1
|
Ali V, Vyas D. A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109532. [PMID: 39874665 DOI: 10.1016/j.plaphy.2025.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Transplantation experiments conducted in high altitude ecosystems are rising as key strategy to examine the response of individual plant transplanted across distinct elevations. However, plant physiological and biochemical performance in response to changes in abiotic factors across different species and mountain ranges is still lacking. So in the present study, we have made an attempt to link the physiological performance with that of altitudinal gradient in Ladakh by transplanting Lepidium latifolium at four different altitudinal sites. The plant was found to maintain photosynthesis even at high altitudes by modulating photochemical efficiency of photosystem II. Various physiological processes including performance index (PIABS), increase in energy fluxes, closing of the reaction centres and decrease in chlorophyll content play a crucial role in the adaptation of this plant. The efficient and dynamic non-photochemical quenching (NPQ) involving carotenoids particularly zeaxanthin mediated dissipation of excess light energy at high altitudinal sites of Ladakh led the plant to withstand with extremely strong light radiation. As a photoprotective mechanism, decreases in chlorophyll content and increase in carotenoids could lead to a reduction in the absorption of high light energy and avoid photo damage to the chloroplasts. Higher content of redox metabolites such as GSH, ASC, GSH/GSSG ratio and ASC/DHA ratio in plants transplanted at high altitudinal sites further suggests the resilience ability of Lepidium latifolium against harsh environmental stresses. Furthermore, increase in glucosinolate content in plants transplanted at high altitudes suggests the involvement of GLS in the establishment of Lepidium latifolium in Ladakh. Overall, no specific altitudinal trend was observed in the present study indicating the adaptation strategy of Lepidium latifolium to different altitudinal sites can be attributed to the combined effects of multiple environmental factors/microenvironment.
Collapse
Affiliation(s)
- Villayat Ali
- Plant Sciences and Agrotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K, 180001, India
| | - Dhiraj Vyas
- Plant Sciences and Agrotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K, 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Suzuki R, Kinoshita K, Miuchi T, Nishino M, Shimizu Y, Deguchi S. Exploring the Optical Properties of Carotenoid-Based Nanoparticles: The Role of Terminal Groups. Molecules 2024; 29:5456. [PMID: 39598845 PMCID: PMC11597239 DOI: 10.3390/molecules29225456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Carotenoids are increasingly used as naturally occurring food colorants. For application as beverage colorants, fat-soluble carotenoids are formulated into dispersion systems via nanoparticle (NP) formation. In recent years, the antioxidant properties of carotenoids have gained immense recognition for their preventive health benefits, thereby highlighting further interest in their development as functional food ingredients. Although functional carotenoids in dispersion-based formulations are desirable, knowledge regarding the structural and optical properties of NPs of carotenoids other than those of β-carotene, and methods to efficiently produce and compare NPs of various carotenoids, remain scarce. In this study, NPs of β-carotene, lycopene, astaxanthin, and lutein were prepared using a simple reprecipitation method, with a focus on understanding the variations in the molecular self-assembly influenced by the quality of solvent used during reprecipitation. This study presents the novel finding that the terminal groups of carotenoids significantly affect the intermolecular interactions, thereby altering the structural and optical properties of the resulting NPs. Our findings are expected to contribute to the development of new technologies for controlling the color of carotenoids based on the crystal structure of the NPs.
Collapse
Affiliation(s)
- Ryuju Suzuki
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of General Engineering, National Institute of Technology, Sendai College, 48 Nodayama, Medeshima-Shiote, Natori 981-1239, Japan
| | - Keigo Kinoshita
- San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka 561-8588, Japan
| | - Takeshi Miuchi
- San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka 561-8588, Japan
| | - Masayuki Nishino
- San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka 561-8588, Japan
| | - Yasuhiro Shimizu
- San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka 561-8588, Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
3
|
Otani M, Kitamura H, Kudoh S, Imura S, Nakano M. Transcriptome analysis of the common moss Bryum pseudotriquetrum grown under Antarctic field condition. AOB PLANTS 2024; 16:plae043. [PMID: 39347487 PMCID: PMC11430918 DOI: 10.1093/aobpla/plae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024]
Abstract
Mosses are distributed all over the world including Antarctica. Although Antarctic mosses show active growth in a short summer season under harsh environments such as low temperature, drought and high levels of UV radiation, survival mechanisms for such multiple environmental stresses of Antarctic mosses have not yet been clarified. In the present study, transcriptome analyses were performed using one of the common mosses Bryum pseudotriquetrum grown under an Antarctic field and artificial cultivation conditions. Totally 88 205 contigs were generated by de novo assembly, among which 1377 and 435 genes were significantly up and downregulated, respectively, under Antarctic field conditions compared with artificial cultivation conditions at 15°C. Among the upregulated genes, a number of lipid metabolism-related and oil body formation-related genes were identified. Expression levels of these genes were increased by artificial environmental stress treatments such as low temperature, salt and osmic stress treatments. Consistent with these results, B. pseudotriquetrum grown under Antarctic field conditions contained large amounts of fatty acids, especially α-linolenic acid, linolenic acid and arachidonic acid. In addition, proportion of unsaturated fatty acids, which enhance membrane fluidity, to the total fatty acids was also higher in B. pseudotriquetrum grown under Antarctic field conditions. Since lipid accumulation and unsaturation of fatty acids are generally important factors for the acquisition of various environmental stress tolerance in plants, these intracellular physiological and metabolic changes may be responsible for the survival of B. pseudotriquetrum under Antarctic harsh environments.
Collapse
Affiliation(s)
- Masahiro Otani
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Haruki Kitamura
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
4
|
Sahay S, Shrestha N, Dias HM, Mural RV, Grzybowski M, Schnable JC, Głowacka K. Nonphotochemical quenching kinetics GWAS in sorghum identifies genes that may play conserved roles in maize and Arabidopsis thaliana photoprotection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:3000-3014. [PMID: 39126284 DOI: 10.1111/tpj.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Photosynthetic organisms must cope with rapid fluctuations in light intensity. Nonphotochemical quenching (NPQ) enables the dissipation of excess light energy as heat under high light conditions, whereas its relaxation under low light maximizes photosynthetic productivity. We quantified variation in NPQ kinetics across a large sorghum (Sorghum bicolor) association panel in four environments, uncovering significant genetic control for NPQ. A genome-wide association study (GWAS) confidently identified three unique regions in the sorghum genome associated with NPQ and suggestive associations in an additional 61 regions. We detected strong signals from the sorghum ortholog of Arabidopsis thaliana Suppressor Of Variegation 3 (SVR3) involved in plastid-nucleus signaling. By integrating GWAS results for NPQ across maize (Zea mays) and sorghum-association panels, we identified a second gene, Non-yellowing 1 (NYE1), originally studied by Gregor Mendel in pea (Pisum sativum) and involved in the degradation of photosynthetic pigments in light-harvesting complexes. Analysis of nye1 insertion alleles in A. thaliana confirmed the effect of this gene on NPQ kinetics in eudicots. We extended our comparative genomics GWAS framework across the entire maize and sorghum genomes, identifying four additional loci involved in NPQ kinetics. These results provide a baseline for increasing the accuracy and speed of candidate gene identification for GWAS in species with high linkage disequilibrium.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nikee Shrestha
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Henrique Moura Dias
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ravi V Mural
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
| |
Collapse
|
5
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
6
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
7
|
Liang D, Xiang H, Xia J. Inhibitory effects of Ipomoea cairica extracts on the harmful algae Phaeocystis globosa. MARINE POLLUTION BULLETIN 2022; 185:114228. [PMID: 36274557 DOI: 10.1016/j.marpolbul.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hua Xiang
- State key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Zhang Q, Ruan J, Mumm R, de Vos RCH, Liu MY. Dynamic Changes in the Antioxidative Defense System in the Tea Plant Reveal the Photoprotection-Mediated Temporal Accumulation of Flavonoids under Full Sunlight Exposure. PLANT & CELL PHYSIOLOGY 2022; 63:1695-1708. [PMID: 36043695 DOI: 10.1093/pcp/pcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
To reveal the mechanisms underlying how light affects flavonoid metabolism and the potential role of flavonoids in protecting against photooxidative stress in tea leaves, tea plants adapted to low-light conditions were exposed to full sunlight over 48 h. There was an increase in the activities of catalase (CAT) and superoxide dismutase (SOD) as well as greater accumulation of reactive oxygen species, lutein, tocopherols, ascorbate and malondialdehyde, suggestive of a time-dependent response to photooxidative stress in tea leaves. Analysis of the time dependency of each element of the antioxidant system indicated that carotenoids and tocopherols exhibited the fastest response to light stress (within 3 h), followed by SOD, CAT and catechin, which peaked at 24 h. Meanwhile, flavonols, vitamin C and glutathione showed the slowest response. Subsequent identification of the main phytochemicals involved in protecting against oxidative stress using untargeted metabolomics revealed a fast and initial accumulation of nonesterified catechins that preceded the increase in flavonol glycosides and catechin esters. Gene expression analysis suggested that the light-induced accumulation of flavonoids was highly associated with the gene encoding flavonol synthase. Ultraviolet B (UV-B) irradiation further validated the time-dependent and collaborative effects of flavonoids in photoprotection in tea plants. Intriguingly, the dynamics of the metabolic response are highly distinct from those reported for Arabidopsis, suggesting that the response to light stress is not conserved across plants. This study additionally provides new insights into the functional role of flavonoids in preventing photooxidative stress and may contribute to further improving tea quality through the control of light intensity.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| | - Roland Mumm
- Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ric C H de Vos
- Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mei-Ya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 South Meiling Road, Hangzhou, Zhejiang 310008, China
- Key Laboratory of Plant Biology and Resource Application of Tea, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou 31008, China
| |
Collapse
|
9
|
Badmus UO, Ač A, Klem K, Urban O, Jansen MAK. A meta-analysis of the effects of UV radiation on the plant carotenoid pool. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:36-45. [PMID: 35561499 DOI: 10.1016/j.plaphy.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Induction of metabolite biosynthesis and accumulation is one of the most prominent UV-mediated changes in plants, whether during eustress (positive response) or distress (negative response). However, despite evidence suggesting multiple linkages between UV exposure and carotenoid induction in plants, there is no consensus in the literature concerning the direction and/or amplitude of these effects. Here, we compiled publications that characterised the relative impact of UV on the content of individual carotenoids and subjected the created database to a meta-analysis in order to acquire new, fundamental insights in responses of the carotenoid pool to UV exposure. Overall, it was found that violaxanthin was the only carotenoid compound that was significantly and consistently induced as a result of UV exposure. Violaxanthin accumulation was accompanied by a UV dose dependent decrease in antheraxanthin and zeaxanthin. The resulting shift in the state of the xanthophyll cycle would normally occur when plants are exposed to low light and this is associated with increased susceptibility to photoinhibition. Although UV induced violaxanthin accumulation is positively linked to the daily UV dose, the current dataset is too small to establish a link with plant stress, or even experimental growth conditions. In summary, the effects of UV radiation on carotenoids are multifaceted and compound-specific, and there is a need for a systematic analysis of dose-response and wavelength dependencies, as well as of interactive effects with further environmental parameters.
Collapse
Affiliation(s)
- Uthman O Badmus
- School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Alexander Ač
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Karel Klem
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| |
Collapse
|
10
|
Yang S, Liu H, Zhao Y, Su H, Wei X, Wang Z, Zhao X, Zhang XW, Yuan Y. Map-Based Cloning and Characterization of Br-dyp1, a Gene Conferring Dark Yellow Petal Color Trait in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:841328. [PMID: 35251110 PMCID: PMC8891484 DOI: 10.3389/fpls.2022.841328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 05/29/2023]
Abstract
Flower color is an important trait in Brassica species. However, genes responsible for the dark yellow flower trait in Chinese cabbage have not been reported. In this study, we identified a dark-yellow-flowered Chinese cabbage line SD369. Genetic analysis indicated that the dark yellow flower trait in SD369 was controlled by a single recessive locus, Br-dyp1 (dark yellow petal color 1 in Brassica rapa). Using bulked segregant RNA sequencing and kompetitive allele-specific PCR assays, Br-dyp1 was fine-mapped to an interval of 53.6 kb on chromosome A09. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra037130 (BraA09.ZEP), which encodes a zeaxanthin epoxidase, was the most likely candidate gene for Br-dyp1. Carotenoid profile analysis suggested that Bra037130 (BraA09.ZEP) might participate in the epoxidation from zeaxanthin to violaxanthin. The 679 bp insertion in dark yellow petal caused premature stop codon, thus caused the loss-of-function of the enzyme zeaxanthin epoxidase (ZEP), which disturbed the carotenoid metabolism, and caused the increased accumulation of total carotenoid, and finally converted the flower color from yellow to dark yellow. Comparative transcriptome analysis also showed that the "carotenoid biosynthesis" pathway was significantly enriched, and genes involved in carotenoid degradation and abscisic acid biosynthesis and metabolism were significantly downregulated. Furthermore, we developed and validated the functional marker Br-dyp1-InDel for Br-dyp1. Overall, these results provide insight into the molecular basis of carotenoid-based flower coloration in B. rapa and reveal valuable information for marker-assisted selection breeding in Chinese cabbage.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Honglei Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiao-Wei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Metabolite Profiling and Classification of Highbush Blueberry Leaves under Different Shade Treatments. Metabolites 2022; 12:metabo12010079. [PMID: 35050200 PMCID: PMC8778333 DOI: 10.3390/metabo12010079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Blueberry belongs to the genus Vaccinium L. in the Ericaceae and is an economically important shrub that produces small berries that are rich in nutrients. There were differences in the appearance of blueberry leaves under different shade treatments. To explore the differences in metabolites in blueberry leaves under different shading treatments, nontargeted liquid chromatography-mass spectrometry (LC-MS) metabonomic analysis was performed. Different shade intensities resulted in significant differences in the contents of metabolites. A total of 6879 known metabolites were detected, including 750 significantly differentially expressed metabolites, including mainly lipids and lipid-like molecules and phenylpropanoid and polyketide superclass members. Based on a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the flavone and flavonol biosynthesis pathways were the most significantly enriched. The results of this study provide a reference and scientific basis for the establishment of a high-quality and high-yield shaded blueberry cultivation system.
Collapse
|
12
|
Carotenoids participate in adaptation/resistance of daily desiccation in the intertidal red alga Neopyropia yezoensis (Bangiales, Rhodophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Yazdani M, Croen MG, Fish TL, Thannhauser TW, Ahner BA. Overexpression of native ORANGE (OR) and OR mutant protein in Chlamydomonas reinhardtii enhances carotenoid and ABA accumulation and increases resistance to abiotic stress. Metab Eng 2021; 68:94-105. [PMID: 34571147 DOI: 10.1016/j.ymben.2021.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 01/13/2023]
Abstract
The carotenoid content of plants can be increased by overexpression of the regulatory protein ORANGE (OR) or a mutant variant known as the 'golden SNP'. In the present study, a strong light-inducible promoter was used to overexpress either wild type CrOR (CrORWT) or a mutated CrOR (CrORHis) containing a single histidine substitution for a conserved arginine in the microalgae Chlamydomonas reinhardtii. Overexpression of CrORWT and CrORHis roughly doubled and tripled, respectively, the accumulation of several different carotenoids, including β-carotene, α-carotene, lutein and violaxanthin in C. reinhardtii and upregulated the transcript abundance of nearly all relevant carotenoid biosynthetic genes. In addition, microscopic analysis revealed that the OR transgenic cells were larger than control cells and exhibited larger chloroplasts with a disrupted morphology. Moreover, both CrORWT and CrORHis cell lines showed increased tolerance to salt and paraquat stress. The levels of endogenous phytohormone abscisic acid (ABA) were also increased in CrORWT and CrORHis lines, not only in normal growth conditions but also in growth medium supplemented with salt and paraquat. Together these results offer new insights regarding the role of the native OR protein in regulating carotenoid biosynthesis and the accumulation of several carotenoids in microalgae, and establish a new functional role for OR to modulate oxidative stress tolerance potentially mediated by ABA.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Michelle G Croen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Tara L Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Enhancement of Xanthophyll Synthesis in Porphyra/Pyropia Species (Rhodophyta, Bangiales) by Controlled Abiotic Factors: A Systematic Review and Meta-Analysis. Mar Drugs 2021; 19:md19040221. [PMID: 33921190 PMCID: PMC8071490 DOI: 10.3390/md19040221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of these compounds in the biomass of these species. The results show that salinity significantly affected the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g dm at 55 psu). For lutein and zeaxanthin, the wavelength treatment caused significant differences between the basal and maximum content (4.16–23.47 µg/g dm). Additionally, in Pyropia spp., the total carotenoids were considerably higher than in Porphyra spp.; however, the lutein and zeaxanthin contents were lower. We discuss the specific conditions for each treatment and the relation to the ecological distribution of these species.
Collapse
|
15
|
Campayo A, Savoi S, Romieu C, López-Jiménez AJ, Serrano de la Hoz K, Salinas MR, Torregrosa L, Alonso GL. The application of ozonated water rearranges the Vitis vinifera L. leaf and berry transcriptomes eliciting defence and antioxidant responses. Sci Rep 2021; 11:8114. [PMID: 33854120 PMCID: PMC8046768 DOI: 10.1038/s41598-021-87542-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Ozonated water has become an innovative, environmentally friendly tool for controlling the development of fungal diseases in the vineyard or during grape postharvest conservation. However, little information is currently available on the effects of ozonated water sprayings on the grapevine physiology and metabolism. Using the microvine model, we studied the transcriptomic response of leaf and fruit organs to this treatment. The response to ozone was observed to be organ and developmental stage-dependent, with a decrease of the number of DEGs (differentially expressed genes) in the fruit from the onset of ripening to later stages. The most highly up-regulated gene families were heat-shock proteins and chaperones. Other up-regulated genes were involved in oxidative stress homeostasis such as those of the ascorbate-glutathione cycle and glutathione S-transferases. In contrast, genes related to cell wall development and secondary metabolites (carotenoids, terpenoids, phenylpropanoids / flavonoids) were generally down-regulated after ozone treatment, mainly in the early stage of fruit ripening. This down-regulation may indicate a possible carbon competition favouring the re-establishment and maintenance of the redox homeostasis rather than the synthesis of secondary metabolites at the beginning of ripening, the most ozone responsive developmental stage.
Collapse
Affiliation(s)
- Ana Campayo
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
- BetterRID (Better Research, Innovation and Development, S.L.), Carretera de Las Peñas (CM-3203), Km 3.2, Campo de Prácticas-UCLM, 02071, Albacete, Spain
| | - Stefania Savoi
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France
| | - Charles Romieu
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France
| | - Alberto José López-Jiménez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071, Albacete, Spain
| | - Kortes Serrano de la Hoz
- BetterRID (Better Research, Innovation and Development, S.L.), Carretera de Las Peñas (CM-3203), Km 3.2, Campo de Prácticas-UCLM, 02071, Albacete, Spain
| | - M Rosario Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
| | - Laurent Torregrosa
- AGAP, CIRAD, INRAe, Institut Agro-Montpellier SupAgro, Montpellier University, 34060, Montpellier, France.
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Avda. de España s/n, 02071, Albacete, Spain
| |
Collapse
|
16
|
Zhang Q, Liu M, Mumm R, Vos RCH, Ruan J. Metabolomics reveals the within-plant spatial effects of shading on tea plants. TREE PHYSIOLOGY 2021; 41:317-330. [PMID: 33104217 DOI: 10.1093/treephys/tpaa127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
It is well known that green tea made from fully developed leaves located at the base of young shoots is of lower quality than that made from the still developing leaves located on the top of the shoot. It has additionally been shown that plant shading can significantly improve green tea quality. Here, we aimed to get more insight into the effects of shading on the overall metabolome in different parts of the tea shoots. To do this, field-grown tea plants were shaded by coverage with either a straw layer or a black net, both blocking the daylight intensity for more than 90%. Both the first (i.e. still developing) leaf and the fourth (i.e. fully developed) leaf, as well as the stem of young shoots were harvested and subjected to complementary untargeted metabolomics approaches, using accurate mass LC-Orbitrap-Fourier transform mass spectrometry (FTMS) for profiling both semi-polar and lipid-soluble compounds and GC-TOF-MS for profiling polar compounds. In total, 1419 metabolites were detected. Shading resulted in a decreased ratio of polyphenols to amino acids (which improves the quality of green tea) and lower levels of galloylated catechins in the shoots. The positive effect of shading on the amino acid/catechin ratio was more pronounced in the fully developed (fourth) than in the developing (first) leaves. Furthermore, many metabolites, especially organic acids, carbohydrates and amino acids, showed differential or opposite responses to the shading treatments between the three shoot tissues investigated, suggesting a within-plant spatial regulation or transport/redistribution of carbon and nitrogen resources between the tissues of the growing young shoots. This work provides new insight into the spatial effects of shading on tea plants, which could further help to increase tea quality by improving cultivation measures for plant shading.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310058, China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310058, China
| | - Roland Mumm
- Wageningen Plant Research, Bioscience, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Ric C H Vos
- Wageningen Plant Research, Bioscience, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
17
|
Neugart S, Bumke-Vogt C. Flavonoid Glycosides in Brassica Species Respond to UV-B Depending on Exposure Time and Adaptation Time. Molecules 2021; 26:molecules26020494. [PMID: 33477705 PMCID: PMC7831952 DOI: 10.3390/molecules26020494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany
- Correspondence: ; Tel.: +49-0551-39-27958
| | - Christiane Bumke-Vogt
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany;
| |
Collapse
|
18
|
Grinzato A, Albanese P, Marotta R, Swuec P, Saracco G, Bolognesi M, Zanotti G, Pagliano C. High-Light versus Low-Light: Effects on Paired Photosystem II Supercomplex Structural Rearrangement in Pea Plants. Int J Mol Sci 2020; 21:E8643. [PMID: 33207833 PMCID: PMC7698171 DOI: 10.3390/ijms21228643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022] Open
Abstract
In plant grana thylakoid membranes Photosystem II (PSII) associates with a variable number of antenna proteins (LHCII) to form different types of supercomplexes (PSII-LHCII), whose organization is dynamically adjusted in response to light cues, with the C2S2 more abundant in high-light and the C2S2M2 in low-light. Paired PSII-LHCII supercomplexes interacting at their stromal surface from adjacent thylakoid membranes were previously suggested to mediate grana stacking. Here, we present the cryo-electron microscopy maps of paired C2S2 and C2S2M2 supercomplexes isolated from pea plants grown in high-light and low-light, respectively. These maps show a different rotational offset between the two supercomplexes in the pair, responsible for modifying their reciprocal interaction and energetic connectivity. This evidence reveals a different way by which paired PSII-LHCII supercomplexes can mediate grana stacking at diverse irradiances. Electrostatic stromal interactions between LHCII trimers almost completely overlapping in the paired C2S2 can be the main determinant by which PSII-LHCII supercomplexes mediate grana stacking in plants grown in high-light, whereas the mutual interaction of stromal N-terminal loops of two facing Lhcb4 subunits in the paired C2S2M2 can fulfil this task in plants grown in low-light. The high-light induced accumulation of the Lhcb4.3 protein in PSII-LHCII supercomplexes has been previously reported. Our cryo-electron microscopy map at 3.8 Å resolution of the C2S2 supercomplex isolated from plants grown in high-light suggests the presence of the Lhcb4.3 protein revealing peculiar structural features of this high-light-specific antenna important for photoprotection.
Collapse
Affiliation(s)
- Alessandro Grinzato
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy; (A.G.); (G.Z.)
| | - Pascal Albanese
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| | - Roberto Marotta
- Center for Convergent Technologies, Electron Microscopy Facility, Istituto Italiano di Tecnologia—IIT, Via Morego 30, 16163 Genova, Italy;
| | - Paolo Swuec
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (P.S.); (M.B.)
- Cryo-Electron Microscopy Facility, Human Technopole, Via Cristina Belgioioso 171, 20157 Milano, Italy
| | - Guido Saracco
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| | - Martino Bolognesi
- Department of BioSciences, University of Milano, Via Celoria 26, 20133 Milano, Italy; (P.S.); (M.B.)
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy; (A.G.); (G.Z.)
| | - Cristina Pagliano
- Applied Science and Technology Department–BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144 Torino, Italy; (P.A.); (G.S.)
| |
Collapse
|
19
|
Kayama M, Chen JF, Nakada T, Nishimura Y, Shikanai T, Azuma T, Miyashita H, Takaichi S, Kashiyama Y, Kamikawa R. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol 2020; 18:126. [PMID: 32938439 PMCID: PMC7495860 DOI: 10.1186/s12915-020-00853-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. Results Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. Conclusion The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.
Collapse
Affiliation(s)
- Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Jun-Feng Chen
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Takashi Nakada
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | | - Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichiro Kashiyama
- Graduate School of Engineering, Fukui University of Technology, Fukui, Japan
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, 606-8501, Japan. .,Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
20
|
Mattila H, Mishra KB, Kuusisto I, Mishra A, Novotná K, Šebela D, Tyystjärvi E. Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis. PLANTA 2020; 252:19. [PMID: 32671474 PMCID: PMC7363673 DOI: 10.1007/s00425-020-03423-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/08/2020] [Indexed: 05/27/2023]
Abstract
Low temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition. The rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 °C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 °C), and at 4 °C from plants shifted to 4 °C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter Fv/Fm and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 °C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or Fv/Fm to a first-order equation, proceeded more slowly or equally at 4 than at 22 °C. The 2-week cold-treatment decreased photoinhibition at 4 °C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 °C. Under high light, the PSII electron acceptor QA was more reduced at 4 than at 22 °C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Kumud B Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Iiris Kuusisto
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Anamika Mishra
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Kateřina Novotná
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - David Šebela
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986, 4a, Brno, 603 00, Czech Republic
| | - Esa Tyystjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
21
|
Gollan PJ, Aro EM. Photosynthetic signalling during high light stress and recovery: targets and dynamics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190406. [PMID: 32362249 DOI: 10.1098/rstb.2019.0406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The photosynthetic apparatus is one of the major primary sensors of the plant's external environment. Changes in environmental conditions affect the balance between harvested light energy and the capacity to deal with excited electrons in the stroma, which alters the redox homeostasis of the photosynthetic electron transport chain. Disturbances to redox balance activate photosynthetic regulation mechanisms and trigger signalling cascades that can modify the transcription of nuclear genes. H2O2 and oxylipins have been identified as especially prominent regulators of gene expression in response to excess light stress. This paper explores the hypothesis that photosynthetic imbalance triggers specific signals that target discrete gene profiles and biological processes. Analysis of the major retrograde signalling pathways engaged during high light stress and recovery demonstrates both specificity and overlap in gene targets. This work reveals distinct, time-resolved profiles of gene expression that suggest a regulatory interaction between rapidly activated abiotic stress response and induction of secondary metabolism and detoxification processes during recovery. The findings of this study show that photosynthetic electron transport provides a finely tuned sensor for detecting and responding to the environment through chloroplast retrograde signalling. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
22
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
23
|
Upadhyay S, Srivastava Y. Retrograde response by reactive oxygen/nitrogen species in plants involving different cellular organelles. Biol Chem 2019; 400:979-989. [PMID: 31004559 DOI: 10.1515/hsz-2018-0463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/07/2019] [Indexed: 01/17/2023]
Abstract
During oxidative and nitrosative stress conditions cellular organelles convey information to the nucleus to express specific sets of genes to withstand the stress condition and to reorganize their growth and developmental pattern. This organelle to nucleus communication is termed retrograde signaling. In the plant system chloroplast and peroxisomes are mainly involved with little involvement of mitochondria and other organelles in oxidative stress-mediated retrograde signaling. In this review, we will discuss retrograde signaling in plant systems with factors that regulate this signaling cascade.
Collapse
Affiliation(s)
- Swati Upadhyay
- Biotechnology Division (CSIR-CIMAP), Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226015, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| |
Collapse
|
24
|
Albanese P, Manfredi M, Marengo E, Saracco G, Pagliano C. Structural and functional differentiation of the light-harvesting protein Lhcb4 during land plant diversification. PHYSIOLOGIA PLANTARUM 2019; 166:336-350. [PMID: 30859575 DOI: 10.1111/ppl.12964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
About 475 million years ago, plants originated from an ancestral green alga and evolved first as non-vascular and later as vascular plants, becoming the primary producers of biomass on lands. During that time, the light-harvesting complex II (LHCII), responsible for sunlight absorption and excitation energy transfer to the photosystem II (PSII) core, underwent extensive differentiation. Lhcb4 is an ancestral LHCII that, in flowering plants, differentiated into up to three isoforms, Lhcb4.1, Lhcb4.2 and Lhcb4.3. The pivotal position of Lhcb4 in the PSII-LHCII supercomplex (PSII-LHCIIsc) allows functioning as linker for either S- or M-trimers of LHCII to the PSII core. The increased accumulation of Lhcb4.3 observed in PSII-LHCIIsc of plants acclimated to moderate and high light intensities induced us to investigate, whether this isoform has a preferential localization in a specific PSII-LHCIIsc conformation that might explain its light-dependent accumulation. In this work, by combining an improved method for separation of different forms of PSII-LHCIIsc from thylakoids of Pisum sativum L. grown at increasing irradiances with quantitative proteomics, we assessed that Lhcb4.3 is abundant in PSII-LHCIIsc of type C2 S2 , and, interestingly, similar results were found for the PsbR subunit. Phylogenetic comparative analysis on different taxa of the Viridiplantae lineage and structural modeling further pointed out to an effect of the evolution of different Lhcb4 isoforms on the light-dependent modulation of the PSII-LHCIIsc organization. This information provides new insight on the properties of the Lhcb4 and its isoforms and their role on the structure, function and regulation of PSII.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, 15121, Alessandria, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, 10144, Torino, Italy
| |
Collapse
|
25
|
Hamdani S, Khan N, Perveen S, Qu M, Jiang J, Zhu XG. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. PHOTOSYNTHESIS RESEARCH 2019; 139:107-121. [PMID: 30456488 DOI: 10.1007/s11120-018-0589-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 05/25/2023]
Abstract
Non-photochemical quenching (NPQ) of the excited state of chlorophyll a is a major photoprotective mechanism plants utilize to survive under high light. Here, we report the impact of long-term light quality treatment on photosynthetic properties, especially NPQ in rice. We used three LED-based light regimes, i.e., red (648-672 nm), blue (438-460 nm), and "warm" white light (529-624 nm), with the incident photon flux density of 300 µmol photons m-2 s-1, the difference in the absorbed photon flux densities by leaves grown under different light quality being less than 7%. Our results show that blue light, as compared to white light, induced a significant decrease in Fv/Fm, a decreased rate of reduction of P700+ after P700 was completely oxidized; furthermore, blue light also induced higher NPQ with an increased initial speed of NPQ induction, which corresponds to the qE component of NPQ, and a lower maximum quantum yield of PSII, i.e., Y(II). In contrast, rice grown under long-term red light showed decreased Y(II) and increased NPQ, but with no change in Fv/Fm. Furthermore, we found that rice grown under either blue or red light showed decreased transcript abundance of both catalase and ascorbate peroxidase, together with an increased H2O2 content, as compared to rice grown under white light. All these data suggest that even under a moderate incident light level, rice grown under blue or red light led to compromised antioxidant system, which contributed to decreased quantum yield of photosystem II and increased NPQ.
Collapse
Affiliation(s)
- Saber Hamdani
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Naveed Khan
- Max-Planck Partner Institute of Computational Biology, Shanghai Institute of Biological Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shahnaz Perveen
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jianjun Jiang
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Wang L, Apel K. Dose-dependent effects of 1O2 in chloroplasts are determined by its timing and localization of production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:29-40. [PMID: 30272237 PMCID: PMC6939833 DOI: 10.1093/jxb/ery343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
In plants, highly reactive singlet oxygen (1O2) is known to inhibit photosynthesis and to damage the cell as a cytotoxin. However, more recent studies have also proposed 1O2 as a signal. In plants under stress, not only 1O2 but also other reactive oxygen species (ROS) are generated simultaneously, thus making it difficult to link a particular response to the release of 1O2 and establish a signaling role for this ROS. This obstacle has been overcome by the identification of conditional mutants of Arabidopsis thaliana that selectively generate 1O2 and trigger various 1O2-mediated responses. In chloroplasts of these mutants, chlorophyll or its biosynthetic intermediates may act as a photosensitizer and generate 1O2. These 1O2-mediated responses are not only dependent on the dosage of 1O2 but also are determined by the timing and suborganellar localization of its production. This spatial- and temporal-dependent variability of 1O2-mediated responses emphasizes the importance of 1O2 as a highly versatile and short-lived signal that acts throughout the life cycle of a plant.
Collapse
Affiliation(s)
- Liangsheng Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Klaus Apel
- Boyce Thompson Institute, Ithaca, NY, USA
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| |
Collapse
|
27
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms. Sci Rep 2018; 8:13685. [PMID: 30209276 PMCID: PMC6135792 DOI: 10.1038/s41598-018-31638-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.
Collapse
|
29
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
30
|
Sánchez-Corrionero Á, Sánchez-Vicente I, González-Pérez S, Corrales A, Krieger-Liszkay A, Lorenzo Ó, Arellano JB. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:188-196. [PMID: 28709027 DOI: 10.1016/j.jplph.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen (1O2) and activating 1O2-mediated cell death. Thylakoids of aba1 produced twice as much 1O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1O2 generation in aba1. Up-regulation of the 1O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1O2-overproducing mutants of Arabidopsis for investigating 1O2-mediated cell death.
Collapse
Affiliation(s)
- Álvaro Sánchez-Corrionero
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain; Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain; Department of Biotechnology, Center for Plant Genomics and Biotechnology, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Sergio González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain
| | - Ascensión Corrales
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain; Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Institut des sciences du vivant Frédéric Joliot, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
| | - Óscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Juan B Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain.
| |
Collapse
|
31
|
Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ 2017; 5:e3050. [PMID: 28761775 PMCID: PMC5527980 DOI: 10.7717/peerj.3050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 01/13/2023] Open
Abstract
Background The growth and development of plants is deleteriously affected by various biotic and abiotic stress factors. Wounding in plants is caused by exposure to environmental stress, mechanical stress, and via herbivory. Typically, oxidative burst in response to wounding is associated with the formation of reactive oxygen species, such as the superoxide anion radical (O2•−), hydrogen peroxide (H2O2) and singlet oxygen; however, few experimental studies have provided direct evidence of their detection in plants. Detection of O2•− formation in plant tissues have been performed using various techniques including electron paramagnetic resonance spin-trap spectroscopy, epinephrine-adrenochrome acceptor methods, staining with dyes such as tetrazolium dye and nitro blue tetrazolium (NBT); however, kinetic measurements have not been performed. In the current study, we provide evidence of O2•− generation and its kinetics in the leaves of spinach (Spinacia oleracea) subjected to wounding. Methods Real-time monitoring of O2•− generation was performed using catalytic amperometry. Changes in oxidation current for O2•− was monitored using polymeric iron-porphyrin-based modified carbon electrodes (φ = 1 mm) as working electrode with Ag/AgCl as the reference electrode. Result The results obtained show continuous generation of O2•− for minutes after wounding, followed by a decline. The exogenous addition of superoxide dismutase, which is known to dismutate O2•− to H2O2, significantly suppressed the oxidation current. Conclusion Catalytic amperometric measurements were performed using polymeric iron-porphyrin based modified carbon electrode. We claim it to be a useful tool and a direct method for real-time monitoring and precise detection of O2•− in biological samples, with the potential for wide application in plant research for specific and sensitive detection of O2•−.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Akemi Takahashi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Ryo Fujii
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | | | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan.,Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
32
|
Zhang Q, Liu M, Ruan J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves. BMC PLANT BIOLOGY 2017; 17:64. [PMID: 28320327 PMCID: PMC5359985 DOI: 10.1186/s12870-017-1012-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/09/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. RESULTS The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. CONCLUSIONS Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.
Collapse
Affiliation(s)
- Qunfeng Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| | - Meiya Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310058 China
- Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, South Meiling Road 9, Hangzhou, Zhejiang 310008 China
| |
Collapse
|
33
|
Wagner R, von Sydow L, Aigner H, Netotea S, Brugière S, Sjögren L, Ferro M, Clarke A, Funk C. Deletion of FtsH11 protease has impact on chloroplast structure and function in Arabidopsis thaliana when grown under continuous light. PLANT, CELL & ENVIRONMENT 2016; 39:2530-2544. [PMID: 27479913 DOI: 10.1111/pce.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/12/2016] [Accepted: 07/17/2016] [Indexed: 05/20/2023]
Abstract
The membrane-integrated metalloprotease FtsH11 of Arabidopsis thaliana is proposed to be dual-targeted to mitochondria and chloroplasts. A bleached phenotype was observed in ftsh11 grown at long days or continuous light, pointing to disturbances in the chloroplast. Within the chloroplast, FtsH11 was found to be located exclusively in the envelope. Two chloroplast-located proteins of unknown function (Tic22-like protein and YGGT-A) showed significantly higher abundance in envelope membranes and intact chloroplasts of ftsh11 and therefore qualify as potential substrates for the FtsH11 protease. No proteomic changes were observed in the mitochondria of 6-week-old ftsh11 compared with wild type, and FtsH11 was not immunodetected in these organelles. The abundance of plastidic proteins, especially of photosynthetic proteins, was altered even during standard growth conditions in total leaves of ftsh11. At continuous light, the amount of photosystem I decreased relative to photosystem II, accompanied by a drastic change of the chloroplast morphology and a drop of non-photochemical quenching. FtsH11 is crucial for chloroplast structure and function during growth in prolonged photoperiod.
Collapse
Affiliation(s)
- Raik Wagner
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Lotta von Sydow
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Harald Aigner
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Sergiu Netotea
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
- Bioinformatics Infrastructure for Life Sciences (BILS), Linköping, Sweden
| | - Sabine Brugière
- U1038 INSERM/CEA/UJ, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, Cedex 9, France
| | - Lars Sjögren
- Department of Biological and Environmental Sciences, Gothenburg University, 40530, Gothenburg, Sweden
| | - Myriam Ferro
- U1038 INSERM/CEA/UJ, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, Cedex 9, France
| | - Adrian Clarke
- Department of Biological and Environmental Sciences, Gothenburg University, 40530, Gothenburg, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
34
|
Hou X, Rivers J, León P, McQuinn RP, Pogson BJ. Synthesis and Function of Apocarotenoid Signals in Plants. TRENDS IN PLANT SCIENCE 2016; 21:792-803. [PMID: 27344539 DOI: 10.1016/j.tplants.2016.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 05/17/2023]
Abstract
In plants, carotenoids are essential for photosynthesis and photoprotection. However, carotenoids are not the end products of the pathway; apocarotenoids are produced by carotenoid cleavage dioxygenases (CCDs) or non-enzymatic processes. Apocarotenoids are more soluble or volatile than carotenoids but they are not simply breakdown products, as there can be modifications post-cleavage and their functions include hormones, volatiles, and signals. Evidence is emerging for a class of apocarotenoids, here referred to as apocarotenoid signals (ACSs), that have regulatory roles throughout plant development beyond those ascribed to abscisic acid (ABA) and strigolactone (SL). In this context we review studies of carotenoid feedback regulation, chloroplast biogenesis, stress signaling, and leaf and root development providing evidence that apocarotenoids may fine-tune plant development and responses to environmental stimuli.
Collapse
Affiliation(s)
- Xin Hou
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - John Rivers
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
35
|
Carmody M, Crisp PA, d'Alessandro S, Ganguly D, Gordon M, Havaux M, Albrecht-Borth V, Pogson BJ. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. PLANT PHYSIOLOGY 2016; 171:1734-49. [PMID: 27288360 PMCID: PMC4936574 DOI: 10.1104/pp.16.00404] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 05/18/2023]
Abstract
Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction.
Collapse
Affiliation(s)
- Melanie Carmody
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Stefano d'Alessandro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Diep Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Matthew Gordon
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Michel Havaux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Verónica Albrecht-Borth
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| |
Collapse
|
36
|
Albanese P, Manfredi M, Meneghesso A, Marengo E, Saracco G, Barber J, Morosinotto T, Pagliano C. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1651-60. [PMID: 27378191 DOI: 10.1016/j.bbabio.2016.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Plants are sessile organisms and need to acclimate to ever-changing light conditions in order to survive. These changes trigger a dynamic reorganization of the membrane protein complexes in the thylakoid membranes. Photosystem II (PSII) and its light harvesting system (LHCII) are the major target of this acclimation response, and accumulating evidences indicate that the amount and composition of PSII-LHCII supercomplexes in thylakoids are dynamically adjusted in response to changes in light intensity and quality. In this study, we characterized the PSII-LHCII supercomplexes in thylakoid membranes of pea plants in response to long-term acclimation to different light intensities. We provide evidence of a reorganization of the PSII-LHCII supercomplexes showing distinct changes in their antenna moiety. Mass spectrometry analysis revealed a specific reduction of Lhcb3, Lhcb6 and M-LHCII trimers bound to the PSII cores, while the Lhcb4.3 isoform increased in response to high light intensities. The modulation of Lhcb protein content correlates with the reduction of the functional PSII antenna size. These results suggest that the Lhcb3, Lhcb4.3 and Lhcb6 antenna subunits are major players in modulation of the PSII antenna size upon long-term acclimation to increased light levels. PsbS was not detected in the isolated PSII-LHCII supercomplexes at any light condition, despite an increased accumulation in thylakoids of high light acclimated plants, suggesting that PsbS is not a constitutive component of PSII-LHCII supercomplexes.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Alessandria, Italy; Department of Biology, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121 Alessandria, Italy; Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Andrea Meneghesso
- Department of Biology, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Guido Saracco
- Center for Space Human Robotics IIT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Turin, Italy
| | - James Barber
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58 B, 35121 Padova, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Alessandria, Italy.
| |
Collapse
|
37
|
Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed. PLANT PHYSIOLOGY 2016; 171:1837-51. [PMID: 27208224 PMCID: PMC4936585 DOI: 10.1104/pp.16.00604] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 05/19/2023]
Abstract
Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species.
Collapse
Affiliation(s)
- Sabrina Gonzalez-Jorge
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Payam Mehrshahi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Alexander E Lipka
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Ruthie Angelovici
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Michael A Gore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| |
Collapse
|
38
|
Blaby IK, Blaby-Haas CE, Pérez-Pérez ME, Schmollinger S, Fitz-Gibbon S, Lemaire SD, Merchant SS. Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:974-988. [PMID: 26473430 PMCID: PMC4715741 DOI: 10.1111/tpj.13053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/07/2015] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are produced by and have the potential to be damaging to all aerobic organisms. In photosynthetic organisms, they are an unavoidable byproduct of electron transfer in both the chloroplast and mitochondrion. Here, we employ the reference unicellular green alga Chlamydomonas reinhardtii to identify the effect of H2O2 on gene expression by monitoring the changes in the transcriptome in a time-course experiment. Comparison of transcriptomes from cells sampled immediately prior to the addition of H2O2 and 0.5 and 1 h subsequently revealed 1278 differentially abundant transcripts. Of those transcripts that increase in abundance, many encode proteins involved in ROS detoxification, protein degradation and stress responses, whereas among those that decrease are transcripts encoding proteins involved in photosynthesis and central carbon metabolism. In addition to these transcriptomic adjustments, we observe that addition of H2O2 is followed by an accumulation and oxidation of the total intracellular glutathione pool, and a decrease in photosynthetic O2 output. Additionally, we analyze our transcriptomes in the context of changes in transcript abundance in response to singlet O2 (O2*), and relate our H2O2 -induced transcripts to a diurnal transcriptome, where we demonstrate enrichments of H2O2 -induced transcripts early in the light phase, late in the light phase and 2 h prior to light. On this basis several genes that are highlighted in this work may be involved in previously undiscovered stress remediation pathways or acclimation responses.
Collapse
Affiliation(s)
- Ian K Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - María Esther Pérez-Pérez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Sorel Fitz-Gibbon
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095
| | - Stéphane D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095
| |
Collapse
|
39
|
Ali A, Phull AR, Zia M, Shah AMA, Malik RN, ul-Haq I. Phytotoxicity of River Chenab sediments: In vitro morphological and biochemical response of Brassica napus L. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2015; 4:74-84. [DOI: 10.1016/j.enmm.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 2015; 115:108-15. [DOI: 10.1016/j.biochi.2015.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
41
|
Jajic I, Sarna T, Strzalka K. Senescence, Stress, and Reactive Oxygen Species. PLANTS (BASEL, SWITZERLAND) 2015; 4:393-411. [PMID: 27135335 PMCID: PMC4844410 DOI: 10.3390/plants4030393] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023]
Abstract
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H₂O₂ causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H₂O₂ such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (¹O₂) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.
Collapse
Affiliation(s)
- Ivan Jajic
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
42
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
43
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
44
|
Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:69. [PMID: 25741354 PMCID: PMC4332301 DOI: 10.3389/fpls.2015.00069] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 05/18/2023]
Abstract
During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.
Collapse
Affiliation(s)
- Veselin Petrov
- Institute of Molecular Biology and Biotechnology, PlovdivBulgaria
| | - Jacques Hille
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Groningen, GroningenNetherlands
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-GolmGermany
| | - Tsanko S. Gechev
- Institute of Molecular Biology and Biotechnology, PlovdivBulgaria
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-GolmGermany
| |
Collapse
|
45
|
Lei X, Li D, Li Y, Chen Z, Chen Y, Cai G, Yang X, Zheng W, Zheng T. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium. Front Microbiol 2015; 6:7. [PMID: 25667582 PMCID: PMC4304249 DOI: 10.3389/fmicb.2015.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 01/12/2023] Open
Abstract
Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.
Collapse
Affiliation(s)
- Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Dong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; Fujian Center for Disease Control and Prevention Fuzhou, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Yao Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Guanjing Cai
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Xujun Yang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| |
Collapse
|
46
|
Laloi C, Havaux M. Key players of singlet oxygen-induced cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:39. [PMID: 25699067 PMCID: PMC4316694 DOI: 10.3389/fpls.2015.00039] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/15/2015] [Indexed: 05/03/2023]
Abstract
The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.
Collapse
Affiliation(s)
- Christophe Laloi
- Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesMarseille, France
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| | - Michel Havaux
- CNRS, UMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseille, France
- Aix Marseille UniversitéMarseille, France
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies AlternativesSaint-Paul-lez-Durance, France
- *Correspondence: Christophe Laloi, Laboratoire de Génétique et Biophysique des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux nergies Alternatives, F -13009 Marseille, France e-mail: ; Michel Havaux, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, F-13108 Saint-Paul-lez-Durance, France e-mail:
| |
Collapse
|
47
|
Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:157. [PMID: 25352913 PMCID: PMC4210543 DOI: 10.1186/s13068-014-0157-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND The utilization of biomass from microalgae for biofuel production is one of the key elements for the development of a sustainable and secure energy supply. Among the different microalgae, Chlorella species are of interest because of their high productivity, high lipid content, and resistance to the high light conditions typical of photobioreactors. However, the economic feasibility of growing algae at an industrial scale is yet to be realized, in part because of biological constraints that limit biomass yield. A key issue is the inefficient use of light due to uneven light distribution, and the dissipation of excess absorbed light as heat. The successful implementation of biofuel production facilities requires the development of algal strains with enhanced light use efficiency in photobioreactors. Such domestication strategies include decreasing the absorption cross section in order to enhance light penetration, increasing the size of metabolic sinks per chlorophyll and minimizing feedback energy dissipation. RESULTS In this work we applied random mutagenesis and phenotypic selection to the thermotolerant, fast-growing Chlorella species, C. sorokiniana. Truncated antenna mutants (TAMs) were selected that exhibited a lower fluorescence yield than the wild-type (WT) strain. Six putatively interesting mutants were selected by high throughput fluorescence video imaging, two of which, TAM-2 and TAM-4, were found to have approximately half the chlorophyll content per cell and LHCII complement per PSII with respect to the WT. In batch culture, TAM-2 showed an increased photon use efficiency, yielding a higher Pmax at saturating irradiances with respect to the WT. Cultivation of TAM-2 in both laboratory-scale and outdoor photobioreactors showed higher productivity than WT, with a 30% higher biomass yield in dense cell suspensions typical of industrial photobioreactors. CONCLUSIONS These results suggest that generation of mutants with low chlorophyll content can significantly improve the light-to-biomass conversion efficiency of C. sorokiniana under mass culture conditions. However, owing to the lack of sexual reproduction in this species, the presence of additional mutations might affect growth rate, suggesting that selection should include evaluation of multiple independent mutants for each desired phenotype.
Collapse
Affiliation(s)
- Stefano Cazzaniga
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Luca Dall’Osto
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Joanna Szaub
- />Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT UK
| | - Luca Scibilia
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Matteo Ballottari
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| | - Saul Purton
- />Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT UK
| | - Roberto Bassi
- />Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie, Verona, 15-37134 Italy
| |
Collapse
|
48
|
Gan Y, Li H, Xie Y, Wu W, Li M, Wang X, Huang J. THF1 mutations lead to increased basal and wound-induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:916-27. [PMID: 24467527 DOI: 10.1111/jipb.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Mutants defective in chloroplast development or photosynthesis are liable to accumulate higher levels of anthocyanin in photo-oxidative stress. However, regulatory mechanisms of anthocyanin biosynthesis in the mutants remain unclear. Here, we investigated the mechanism by which the deletion of thylakoid formation1 (THF1) leads to an increased level of anthocyanin in Arabidopsis thaliana L. Physiological and genetic evidence showed that the increased level of anthocyanin in thf1 is dependent on coronatine-insensitive1 (COI1) signaling. Our data showed that thf1 had higher levels of basal α-linolenic acid (α-LeA), and methyl jasmonate (JA)-induced α-LeA and 12-oxophytodienoic acid (OPDA) than the wild type (WT). Consistently, expression levels of phospholipase genes including pPLAIIα and PLA-Iγ1 were elevated in thf1. Furthermore, inhibition of lipase activity by bromoenol lactone, a specific inhibitor of plant pPLA, led to producing identical levels of anthocyanins in WT and thf1 plants. Interestingly, OPDA biosynthesis was triggered by light illumination in isolated chloroplasts, indicating that new protein import into chloroplasts is not required for OPDA biosynthesis. Thus, we conclude that the elevated anthocyanin accumulation in thf1 is attributed to an increase in JA levels. This JA-mediated signaling to coordinate plant metabolism and growth in stress may be conserved in other photosensitive mutants.
Collapse
Affiliation(s)
- Yi Gan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China; School of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Havaux M. Carotenoid oxidation products as stress signals in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:597-606. [PMID: 24267746 DOI: 10.1111/tpj.12386] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 05/17/2023]
Abstract
Carotenoids are known to play important roles in plants as antioxidants, accessory light-harvesting pigments, and attractants for pollinators and seed dispersers. A new function for carotenoids has recently emerged, which relates to the response of plants to environmental stresses. Reactive oxygen species, especially singlet oxygen, produced in the chloroplasts under stress conditions, can oxidize carotenoids leading to a variety of oxidized products, including aldehydes, ketones, endoperoxides and lactones. Some of those carotenoid derivatives, such as volatile β-cyclocitral, derived from the oxidation of β-carotene, are reactive electrophile species that are bioactive and can induce changes in gene expression leading to acclimation to stress conditions. This review summarizes the current knowledge on the non-enzymatic oxidation of carotenoids, the bioactivity of the resulting cleavage compounds and their functions as stress signals in plants.
Collapse
Affiliation(s)
- Michel Havaux
- Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA, DSV, IBEB, F-13108, Saint-Paul-lez-Durance, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108, Saint-Paul-lez-Durance, France; Aix-Marseille Université, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
50
|
Pospíšil P, Prasad A. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:39-48. [DOI: 10.1016/j.jphotobiol.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/10/2023]
|