agalactiae smyh01 and smyh02. Whole genome sequencing (WGS) of the phage DNA showed that it contained 42,999 base pairs with 36.80% GC content. Bioinformatics analysis predicted that this phage shared an identity with the S. agalactiae S73 chromosome as well as several other strains of S. agalactiae, presumably due to prophages carried by these hosts, and it encodes integrase, which suggests that it was a temperate phage. The endolysin of vB_Sags-UPM1 termed Lys60 showed killing activity on both S. agalactiae strains with varying efficacy. The discovery of the S. agalactiae temperate phage and its antimicrobial genes could open a new window for the development of antimicrobials to treat S. agalactiae infection.
Collapse
Affiliation(s)
- Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - An Nie Tee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Fazlin Wahab
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Nanomaterials Synthesis and Characterisation Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Selangor, Malaysia
| | - Han Ming Gan
- Patriot Biotech, Sunway Geo Avenue, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
19
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Sirimanapong W, Phước NN, Crestani C, Chen S, Zadoks RN. Geographical, Temporal and Host-Species Distribution of Potentially Human-Pathogenic Group B Streptococcus in Aquaculture Species in Southeast Asia. Pathogens 2023; 12:pathogens12040525. [PMID: 37111411 PMCID: PMC10146238 DOI: 10.3390/pathogens12040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Group B Streptococcus (GBS) is a major pathogen of humans and aquatic species. Fish have recently been recognized as the source of severe invasive foodborne GBS disease, caused by sequence type (ST) 283, in otherwise healthy adults in Southeast Asia. Thailand and Vietnam are among the major aquaculture producers in Southeast Asia, with GBS disease reported in fish as well as frogs in both countries. Still, the distribution of potentially human-pathogenic GBS in aquaculture species is poorly known. Using 35 GBS isolates from aquatic species in Thailand collected from 2007 to 2019 and 43 isolates from tilapia collected in Vietnam in 2018 and 2019, we have demonstrated that the temporal, geographical, and host-species distribution of GBS ST283 is broader than previously known, whereas the distribution of ST7 and the poikilothermic lineage of GBS are geographically restricted. The gene encoding the human GBS virulence factor C5a peptidase, scpB, was detected in aquatic ST283 from Thailand but not in ST283 from Vietnam or in ST7 from either country, mirroring current reports of GBS strains associated with human sepsis. The observed distribution of strains and virulence genes is likely to reflect a combination of spill-over, host adaptation through the gain and loss of mobile genetic elements, and current biosecurity practices. The plastic nature of the GBS genome and its importance as a human, aquatic, and potentially foodborne pathogen suggests that active surveillance of GBS presence and its evolution in aquaculture systems may be justified.
Collapse
|
21
|
Altaf S, Alkheraije KA. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. Front Vet Sci 2023; 10:1148964. [PMID: 36950535 PMCID: PMC10025400 DOI: 10.3389/fvets.2023.1148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial pathogens of animals impact food production and human health globally. Food animals act as the major host reservoirs for pathogenic bacteria and thus are highly prone to suffer from several endemic infections such as pneumonia, sepsis, mastitis, and diarrhea, imposing a major health and economical loss. Moreover, the consumption of food products of infected animals is the main route by which human beings are exposed to zoonotic bacteria. Thus, there is excessive and undue administration of antibiotics to fight these virulent causative agents of food-borne illness, leading to emergence of resistant strains. Thus, highprevalence antibiotic-resistant resistant food-borne bacterial infections motivated the researchers to discover new alternative therapeutic strategies to eradicate resistant bacterial strains. One of the successful therapeutic approach for the treatment of animal infections, is the application of cell membrane-coated nanoparticles. Cell membranes of several different types of cells including platelets, red blood cells, neutrophils, cancer cells, and bacteria are being wrapped over the nanoparticles to prepare biocompatible nanoformulations. This diversity of cell membrane selection and together with the possibility of combining with an extensive range of nanoparticles, has opened a new opportunistic window for the development of more potentially effective, safe, and immune evading nanoformulations, as compared to conventionally used bare nanoparticle. This article will elaborately discuss the discovery and development of novel bioinspired cell membrane-coated nanoformulations against several pathogenic bacteria of food animals such as Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Campylobacter jejuni, Helicobacter pylori, and Group A Streptococcus and Group B Streptococcus.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Ali Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
22
|
Bashir S, Phuoc NN, Herath T, Basit A, Zadoks RN, Murdan S. An oral pH-responsive Streptococcus agalactiae vaccine formulation provides protective immunity to pathogen challenge in tilapia: A proof-of-concept study. PLoS One 2023; 18:e0278277. [PMID: 36867625 PMCID: PMC9983853 DOI: 10.1371/journal.pone.0278277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/12/2022] [Indexed: 03/04/2023] Open
Abstract
Intensive tilapia farming has contributed significantly to food security as well as to the emergence of novel pathogens. This includes Streptococcus agalactiae or Group B Streptococcus (GBS) sequence type (ST) 283, which caused the first known outbreak of foodborne GBS illness in humans. An oral, easy-to-administer fish vaccine is needed to reduce losses in fish production and the risk of zoonotic transmission associated with GBS. We conducted a proof-of-concept study to develop an oral vaccine formulation that would only release its vaccine cargo at the site of action, i.e., in the fish gastrointestinal tract, and to evaluate whether it provided protection from experimental challenge with GBS. Formalin-inactivated S. agalactiae ST283, was entrapped within microparticles of Eudragit® E100 polymer using a double-emulsification solvent evaporation method. Exposure to an acidic medium simulating the environment in tilapia stomach showed that the size of the vaccine-loaded microparticles decreased rapidly, reflecting microparticle erosion and release of the vaccine cargo. In vivo studies in tilapia showed that oral administration of vaccine-loaded microparticles to fish provided significant protection from subsequent homologous pathogen challenge with GBS ST283 by immersion compared to the control groups which received blank microparticles or buffer, reducing mortality from 70% to 20%. The high efficacy shows the promise of the vaccine platform developed herein, which might be adapted for other bacterial pathogens and other fish species.
Collapse
Affiliation(s)
| | - Nguyen Ngoc Phuoc
- Faculty of Fishery, Hue University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Tharangani Herath
- Department of Animal Health, Behavior and Welfare, Harper Adams University, Newport, Shropshire, United Kingdom
| | - Abdul Basit
- UCL School of Pharmacy, London, United Kingdom
| | - Ruth N. Zadoks
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | | |
Collapse
|
23
|
Wangkahart E, Thongsrisuk A, Vialle R, Pholchamat S, Sunthamala P, Phudkliang J, Srisapoome P, Wang T, Secombes CJ. Comparative study of the effects of Montanide™ ISA 763A VG and ISA 763B VG adjuvants on the immune response against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108563. [PMID: 36717067 DOI: 10.1016/j.fsi.2023.108563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Streptococcus agalactiae is regarded as a major bacterial pathogen of farmed fish, with outbreaks in Nile tilapia causing significant losses. Vaccination is considered the most suitable method for disease control in aquaculture, with the potential to prevent such outbreaks if highly efficacious vaccines are available for use. Several vaccines have been produced to protect against S. agalactiae infection in tilapia, including inactivated vaccines, live attenuated vaccines, and subunit vaccines, with variable levels of protection seen. Two commercial adjuvants, Montanide™ ISA 763A VG and ISA 763B VG, have been developed recently and designed to improve the safety and efficacy of oil-based emulsions delivered by intraperitoneal injection. In particular, their mode of action may help identify and stimulate particular immunological pathways linked to the intended protective response, which is an important tool for future vaccine development. Therefore, this study aimed to characterize the potential of two adjuvanted-bacterial vaccines against S. agalactiae (SAIV) comparatively, to determine their usefulness for improving protection and to analyse the immune mechanisms involved. Nile tilapia were divided into four groups: 1) fish injected with PBS as a control, 2) fish injected with the SAIV alone, 3) fish injected with the SAIV + Montanide™ ISA 763A VG, and 4) fish injected with the SAIV + Montanide™ ISA 763B VG. Following immunization selected innate immune parameters were analysed, including serum lysozyme, myeloperoxidase, and bactericidal activity, with significantly increased levels seen after immunization. Cytokines associated with innate and adaptive immunity were also studied, with expression levels of several genes showing significant up-regulation, indicating good induction of cell-mediated immune responses. Additionally, the specific IgM antibody response against S. agalactiae was determined and found to be significantly induced post-vaccination, with higher levels seen in the presence of the adjuvants. In comparison to the protection seen with the unadjuvanted vaccine (61.29% RPS), both Montanide™ ISA 763A VG and Montanide™ ISA 763B VG improved the RPS, to 77.42% and 74.19% respectively. In conclusion, Montanide™ ISA 763A VG and Montanide™ ISA 763B VG have shown potential for use as adjuvants for fish vaccines against streptococcosis, as evidenced by the enhanced immunoprotection seen when given in combination with the SAIV vaccine employed in this study.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand.
| | - Areerat Thongsrisuk
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Regis Vialle
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France
| | - Sirinya Pholchamat
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Phitcharat Sunthamala
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Janjira Phudkliang
- Master of Science Program in Biotechnology & Biobusiness, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
24
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
25
|
Liang T, Huo G, Chen L, Ding L, Wu J, Zhang J, Wang R. Antibacterial activity and metabolomic analysis of linalool against bovine mastitis pathogen Streptococcus agalactiae. Life Sci 2023; 313:121299. [PMID: 36535400 DOI: 10.1016/j.lfs.2022.121299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Streptococcus agalactiae is among the major causative pathogens of bovine mastitis, as well as crucial pathogen leading to human morbidity and mortality. Being a promising natural antibacterial agent, linalool has been broadly applied in medicine and food processing. However, its antibacterial effect against S. agalactiae has barely been elucidated. This study is the first to investigate the antibacterial activity and action mechanism of linalool against S. agalactiae causing bovine mastitis. Linalool exhibited significant antibacterial activity against S. agalactiae, with an inhibition zone diameter of 23 mm and a minimum inhibitory concentration of 1.875 μL/mL. In addition, linalool damaged cell structural integrity of S. agalactiae, leading to the leakage of intracellular components (alkaline phosphatase, nucleic acids and protein). Linalool also exhibited a scavenging effect on biofilm. Moreover, untargeted metabolomics analysis revealed that linalool stress substantially disrupted intracellular metabolism of S. agalactiae. Linalool caused energy metabolism disorder, and obstructed nucleic acid synthesis in S. agalactiae. Furthermore, downregulation of amino acids (e.g., proline, alanine) and upregulation of saturated fatty acids provide strong evidence for linalool induced cell wall and membrane damage. Overall, linalool exhibited strong antibacterial activity against S. agalactiae by destroying the cell structure and disrupting intracellular metabolism. This study provides a new insight and theoretical foundation for linalool application in preventing S. agalactiae infection.
Collapse
Affiliation(s)
- Tingyu Liang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China
| | - Guiguo Huo
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Jianping Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China.
| | - Rongmin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, PR China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, PR China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
26
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Xia H, Hu H, Wang Z, Xia L, Chen W, Long M, Gan Z, Fan H, Yu D, Lu Y. Molecular cloning, expression analysis and functional characterization of NEDD4 from Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 131:257-263. [PMID: 36183983 DOI: 10.1016/j.fsi.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) was a member of HECT E3 ubiquitin ligases, which participated in various biological processes. In this study, a NEDD4 was identified and analyzed in Nile tilapia, Oreochromis niloticus (OnNEDD4) and its open reading frame was 2781 bp, encoding 926 amino acids. Three conserved structure features were found in OnNEDD4, including C2 domain, WW domains and HECT domain. OnNEDD4 was constitutively expressed in all examined tissues and the highest expression level was observed in thymus. After Streptococcus agalactiae stimulation, OnNEDD4 was significantly induced in several tissues, including thymus, intestine, blood and gill. Moreover, yeast two-hybrid assay shown OnNEDD4 could interact with extracellular region of OnCD40, but this interaction didn't affect the phagocytosis of monocytes/macrophages (MO/MΦ) to S. agalactiae and A. hydrophila. Taken together, the present study suggested that OnNEDD4 participate in CD40-mediated immune response excluding phagocytosis.
Collapse
Affiliation(s)
- Hongli Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Huiling Hu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiwen Wang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenjie Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Meng Long
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Huimin Fan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Dapeng Yu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
28
|
Draft Genome Sequence of Streptococcus agalactiae Strain AH2, Isolated from Hybrid Tilapia (Oreochromis niloticus × Oreochromis aureus). Microbiol Resour Announc 2022; 11:e0074722. [DOI: 10.1128/mra.00747-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work describes the draft genome sequence of
Streptococcus agalactiae
strain AH2, which was isolated from moribund farmed hybrid tilapia (
Oreochromis niloticus
×
Oreochromis aureus
) in Saudi Arabia. The draft genome is composed of a single chromosome of 2,104,071 bp, with a GC content of 35.7%.
Collapse
|
29
|
Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals (Basel) 2022; 12:ani12182443. [PMID: 36139303 PMCID: PMC9495100 DOI: 10.3390/ani12182443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Streptococcosis is an economical important bacterial disease that can seriously cause huge losses in the global aquaculture sector. In recent years studies have focused on to use extracts or essences of medicinal herbs and plants to control or treat the disease outbreaks and, in most cases the results were promising. The essential oils of the herbs or plants are more effective than the extracts and, the extracts examined have moderate efficacy in term of increasing fish survival against fish streptococcosis that could be due to the enhancement of fish immunity by the herb bio-compounds. The lack of dosage optimization, toxicity and bioavailability assays of a specific herb/plant or its bioactive compound in fish organs make it difficult to judge the validation of clinical efficacy of a particular herb/plant against fish streptococcosis, and thus, required further investigations. Abstract Streptococcosis, particularly that caused by S. iniae and S. agalactiae, is a major re-emerging bacterial disease seriously affecting the global sustainability of aquaculture development. Despite a wide spread of the disease in aquaculture, few studies have been directed at assessing the in vitro antagonistic activity and in vivo efficacy of medicinal herbs and other plants against streptococcal agents. Most in vitro studies of plant extractives against S. iniae and S. agalactiae have found antibacterial activity, but essential oils, especially those containing eugenol, carvacrol or thymol, are more effective. Although essential oils have shown better anti-streptococcal activity in in vitro assays, in vivo bioassays require more attention. The extracts examined under in vivo conditions show moderate efficacy, increasing the survival rate of infected fish, probably through the enhancement of immunity before challenge bioassays. The available data, however, lack dosage optimization, toxicity and bioavailability assays of a specific plant or its bioactive compound in fish organs; hence, it is difficult to judge the validation of clinical efficacy for the prevention or treatment of fish streptococcosis. Despite the known bioactive compounds of many tested plants, few data are available on their mode of action towards streptococcal agents. This review addresses the efficacy of medicinal plants to fish streptococcosis and discusses the current gaps.
Collapse
|
30
|
M S AKB, Mohan S, K T A, Chandramouli M, Alaganandam K, Ningaiah S, Babu KS, Somappa SB. Marine Based Natural Products: Exploring the Recent Developments in the Identification of Antimicrobial Agents. Chem Biodivers 2022; 19:e202200513. [PMID: 36000304 DOI: 10.1002/cbdv.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The marine ecosystem is the less explored, biologically diverse, and vastest resource to discover novel antimicrobial agents. In recent decades' antimicrobial drugs are losing their effectiveness due to the growing resistance among pathogens, which causes diseases to have considerable death rates across the globe. Therefore, there is a need for the discovery of new antibacterials that can reach the market. There is a gradual growth of compounds from marine sources which are entering the clinical trials. Thus, the prominence of marine natural products in the field of drug design and discovery across the academia and pharmaceutical industry is gaining attention. Herein, the present review covers nearly 200 marine based antimicrobial agents of 11 structural classes discovered from the year 2010 to 2022. All the discussed compounds have exhibited medium to high antimicrobial activity in inhibiting various microorganisms.
Collapse
Affiliation(s)
- Ajay Krishna B M S
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvanathapuram, INDIA
| | - Sangeetha Mohan
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, CSIR-NIIST, 695019, Thiruvananthapuram, INDIA
| | - Ashitha K T
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvananthapuram, INDIA
| | - Manasa Chandramouli
- Visvesvaraya Technological University, School of Chemistry, Visvesvaraya Technological University, 570 002, Mysore, INDIA
| | - Kumaran Alaganandam
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, TC 51/2151, Lal Lane, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| | - Srikantamurthy Ningaiah
- Visvesvaraya Technological University, School of Chemistry, Vidyavardhaka College of Engineering, CSIR-NIIST, 570 002, Mysore, INDIA
| | - K Suresh Babu
- IICT: Indian Institute of Chemical Technology, Natural Products and Drug Discovery, IICT Campus, Hyderabad, INDIA
| | - Sasidhar B Somappa
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Organic Chemistry Section, Chemical Sciences and Technology Division, Sir C V Raman Block, Chemical Sciences and Technology Division, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| |
Collapse
|
31
|
Oliveira LMA, Simões LC, Costa NS, Zadoks RN, Pinto TCA. The landscape of antimicrobial resistance in the neonatal and multi-host pathogen group B Streptococcus: review from a One Health perspective. Front Microbiol 2022; 13:943413. [PMID: 35966683 PMCID: PMC9365930 DOI: 10.3389/fmicb.2022.943413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) stands out as a major agent of pediatric disease in humans, being responsible for 392,000 invasive disease cases and 91,000 deaths in infants each year across the world. Moreover, GBS, also known as Streptococcus agalactiae, is an important agent of infections in animal hosts, notably cattle and fish. GBS population structure is composed of multiple clades that differ in virulence, antimicrobial resistance (AMR), and niche adaptation; however, there is growing evidence of interspecies transmission, both from evolutionary analysis and from disease investigations. The prevention of GBS infections through vaccination is desirable in humans as well as animals because it reduces the burden of GBS disease and reduces our reliance on antimicrobials, and the risk of adverse reactions or selection for AMR. In this perspective article, we navigate through the landscape of AMR in the pediatric and multi-host pathogen GBS under the One Health perspective and discuss the use of antimicrobials to control GBS disease, the evolution of AMR in the GBS population, and the future perspectives of resistant GBS infections in the post-pandemic era.
Collapse
Affiliation(s)
- Laura M. A. Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro C. Simões
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Natalia S. Costa
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ruth N. Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Tatiana C. A. Pinto
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
33
|
Aiewsakun P, Ruangchai W, Thawornwattana Y, Jaemsai B, Mahasirimongkol S, Homkaew A, Suksomchit P, Dubbs P, Palittapongarnpim P. Genomic epidemiology of Streptococcus agalactiae ST283 in Southeast Asia. Sci Rep 2022; 12:4185. [PMID: 35264716 PMCID: PMC8907273 DOI: 10.1038/s41598-022-08097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Streptococcus agalactiae, also known as Lancefield Group B Streptococcus (GBS), is typically regarded as a neonatal pathogen; however, several studies have shown that the bacteria are capable of causing invasive diseases in non-pregnant adults as well. The majority of documented cases were from Southeast Asian countries, and the most common genotype found was ST283, which is also known to be able to infect fish. This study sequenced 12 GBS ST283 samples collected from adult patients in Thailand. Together with publicly available sequences, we performed temporo-spatial analysis and estimated population dynamics of the bacteria. Putative drug resistance genes were also identified and characterized, and the drug resistance phenotypes were validated experimentally. The results, together with historical records, draw a detailed picture of the past transmission history of GBS ST283 in Southeast Asia.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Yuttapong Thawornwattana
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Ministry of Public Health, 88/7, Tiwanon Road, Amphoe Muang, Nonthaburi, 11000, Thailand
| | - Anchalee Homkaew
- Microbiological Unit, Central Laboratory and Blood Bank, Faculty of Medicine, Vajira Hospital, Navamindraraj University, Bangkok, Thailand
| | - Paveesuda Suksomchit
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
34
|
Ramos-Espinoza FC, Cueva-Quiroz VA, Yunis-Aguinaga J, Alvarez-Rubio NC, de Mello NP, de Moraes JRE. Testing Novel Inactivation Methods and Adjuvants for Vaccines Against Streptococcus agalactiae in Nile Tilapia Oreochromis niloticus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:241-249. [PMID: 34816409 DOI: 10.1007/978-1-0716-1888-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inactivation by hydrogen peroxide and pH manipulation are two novel methods used recently in experimental vaccines against Streptococcus agalactiae in Nile tilapia. Here we describe in detail inactivation using novel methods as well as the classical method of inactivation. These vaccines showed similar moderate efficacy when compared to the conventional formaldehyde vaccine. In addition, we describe the inclusion of adjuvants in a hydrogen peroxide vaccine.
Collapse
Affiliation(s)
| | | | - Jefferson Yunis-Aguinaga
- Aquaculture Center of Unesp (Caunesp), São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | | | - Nicoli Paganoti de Mello
- Aquaculture Center of Unesp (Caunesp), São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | | |
Collapse
|
35
|
Irion S, Silayeva O, Sweet M, Chabanet P, Barnes AC, Tortosa P, Séré MG. Molecular Investigation of Recurrent Streptococcus iniae Epizootics Affecting Coral Reef Fish on an Oceanic Island Suggests at Least Two Distinct Emergence Events. Front Microbiol 2021; 12:749734. [PMID: 34803969 PMCID: PMC8600329 DOI: 10.3389/fmicb.2021.749734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Streptococcus iniae is an emerging zoonotic pathogen of increasing concern for aquaculture and has caused several epizootics in reef fishes from the Caribbean, the Red Sea and the Indian Ocean. To study the population structure, introduction pathways and evolution of S. iniae over recurring epizootics on Reunion Island, we developed and validated a Multi Locus Sequence Typing (MLST) panel using genomic data obtained from 89 isolates sampled during epizootics occurring over the past 40years in Australia, Asia, the United States, Israel and Reunion Island. We selected eight housekeeping loci, which resulted in the greatest variation across the main S. iniae phylogenetic clades highlighted by the whole genomic dataset. We then applied the developed MLST to investigate the origin of S. iniae responsible for four epizootics on Reunion Island, first in inland aquaculture and then on the reefs from 1996 to 2014. Results suggest at least two independent S. iniae emergence events occurred on the island. Molecular data support that the first epizootic resulted from an introduction, with inland freshwater aquaculture facilities acting as a stepping-stone. Such an event may have been facilitated by the ecological flexibility of S. iniae, able to survive in both fresh and marine waters and the ability of the pathogen to infect multiple host species. By contrast, the second epizootic was associated with a distinct ST of cosmopolitan distribution that may have emerged as a result of environment disturbance. This novel tool will be effective at investigating recurrent epizootics occurring within a given environment or country that is despite the fact that S. iniae appears to have low genetic diversity within its lineage.
Collapse
Affiliation(s)
- Solène Irion
- Université de La Réunion, Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI, Saint Denis, France.,Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France
| | - Oleksandra Silayeva
- School of Biological Sciences, Centre for Marine Science, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Pascale Chabanet
- Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France
| | - Andrew C Barnes
- School of Biological Sciences, Centre for Marine Science, The University of Queensland, Brisbane, QLD, Australia
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI, Saint Denis, France
| | - Mathieu G Séré
- Université de La Réunion, Unité Mixte de Recherche, Ecologie marine tropicale des océans Pacifique et Indien (UMR ENTROPIE), CNRS, IRD, Saint Denis, France.,Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| |
Collapse
|
36
|
Chen X, Fan B, Fan C, Wang Z, Wangkahart E, Huang Y, Huang Y, Jian J, Wang B. First comprehensive proteome analysis of lysine crotonylation in Streptococcus agalactiae, a pathogen causing meningoencephalitis in teleosts. Proteome Sci 2021; 19:14. [PMID: 34758830 PMCID: PMC8580364 DOI: 10.1186/s12953-021-00182-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Backgroud Streptococcus agalactiae is a common colonizer of the rectovaginal tract and lead to infectious diseases of neonatal and non-pregnant adults, which also causes infectious disease in fish and a zoonotic risk as well. Lysine crotonylation (Kcr) is a kind of histone post-translational modifications discovered in 2011. In yeast and mammals, Kcr function as potential enhancers and promote gene expression. However, lysine crotonylation in S. agalactiae has not been studied yet. Methods In this study, the crotonylation profiling of fish pathogen, S. agalactiae was investigated by combining affinity enrichment with LC MS/MS. The Kcr modification of several selected proteins were further validated by Western blotting. Results In the present study, we conducted the proteome-wide profiling of Kcr in S. agalactiae and identified 241 Kcr sites from 675 screened proteins for the first time. Bioinformatics analysis showed that 164 sequences were matched to a total of six definitively conserved motifs, and many of them were significantly enriched in metabolic processes, cellular process, and single-organism processes. Moreover, four crotonylation modified proteins were predicted as virulence factors or to being part of the quorum sensing system PTMs on bacteria. The data are available via ProteomeXchange with identifier PXD026445. Conclusions These data provide a promising starting point for further functional research of crotonylation in bacterial virulence in S. agalactiae. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00182-y.
Collapse
Affiliation(s)
- Xinjin Chen
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Bolin Fan
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Chenlong Fan
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Zhongliang Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.
| | - Eakapol Wangkahart
- Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China. .,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Churakov M, Katholm J, Rogers S, Kao RR, Zadoks RN. Assessing potential routes of Streptococcus agalactiae transmission between dairy herds using national surveillance, animal movement data and molecular typing. Prev Vet Med 2021; 197:105501. [PMID: 34624567 DOI: 10.1016/j.prevetmed.2021.105501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a pathogen of humans and animals. It is an important cause of mastitis in dairy cattle, causing decreased milk quality and quantity. Denmark is the only country to have implemented a national surveillance and control campaign for GBS in dairy cattle. After a significant decline in the 20th century, prevalence has increased in the 21st century. Using a unique combination of national surveillance, cattle movement data and molecular typing, we tested the hypothesis that transmission mechanisms differ between GBS strains that are almost exclusive to cattle and those that affect humans as well as cattle, which would have implications for control recommendations. Three types of S. agalactiae, sequence type (ST) 1, ST23 and ST103 were consistently the most frequent strains among isolates obtained through the national surveillance programme from 2009 to 2011. Herds infected with ST103, which is common in cattle but rarely found in people in Europe, were spatially clustered throughout the study period and across spatial scales. By contrast, strains that are also commonly found in humans, ST1 and ST23, showed no spatial clustering in most or any years of the study, respectively. Introduction of cattle from a positive herd was associated with increased risk of infection by S. agalactiae in the next year (risk ratio of 2.9 and 4.7 for 2009-2010 and 2010-2011, respectively). Moreover, mean exposure to infection was significantly higher for newly infected herds and significantly lower for persistently susceptible herds, as compared to random simulated networks with the same properties, which suggests strong association between the cattle movement network and new infections. At strain-level, new infections with ST1 between 2009 and 2010 were significantly associated with cattle movements, while other strains showed only some degree of association. Sharing of veterinary services, which may serve as proxy for local or regional contacts at a range of scales, was not significantly associated with increased risk of introduction of S. agalactiae or one of the three predominant strains on a farm. Our findings support the reinstatement of restrictions on cattle movements from S. agalactiae positive herds, which came into effect in 2018, but provide insufficient evidence to support strain-specific control recommendations.
Collapse
Affiliation(s)
- Mikhail Churakov
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G61 1QH, Glasgow, UK
| | - Jørgen Katholm
- DNA Diagnostic A/S, Voldbjergvej 14, DK-8240, Risskov, Denmark
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rowland R Kao
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G61 1QH, Glasgow, UK; Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G61 1QH, Glasgow, UK; Moredun Research Institute, Pentland Science Park, Penicuik, EH26 0PZ, UK; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
38
|
Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. Future Microbiol 2021; 16:671-685. [PMID: 34098731 DOI: 10.2217/fmb-2020-0189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group B Streptococcus (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection. In this study, the biological characteristics, immunophenotype, major pathogenic mechanism, laboratory test methods and clinical significance of GBS are summarized.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Zhu Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.,Department of Medical Laboratory Sciences, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Yong Sun
- Department of Clinical Lab, Yantai Laiyang Central Hospital, Yantai, Shandong, 264200, PR China
| | - Yu Song
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
39
|
Pepey E, Taukhid T, Keck N, Lusiastuti A, Avarre JC, Sundari G, Sarter S, Caruso D. Application of the FTA elute card coupled with visual colorimetric loop-mediated isothermal amplification for the rapid diagnosis of Streptococcus agalactiae in farmed tilapia (Oreochromis niloticus). JOURNAL OF FISH DISEASES 2021; 44:505-512. [PMID: 33486792 DOI: 10.1111/jfd.13337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
A method combining the FTA Elute card and visual colorimetric loop-mediated isothermal amplification (FTA-e/LAMP) was tested to diagnose Streptococcus agalactiae infections in vitro and in vivo. FTA-e/LAMP consists of two main steps: first, the FTA card is used to extract DNA and then a colorimetric loop-mediated isothermal amplification (LAMP) reaction is carried out on the extracted DNA. In vitro sensitivity was 1.9 x 102 CFU/mL, and regarding specificity, all nine S. agalactiae strains tested positive. All Streptococcus spp. tested negative, except for S. dysgalactiae, thereby indicating the need for another set of primers to distinguish this species from S. agalactiae. To diagnose S. agalactiae infections using FTA-e/LAMP in vivo, two experimental trials on juvenile Oreochromis niloticus infected with bovine or piscine strains were carried out. Sensitivity in symptomatic fish was 100%, and 50.7% of fish without signs were positive. All negative control fish tested negative (n = 28). No bacteria were detected after 16 days post-infection (dpi). Accuracy during the first week (1-7 dpi) was 89% and decreased to 44% thereafter (10-22 dpi). FTA-e/LAMP results suggest that this method is a promising tool for early and fast diagnosis of S. agalactiae on tilapia farms.
Collapse
Affiliation(s)
- Elodie Pepey
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, CNRS, EPHE, IRD, Univ Montpellier, Montpellier, France
| | - Taukhid Taukhid
- Research Institute for Freshwater Aquaculture and Fisheries Extension (RIFAFE), Bogor, Indonesia
| | - Nicolas Keck
- Laboratoire Départemental Vétérinaire de l'Hérault, Montpellier, France
| | - Angela Lusiastuti
- Research Institute for Freshwater Aquaculture and Fisheries Extension (RIFAFE), Bogor, Indonesia
| | | | | | - Samira Sarter
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, CNRS, EPHE, IRD, Univ Montpellier, Montpellier, France
| | - Domenico Caruso
- ISEM, CNRS, EPHE, IRD, Univ Montpellier, Montpellier, France
| |
Collapse
|
40
|
Baseggio L, Silayeva O, Buller N, Landos M, Englestädter J, Barnes AC. Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants. Microb Genom 2021; 7:000562. [PMID: 33885359 PMCID: PMC8208687 DOI: 10.1099/mgen.0.000562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
Collapse
Affiliation(s)
- Laura Baseggio
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oleksandra Silayeva
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicky Buller
- Diagnostic and Laboratory Services (DDLS), Department of Primary Industries and Regional Development (DPIRD), 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Matt Landos
- Future Fisheries Veterinary Services, East Ballina, New South Wales 2478, Australia
| | - Jan Englestädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C. Barnes
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- *Correspondence: Andrew C. Barnes,
| |
Collapse
|
41
|
Streptococcal Infections in Marine Mammals. Microorganisms 2021; 9:microorganisms9020350. [PMID: 33578962 PMCID: PMC7916692 DOI: 10.3390/microorganisms9020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 01/28/2023] Open
Abstract
Marine mammals are sentinels for the marine ecosystem and threatened by numerous factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine mammals is very limited. This review summarizes published reports on streptococcal species, which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine mammals have not been further identified. How these bacteria disseminate and adapt to their specific niches can only be speculated due to the lack of respective research. Considering the relevance of pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have been neglected and should receive scientific interest in the future.
Collapse
|
42
|
Hu Q, Ao Q, Zhu J. Response of chemokine receptors CXCR2 and integrin β2 after Streptococcus agalactiae and Aeromonas hydrophila challenge in GIFT strain of Nile tilapia Oreochromis niloticus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103897. [PMID: 33132113 DOI: 10.1016/j.dci.2020.103897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
CXCR2 is a G-protein-coupled cell surface chemokine receptor, and integrins are heterodimeric transmembrane (TM) glycoproteins. These proteins work together to activate neutrophils in the immune defense, but knowledge of their function in tilapia is limited. RACE technology was used to clone the full length of the Nile tilapia Oreochromis niloticus Cxcr2 gene, which included a 954 bp open reading frame encoding 318 amino acids, and the integrin β2 gene, with a 2373 bp open reading frame and 791 amino acids. Sequence analyses showed that Cxcr2 and integrin β2 are conserved among species. Expression profile was performed using qRT-PCR and indicated that Cxcr2 and integrin β2 were distributed throughout the examined organ tissues, with highest expression observed in the immune tissues. Expression of Cxcr2 and integrin β2 were increased after challenged with Streptococcus agalactiae or Aeromonas hydrophila. Results suggest that Cxcr2 and integrin β2 genes play a role in immune response in Nile tilapia and provide basic data for molecular-assistant selection of disease-resistant bloodstock to improve the production.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| | - Qiuwei Ao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning,Guangxi 530021, China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning,Guangxi 530021, China.
| |
Collapse
|
43
|
Legario FS, Choresca CH, Turnbull JF, Crumlish M. Isolation and molecular characterization of streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. JOURNAL OF FISH DISEASES 2020; 43:1431-1442. [PMID: 32929781 DOI: 10.1111/jfd.13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Streptococcosis cause severe losses for global tilapia farming, especially in developing countries. The aim of this study was to identify and characterize streptococci recovered from Nile tilapia farmed in the Philippines. Moribund and apparently healthy fish were sampled from grow-out cages, ponds and hatcheries. Clinical signs observed included exophthalmia, eye opacity, ascites, lethargy, erratic swimming and haemorrhages. Results showed that both Streptococcus iniae and Streptococcus agalactiae were associated with disease in these sites. Consistent with global reports, including those from South-East Asia, S. agalactiae was more widespread than S. iniae. Molecular serotyping of the S. agalactiae isolates identified the serotype Ia and serotype Ib. Histopathological findings were meningitis, meningoencephalitis and septicaemia. Identical virulence profiles were found for all strains of S. iniae, while S. agalactiae strains were separated into virulence profile I and profile II. All strains were susceptible to the tested antibiotics and resistant to oxolinic acid. Only S. agalactiae serotype Ib showed resistance to sulphamethoxazole-trimethoprim. This is the first study from the Philippines to characterize the streptococci involved in disease outbreaks in tilapia aquaculture. Outputs from this study will promote the development of efficacious disease control strategies in tilapia farming for the Philippines and South-East Asia.
Collapse
Affiliation(s)
- Francis S Legario
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Natural Sciences Department, Iloilo Science and Technology University, Iloilo City, Philippines
| | - Casiano H Choresca
- National Fisheries Research and Development Institute-Fisheries Biotechnology Centre, Science City of Munoz, Philippines
| | - Jimmy F Turnbull
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Margaret Crumlish
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
44
|
Ramírez-Paredes JG, Paley RK, Hunt W, Feist SW, Stone DM, Field TR, Haydon DJ, Ziddah PA, Nkansa M, Guilder J, Gray J, Duodu S, Pecku EK, Awuni JA, Wallis TS, Verner-Jeffreys DW. First detection of infectious spleen and kidney necrosis virus (ISKNV) associated with massive mortalities in farmed tilapia in Africa. Transbound Emerg Dis 2020; 68:1550-1563. [PMID: 32920975 PMCID: PMC8246855 DOI: 10.1111/tbed.13825] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
In late 2018, unusual patterns of very high mortality (>50% production) were reported in intensive tilapia cage culture systems across Lake Volta in Ghana. Samples of fish and fry were collected and analysed from two affected farms between October 2018 and February 2019. Affected fish showed darkening, erratic swimming and abdominal distension with associated ascites. Histopathological observations of tissues taken from moribund fish at different farms revealed lesions indicative of viral infection. These included haematopoietic cell nuclear and cytoplasmic pleomorphism with marginalization of chromatin and fine granulation. Transmission electron microscopy showed cells containing conspicuous virions with typical iridovirus morphology, that is enveloped, with icosahedral and/or polyhedral geometries and with a diameter c.160 nm. PCR confirmation and DNA sequencing identified the virions as infectious spleen and kidney necrosis virus (ISKNV). Samples of fry and older animals were all strongly positive for the presence of the virus by qPCR. All samples tested negative for TiLV and nodavirus by qPCR. All samples collected from farms prior to the mortality event were negative for ISKNV. Follow‐up testing of fish and fry sampled from 5 additional sites in July 2019 showed all farms had fish that were PCR‐positive for ISKNV, whether there was active disease on the farm or not, demonstrating the disease was endemic to farms all over Lake Volta by that point. The results suggest that ISKNV was the cause of disease on the investigated farms and likely had a primary role in the mortality events. A common observation of coinfections with Streptococcus agalactiae and other tilapia bacterial pathogens further suggests that these may interact to cause severe pathology, particularly in larger fish. Results demonstrate that there are a range of potential threats to the sustainability of tilapia aquaculture that need to be guarded against.
Collapse
Affiliation(s)
| | - Richard K Paley
- Cefas Weymouth Laboratory, Weymouth, UK.,OIE Collaborating Centre for Emerging Aquatic Animal Diseases, Cefas Weymouth Laboratory, Weymouth, UK
| | - William Hunt
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Compton, UK
| | - Stephen W Feist
- Cefas Weymouth Laboratory, Weymouth, UK.,OIE Collaborating Centre for Emerging Aquatic Animal Diseases, Cefas Weymouth Laboratory, Weymouth, UK
| | - David M Stone
- Cefas Weymouth Laboratory, Weymouth, UK.,OIE Collaborating Centre for Emerging Aquatic Animal Diseases, Cefas Weymouth Laboratory, Weymouth, UK
| | - Terence R Field
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Compton, UK
| | - David J Haydon
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Compton, UK
| | - Peter A Ziddah
- Fisheries Commission, Ministry of Fisheries and Aquaculture Development, Accra, Ghana
| | - Mary Nkansa
- Fisheries Commission, Ministry of Fisheries and Aquaculture Development, Accra, Ghana
| | - James Guilder
- Cefas Weymouth Laboratory, Weymouth, UK.,OIE Collaborating Centre for Emerging Aquatic Animal Diseases, Cefas Weymouth Laboratory, Weymouth, UK
| | | | | | | | | | - Timothy S Wallis
- Ridgeway Biologicals Limited a Ceva Santé Animale Company, Compton, UK
| | - David W Verner-Jeffreys
- Cefas Weymouth Laboratory, Weymouth, UK.,OIE Collaborating Centre for Emerging Aquatic Animal Diseases, Cefas Weymouth Laboratory, Weymouth, UK
| |
Collapse
|
45
|
Mühldorfer K, Szentiks CA, Wibbelt G, van der Linden M, Ewers C, Semmler T, Akimkin V, Blom J, Rau J, Eisenberg T. Streptococcus catagoni sp. nov., isolated from the respiratory tract of diseased Chacoan peccaries ( Catagonus wagneri). Int J Syst Evol Microbiol 2020; 70:5734-5739. [PMID: 32941130 DOI: 10.1099/ijsem.0.004471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel catalase-negative, Gram-stain-positive, beta-haemolytic, coccus-shaped organisms were isolated from Chacoan peccaries that died from respiratory disease. The initial API 20 Strep profiles suggested Streptococcus agalactiae with acceptable identification scores, but the 16S rRNA gene similarity (1548 bp) to available sequences of streptococci was below 98 %. Next taxa of the genus Streptococcus, displaying highest similarities to the strains from this study, were S. bovimastitidis NZ1587T (97.5 %), S. iniae ATCC 29178T (97.5 %), S. hongkongensis HKU30T (97.4 %), S. parauberis DSM 6631T (97.1 %), S. penaeicida CAIM 1838T (97.1 %), S. pseudoporcinus DSM 18513T (97.0 %), S. didelphis DSM 15616T (96.6 %), S. ictaluri 707-05T (96.6 %), S. uberis JCM 5709T (96.5 %) and S. porcinus NCTC 10999T (96.4 %). All other Streptococcus species had sequence similarities of below 96.4 %. A sodA gene as well as whole genome-based core genome phylogeny of three representative strains and 145 available Streptococcus genomes confirmed the unique taxonomic position. Interstrain average nucleotide identity (ANI) and amino acid identity (AAI) values were high (ANI >96 %; AAI 100%), but for other streptococci clearly below the proposed species boundary of 95-96 % (ANI <75 %; AAI <83 %). Results were confirmed by genome-to-genome distance calculations. Pairwise digital DNA-DNA hybridization estimates were high (>90 %) between the novel strains, but well below the species boundary of 70 % for closely related Streptococcus type strains (23.5-19.7 %). Phenotypic properties as obtained from extended biochemical profiles and MALDI-TOF mass spectrometry supported the outstanding rank. Based on the presented molecular and physiological data of the six strains, we propose a novel taxon for which we suggest the name Streptococcus catagoni sp. nov. with the type strain 99-1/2017T (=DSM 110457T=CCUG 74072T) and five reference strains.
Collapse
Affiliation(s)
- Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Claudia A Szentiks
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gudrun Wibbelt
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Mark van der Linden
- German National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Valerij Akimkin
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Tobias Eisenberg
- Hessian State Laboratory, Giessen, Germany.,Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
46
|
Complete Genome Sequence of Streptococcus agalactiae Strain 01173, Isolated from Kuwaiti Wild Fish. Microbiol Resour Announc 2020; 9:9/36/e00674-20. [PMID: 32883783 PMCID: PMC7471378 DOI: 10.1128/mra.00674-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome of piscine Streptococcus agalactiae 01173 serotype Ia, which was generated using long-read sequencing technology. The bacteria were isolated from wild fish displaying signs of streptococcosis, from a fish kill incident in Kuwait. Here, we report the complete genome of piscine Streptococcus agalactiae 01173 serotype Ia, which was generated using long-read sequencing technology. The bacteria were isolated from wild fish displaying signs of streptococcosis, from a fish kill incident in Kuwait.
Collapse
|
47
|
Favero LM, Chideroli RT, Ferrari NA, Azevedo VADC, Tiwari S, Lopera-Barrero NM, Pereira UDP. In silico Prediction of New Drug Candidates Against the Multidrug-Resistant and Potentially Zoonotic Fish Pathogen Serotype III Streptococcus agalactiae. Front Genet 2020; 11:1024. [PMID: 33005185 PMCID: PMC7484375 DOI: 10.3389/fgene.2020.01024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Streptococcus agalactiae is an invasive multi-host pathogen that causes invasive diseases mainly in newborns, elderly, and individuals with underlying health complications. In fish, S. agalactiae causes streptococcosis, which is characterized by septicemia and neurological signs, and leads to great economic losses to the fish farming industry worldwide. These bacteria can be classified into different serotypes based on capsular antigens, and into different sequence types (ST) based on multilocus sequence typing (MLST). In 2015, serotype III ST283 was identified to be associated with a foodborne invasive disease in non-pregnant immunocompetent humans in Singapore, and the infection was related to raw fish consumption. In addition, a serotype III strain isolated from tilapia in Brazil has been reported to be resistant to five antibiotic classes. This specific serotype can serve as a reservoir of resistance genes and pose a serious threat to public health. Thus, new approaches for the control and treatment of S. agalactiae infections are needed. In the present study, 24 S. agalactiae serotype III complete genomes, isolated from human and fish hosts, were compared. The core genome was identified, and, using bioinformatics tools and subtractive criteria, five proteins were identified as potential drug targets. Furthermore, 5,008 drug-like natural compounds were virtually screened against the identified targets. The ligands with the best binding properties are suggested for further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Leonardo Mantovani Favero
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Roberta Torres Chideroli
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Natália Amoroso Ferrari
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| | - Vasco Ariston De Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetic, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Department of Genetic, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ulisses de Pádua Pereira
- Laboratory of Fish Bacteriology, Department of Preventive Veterinary Medicine, State University of Londrina, Londrina, Brazil
| |
Collapse
|
48
|
Su Y, Liu C, Deng Y, Cheng C, Ma H, Guo Z, Feng J. Molecular typing of Streptococcus agalactiae isolates of serotype Ia from tilapia in southern China. FEMS Microbiol Lett 2020; 366:5531764. [PMID: 31299078 DOI: 10.1093/femsle/fnz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/11/2019] [Indexed: 01/23/2023] Open
Abstract
Streptococcus agalactiae is an important pathogen of tilapia causing enormous economic losses worldwide. In this study, multilocus sequence typing indicated that 75 S. agalactiae isolates from tilapia in southern China belonged to sequence type-7, as well as belonging to serotype Ia, as confirmed by multiplex PCR assay. The putative-virulence gene profiles and genetic variation of these strains were determined by three sets of multiplex PCR and multi-virulence locus sequencing typing (MVLST), respectively. Analysis of putative-virulence gene profiles showed that each strain harbored 18 putative-virulence genes but lacked lmb and scpB. Three putative-virulence genes (srr-1, bibA and fbsA) were further selected for MVLST analysis. Our data showed that the strains had 14 MVLST types (1-14) and clustered in three groups (Groups I-Ⅲ). The period of time during 2013 and 2014 was an important turning point for the differentiation of the putative-virulence genes of S. agalactiae, as type 1 within Group Ⅱ became the predominant MVLST type. There were significant differences in MVLST types of S. agalactiae isolated from different tilapia farming regions. MVLST assay may improve the discriminatory power and is suitable for understanding the epidemiology of S. agalactiae serotype Ia and screening multivalent vaccine candidate strains.
Collapse
Affiliation(s)
- Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Chan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China.,College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China
| |
Collapse
|
49
|
A simple, rapid typing method for Streptococcus agalactiae based on ribosomal subunit proteins by MALDI-TOF MS. Sci Rep 2020; 10:8788. [PMID: 32472028 PMCID: PMC7260235 DOI: 10.1038/s41598-020-65707-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS), is a frequent human colonizer and a leading cause of neonatal meningitis as well as an emerging pathogen in non-pregnant adults. GBS possesses a broad animal host spectrum, and recent studies proved atypical GBS genotypes can cause human invasive diseases through animal sources as food-borne zoonotic infections. We applied a MALDI-TOF MS typing method, based on molecular weight variations of predefined 28 ribosomal subunit proteins (rsp) to classify GBS strains of varying serotypes into major phylogenetic lineages. A total of 249 GBS isolates of representative and varying capsular serotypes from patients and animal food sources (fish and pig) collected during 2016-2018 in Hong Kong were analysed. Over 84% (143/171) noninvasive carriage GBS strains from patients were readily typed into 5 globally dominant rsp-profiles. Among GBS strains from food animals, over 90% (57/63) of fish and 13% (2/15) of pig GBS matched with existing rsp-profiles, while the remainder were classified into two novel rsp-profiles and we failed to assign a fish strain into any cluster. MALDI-TOF MS allowed for high-throughput screening and simultaneous detection of novel, so far not well described GBS genotypes. The method shown here is rapid, simple, readily transferable and adapted for use in a diagnostic microbiology laboratory with potential for the surveillance of emerging GBS genotypes with zoonotic potential.
Collapse
|
50
|
Zhou Y, Liu Y, Luo Y, Zhong H, Huang T, Liang W, Xiao J, Wu W, Li L, Chen M. Large-scale profiling of the proteome and dual transcriptome in Nile tilapia (Oreochromis niloticus) challenged with low- and high-virulence strains of Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 100:386-396. [PMID: 32165249 DOI: 10.1016/j.fsi.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a common pathogen in aquatic animals, especially tilapia, that hinders aquaculture development and leads to serious economic losses. Previously, a S. agalactiae strain named HN016 was identified from infected tilapia, and the attenuated strain YM001 was subsequently obtained by continuous passaging in Tryptic Soy Broth (TSB) medium. YM001 has been demonstrated as a safe vaccine for S. agalactiae infection in tilapia. To understand the molecular bases of the virulence of these two strains, we performed proteomic and transcriptomic analysis to reveal the protein and gene expression changes in the liver and intestine during the infection process. HN016 significantly decreased the contents of white blood cells (WBCs), neutrophils (NEUs), red blood cells (RBCs) and hematocrit (HCT) and increased the levels of total protein (TP), albumin (ALB) and globulin (GLO), while no such significant differences were observed when comparing the control with YM001. During the infection process, pathogenic peptidoglycan hydrolase, CSPA and membrane proteins were significantly differentially expressed between YM001 and HN016. Furthermore, both proteome and transcriptome data showed that the complement and coagulation cascades pathway and the antigen processing and presentation pathway were stimulated in the liver and intestine, respectively, by YM001 infection compared to HN016 infection. The interaction network analysis of key virulence genes from pathogens suggested that CSPA, as a key node, affects the expression of DOLPP1, MIPEP, PA2G4, OCIAD1, G3BP1 and CLIC5 with a positive correlation. The present evidence suggests that during the infection process, CSPA was the key genes contributing to low virulence in YM001.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wende Wu
- Animal Science and Technology College, Guangxi University, Nanning, 530005, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|