1
|
Gao J, Su X, Zhang Y, Ma X, Ren B, Lei P, Jin J, Ma W. Mast cell activation induced by tamoxifen citrate via MRGPRX2 plays a potential adverse role in breast cancer treatment. Biochem Pharmacol 2025; 233:116760. [PMID: 39832668 DOI: 10.1016/j.bcp.2025.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Breast cancer is the most common malignant tumor endangering women's life and health. Tamoxifen citrate (TAM) is the first-line drug of adjuvant endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients. Some sporadic cases have described rare adverse reactions of TAM with potentially life-threatening dermatological manifestations, which were associated with skin allergy. Mas related G protein-coupled receptor X2 (MRGPRX2) on human mast cells is the key target for skin allergy. We aimed to investigate the mechanism of TAM-induced allergic reactions and their potential effects on TAM treatment for breast cancer. In our study, TAM can specifically bind with MRGPRX2, which was mainly driven by hydrophobic force. TAM formed hydrogen bonds with TRP243, TRP248, and GLU164 residues in MRGPRX2. TAM induced calcium mobilization and degranulation of mast cells via MRGPRX2. Besides, TAM induced passive cutaneous anaphylaxis and active systemic anaphylaxis in C57BL/6 mice. The release of β-hexosaminidase, histamine, tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-8 were increased by TAM in vitro and in vivo. Furthermore, we found that MCF-7 and T-47D breast cancer cells can recruit mast cells to adjacent cancerous tissues. Besides, mast cell activation induced by TAM via MRGPRX2 significantly promoted the proliferation and migration of MCF-7 and T-47D cells, which can be effectively reversed by mast cell membrane stabilizer clarithromycin and MRGPRX2 silencing. This study proposed an anti-allergic therapeutic strategy for breast cancer treatment with TAM, while also the potential of MRGPRX2 as an adjunctive target.
Collapse
Affiliation(s)
- Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xinyue Su
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Yuxiu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Xiaoyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Bingxi Ren
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Panpan Lei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China
| | - Jiming Jin
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an 710061, PR China.
| |
Collapse
|
2
|
Hasan FF, Fadhil MH, Almukhtar ZK. Assessment of Tissue Eosinophilic Infiltration in Invasive Mammary Carcinoma. Int J Breast Cancer 2024; 2024:1514147. [PMID: 39296928 PMCID: PMC11410403 DOI: 10.1155/2024/1514147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background: Stromal inflammatory cells in malignant tissue have recently gained increasing interest. Unlike the extensive research on tumor-infiltrating lymphocytes, published data about tumor-infiltrating eosinophils in breast cancer are scarce. Furthermore, similar studies have yet to be conducted in Iraq. Aims: The objective of this study is to examine the presence of eosinophilic infiltration by direct visualization using light microscopy and to analyze its relationship with other histological parameters in a group of Iraqi women diagnosed with invasive mammary cancer. Methods and material: A retrospective study enrolled 90 histological samples of invasive mammary carcinoma provided by core needle biopsy from a single center, together with their immunohistochemical results for ER and HER2-NEU. Data reviewing, direct morphological visualizations, and counting eosinophilic infiltration in tissue sections were done by two independent pathologists using light microscopy. The results were statistically correlated with the grade, ER, HER2-NEU, calcification, and axillary lymph node status at presentation. Results: Out of the entire sample size (90), 40 (44%) showed the presence of eosinophilic infiltration in the tissue, both intratumoral and stromal. Further analysis revealed that most eosinophilic infiltrates had an intermediate score (4-19) per 10 consecutive high-power fields. A strong and meaningful statistical relationship was seen between tissue eosinophilic infiltration and HER2/NEU status. A statistically insignificant correlation was seen between tissue eosinophilic infiltration and histological grade, ER receptor status, calcification, and axillary lymph node status at presentation. Conclusions: Eosinophils are tumor-infiltrating cells in breast cancer, both intratumoral and stromal. The presence of tissue eosinophilic infiltration can predict HER2/NEU negativity in breast cancer.
Collapse
Affiliation(s)
- Farah Falah Hasan
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| | - Mohammed Haider Fadhil
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| | - Zainab Khalid Almukhtar
- Department of Pathology University of Kerbala, Kerbala, Iraq
- Department of Plastic and Reconstructive Surgery Gazi Al Hariri Teaching Hospital, Baghdad, Iraq
- Department of Pathology University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Tai SB, Lee ECY, Lim BY, Kannan B, Lee JY, Guo Z, Ko TK, Ng CCY, Teh BT, Chan JY. Tumor-Infiltrating Mast Cells in Angiosarcoma Correlate With Immuno-Oncology Pathways and Adverse Clinical Outcomes. J Transl Med 2024; 104:100323. [PMID: 38218317 DOI: 10.1016/j.labinv.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024] Open
Abstract
Recent studies have described several molecular subtypes and deregulation of immuno-oncologic signaling pathways in angiosarcoma. Interestingly, mast cells were enriched in subsets of angiosarcoma, although their significance remains unknown. In this study, we aim to verify this observation using immunohistochemistry (H scores) and NanoString transcriptomic profiling and explore the association between mast cells with clinical and biological features. In the study cohort (N = 60), H scores showed a significant moderate correlation with NanoString mast cell scores (r = 0.525; P < .001). Both H score and NanoString mast cell scores showed a significant positive correlation (P < .05) with head and neck location, nonepithelioid morphology, and lower tumor grade. Mast cell enrichment significantly correlated with higher NanoString regulatory T-cell scores (H score, r = 0.32; P = .01; NanoString mast cell score, r = 0.27; P = .04). NanoString mast cell scores positively correlated with signaling pathways relating to antigen presentation (r = 0.264; P = .0414) and negatively correlated with apoptosis (r = -0.366; P = .0040), DNA damage repair (r = -0.348; P = .0064), and cell proliferation (r = -0.542; P < .001). Interestingly, in the metastatic setting, patients with mast cell-enriched angiosarcoma showed poorer progression-free survival (median, 0.2 vs 0.4 years; hazard ratio = 3.05; P = .0489) along with a trend toward worse overall survival (median, 0.2 vs 0.6 years; hazard ratio, 2.86; P = .0574) compared with patients with mast cell-poor angiosarcoma. In conclusion, we demonstrated the presence of mast cells in human angiosarcoma and provided initial evidence of their potential clinical and biological significance. Future research will be required to elucidate their specific roles and mechanisms, which may uncover novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah Beishan Tai
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore; Cancer Discovery Hub, National Cancer Centre Singapore, Singapore.
| | | | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | | | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
4
|
Awang Ahmad N, Lai SK, Suboh R, Hussin H. Comparison of Mast Cell Density and Prognostic Factors in Invasive Breast Carcinoma: A Single-Centre Study in Malaysia. Malays J Med Sci 2023; 30:81-90. [PMID: 37928785 PMCID: PMC10624438 DOI: 10.21315/mjms2023.30.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/16/2023] [Indexed: 11/07/2023] Open
Abstract
Background Mast cells influence tumour growth, neo-angiogenesis and the propensity for metastasis by contributing to innate and adaptive immune responses in the tumour microenvironment. The number of mast cells has increased in various malignant tumours and their abundance has been associated with either a favourable or unfavourable prognosis. This study investigated the significant difference in stromal mast cell density among multiple prognostic factor groups in invasive breast carcinoma. Methods CD117 (c-KIT) antibodies were used to stain 160 formalin-fixed and paraffin-embedded invasive breast carcinoma tissues to demonstrate the presence of mast cells. Then the labelled mast cells were counted in 10 fields at 400× magnification and the mean value was used to represent the mast cell density. Results The demographic distribution revealed that most patients were 40 years old or older (92.5%) and of Malay ethnicity (66.3%). With regard to prognostic factors, the most prevalent subtype was invasive carcinoma of no special type (80.6%), followed by tumour grade 3 (41.3%), T2 tumour size (63.1%), N0 lymph node stage (51.3%), presence of lymphovascular invasion (59.4%), positive oestrogen (64.4%) and progesterone receptors (53.1%), and negative human epidermal growth factor receptor 2 (HER2) expression (75.0%). However, there was no significant difference in stromal mast cell density among the different demographic and prognostic factor groups in invasive breast carcinoma. Conclusion The findings from this study suggest that stromal mast cells do not play a significant role in preventing or promoting tumour growth in invasive breast carcinoma.
Collapse
Affiliation(s)
- Norashikin Awang Ahmad
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pathology, Hospital Tuanku Ja’afar, Negeri Sembilan, Malaysia
- Department of Pathology, Hospital Sultanah Nur Zahirah, Terengganu, Malaysia
| | - Shau Kong Lai
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Roslina Suboh
- Department of Pathology, Hospital Tuanku Ja’afar, Negeri Sembilan, Malaysia
- Lablink Medical Laboratory, Kuala Lumpur, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Okcu O, Öztürk Ç, Şen B, Ayazoğlu MS, Güvendi GF, Öztürk SD, Aşkan G, Bedir R. The prognostic significance of non-lymphoid immune cells of the tumor microenvironment, including neutrophils, eosinophils, and mast cells in breast carcinomas. Ann Diagn Pathol 2023; 65:152151. [PMID: 37121083 DOI: 10.1016/j.anndiagpath.2023.152151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVE The prognostic importance of lymphoid cells in the tumor microenvironment and their effect on treatment response have been demonstrated in many cancer types. However, there are limited studies on non-lymphoid immune cells. Conflicting results have been obtained regarding the effects of these cells on prognosis. MATERIALS AND METHODS A total of 331 patients who underwent surgery for breast cancer were included. Patients that received neoadjuvant chemotherapy and those with distant metastasis were excluded. CD 15 immunohistochemistry was performed to detect tumor-infiltrating neutrophils (TINs) and eosinophils (TIEs), while Toluidine Blue histochemistry was performed to detect tumor-infiltrating mast cells (TIMs). RESULTS High TINs were statistically associated with low ER expression (p < 0.001), low PR expression (p = 0.001), high Ki-67 proliferation index (p = 0.008), and HER2/TN molecular subtypes (p = 0.001). High TIEs were associated with low ER expression (p = 0.001), high Ki67 proliferation index (p = 0.005), and HER2/TN molecular subtype (p = 0.002). High TIMs were associated with high PR expression (p = 0.024), low Ki-67 proliferation index (p = 0.003), and high survival rate (p = 0.006). TIMs and TIEs were good prognostic factors for overall survival in Luminal A and Luminal B subtypes, while TINs and TIEs were found to be independent risk factors for disease-free survival. CONCLUSION The evaluation of components of the tumor microenvironment including TINs, TIEs, and TIMs is easy and practical. High TIMs and TIEs are independent prognostic factors, especially in luminal molecular subtype of invasive breast carcinoma. However, to use this parameter in routine pathology practice, more studies from different centers and standard evaluation are needed.
Collapse
Affiliation(s)
- Oğuzhan Okcu
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye.
| | - Çiğdem Öztürk
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Pathology, Rize, Turkiye
| | - Bayram Şen
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Biochemistry, Rize, Turkiye
| | - Muhammet Safa Ayazoğlu
- Recep Tayyip Erdoğan University Training and Research Hospital, Department of Pathology, Rize, Turkiye
| | - Gülname Fındık Güvendi
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye
| | - Seda Duman Öztürk
- Kocaeli University, Faculty of Medicine, Department of Pathology, Kocaeli, Turkiye
| | - Gökçe Aşkan
- İstanbul University Cerrahpasa-Cerrahpasa Faculty of Medicine, Department of Pathology, İstanbul, Türkiye
| | - Recep Bedir
- Recep Tayyip Erdoğan University, Faculty of Medicine, Department of Pathology, Rize, Turkiye
| |
Collapse
|
6
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
8
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
9
|
Rohr-Udilova N, Tsuchiya K, Timelthaler G, Salzmann M, Meischl T, Wöran K, Stift J, Herac M, Schulte-Hermann R, Peck-Radosavljevic M, Sieghart W, Eferl R, Jensen-Jarolim E, Trauner M, Pinter M. Morphometric Analysis of Mast Cells in Tumor Predicts Recurrence of Hepatocellular Carcinoma After Liver Transplantation. Hepatol Commun 2021; 5:1939-1952. [PMID: 34558826 PMCID: PMC8557312 DOI: 10.1002/hep4.1770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor-infiltrating immune cells are relevant prognostic and immunotherapeutic targets in hepatocellular carcinoma (HCC). Mast cells play a key role in allergic response but may also be involved in anticancer immunity. Digital morphometric analysis of patient tissue sections has become increasingly available for clinical routine and provides unbiased quantitative data. Here, we apply morphometric analysis of mast cells to retrospectively evaluate their relevance for HCC recurrence in patients after orthotopic liver transplantation (OLT). A total of 173 patients underwent OLT for HCC at the Medical University of Vienna (21 women, 152 men; 55.2 ± 7.9 years; 74 beyond Milan criteria, 49 beyond up-to-7 criteria for liver transplantation). Tissue arrays from tumors and corresponding surrounding tissues were immunohistochemically stained for mast cell tryptase. Mast cells were quantified by digital tissue morphometric analysis and correlated with HCC recurrence. Mast cells were detected in 93% of HCC tumors and in all available surrounding liver tissues. Tumor tissues revealed lower mast cell density than corresponding surrounding tissues (P < 0.0001). Patients lacking intratumoral mast cells (iMCs) displayed larger tumors and higher tumor recurrence rates both in the whole cohort (hazard ratio [HR], 2.74; 95% confidence interval [CI], 1.09-6.93; P = 0.029) and in patients beyond transplant criteria (Milan HR, 2.81; 95% CI, 1.04-7.62; P = 0.01; up-to-7 HR, 3.58; 95% CI, 1.17-10.92; P = 0.02). Notably, high iMC identified additional patients at low risk classified outside the Milan and up-to-7 criteria, whereas low iMC identified additional patients at high risk classified within the alpha-fetoprotein French and Metroticket criteria. iMCs independently predicted tumor recurrence in a multivariate Cox regression analysis (Milan HR, 2.38; 95% CI, 1.16-4.91; P = 0.019; up-to-7 HR, 2.21; 95% CI, 1.05-4.62; P = 0.035). Conclusion: Hepatic mast cells might be implicated in antitumor immunity in HCC. Morphometric analysis of iMCs refines prognosis of HCC recurrence after liver transplantation.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Kaoru Tsuchiya
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria.,Department of Gastroenterology and HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Gerald Timelthaler
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Tobias Meischl
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Wöran
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Judith Stift
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Merima Herac
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Rolf Schulte-Hermann
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology, Central Admission, and First AidPublic Hospital Klagenfurt am WoertherseeKlagenfurtAustria
| | | | - Robert Eferl
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria.,Comparative MedicineInteruniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University of Vienna and University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Liu H, Yang Y. Identification of Mast Cell-Based Molecular Subtypes and a Predictive Signature in Clear Cell Renal Cell Carcinoma. Front Mol Biosci 2021; 8:719982. [PMID: 34646862 PMCID: PMC8503328 DOI: 10.3389/fmolb.2021.719982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Kidney renal clear cell carcinoma (KIRC) is a common malignant tumor of the urinary system. Surgery is the preferred treatment option; however, the rate of distant metastasis is high. Mast cells in the tumor microenvironment promote or inhibit tumorigenesis depending on the cancer type; however, their role in KIRC is not well-established. Here, we used a bioinformatics approach to evaluate the roles of mast cells in KIRC. Methods: To quantify mast cell abundance based on gene sets, a single-sample gene set enrichment analysis (ssGSEA) was utilized to analyze three datasets. Weighted correlation network analysis (WGCNA) was used to identify the genes most closely related to mast cells. To identify new molecular subtypes, the nonnegative matrix factorization algorithm was used. GSEA and least absolute shrinkage and selection operator (LASSO) Cox regression were used to identify genes with high prognostic value. A multivariate Cox regression analysis was performed to establish a prognostic model based on mast cell-related genes. Promoter methylation levels of mast cell-related genes and relationships between gene expression and survival were evaluated using the UALCAN and GEPIA databases. Results: A prolonged survival in KIRC was associated with a high mast cell abundance. KIRC was divided into two molecular subtypes (cluster 1 and cluster 2) based on mast cell-related genes. Genes in Cluster 1 were enriched for various functions related to cancer development, such as the TGFβ signaling pathway, renal cell carcinoma, and mTOR signaling pathway. Based on drug sensitivity predictions, sensitivity to doxorubicin was higher for cluster 2 than for cluster 1. By a multivariate Cox analysis, we established a clinical prognostic model based on eight mast cell-related genes. Conclusion: We identified eight mast cell-related genes and constructed a clinical prognostic model. These results improve our understanding of the roles of mast cells in KIRC and may contribute to personalized medicine.
Collapse
Affiliation(s)
- Hanxiang Liu
- Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Ribatti D, Annese T, Tamma R. Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clin Breast Cancer 2021; 21:486-491. [PMID: 34580034 DOI: 10.1016/j.clbc.2021.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer is a neoplastic disease and is a cause of cancer-related mortality for women. Among cellular and molecular regulators of the microenvironment, mast cells and vascular endothelial growth factor (VEGF), are correlated with tumor progression and prognosis in breast cancer. Clinical and experimental studies on breast cancer have revealed a marked correlation between increased angiogenesis, metastasization, and poorer prognosis. After a brief introduction on angiogenesis evidence and angiogenic factors role in different breast cancer subtypes, in this article, we have discerned the relationship between mast cell infiltration, angiogenesis, and tumor progression in human breast cancer with particular reference to the dual role of mast cells, in terms of both pro- or anti-tumoral activity and poor or good biomarker.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Pyla RD, Potekar RM, Patil VS, Reddy AK, Sathyashree KV. Quantitative mast cell analysis and hormone receptor study (ER, PR and HER2/neu) in invasive carcinoma of breast. INDIAN J PATHOL MICR 2021; 63:200-204. [PMID: 32317515 DOI: 10.4103/ijpm.ijpm_155_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context Breast cancer constitutes nearly one third of cancers among women. Immune responses caused by neoplastic cells lead to the accumulation of inflammatory cells like mast cells (MCs), macrophages, lymphocytes, and plasma cells around the tumor tissue forming the tumor microenvironment. Aim The study aims at quantifying the role of MCs in different grades of invasive carcinoma of breast with respect to estrogen receptor (ER), progesterone receptor (PR), and Human Epidermal growth factor Receptor 2 (HER2/neu). Materials and Methods This study included 60 cases of invasive carcinoma of breast. Toluidine blue staining was used for quantitative MC analysis and correlated with immunohistochemistry analysis for hormonal markers' positivity-ER, PR and HER2/neu. Results The mean age was 52 years (range: 25-75 years). The average number of MCs in Grade I, II, and III were 24.05, 18.4, and 7.9, respectively, with a significant P value. ER, PR, and HER2/neu positivity was found in 60%, 55%, and 32% of the cases, respectively. ER positivity with mean MC count of 23.55 was found in 36 cases, and 33 cases were positive for PR with a mean MC count of 24.18 and a significant P value. HER2 positive cases were 28 with a mean MC count of 20.82. Conclusion The presence of MCs in breast cancer is inversely proportional to the grade of tumor, i.e., a maximum number of MCs were seen in low grade tumors. In addition, there is a positive correlation between ER and PR receptor positivity with the presence of MCs in the stroma of breast cancer.
Collapse
Affiliation(s)
- Rama D Pyla
- Department of Pathology, Shri B M Patil Medical College, Hospital and Research Center, BLDE Deemed to be University, Sholapur Road, Vijayapura, Karnataka, India
| | - R M Potekar
- Department of Pathology, Shri B M Patil Medical College, Hospital and Research Center, BLDE Deemed to be University, Sholapur Road, Vijayapura, Karnataka, India
| | - Vijayalaxmi S Patil
- Department of Pathology, Shri B M Patil Medical College, Hospital and Research Center, BLDE Deemed to be University, Sholapur Road, Vijayapura, Karnataka, India
| | - Anil K Reddy
- Department of Pathology, Shri B M Patil Medical College, Hospital and Research Center, BLDE Deemed to be University, Sholapur Road, Vijayapura, Karnataka, India
| | - K V Sathyashree
- Department of Pathology, Shri B M Patil Medical College, Hospital and Research Center, BLDE Deemed to be University, Sholapur Road, Vijayapura, Karnataka, India
| |
Collapse
|
13
|
Interleukin-17A derived from mast cells contributes to fibrosis in gastric cancer with peritoneal dissemination. Gastric Cancer 2021; 24:31-44. [PMID: 32488650 PMCID: PMC7790800 DOI: 10.1007/s10120-020-01092-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Interleukin-17A (IL-17A) is pro-inflammatory cytokine and acts as profibrotic factor in the fibrosis of various organs. Fibrosis tumor-like peritoneal dissemination of gastric cancer interferes with drug delivery and immune cell infiltration because of its high internal pressure. In this study, we examined the relationship between IL-17A and tissue fibrosis in peritoneal dissemination and elucidated the mechanism of fibrosis induced by IL-17A using human peritoneal mesothelial cells (HPMCs) and a mouse xenograft model. METHODS Seventy gastric cancer patients with peritoneal dissemination were evaluated. The correlation between IL-17A and fibrosis was examined by immunofluorescence and immunohistochemistry. A fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells (HPMCs and human gastric cancer cell line MKN-45) into the dorsal side of nude mice. Mice were subsequently treated with or without IL-17A. We also examined the effect of IL-17A on HPMCs in vitro. RESULTS There was a significant correlation between IL-17A expression, the number of mast cell tryptase (MCT)-positive cells, and the degree of fibrosis (r = 0.417, P < 0.01). In the mouse model, IL-17A enhanced tumor progression and fibrosis. HPMCs treated with IL-17A revealed changes to a spindle-like morphology, decreased E-cadherin expression, and increased α-SMA expression through STAT3 phosphorylation. Moreover, HPMCs treated with IL-17A showed increased migration. CONCLUSIONS IL-17A derived from mast cells contributes to tumor fibrosis in peritoneal dissemination of gastric cancer. Inhibiting degranulation of mast cells might be a promising treatment strategy to control organ fibrosis.
Collapse
|
14
|
Moradi Tabriz H, Obohat M, Vahedifard F, Eftekharjavadi A. Survey of Mast Cell Density in Transitional Cell Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:119-127. [PMID: 33936222 PMCID: PMC8085279 DOI: 10.30699/ijp.2020.123562.2345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/18/2020] [Indexed: 11/08/2022]
Abstract
Background & Objective: Transitional cell carcinoma (TCC) is the world's seventh most common tumor and forms more than 90% of urinary bladder tumors. Invasive tumors are associated with poor prognosis, even with surgical treatment and chemotherapy. Some studies have found that an increase in the number of mast cells in TCC is related to the tumor grade and its aggressiveness. This study investigated the relationship between mast cell density (MCD) and features of TCC (tumor stage, grade, prognosis, and recurrence). Methods: Fifty-one cases with TCC were selected, and MCD was determined by immunohistochemistry (IHC) and Giemsa staining. Mortality rate and tumor recurrence were recorded. Results: The MCD mean was higher in high-grade tumors than in low-grade tumors (in IHC method: 9.127 vs 5.296; in Giemsa method: 5.512 vs 2.608). Also, the MCD mean in dead patients was higher than in survived patients (in IHC method: 11.390 vs 6.211; in Giemsa method: 7.460 vs 3.35). Patients with tumor recurrence showed a higher MCD mean than those without recurrence (in IHC method: 9.395 vs 5.475; in Giemsa method: 5.715 vs 2.931). Conclusion: Using mast cell tryptase and Giemsa, MCD may be associated with a positive correlation with tumor grade in TCC. Correlations between MCD, recurrence, prognosis, and tumor stage are probably caused by the effect of tumor grade (all with P<0.05).
Collapse
Affiliation(s)
- Hedieh Moradi Tabriz
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Obohat
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzan Vahedifard
- Department of Neurology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Eftekharjavadi
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Saxena S, Singh A, Singh P. Tumor associated mast cells: biological roles and therapeutic applications. Anat Cell Biol 2020; 53:245-251. [PMID: 32879056 PMCID: PMC7527126 DOI: 10.5115/acb.19.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of MCs significantly modulates many aspects of physiological and pathological conditions in various settings. Recent data have expanded the concept that inflammation is a critical component for tumor progression. Interestingly, three of the most aggressive human cancers, malignant melanoma, breast carcinoma and colorectal adenocarcinoma, are commonly associated with a marked host response comprising of various inflammatory cells, but especially MCs around the tumor periphery. A systematic review of the literature was performed based on the English titles listed in the PubMed, EBSCO, Cochrane, Science Direct, ISI web Science, and SciELO databases using the keywords. Abstracts and full-text articles were assessed. This review summarizes the current understanding of the role of MCs in tumor progression.
Collapse
Affiliation(s)
- Shikha Saxena
- Department of Oral Pathology, RUHS College of Dental Sciences (Government Dental College), Jaipur, Rajasthan, India
| | - Anil Singh
- Department of Oral Pathology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| | - Priyanka Singh
- Department of Oral Pathology, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Prevalence and clinical relevance of tumor-associated tissue eosinophilia (TATE) in breast cancer. Surgery 2020; 169:1234-1239. [PMID: 32958266 DOI: 10.1016/j.surg.2020.07.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/20/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-associated tissue eosinophilia (TATE) has been associated with outcomes in a variety of solid tumors; however, its role in breast cancer is not well defined. We hypothesized that tumor-associated tissue eosinophilia is associated with a high mutation and neoantigen load, and we assessed its correlation with cancer outcomes. METHODS The Cancer Genome Atlas was analyzed for eosinophil signatures in breast cancer specimens. Descriptive analyses were performed, including the tumor-infiltrating cell composition using CIBERSORT, cytolytic activity score, and gene set enrichment analysis. Overall survival and disease-free survival were calculated using the Kaplan-Meier method. RESULTS Out of 1069 cases analyzed, 40 (3.7%) had tissue eosinophils (the tumor-associated tissue eosinophilia group). Tumor-associated tissue eosinophilia was noted in 32.5% luminal, 5% HER2-positive, and 15% triple-negative breast cancer subtypes. The single nucleotide variant-neoantigen load was significantly higher in the tumor-associated tissue eosinophilia group (P = .005), with a higher nonsilent mutation rate (P = .01). The tumor-associated tissue eosinophilia group had lower cytolytic activity (P = .02) but had enriched MYC-targeted (P = .002), E2F-targeted (P = .04), deoxyribonucleic acid repair (P = .03), and unfolded protein response gene sets (P = .05). Tumor-associated tissue eosinophilia was associated with a trend toward improved disease-free survival (P = .06) but presented no differences in overall survival (P = .56). CONCLUSION Tumor-associated tissue eosinophilia was noted in 3.7% of breast cancers and was associated with a higher single nucleotide variant-neoantigen load and nonsilent mutation rate, similar to that of tumor-infiltrating lymphocytes in the triple-negative subtype. However, a lower cytolytic activity score and enriched cell proliferation-related gene sets implicate different roles for tumor-associated tissue eosinophilia than for tumor-infiltrating lymphocytes.
Collapse
|
17
|
Ariyarathna H, Thomson N, Aberdein D, Munday JS. Low Stromal Mast Cell Density in Canine Mammary Gland Tumours Predicts a Poor Prognosis. J Comp Pathol 2020; 175:29-38. [PMID: 32138840 DOI: 10.1016/j.jcpa.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023]
Abstract
Tumour histological classification and grade are frequently used to predict the prognosis of canine mammary gland tumours. While these techniques provide some information about tumour behaviour, it is currently difficult to predict which tumours will metastasize. Mast cell density has been shown to predict metastasis in human breast cancer. The present study investigated whether the average mast cell density in 10 high-power (×400) microscopical fields (10 HPFs), evaluated by toluidine blue staining, similarly predicted the behaviour of canine mammary gland tumours. Mast cell density was evaluated in 53 canine mammary neoplasms for which the clinical outcome was known. Stromal mast cell density in malignant tumours that had subsequently developed radiographical evidence of metastasis (n = 21) was significantly lower (P <0.001) than in malignant tumours that did not show evidence of metastases (n = 20) or in benign tumours (n = 12). The density of stromal mast cells that best predicted the disease outcome was ≤10/10 HPFs. Eighty-one percent of malignant tumours with ≤10 stromal mast cells/10 HPFs subsequently metastasized, while only 9.5% of malignant tumours with >10 stromal mast cells/10 HPFs developed metastases. There was a positive correlation between stromal mast cell density and survival time (rs = 0.50, P <0.001). These findings suggest that assessing stromal mast cell density using toluidine blue staining may represent an easy to perform and cost-effective histopathological measure that, in conjunction with classification and grading, could better predict the behaviour of canine mammary neoplasms.
Collapse
Affiliation(s)
- H Ariyarathna
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - N Thomson
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - D Aberdein
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J S Munday
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
18
|
Abstract
Mast cells are tissue-resident, innate immune cells that play a key role in the inflammatory response and tissue homeostasis. Mast cells accumulate in the tumor stroma of different human cancer types, and increased mast cell density has been associated to either good or poor prognosis, depending on the tumor type and stage. Mast cells play a multifaceted role in the tumor microenvironment by modulating various events of tumor biology, such as cell proliferation and survival, angiogenesis, invasiveness, and metastasis. Moreover, tumor-associated mast cells have the potential to shape the tumor microenvironment by establishing crosstalk with other tumor-infiltrating cells. This chapter reviews the current understanding of the role of mast cells in the tumor microenvironment. These cells have received much less attention than other tumor-associated immune cells but are now recognized as critical components of the tumor microenvironment and could hold promise as a potential target to improve cancer immunotherapy.
Collapse
|
19
|
Barriga V, Kuol N, Nurgali K, Apostolopoulos V. The Complex Interaction between the Tumor Micro-Environment and Immune Checkpoints in Breast Cancer. Cancers (Basel) 2019; 11:cancers11081205. [PMID: 31430935 PMCID: PMC6721629 DOI: 10.3390/cancers11081205] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of breast cancer and its association with clinical outcome and treatment remain largely unexplored. Accumulating data has highlighted the interaction between cells of the immune system and the tumor microenvironment in cancer progression, and although studies have identified multiple facets of cancer progression within the development of the tumor microenvironment (TME) and its constituents, there is lack of research into the associations between breast cancer subtype and staging. Current literature has provided insight into the cells and pathways associated with breast cancer progression through expression analysis. However, there is lack of co-expression studies between immune pathways and cells of the TME that form pro-tumorigenic relationships contributing to immune-evasion. We focus on the immune checkpoint and TME elements that influence cancer progression, particularly studies in molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Vanessa Barriga
- College of Health and Biomedicine, Victoria University, Melbourne 3030, Australia
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | - Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | | |
Collapse
|
20
|
McHale C, Mohammed Z, Gomez G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Front Immunol 2019; 10:1445. [PMID: 31293594 PMCID: PMC6603178 DOI: 10.3389/fimmu.2019.01445] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells are classically recognized as cells that cause IgE-mediated allergic reactions. However, their ability to store and secrete vascular endothelial growth factor (VEGF) suggests a role in vascular development and tumorigenesis. The current study sought to determine if other angiogenesis-related factors, in addition to VEGF, were also secreted by human tissue-derived mast cells. Using proteome array analysis and ELISA, we found that human skin-derived mast cells spontaneously secrete CXCL16, DPPIV, Endothelin-1, GM-CSF, IL-8, MCP-1, Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, Thrombospondin-1, and uPA. We identified three groups based on their dependency for stem cell factor (SCF), which is required for mast cell survival: Endothelin-1, GM-CSF, IL-8, MCP-1, and VEGF (dependent); Pentraxin 3, Serpin E1, Serpin F1, TIMP-1, and Thrombospondin-1 (partly dependent); and CXCL16, DPPIV, and uPA (independent). Crosslinking of FcεRI with multivalent antigen enhanced the secretion of GM-CSF, Serpin E1, IL-8, and VEGF, and induced Amphiregulin and MMP-8 expression. Interestingly, FcεRI signals inhibited the spontaneous secretion of CXCL16, Endothelin-1, Serpin F1, Thrombospondin-1, MCP-1 and Pentraxin-3. Furthermore, IL-6, which we previously showed could induce VEGF, significantly enhanced MCP-1 secretion. Overall, this study identified several angiogenesis-related proteins that, in addition to VEGF, are spontaneously secreted at high concentrations from human skin-derived mast cells. These findings provide further evidence supporting an intrinsic role for mast cells in blood vessel formation.
Collapse
Affiliation(s)
- Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
21
|
Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, Gopalakrishnan V, Hudgens CW, Tetzlaff MT, Reuben JM, Tsujikawa T, Coussens LM, Wani K, He Y, Villareal L, Wood A, Rao A, Woodward WA, Ueno NT, Krishnamurthy S, Wargo JA, Mittendorf EA. Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer. Cancer Immunol Res 2019; 7:1025-1035. [PMID: 31043414 DOI: 10.1158/2326-6066.cir-18-0619] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Our understanding is limited concerning the tumor immune microenvironment of inflammatory breast cancer (IBC), an aggressive form of primary cancer with low rates of pathologic complete response to current neoadjuvant chemotherapy (NAC) regimens. We retrospectively identified pretreatment (N = 86) and matched posttreatment tissue (N = 27) from patients with stage III or de novo stage IV IBC who received NAC followed by a mastectomy. Immune profiling was performed including quantification of lymphoid and myeloid infiltrates by IHC and T-cell repertoire analysis. Thirty-four of 86 cases in this cohort (39.5%) achieved a pathologic complete response. Characterization of the tumor microenvironment revealed that having a lower pretreatment mast cell density was significantly associated with achieving a pathologic complete response to NAC (P = 0.004), with responders also having more stromal tumor-infiltrating lymphocytes (P = 0.035), CD8+ T cells (P = 0.047), and CD20+ B cells (P = 0.054). Spatial analysis showed close proximity of mast cells to CD8+ T cells, CD163+ monocytes/macrophages, and tumor cells when pathologic complete response was not achieved. PD-L1 positivity on tumor cells was found in fewer than 2% of cases and on immune cells in 27% of cases, but with no correlation to response. Our results highlight the strong association of mast cell infiltration with poor response to NAC, suggesting a mechanism of treatment resistance and a potential therapeutic target in IBC. Proximity of mast cells to immune and tumor cells may suggest immunosuppressive or tumor-promoting interactions of these mast cells.
Collapse
Affiliation(s)
- Sangeetha M Reddy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Hong Jiang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Courtney W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Takahiro Tsujikawa
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lisa M Coussens
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan He
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lily Villareal
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Anita Wood
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas. .,Department of Breast Surgical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| |
Collapse
|
22
|
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, Ranieri G, Memeo R. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int J Mol Sci 2019; 20:2106. [PMID: 31035644 PMCID: PMC6540185 DOI: 10.3390/ijms20092106] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.
Collapse
Affiliation(s)
- Giuseppe Sammarco
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
| | - Valentina Ferraro
- Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy.
| | - Michele Ammendola
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
| | - Michele De Fazio
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| | | | - Maria Luposella
- Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy.
| | - Lorenza Maltese
- Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy.
| | - Giuseppe Currò
- Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy.
- Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy.
| | - Gianni Marone
- Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
- WAO Center of Excellence, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy.
| | - Girolamo Ranieri
- Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy.
| | - Riccardo Memeo
- Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy.
| |
Collapse
|
23
|
Derakhshani A, Vahidian F, Alihasanzadeh M, Mokhtarzadeh A, Lotfi Nezhad P, Baradaran B. Mast cells: A double-edged sword in cancer. Immunol Lett 2019; 209:28-35. [PMID: 30905824 DOI: 10.1016/j.imlet.2019.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs), a type of innate immune cells, are derived from myeloid stem cells, sometimes known as mastocytes or labrocytes, and contain many granules rich in histamine and heparin. The mentioned cells are able to release various mediators such as cytokines, leukotrienes, and a large number of proteases into the environment. Many studies and experiments have established the infiltration of MCs into the tumor site. However, the findings are highly controversial to determine whether these immune cells contribute to the growth and development of the tumor or cause anti-tumor immune responses. Various studies have revealed that MCs have a pro-tumorigenic or anti-tumorigenic role depending on the type of cancer, the degree of tumor progression, and the location of these immune cells in the tumor bulk. Although these types of immune cells cause angiogenesis and tumor progression in some cancers, they have a significant anti-tumor role in some other types of cancers. In general, although a number of studies have specified the protective role of MCs in cancers, the increased number of MCs in the blood and microenvironment of tumors, as well as the increased level of angiogenesis and tumor progression, has been indicated in another array of studies. The function of MCs against or in favor of the cancers still requires further investigations to more accurately and specifically determine the role of MCs in the cancers. The function of MCs in tumors and their various roles in case of exposure to the cancer cells have been addressed in the present review. The concluding section of the present study recommends a number of methods for modification of MCs in cancer immunotherapy.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alihasanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Lotfi Nezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
The dual role of mast cells in tumor fate. Cancer Lett 2018; 433:252-258. [PMID: 29981810 DOI: 10.1016/j.canlet.2018.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The exact role of mast cells in tumor growth is not clear and multifaceted. In some cases, mast cells stimulate while in others inhibit this process. This dual role may be explained to some extent by the huge number of bioactive molecules stored in mast cell granules, as well as differences between tumor microenvironment, tumor type, and tumor phase of development.
Collapse
|
26
|
Relationship between the inflammatory tumor microenvironment and different histologic types of canine mammary tumors. Res Vet Sci 2018; 119:209-214. [PMID: 29966962 DOI: 10.1016/j.rvsc.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023]
Abstract
Mammary neoplasms are the tumors with higher incidence in female dogs. Among the factors that contribute for the development of this and other neoplasms, the inflammatory tumor microenvironment plays a crucial role. Several studies reported important roles for lymphocytes, macrophages, plasma cells, neutrophils, eosinophils and mast cells in this context. In the present study, our aim was to evaluate the number of profile cells of inflammatory cells and area of tumor fibrosis and the relation of these features with canine mammary tumors of different histologic and clinical presentation (benign mixed tumor, carcinoma in mixed tumor, solid carcinoma and tubular carcinoma) Counting and staining of inflammatory cells and tumor fibrosis were performed through histochemistry, while counting and staining of CD4+, TCD8+ and FOXP3+ lymphocytes were performed through immunohistochemistry. Statistical analysis of the association between densities of inflammatory cells, tumor fibrosis and histologic types revealed significant difference for plasma cells (p = .035), neutrophils (p = .0113), macrophages (p = .0047), and tumor fibrosis (p = .05). The found data suggest associations between high number of neutrophils and aggressive mammary tumors, between high densities of plasma cells, macrophages and CD8+ cells and between low number of profile cells of CD4+ cells and less aggressive tumors. Larger areas of tumor fibrosis showed relation to more aggressive canine mammary tumors.
Collapse
|
27
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Crosstalk between cancer and the neuro-immune system. J Neuroimmunol 2018; 315:15-23. [DOI: 10.1016/j.jneuroim.2017.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
|
28
|
Zhong B, Li Y, Liu X, Wang D. Association of mast cell infiltration with gastric cancer progression. Oncol Lett 2017; 15:755-764. [PMID: 29422964 PMCID: PMC5772921 DOI: 10.3892/ol.2017.7380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to determine the expression of mast cells, C-C motif chemokine ligand 2 (CCL-2) and C-C motif chemokine receptor 2 (CCR2) in gastric cancer tumor tissue; and the association of mast cells with the proliferation, migration, invasion and apoptosis of gastric cancer cells. In addition, whether the stem cell factor (SCF)/c-Kit pathway was associated with the secretion of CCL-2 by gastric cancer cells was explored. Flow cytometry analysis and immunohistochemistry were used to observe the relative number of mast cells, and reverse transcription-quantitative polymerase chain reaction and western blot analysis were utilized to determine the expression of CCL-2 and CCR2 mRNA and protein. Following the co-culture of the mast cell line HMC-1 and the gastric cancer cell line BGC-823, a Transwell assay was used to validate the effect of mast cells on the migration and invasion of gastric cancer cells. Furthermore, Cell Counting kit-8 and dual acridine orange/ethidium bromide fluorescent staining assays were performed to determine the proliferation and apoptosis of gastric cancer cells, following co-culture with mast cells. The expression of SCF and c-Kit were also determined with a western blot analysis. A specific phosphoinositide 3-kinase (PI3K) inhibitor, wortmannin, was used to test the effect of PI3K inhibition on the secretion of CCL-2 in gastric cancer. The results demonstrated that the proportion of infiltrating mast cells, and the mRNA/protein expression of CCL-2 and CCR2, were significantly increased in tumor tissue relative to adjacent tissues. In addition, the migration and invasion of gastric cancer cells were significantly increased when mast cells were used as an attractant. When co-cultured with mast cells, the viability of gastric cancer cells was significantly increased and H2O2-induced apoptosis was inhibited. In gastric cancer tissue samples, the expression of SCF, c-Kit and phosphorylated (p)-Akt protein were significantly increased compared with normal adjacent tissues. It was hypothesized that SCF/c-Kit signaling pathway was activated by PI3K-Akt, resulting in an increase in the expression of CCL-2 mRNA and protein. Furthermore, it was demonstrated that CCL-2 mRNA and protein expression was significantly inhibited by treatment with the PI3K inhibitor wortmannin. Additionally, wortmannin intervention significantly inhibited gastric cancer cell migration and invasion. Therefore, the results of the present study demonstrated that mast cells may promote gastric cancer cell proliferation, migration and invasion, and inhibit apoptosis. In addition, the activation of the SCF/c-Kit signaling pathway was identified to promote the expression of CCL-2, which is associated with the development and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Bei Zhong
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodong Liu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Dongsheng Wang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
29
|
Hu G, Wang S, Cheng P. Tumor-infiltrating tryptase + mast cells predict unfavorable clinical outcome in solid tumors. Int J Cancer 2017; 142:813-821. [PMID: 29023696 DOI: 10.1002/ijc.31099] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
The prognostic role of tumor-infiltrating tryptase+ mast cells in human solid tumors remains controversial. Herein, we conducted a meta-analysis including 28 published studies with 4224 patients identified from PubMed and EBSCO to assess the prognostic impact of tumor-infiltrating tryptase+ mast cells in human solid tumors. We found that tryptase+ mast cell infiltration significantly decreased overall survival (OS) and disease-free survival (DFS) in all types of solid tumors. In stratified analyses, tryptase+ mast cell infiltration was significantly associated with worse OS in non-small cell lung cancer, hepatocellular carcinoma and 5-year survival in colorectal cancer. And these cells were inversely associated with DFS in hepatocellular and colorectal cancer. In addition, high density of intratumoral tryptase+ mast cells significantly correlated with lymph node metastasis of solid tumor. In conclusion, Tryptase+ mast cell infiltration leads to an unfavorable clinical outcome in solid tumors, implicating that it is a valuable biomarker for prognostic prediction for human solid malignances and targeting it may have a potential for effective treatment.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang, 312000, China
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang, 312000, China
| | - Pu Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences), Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
30
|
Functional proteomics outlines the complexity of breast cancer molecular subtypes. Sci Rep 2017; 7:10100. [PMID: 28855612 PMCID: PMC5577137 DOI: 10.1038/s41598-017-10493-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is a heterogeneous disease comprising a variety of entities with various genetic backgrounds. Estrogen receptor-positive, human epidermal growth factor receptor 2-negative tumors typically have a favorable outcome; however, some patients eventually relapse, which suggests some heterogeneity within this category. In the present study, we used proteomics and miRNA profiling techniques to characterize a set of 102 either estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+) or triple-negative formalin-fixed, paraffin-embedded breast tumors. Protein expression-based probabilistic graphical models and flux balance analyses revealed that some ER+/PR+ samples had a protein expression profile similar to that of triple-negative samples and had a clinical outcome similar to those with triple-negative disease. This probabilistic graphical model-based classification had prognostic value in patients with luminal A breast cancer. This prognostic information was independent of that provided by standard genomic tests for breast cancer, such as MammaPrint, OncoType Dx and the 8-gene Score.
Collapse
|
31
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Glajcar A, Szpor J, Pacek A, Tyrak KE, Chan F, Streb J, Hodorowicz-Zaniewska D, Okoń K. The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Arch 2017; 470:505-515. [PMID: 28315938 PMCID: PMC5406445 DOI: 10.1007/s00428-017-2103-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Mast cells (MCs) are a part of the innate immune system. The MC functions toward cancer are partially based on the release of chymase and tryptase. However, the MC effect on breast cancer is controversial. The aim of our study was to investigate the presence of MCs in breast cancer tumors of different molecular subtypes and their relationships with other pathological prognostic factors. Tryptase- and chymase-positive mast cell densities were evaluated by immunohistochemistry in 108 primary invasive breast cancer tissue samples. Positive cells were counted within the tumor bed and at the invasive margin. For all analyzed MC subpopulations, we observed statistically significant differences between individual molecular subtypes of breast cancer. The significantly higher numbers of intratumoral chymase- and tryptase-positive mast cells were observed in luminal A and luminal B tumors compared to triple-negative and HER2+ non-luminal lesions. A denser MC infiltration was associated with lower tumor grade, higher ER and PR expression, lower proliferation rate as well as the lack of HER2 overexpression. The results obtained in our study indicate a possible association of chymase- and tryptase-positive MCs with more favorable cancer immunophenotype and with beneficial prognostic indicators in breast cancer.
Collapse
Affiliation(s)
- Anna Glajcar
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Agnieszka Pacek
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Katarzyna Ewa Tyrak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Florence Chan
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Diana Hodorowicz-Zaniewska
- Department of General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, ul. Grzegórzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
33
|
Keser SH, Kandemir NO, Ece D, Gecmen GG, Gul AE, Barisik NO, Sensu S, Buyukuysal C, Barut F. Relationship of mast cell density with lymphangiogenesis and prognostic parameters in breast carcinoma. Kaohsiung J Med Sci 2017; 33:171-180. [PMID: 28359404 DOI: 10.1016/j.kjms.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
In many cancers, mast cell density (MCD) in the tumor microenvironment is associated with tumor progression and, to a greater extent, angiogenesis. Our study was designed to investigate the correlation between MCD, tumor lymphangiogenesis, and several well-established prognostic parameters in breast cancer. One hundred and four cases of invasive breast carcinoma diagnosed in our clinic between 2007 and 2011 were included. Mast cells and lymphatic vessels were stained with toluidine blue and D2-40, respectively, and their densities were calculated in various areas of tumors and lymph nodes. The variables of MCD and lymphatic vessel density (LVD) were compared using prognostic parameters as well as with each other. As tumor size and volume increased, MCD increased comparably in metastatic lymph nodes; intratumoral and peritumoral LVD also increased. Lymphovascular invasion, lymphatic invasion, perineural invasion, and estrogen receptor positivity were positively related to intratumoral MCD. The relationship between peritumoral MCD and nontumoral breast tissue MCD was statistically significant. Stage was correlated with MCD in metastatic lymph nodes. Metastatic lymph node MCD and intratumoral MCD were also significantly related. Stage, lymphatic invasion, perineural invasion, lymphovascular invasion, and metastatic lymph node MCD were all correlated with intratumoral and/or peritumoral LVD. As nuclear grade increased, intratumoral LVD became higher. In breast carcinoma, MCD, depending on its location, was related to several prognostic parameters. Notably, mast cells may have at least some effect on lymphangiogenesis, which appears to be a predictor of tumor progression.
Collapse
Affiliation(s)
- Sevinc H Keser
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey.
| | - Nilufer O Kandemir
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey.
| | - Dilek Ece
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Gonca G Gecmen
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Aylin E Gul
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Nagehan O Barisik
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Sibel Sensu
- Department of Pathology, Dr. Lutfi Kirdar Training and Research Hospital, Istanbul, Turkey
| | - Cagatay Buyukuysal
- Department of Biostatistics, Bülent Ecevit University, Zonguldak, Turkey
| | - Figen Barut
- Department of Pathology, Faculty of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
34
|
Varricchi G, Galdiero MR, Marone G, Granata F, Borriello F, Marone G. Controversial role of mast cells in skin cancers. Exp Dermatol 2016; 26:11-17. [PMID: 27305467 DOI: 10.1111/exd.13107] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria R Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
35
|
Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, James T, Rincon M. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat 2016; 157:461-74. [PMID: 27249999 PMCID: PMC5026505 DOI: 10.1007/s10549-016-3839-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation is known to facilitate cancer progression and metastasis. Less is known about the effect of acute inflammation within the tumor microenvironment, resulting from standard invasive procedures. Recent studies in mouse models have shown that the acute inflammatory response triggered by a biopsy in mammary cancer increases the frequency of distal metastases. Although tumor biopsies are part of the standard clinical practice in breast cancer diagnosis, no studies have reported their effect on inflammatory response. The objective of this study is to (1) determine whether core needle biopsies in breast cancer patients trigger an inflammatory response, (2) characterize the type of inflammatory response present, and (3) evaluate the potential effect of any acute inflammatory response on residual tumor cells. The biopsy wound site was identified in the primary tumor resection tissue samples from breast cancer patients. The inflammatory response in areas adjacent (i.e., immediately around previous biopsy site) and distant to the wound biopsy was investigated by histology and immunohistochemistry analysis. Proliferation of tumor cells was also assayed. We demonstrate that diagnostic core needle biopsies trigger a selective recruitment of inflammatory cells at the site of the biopsy, and they persist for extended periods of time. While macrophages were part of the inflammatory response, an unexpected accumulation of eosinophils at the edge of the biopsy wound was also identified. Importantly, we show that biopsy causes an increase in the proliferation rate of tumor cells located in the area adjacent to the biopsy wound. Diagnostic core needle biopsies in breast cancer patients do induce a unique acute inflammatory response within the tumor microenvironment and have an effect on the surrounding tumor cells. Therefore, biopsy-induced inflammation could have an impact on residual tumor cell progression and/or metastasis in human breast cancer. These findings may carry relevance in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Gabriela Szalayova
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Surgery, Danbury Hospital, CT 06810
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Aleksandra Ogrodnik
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Surgery, Danbury Hospital, CT 06810
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Brianna Spencer
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Jacqueline Wade
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Janice Bunn
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405
| | - Abiy Ambaye
- Department of Pathology, University of Vermont, Burlington, VT 05405
| | - Ted James
- Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Mercedes Rincon
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
36
|
Visciano C, Prevete N, Liotti F, Marone G. Tumor-Associated Mast Cells in Thyroid Cancer. Int J Endocrinol 2015; 2015:705169. [PMID: 26379707 PMCID: PMC4563106 DOI: 10.1155/2015/705169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
There is compelling evidence that the tumor microenvironment plays a major role in mediating aggressive features of cancer cells, including invasive capacity and resistance to conventional and novel therapies. Among the different cell populations that infiltrate cancer stroma, mast cells (MCs) can influence several aspects of tumor biology, including tumor development and progression, angiogenesis, lymphangiogenesis, and tissue remodelling. Thyroid cancer (TC), the most frequent neoplasia of the endocrine system, is characterized by a MC infiltrate, whose density correlates with extrathyroidal extension and invasiveness. Recent evidence suggests the occurrence of epithelial-to-mesenchymal transition (EMT) and stemness in human TC. The precise role of immune cells and their mediators responsible for these features in TC remains unknown. Here, we review the relevance of MC-derived mediators (e.g., the chemokines CXCL1/GRO-α, CXCL10/IP-10, and CXCL8/IL-8) in the context of TC. CXCL1/GRO-α and CXCL10/IP-10 appear to be involved in the stimulation of cell proliferation, while CXCL8/IL-8 participates in the acquisition of TC malignant traits through its ability to induce/enhance the EMT and stem-like features of TC cells. The inhibition of chemokine signaling may offer novel therapeutic approaches for the treatment of refractory forms of TC.
Collapse
Affiliation(s)
- Carla Visciano
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
37
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ammendola M, Leporini C, Marech I, Gadaleta CD, Scognamillo G, Sacco R, Sammarco G, De Sarro G, Russo E, Ranieri G. Targeting mast cells tryptase in tumor microenvironment: a potential antiangiogenetic strategy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:154702. [PMID: 25295247 PMCID: PMC4177740 DOI: 10.1155/2014/154702] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a complex process finely regulated by the balance between angiogenesis stimulators and inhibitors. As a result of proangiogenic factors overexpression, it plays a crucial role in cancer development. Although initially mast cells (MCs) role has been defined in hypersensitivity reactions and in immunity, it has been discovered that MCs have a crucial interplay on the regulatory function between inflammatory and tumor cells through the release of classical proangiogenic factors (e.g., vascular endothelial growth factor) and nonclassical proangiogenic mediators granule-associated (mainly tryptase). In fact, in several animal and human malignancies, MCs density is highly correlated with tumor angiogenesis. In particular, tryptase, an agonist of the proteinase-activated receptor-2 (PAR-2), represents one of the most powerful angiogenic mediators released by human MCs after c-Kit receptor activation. This protease, acting on PAR-2 by its proteolytic activity, has angiogenic activity stimulating both human vascular endothelial and tumor cell proliferation in paracrine manner, helping tumor cell invasion and metastasis. Based on literature data it is shown that tryptase may represent a promising target in cancer treatment due to its proangiogenic activity. Here we focused on molecular mechanisms of three tryptase inhibitors (gabexate mesylate, nafamostat mesylate, and tranilast) in order to consider their prospective role in cancer therapy.
Collapse
Affiliation(s)
- Michele Ammendola
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Christian Leporini
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Ilaria Marech
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Cosmo Damiano Gadaleta
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giovanni Scognamillo
- Radiotherapy Unit, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Rosario Sacco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giuseppe Sammarco
- Department of Medical and Surgery Sciences, Clinical Surgery Unit, University “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, Clinical Pharmacology and Pharmacovigilance Unit and Pharmacovigilance's Centre Calabria Region, University of Catanzaro “Magna Graecia” Medical School, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Girolamo Ranieri
- Diagnostic and Interventional Radiology Unit with Integrated Section of Translational Medical Oncology, Istituto Tumori “Giovanni Paolo II,” Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
39
|
Rigoni A, Colombo MP, Pucillo C. The Role of Mast Cells in Molding the Tumor Microenvironment. CANCER MICROENVIRONMENT 2014; 8:167-76. [PMID: 25194694 DOI: 10.1007/s12307-014-0152-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) are granulocytic immune cells that reside in tissues exposed to the external environment. MCs are best known for their activity in allergic reactions, but they have been involved in different physiological and pathological conditions. In particular, MC infiltration has been shown in several types of human tumors and in animal cancer models. Nevertheless, the role of MCs in the tumor microenvironment is still debated because they have been associated either to good or poor prognosis depending on tumor type and tissue localization. This dichotomous role relies on MC capacity to secrete a broad spectrum of molecules with modulatory functions, which may condition the final tumor outcome also promoting angiogenesis and tissue remodeling. In this review, we analyze the multifaceted role of mast cell in tumor progression and inhibition considering their ability to interact with: i) immune cells, ii) tumor cells and iii) the extracellular matrix. Eventually, the current MC targeting strategies to treat cancer patients are discussed. Deciphering the actual role of MCs in tumor onset and progression is crucial to identify MC-targeted treatments aimed at killing cancer cells or at making the tumor vulnerable to selected anti-cancer drugs.
Collapse
Affiliation(s)
- A Rigoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Amadeo 42, 20133, Milan, Italy
| | - M P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, via Amadeo 42, 20133, Milan, Italy.
| | - C Pucillo
- Department of Medical and Biological Sciences, University of Udine, 33100, Udine, Italy
| |
Collapse
|
40
|
Vilela MHT, de Almeida FM, de Paula GM, Ribeiro NB, Cirqueira MB, Silva ALP, Moreira MAR. Utility of Ki-67, CD10, CD34, p53, CD117, and Mast Cell Content in the Differential Diagnosis of Cellular Fibroadenomas and in the Classification of Phyllodes Tumors of the Breast. Int J Surg Pathol 2014; 22:485-91. [DOI: 10.1177/1066896914521290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adequate management of phyllodes tumors of the breast (PTB) remains a challenge because of the difficulty in correctly establishing preoperative diagnosis. The aim of this study was to evaluate the usefulness of Ki-67, CD10, CD34, p53, CD117, and of the number of mast cells in the differential diagnosis of benign PTB and cellular fibroadenomas (CFs) as well as in the grading of PTB. Fifty-one primary PTB and 14 CFs were examined by immunohistochemistry.When evaluating CD117 expression, higher epithelial expression was present in CF as well as an increased number of mast cells in benign PTB. Stromal expression of Ki-67, CD10, CD34, and p53 were relevant to PTB grading, of which the first 3 showed significance in the distinction of benign and borderline PTB, as well as between benign and malignant PTB. P53 was relevant only for the discrimination between benign and malign PTB. None of the markers showed significance in distinguishing between borderline and malign PTB.
Collapse
|
41
|
Zaiss DMW, van Loosdregt J, Gorlani A, Bekker CPJ, Gröne A, Sibilia M, van Bergen en Henegouwen PMP, Roovers RC, Coffer PJ, Sijts AJAM. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013; 38:275-84. [PMID: 23333074 PMCID: PMC3582723 DOI: 10.1016/j.immuni.2012.09.023] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zaiss DMW, van Loosdregt J, Gorlani A, Bekker CPJ, Gröne A, Sibilia M, van Bergen en Henegouwen PMP, Roovers RC, Coffer PJ, Sijts AJAM. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 2013. [PMID: 23333074 DOI: 10.1016/j.immuni.2012.09.023.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gutkin DW. Tumor Infiltration by Immune Cells: Pathologic Evaluation and a Clinical Significance. THE TUMOR IMMUNOENVIRONMENT 2013:39-82. [DOI: 10.1007/978-94-007-6217-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Abstract
Primary cutaneous lymphomas (PCLs) are clonal T- or B-cell neoplasms, which originate in the skin. In recent years, mast cells were described as regulators of the tumor microenvironment in different human malignancies. Here, we investigated the role of mast cells in the tumor microenvironment of PCL. We found significantly increased numbers of mast cells in skin biopsies from patients with cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma (CBCL). Mast cell infiltration was particularly prominent in the periphery, at lymphoma rims. Interestingly, CTCL and CBCL patients with a progressive course showed higher mast cell counts than stable patients, and mast cell numbers in different stages of CTCL correlated positively with disease progression. In addition, mast cell numbers positively correlated with microvessel density. Incubating primary CTCL cells with mast cell supernatant, we observed enhanced proliferation and production of cytokines. In line with our in vitro experiments, in a mouse model of cutaneous lymphoma, tumor growth in mast cell-deficient transgenic mice was significantly decreased. Taken together, these experiments show that mast cells play a protumorigenic role in CTCL and CBCL. Our data provide a rationale for exploiting tumor-associated mast cells as a prognostic marker and therapeutic target in PCL.
Collapse
|
45
|
Mohammed ZMA, Going JJ, Edwards J, McMillan DC. The role of the tumour inflammatory cell infiltrate in predicting recurrence and survival in patients with primary operable breast cancer. Cancer Treat Rev 2012; 38:943-55. [PMID: 22651904 DOI: 10.1016/j.ctrv.2012.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
Abstract
Although the first studies highlighting the importance of the tumour inflammatory cell infiltrate were reported more than 80 years ago, the prognostic value of this response in breast cancer is still controversial. With the realisation of the importance of the inflammatory response in determining tumour progression there has been renewed interest in establishing the relationship between the type, density and location of inflammatory cell infiltrate and survival in patients with primary operable breast cancer. The aim was to undertake a systematic review of the literature examining the evidence for the role of the tumour inflammatory cell infiltrate in predicting recurrence and survival in patients with primary operable breast cancer. A systematic review of published papers up to September 2011 was undertaken according to a pre-defined protocol (Fig. 1). A total of 66 independent studies (34,086 patients) were identified. It can be concluded from the review that despite the large number of studies and considerable effort over an extended period, the relationship between different aspects of tumour inflammatory cell infiltrate and outcome in primary operable breast cancer remains unclear. This is in large part due to the absence of methodological validation, underpowered studies (small sample size and sample subtype heterogeneity, insufficient follow-up) and the absence of validation datasets. Therefore, although there are tantalising examples of the potential of the tumour inflammatory cell infiltrate to improve risk stratification patients with operable breast cancer (personalised care), this has not yet been realised. Future studies with standardised methodology, large and homogenous groups, sufficient follow-up and validation datasets should be undertaken to unlock the potential of the tumour inflammatory infiltrate to predict outcome in patients with primary operable breast cancer.
Collapse
Affiliation(s)
- Zahra M A Mohammed
- Academic Unit of Surgery, College of Medical, Veterinary and Life of Sciences, University of Glasgow, Royal Infirmary, Glasgow G31 2ER, United Kingdom.
| | | | | | | |
Collapse
|
46
|
Devapatla B, Sanders J, Samuelson DJ. Genetically determined inflammatory-response related cytokine and chemokine transcript profiles between mammary carcinoma resistant and susceptible rat strains. Cytokine 2012; 59:223-7. [PMID: 22609213 DOI: 10.1016/j.cyto.2012.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/13/2012] [Accepted: 04/23/2012] [Indexed: 12/24/2022]
Abstract
Multiple human breast and rat mammary carcinoma susceptibility (Mcs) alleles have been identified. Wistar Kyoto (WKY) rats are resistant to developing mammary carcinomas, while Wistar Furth (WF) females are susceptible. Gene transcripts at Mcs5a1, Mcs5a2, and Mcs5c are differentially expressed between resistant WKY and susceptible WF alleles in immune-system tissues. We hypothesized that immune-related gene transcript profiles are genetically determined in mammary carcinoma resistant and susceptible mammary glands. Low-density QPCR arrays were used to compare inflammation related genes between mammary carcinoma resistant WKY and susceptible WF females. Mammary gland gene transcript levels predicted to be different based on arrays were tested in independent samples. In total, 20 females per strain were exposed to 7,12-dimethylbenz(a)anthracene (DMBA) to induce mammary carcinogenesis. Twelve age-matched controls per strain without DMBA were included to determine main effects of DMBA-exposure. Significant (ANOVA P ≤ 0.01) effects of strain on mammary gland transcript level were observed for Cx3cl1, Il11ra, Il4, C3, Ccl20, Ccl11, Itgb2, Cxcl12, and Cxcr7. Significant effects of DMBA-exposure were observed for Cx3cl1, Il11ra, Cxcr4, Il4ra, and Il4. Strain and DMBA-exposure interaction effects were significant for Cx3cl1. Transcript levels of Cxcr7 relative to Cxcr4 were modified differently by DMBA in mammary carcinoma resistant and susceptible strains. In conclusion, several genetically-determined differences in cytokine, chemokine, and receptor gene transcript levels were identified between mammary carcinoma susceptible and resistant mammary glands, which may be indicative of cell populations and activities that suppress mammary carcinogenesis in resistant genotypes.
Collapse
Affiliation(s)
- Bharat Devapatla
- Center for Genetics & Molecular Medicine, Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
47
|
Löfdahl B, Ahlin C, Holmqvist M, Holmberg L, Zhou W, Fjällskog ML, Amini RM. Inflammatory cells in node-negative breast cancer. Acta Oncol 2012; 51:680-6. [PMID: 22268578 DOI: 10.3109/0284186x.2011.652737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To study the impact of inflammatory cells in a clinically well-defined cohort of women with node-negative breast cancer in a nested case-control study design. MATERIAL AND METHODS The cohort was comprised of 190 women who died from breast cancer and 190 women still alive at the date of death for the corresponding breast cancer patients were used as controls. The inclusion criteria included; a tumour size ≤ 50 mm, no lymph node metastases and no initiation of adjuvant chemotherapy. Immunohistochemical stainings for CD3, CD4, CD8, FoxP3, CD20, tryptase and CD68 were performed on TMA blocks, evaluated and correlated to each other and to age, tumour size, histological grade, ER, PgR, Ki67 and cyclin A. RESULTS There was no difference regarding the amount or content of inflammatory cells in the cases compared to controls. T- and B-cells were highly correlated to each other but these cell types correlated to a lesser extent to macrophages and not at all to mast cells. A weak tendency of correlations between all the subsets of inflammatory cells and histological grade, Ki67 and cyclin A was observed, although a negative correlation was seen for mast cells. CONCLUSION The amount or content of inflammatory cells in invasive breast cancer did not appear to influence death in node-negative breast cancer.
Collapse
Affiliation(s)
- Britta Löfdahl
- Department of Oncology and Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Hugo HJ, Lebret S, Tomaskovic-Crook E, Ahmed N, Blick T, Newgreen DF, Thompson EW, Ackland ML. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment. CANCER MICROENVIRONMENT 2012; 5:83-93. [PMID: 22314376 DOI: 10.1007/s12307-012-0098-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 01/12/2012] [Indexed: 01/26/2023]
Abstract
Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.
Collapse
Affiliation(s)
- Honor J Hugo
- St Vincent's Institute of Medical Research, Fitzroy, Australia. .,VBCRC Invasion and Metastasis Unit, St Vincent's Institute, 9 Princes St, Fitzroy, 3065, Victoria, Australia.
| | - Stephanie Lebret
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Australia
| | | | - Nuzhat Ahmed
- Women's Cancer Research Centre, Royal Women's Hospital, Parkville, Australia.,Department of Obstetrics & Gynaecology, University of Melbourne, Parkville, Australia
| | - Tony Blick
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Donald F Newgreen
- Embryology Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Erik W Thompson
- St Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - M Leigh Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, Australia
| |
Collapse
|
49
|
Sari A, Calli A, Cakalagaoglu F, Altınboga AA, Bal K. Association of mast cells with microvessel density in urothelial carcinomas of the urinary bladder. Ann Diagn Pathol 2012; 16:1-6. [DOI: 10.1016/j.anndiagpath.2011.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/21/2011] [Indexed: 01/03/2023]
|
50
|
Rudman SM, Josephs DH, Cambrook H, Karagiannis P, Gilbert AE, Dodev T, Hunt J, Koers A, Montes A, Taams L, Canevari S, Figini M, Blower PJ, Beavil AJ, Nicodemus CF, Corrigan C, Kaye SB, Nestle FO, Gould HJ, Spicer JF, Karagiannis SN. Harnessing engineered antibodies of the IgE class to combat malignancy: initial assessment of FcɛRI-mediated basophil activation by a tumour-specific IgE antibody to evaluate the risk of type I hypersensitivity. Clin Exp Allergy 2011; 41:1400-13. [PMID: 21569129 DOI: 10.1111/j.1365-2222.2011.03770.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND IgE antibodies, sequestered into tissues and retained locally by the high-affinity IgE receptor, FcɛRI, on powerful effector cells such as mast cells, macrophages and eosinophils, may offer improvements in the therapy of solid tumours. The chimeric antibody, MOv18 IgE, against the human ovarian carcinoma antigen, folate receptor α (FRα), is more effective than its IgG1 counterpart in xenograft models of ovarian cancer. Although MOv18 IgE binds to a single epitope on FRα and cannot cross-link IgE receptors on basophils, there remains a risk that components in the circulation of ovarian cancer patients might cross-link FRα-MOv18-IgE-receptor-FcɛRI complexes on basophils to cause type I hypersensitivity. OBJECTIVE To assess the propensity for MOv18 used in a therapeutic setting to cause FcɛRI-mediated type I hypersensitivity. METHODS As validated readouts of the potential for MOv18 to cause FcɛRI-mediated type I hypersensitivity we measured release of a granule-stored mediator from a rat basophilic leukaemia cell line RBL SX-38 stably transfected with human tetrameric (αβγ2) FcɛRI, and induction of CD63 on blood basophils from patients with ovarian carcinoma and healthy controls ex vivo. RESULTS Serum FRα levels were increased in ovarian cancer patients compared with healthy controls. MOv18 IgE alone, or in the presence of its antigen recombinant human FRα, or of healthy volunteer (n=14) or ovarian carcinoma patient (n=32) sera, did not induce RBL SX-38 cell degranulation. Exposure to FRα-expressing ovarian tumour cells at target-to-effector ratios expected within tumours induced degranulation. MOv18 IgE did not induce expression of CD63 in blood basophils from either healthy volunteers (n=6), or cancer patients, despite detectable levels of circulating FRα (n=5). CONCLUSION AND CLINICAL RELEVANCE These encouraging data are compatible with the hypothesis that, when ovarian carcinoma patients are treated with MOv18, FcɛRI-mediated activation of effector cells occurs within the tumour mass but not in the circulation mandating, with due caution, further pre-clinical studies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/adverse effects
- Antibodies, Monoclonal, Murine-Derived/genetics
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibody Specificity
- Antigens, Neoplasm/immunology
- Basophils/immunology
- Carcinoma/immunology
- Carcinoma/therapy
- Cell Degranulation
- Cell Line, Tumor
- Female
- Folate Receptor 1/blood
- Folate Receptor 1/immunology
- Folate Receptor 1/metabolism
- Humans
- Hypersensitivity, Immediate/etiology
- Hypersensitivity, Immediate/immunology
- Immunoglobulin E/genetics
- Immunoglobulin E/immunology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Protein Engineering
- Rats
- Receptors, IgE/immunology
- Tetraspanin 30/metabolism
Collapse
Affiliation(s)
- S M Rudman
- NIHR Biomedical Research Centre at Guy's and St Thomas's Hospitals and King's College London, Cutaneous Medicine & Immunotherapy Unit, St John's Institute of Dermatology, Division of Genetics & Molecular Medicine, King's College London School of Medicine, Guy's Hospital, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|