1
|
Bloise E, Seidita I, Nardi E, Abati I, Borba Vieira DE Andrade C, Castiglione F, Mecacci F, Donati C, Petraglia F. P-glycoprotein expression is decreased in placenta accreta and placenta previa disorders. Minerva Obstet Gynecol 2024; 76:484-491. [PMID: 39318283 DOI: 10.23736/s2724-606x.24.05488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are multidrug resistance (MDR) transporters that function as placental gatekeepers, lowering the fetal levels of diverse xenobiotics and toxins that may be circulating in the maternal blood throughout pregnancy. Placenta accreta spectrum (PAS) and the placenta previa (PP) disorders are obstetric pathologies encompassed by an abnormal invasion of chorionic villous tissue in the uterine wall or at the endocervical os, respectively. Given the fact that MDR transporters are involved in placentation and are highly responsive to inflammation, we hypothesized that immunostaining of P-gp and BCRP would be altered in PAS and in PP specimens. METHODS A total of 32 placental histological specimens, sorted in control (N.=8; physiological pregnancies), PAS (N.=14), and PP (N.=10), were subjected to immunohistochemistry for P-gp and BCRP transporters. Semi-quantitative scoring of the resulting immunostained area and intensity was undertaken. RESULTS Decreased P-gp staining intensity in the syncytiotrophoblast of the PAS compared to the control group (P<0.05) and in the PP compared to the PAS group was detected (P<0.05). Fetal blood vessel P-gp immunostaining was decreased in PAS and PP groups (P<0.001). CONCLUSIONS We conclude that PAS and PP histological specimens exhibit decreased immunostaning of the drug transporter P-gp, and that fetuses born from these pregnancies may be exposed to greater levels of drugs and toxins present at the maternal circulation. Futures studies should attempt to investigate the mechanisms underlying P-gp down-regulation in these obstetric pathologies.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil -
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada -
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy -
| | - Isabelle Seidita
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Eleonora Nardi
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Isabella Abati
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Francesca Castiglione
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Federico Mecacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
2
|
Meng X, Zhao X, Zhou B, Song W, Liang Y, Liang M, Du M, Shi J, Gao Y. FSTL3 is associated with prognosis and immune cell infiltration in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:17. [PMID: 38240936 PMCID: PMC10799152 DOI: 10.1007/s00432-023-05553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 01/22/2024]
Abstract
PURPOSE FSTL3 expression is altered in various types of cancer. However, the role and mechanism of action of FSTL3 in lung adenocarcinoma development and tumor immunity are unknown. We investigated the association between FSTL3 expression and clinical characteristics and immune cell infiltration in lung adenocarcinoma samples from The Cancer Genome Atlas (TCGA) and a separate validation set from our hospital. METHODS Data on immune system infiltration, gene expression, and relevant clinical information were obtained by analyzing lung adenocarcinoma sample data from TCGA database. Using online tools like GEPIA, the correlations between FSTL3 expression and prognosis, clinical stage, survival status, and tumor-infiltrating immune cells were examined. In a validation dataset, immunohistochemistry was performed to analyze FSTL3 expression and its related clinical characteristics. RESULTS FSTL3 expression was markedly reduced in patients with lung adenocarcinoma. N stage, pathological stage, and overall survival were significantly correlated with FSTL3 expression. According to GSEA, FSTL3 is strongly linked to signaling pathways such as DNA replication and those involved in cell cycle regulation. Examination of TCGA database and TIMER online revealed a correlation between FSTL3 and B cell, T cell, NK cell, and neutrophil levels. The prognosis of patients with lung adenocarcinoma was significantly affected by six genes (KRT6A, VEGFC, KRT14, KRT17, SNORA12, and KRT81) related to FSTL3. CONCLUSION FSTL3 is significantly associated with the prognosis and progression of lung adenocarcinoma and the infiltration of immune cells. Thus, targeting FSTL3 and its associated genes in immunotherapy could be potentially beneficial for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Xiaojian Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yicheng Liang
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Minjun Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Jianwei Shi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China.
| |
Collapse
|
3
|
Li C, Fang C, Chan M, Chen C, Chang Y, Hsiao M. The cytoplasmic expression of FSTL3 correlates with colorectal cancer progression, metastasis status and prognosis. J Cell Mol Med 2023; 27:672-686. [PMID: 36807490 PMCID: PMC9983317 DOI: 10.1111/jcmm.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/21/2023] Open
Abstract
Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-β1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Chih‐Yeu Fang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | | | - Chi‐Long Chen
- Department of Pathology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Department of PathologyTaipei Medical University HospitalTaipeiTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Michael Hsiao
- Genomics Research CenterAcademia SinicaTaipeiTaiwan,Department of BiochemistryKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
4
|
Connor KL, Bloise E, DeSantis TZ, Lye SJ. Adaptation of the gut holobiont to malnutrition during mouse pregnancy depends on the type of nutritional adversity. J Nutr Biochem 2023; 111:109172. [PMID: 36195213 DOI: 10.1016/j.jnutbio.2022.109172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Malnutrition can influence maternal physiology and programme offspring development. Yet, in pregnancy, little is known about how dietary challenges that influence maternal phenotype affect gut structure and function. Emerging evidence suggests that interactions between the environment, multidrug resistance (MDR) transporters and microbes may influence maternal adaptation to pregnancy and regulate fetoplacental development. We hypothesized that the gut holobiont (host and microbes) during pregnancy adapts differently to suboptimal maternal diets, evidenced by changes in the gut microenvironment, morphology, and expression of key protective MDR transporters during pregnancy. Mice were fed a control diet (CON) during pregnancy, or undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5, or fed 60% high fat diet (HF) for 8 weeks before and during pregnancy. At GD18.5, maternal small intestinal (SI) architecture (H&E), proliferation (Ki67), P-glycoprotein (P-gp - encoded by Abcb1a/b) and breast cancer resistance protein (BCRP/Abcg2) MDR transporter expression and levels of pro-inflammatory biomarkers were assessed. Circulating inflammatory biomarkers and maternal caecal microbiome composition (G3 PhyloChipTM) were measured. MDR transporter expression was also assessed in fetal gut. HF diet increased maternal SI crypt depth and proinflammatory load, and decreased SI expression of Abcb1a mRNA, whilst UN increased SI villi proliferation and Abcb1a, but decreased Abcg2, mRNA expression. There were significant associations between Abcb1a and Abcg2 mRNA levels with relative abundance of specific microbial taxa. Using a systems physiology approach we report that common nutritional adversities provoke adaptations in the pregnancy holobiont in mice, and reveal new mechanisms that could influence reproductive outcomes and fetal development.
Collapse
Affiliation(s)
- Kristin L Connor
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.
| | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Stephen J Lye
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Liu Y, Li J, Zeng S, Zhang Y, Zhang Y, Jin Z, Liu S, Zou X. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer. Front Mol Biosci 2021; 8:762924. [PMID: 34901156 PMCID: PMC8652210 DOI: 10.3389/fmolb.2021.762924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results:FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5β1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion:FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.
Collapse
Affiliation(s)
- Yuanjie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiepin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shuhong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhichao Jin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Tamiasso NV, Silva CMO, Reis AMS, Ocarino NM, Serakides R. Ethanol Alters Phenotype and Synthesis Activity of Rat Neonatal Articular Chondrocytes Grown in 2- and 3-Dimensional Culture. Cartilage 2021; 13:839S-846S. [PMID: 31441318 PMCID: PMC8804855 DOI: 10.1177/1947603519870862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We sought to evaluate the effect of different concentrations of ethanol on phenotype and activity of articular chondrocyte synthesis of neonatal rats in 2-dimensional (2D) and 3-dimensional (3D) culture. METHODS Chondrocytes were cultured in chondrogenic medium with different concentrations of ethanol: 0.0% v/v (control); 0.05% v/v (8.6 mM); 0.25% v/v (42.9 mM), and 0.5% v/v (85.7 mM). Chondrocytes under 2D culture were subjected to MTT assay, while chondrocytes under 3D culture were processed for paraffin inclusion and stained by periodic acid Schiff (PAS) to evaluate mean chondrocyte diameter and percentages of cells, nucleus, cytoplasm, well-differentiated matrix, and PAS+ areas. The expression of gene transcripts for aggrecan, Sox9, and type II collagen was evaluated by real-time quantitative polymerase chain reaction. RESULTS There was no difference between groups by the MTT assay. PAS staining revealed that chondrocytes treated with 0.5% v/v ethanol had higher percentages of cytoplasm and nuclear areas, but with a reduction in PAS+ matrix area. The mean diameter of chondrocytes was similar between groups. The expression of aggrecan in the group treated with 0.5% v/v ethanol was lower in comparison to that in the control. In the groups treated with 0.25% v/v and 0.5% v/v ethanol, the percentage of differentiated cartilage was lower in comparison with that in the control. The group treated with 0.05% v/v ethanol was similar to the control in all parameters. CONCLUSIONS Ethanol acted directly on in vitro cultured articular chondrocytes of newborn rats, altering the chondrocyte phenotype and its synthesis activity, and these effects were dose dependent.
Collapse
Affiliation(s)
- Natalia Viana Tamiasso
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Carla Maria Osório Silva
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | | | - Natália Melo Ocarino
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia
Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas
Gerais Belo Horizonte, Minas Gerais, Brazil,Rogéria Serakides, Núcleo de Células Tronco
e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade
Federal de Minas Gerais Belo Horizonte, Av. Antônio Carlos 6627, Caixa Postal
567, campus Pampulha da UFMG, Belo Horizonte, MG CEP 30123-970, Brazil.
| |
Collapse
|
7
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
8
|
Palladino E, Van Mieghem T, Connor KL. Diet Alters Micronutrient Pathways in the Gut and Placenta that Regulate Fetal Growth and Development in Pregnant Mice. Reprod Sci 2021; 28:447-461. [PMID: 32886339 DOI: 10.1007/s43032-020-00297-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Maternal malnutrition and micronutrient deficiencies can alter fetal development. However, the mechanisms underlying these relationships are poorly understood. We used a systems physiology approach to investigate diet-induced effects on maternal gut microbes and folate/inositol transport in the maternal/fetal gut and placenta. Female mice were fed a control diet (CON) diet, undernourished (UN, restricted by 30% of CON intake) or a high-fat diet (HF, 60% kcals fat) during pregnancy to model normal pregnancy, fetal growth restriction or maternal metabolic dysfunction, respectively. At gestational day 18.5, we assessed circulating folate levels by microbiological assay, relative abundance of gut lactobacilli by G3PhyloChip™, and folate/inositol transporters in placenta and maternal/fetal gut by qPCR/immunohistochemistry. UN and HF-fed mothers had lower plasma folate concentrations vs. CON. Relative abundances of three lactobacilli taxa were higher in HF vs. UN and CON. HF-fed mothers had higher gut proton coupled folate transporter (Pcft) and reduced folate carrier 1 (Rfc1), and lower sodium myo-inositol co-transporter 2 (Smit2), mRNA expression vs. UN and CON. HF placentae had increased folate receptor beta (Frβ) expression vs. UN. mRNA expression of Pcft, folate receptor alpha (Frα), and Smit2 was higher in gut of HF fetuses vs. UN and CON. Transporter protein expression was not different between groups. Maternal malnutrition alters abundance of select gut microbes and folate/inositol transporters, which may influence maternal micronutrient status and delivery to the fetus, impacting pregnancy/fetal outcomes.
Collapse
Affiliation(s)
- Elia Palladino
- Carleton University (Health Sciences), Ottawa, Ontario, Canada
| | - Tim Van Mieghem
- Mount Sinai Hospital (Obstetrics and Gynaecology), Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Martinelli LM, Reginatto MW, Fontes KN, Andrade CBV, Monteiro VRS, Gomes HR, Almeida FRCL, Bloise FF, Matthews SG, Ortiga-Carvalho TM, Bloise E. Breast cancer resistance protein (Bcrp/Abcg2) is selectively modulated by lipopolysaccharide (LPS) in the mouse yolk sac. Reprod Toxicol 2020; 98:82-91. [PMID: 32916274 PMCID: PMC7772890 DOI: 10.1016/j.reprotox.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Bacterial infection alters placental ABC transporters expression. These transporters provide fetal protection against circulating xenobiotics and environmental toxins present in maternal blood. We hypothesized that lipopolysaccharide (LPS-bacterial mimic) alters the yolk sac morphology and expression of key ABC transporters in a gestational-age dependent manner. Yolk sac samples from C57BL/6 mice were obtained at gestational ages (GD) 15.5 and GD18.5, 4 or 24 h after LPS exposure (150ug/kg; n = 8/group). Samples underwent morphometrical, qPCR and immunohistochemistry analysis. The volumetric proportions of the histological components of the yolk sac did not change in response to LPS. LPS increased Abcg2 expression at GD15.5, after 4 h of treatment (p < 0.05). No changes in Abca1, Abcb1a/b, Abcg1, Glut1, Snat1, Il-1β, Ccl2 and Mif were observed. Il-6 and Cxcl1 were undetectable in the yolk sac throughout pregnancy. Abca1, breast cancer resistance protein (Bcrp, encoded by Abcg2) and P-glycoprotein (P-gp/ Abcb1a/b) were localized in the endodermal (uterine-facing) epithelium and to a lesser extent in the mesothelium (amnion-facing), whereas Abca1 was also localized to the endothelium of the yolk sac blood vessels. LPS increased the labeling area and intensity of Bcrp in the yolk sac's mesothelial cells at GD15.5 (4 h), whereas at GD18.5, the area of Bcrp labeling in the mesothelium (4 and 24 h) was decreased (p < 0.05). Bacterial infection has the potential to change yolk sac barrier function by affecting Bcrp and Abcg2 expression in a gestational-age dependent-manner. These changes may alter fetal exposure to xenobiotics and toxic substances present in the maternal circulation and in the uterine cavity.
Collapse
Affiliation(s)
- L M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - M W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - K N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - C B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - V R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - H R Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - F R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - F F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - S G Matthews
- Departments of Physiology,Obstetrics and Gynecology and Medicine, University of Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - E Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
10
|
Miyamoto Y, Schirripa M, Suenaga M, Cao S, Zhang W, Okazaki S, Berger MD, Matsusaka S, Yang D, Ning Y, Baba H, Loupakis F, Lonardi S, Pietrantonio F, Borelli B, Cremolini C, Yamaguchi T, Lenz HJ. A polymorphism in the cachexia-associated gene INHBA predicts efficacy of regorafenib in patients with refractory metastatic colorectal cancer. PLoS One 2020; 15:e0239439. [PMID: 32970737 PMCID: PMC7514061 DOI: 10.1371/journal.pone.0239439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 01/06/2023] Open
Abstract
Activin/myostatin signaling has a critical role not only in cachexia but also in tumor angiogenesis. Cachexia is a frequent complication among patients with advanced cancer and heavily pretreated patients. We aimed to evaluate the prognostic significance of cachexia-associated genetic variants in refractory metastatic colorectal cancer (mCRC) patients treated with regorafenib. Associations between twelve single nucleotide polymorphisms in 8 genes (INHBA, MSTN, ALK4, TGFBR1, ALK7, ACVR2B, SMAD2, FOXO3) and clinical outcome were evaluated in mCRC patients of three cohorts: a discovery cohort of 150 patients receiving regorafenib, a validation cohort of 80 patients receiving regorafenib and a control cohort of 128 receiving TAS-102. In the discovery cohort, patients with any G variant in FOXO3 rs12212067 had a significantly lower response rate (P = 0.031) and overall survival (OS) than those with a T/T in univariate analysis (4.5 vs. 7.6 months, hazard ratio [HR] = 1.63, 95% confidence interval [CI] = 1.09-2.46, P = 0.012). Among female patients, those with any G variant in INHBA rs2237432 had a significantly longer OS than those with an A/A in both univariate (7.6 vs. 4.3 months, HR = 0.57, 95%CI = 0.34-0.95, P = 0.021) and multivariable (HR = 0.53, 95%CI = 0.29-0.94, adjusted P = 0.031) analysis. This association was confirmed in female patients of the validation cohort, though without statistical significance (P = 0.059). Conversely, female patients with any G allele in the control group receiving TAS-102 did not show a longer OS. This was the first study evaluating the associations between polymorphisms in cachexia-associated genes and outcomes in refractory mCRC patients treated with regorafenib. Further studies should be conducted to confirm these associations.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fotios Loupakis
- Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Sara Lonardi
- Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology, Istituto Oncologico Veneto, IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Borelli
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Cremolini
- Polo Oncologico, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Toshiharu Yamaguchi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
11
|
Martinelli LM, Fontes KN, Reginatto MW, Andrade CBV, Monteiro VRS, Gomes HR, Silva-Filho JL, Pinheiro AAS, Vago AR, Almeida FRCL, Bloise FF, Matthews SG, Ortiga-Carvalho TM, Bloise E. Malaria in pregnancy regulates P-glycoprotein (P-gp/Abcb1a) and ABCA1 efflux transporters in the Mouse Visceral Yolk Sac. J Cell Mol Med 2020; 24:10636-10647. [PMID: 32779889 PMCID: PMC7521277 DOI: 10.1111/jcmm.15682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria in pregnancy (MiP) induces intrauterine growth restriction (IUGR) and preterm labour (PTL). However, its effects on yolk sac morphology and function are largely unexplored. We hypothesized that MiP modifies yolk sac morphology and efflux transport potential by modulating ABC efflux transporters. C57BL/6 mice injected with Plasmodium berghei ANKA (5 × 105 infected erythrocytes) at gestational day (GD) 13.5 were subjected to yolk sac membrane harvesting at GD 18.5 for histology, qPCR and immunohistochemistry. MiP did not alter the volumetric proportion of the yolk sac's histological components. However, it increased levels of Abcb1a mRNA (encoding P‐glycoprotein) and macrophage migration inhibitory factor (Mif chemokine), while decreasing Abcg1 (P < 0.05); without altering Abca1, Abcb1b, Abcg2, Snat1, Snat2, interleukin (Il)‐1β and C‐C Motif chemokine ligand 2 (Ccl2). Transcripts of Il‐6, chemokine (C‐X‐C motif) ligand 1 (Cxcl1), Glut1 and Snat4 were not detectible. ABCA1, ABCG1, breast cancer resistance protein (BCRP) and P‐gp were primarily immunolocalized to the cell membranes and cytoplasm of endodermic epithelium but also in the mesothelium and in the endothelium of mesodermic blood vessels. Intensity of P‐gp labelling was stronger in both endodermic epithelium and mesothelium, whereas ABCA1 labelling increased in the endothelium of the mesodermic blood vessels. The presence of ABC transporters in the yolk sac wall suggests that this fetal membrane acts as an important protective gestational barrier. Changes in ABCA1 and P‐gp in MiP may alter the biodistribution of toxic substances, xenobiotics, nutrients and immunological factors within the fetal compartment and participate in the pathogenesis of malaria‐induced IUGR and PTL.
Collapse
Affiliation(s)
- Lilian M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Klaus N Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mila W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley B V Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hanailly R Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao L Silva-Filho
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana A S Pinheiro
- Laboratory of Immunology and Biochemistry of Parasitic Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Annamaria R Vago
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia F Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrrico Bloise
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Gao L, Chen X, Wang Y, Zhang J. Up-Regulation of FSTL3, Regulated by lncRNA DSCAM-AS1/miR-122-5p Axis, Promotes Proliferation and Migration of Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2020; 13:2725-2738. [PMID: 32280246 PMCID: PMC7131999 DOI: 10.2147/ott.s236359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Follistatin-like 3 (FSTL3) binds and inactivates activin, a growth factor with cell growth and differentiation. Previous studies reported that it is overexpressed in invasive breast cancers, and its expression and function in non-small cell lung cancer (NSCLC) remain unclear. Materials and Methods Immunohistochemistry was employed to probe the expression of FSTL3 in NSCLC tissues. Real-time PCR (RT-PCR) was applied to detect the expression of lncRNA DSCAM-AS1 and miR-122-5p. A549 cells and H1299 cells were used as cell models. The biological influence of FSTL3 on cells was studied using CCK-8 assay, wound healing assay and transwell assay in vitro, respectively. In vivo subcutaneous xenotransplanted tumor model and tail vein injection model in mice were also constructed to validate the roles of FSTL3. Interactions between miR-122-5p and FSTL3, DSCAM-AS1 and miR-122-5p were determined by bioinformatics analysis, RT-PCR, and dual-luciferase reporter assay. Results FSTL3 and DSCAM-AS1 were remarkably up-regulated in NSCLC samples, and miR-122-5p was down-regulated. FSTL3 was associated with worse prognosis of NSCLC patients. FSTL3 knockdown markedly inhibited the viability, migration and invasion of NSCLCs in vitro and in vivo. DSCAM-AS1 could down-regulate miR-122-5p via sponging it, and FSTL3 was a target gene of miR-122-5p. Conclusion Taken together, our study identified that FSTL3 was a new oncogene of NSCLC, which was regulated by DSCAM-AS1 and miR-122-5p. These findings suggested that FSTL3, DSCAM-AS1 and miR-122-5p might serve as a new valuable therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310022, Zhejiang Province, People's Republic of China.,Department of Oncology, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Xiaochen Chen
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310022, Zhejiang Province, People's Republic of China.,Department of Oncology, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| | - Yongxiang Wang
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang Province, People's Republic of China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310022, Zhejiang Province, People's Republic of China.,Department of Oncology, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTTN, Matthews SG, Lye SJ, Bloise E. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J Nutr Biochem 2020; 78:108329. [PMID: 32004932 DOI: 10.1016/j.jnutbio.2019.108329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
The placenta promotes fetal growth through nutrient transfer and selective barrier systems. An optimally developed placenta can adapt to changes in the pregnancy environment, buffering the fetus from adverse exposures. We hypothesized that the placenta adapts differently to suboptimal maternal diets, evidenced by changes in placental morphology, developmental markers and key transport systems. Mice were fed a control diet (CON) during pregnancy, undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5 or fed 60% high-fat diet (HF) 8 weeks before and during pregnancy. At GD18.5, placental morphometry, development and transport were assessed. Junctional and labyrinthine areas of UN and HF placentae were smaller than CON by >10%. Fetal blood space area and fetal blood space:fetal weight ratios were reduced in HF vs. CON and UN. Trophoblast giant cell marker Ctsq mRNA expression was lower in UN vs. HF, and expression of glycogen cell markers Cx31.1 and Pcdh12 was lower in HF vs. UN. Efflux transporter Abcb1a mRNA expression was lower in HF vs. UN, and Abcg2 expression was lower in UN vs. HF. mRNA expression of fatty acid binding protein Fabppm was higher in UN vs. CON and HF. mRNA and protein levels of the lipid transporter FAT/CD36 were lower in UN, and FATP4 protein levels were lower in HF vs. UN. UN placentae appear less mature with aberrant transport, whereas HF placentae adapt to excessive nutrient supply. Understanding placental adaptations to common nutritional adversities may reveal mechanisms underlying the developmental origins of later disease.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Seachrist DD, Keri RA. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019; 160:1097-1110. [PMID: 30874767 PMCID: PMC6475112 DOI: 10.1210/en.2019-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Activins and inhibins are closely related protein heterodimers with a similar tissue distribution; however, these two complexes have opposing functions in development and disease. Both are secreted cytokine hormones, with activin the primary inducer of downstream signaling cascades and inhibin acting as a rheostat that exquisitely governs activin function. Adding to the complexity of activin signaling, follistatin, a highly glycosylated monomeric protein, binds activin with high affinity and restrains downstream pathway activation but through a mechanism distinct from that of inhibin. These three proteins were first identified as key ovarian hormones in the pituitary-gonadal axis that direct the synthesis and secretion of FSH from the pituitary, hence controlling folliculogenesis. Research during the past 30 years has expanded the roles of these proteins, first by discovering the ubiquitous expression of the trio and then by implicating them in a wide array of biological functions. In concert, these three hormones govern tissue development, homeostasis, and disease in multiple organ systems through diverse autocrine and paracrine mechanisms. In the present study, we have reviewed the actions of activin and its biological inhibitors, inhibin, and follistatin, in mammary gland morphogenesis and cancer.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Division of General Medical Sciences–Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
Panagiotou G, Papakonstantinou E, Vagionas A, Polyzos SA, Mantzoros CS. Serum Levels of Activins, Follistatins, and Growth Factors in Neoplasms of the Breast: A Case-Control Study. J Clin Endocrinol Metab 2019; 104:349-358. [PMID: 30388235 DOI: 10.1210/jc.2018-01581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
CONTEXT Breast cancer is the most common malignancy in women. Noninvasive biomarkers are needed for its early diagnosis and/or prognosis. OBJECTIVE The aim of this case-control study was the comparison of serum activins, follistatins, and members of the IGF family levels in women with benign vs malignant breast neoplasms vs apparently healthy controls. DESIGN AND PATIENTS Women with breast benign (n = 100) or malignant tumors (n = 145) and disease-free controls (n = 100) were recruited. Women with breast cancer were subsequently subdivided into recently diagnosed/treatment-naive (n = 112) and chemotherapy-treated (n = 33). Anthropometric, demographic, biochemical, and histological data were recorded. SETTING A breast cancer clinic in Thessaloniki, Greece. MAIN OUTCOME MEASURES Serum levels of activin A, activin B, follistatin, follistatin-like (FSTL)-3, total IGF-1, total and intact insulin-like growth factor binding protein (IGFBP)-4 and pregnancy-associated plasma protein-A (PAPP-A) were measured with highly specific ELISA kits. RESULTS In adjusted comparisons, substantial differences in FSTL-3, total and intact IGFBP-4, PAPP-A, and total IGF-1 were observed between groups. In logistic regression analysis, primarily total IGFBP-4 levels were independently associated with the overall presence of breast malignancy. FSTL-3 was the only variable that could distinguish between a benign vs malignant breast mass. In linear regression analysis, FSTL-3 was independently associated with tumor size. CONCLUSIONS We showed that members of the IGF-1/IGFBP-4/PAPP-A axis and FSTL-3 may serve as surrogate markers in breast cancer. Future mechanistic and longitudinal studies and/or clinical trials are needed to explore the efficacy of these molecules as noninvasive biomarkers and their possible therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Grigorios Panagiotou
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Papakonstantinou
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
17
|
Li C, Dai L, Zhang J, Zhang Y, Lin Y, Cheng L, Tian H, Zhang X, Wang Q, Yang Q, Wang Y, Shi G, Cheng F, Su X, Yang Y, Zhang S, Yu D, Wei Y, Deng H. Follistatin-like protein 5 inhibits hepatocellular carcinoma progression by inducing caspase-dependent apoptosis and regulating Bcl-2 family proteins. J Cell Mol Med 2018; 22:6190-6201. [PMID: 30255547 PMCID: PMC6237577 DOI: 10.1111/jcmm.13906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 08/18/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors in the world, especially in China. Follistatin‐like protein 5 (FSTL5) is a member of the FSTL family, which is involved in cell proliferation, migration, differentiation, and embryo development. We aimed to investigate the function and underlying mechanism of FSTL5 in HCC. FSTL5 expression was determined by immunohistochemistry staining in a liver cancer tissue microarray (TMA) and the correlation between FSTL5 and the prognosis of HCC patients was analysed. Further proliferation assay, colony formation assay, flow cytometry, and xenograft tumor model were performed to investigate the bioeffects of FSTL5 in HCC in vitro and in vivo. We found that FSTL5 expression was downregulated in HCC tissues and positively correlated with the prognosis of patients with HCC at tumor node metastasis stage I/II. Overexpression of FSTL5 efficiently impaired HCC growth both in vivo and in vitro with an exogenous manner. Mechanistic investigation demonstrated that FSTL5 promoted HCC cell apoptosis in a caspase‐dependent manner and regulated Bcl‐2 family proteins. These results indicate that FSTL5 may be a potential novel target for HCC treatment, and a biomarker for tumor prognosis.
Collapse
Affiliation(s)
- Chunlei Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Biochemistry, Faculty of Basic Medicine, Chongqing Three Gorges Medical College, Wanzhou, Chongqing, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongwei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Follistatin Expression in Human Invasive Breast Tumors: Pathologic and Clinical Associations. Appl Immunohistochem Mol Morphol 2018; 26:108-112. [PMID: 27389553 DOI: 10.1097/pai.0000000000000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Follistatin is a potent native activin antagonist that is expressed in the normal mammary gland and in different breast proliferative diseases. Despite experimental evidence that follistatin can modulate the breast cancer cell cycle, the clinical significance of follistatin expression in these tumors is unknown. The aim of this study was to correlate the intensity of follistatin expression in invasive breast cancer with some of its clinical and pathologic features, such as the disease stage and the hormonal receptor status. Paraffin blocks of tumor samples that had been fixed in buffered formalin were obtained from 154 women subjected to surgery for breast cancer between 2008 and 2012. Sections from all paraffin blocks were cut and processed together by immunohistochemistry using a commercial monoclonal antibody to human follistatin. The intensity of follistatin staining was unrelated to the menopausal status, the disease stage, the grade, progesterone receptor expression, and local or systemic recurrence. However, follistatin immunoreactivity was significantly stronger in estrogen receptor (ER)-negative tumors than in ER-positive tumors. These findings suggest that follistatin expression in invasive breast cancer is unrelated to the disease severity and the risk of recurrence, but is more intense in ER-negative tumors.
Collapse
|
19
|
Couto HL, Buzelin MA, Toppa NH, Bloise E, Wainstein AJ, Reis FM. Prognostic value of follistatin-like 3 in human invasive breast cancer. Oncotarget 2018; 8:42189-42197. [PMID: 28178680 PMCID: PMC5522059 DOI: 10.18632/oncotarget.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/10/2017] [Indexed: 11/27/2022] Open
Abstract
Follistatin-like 3 (FSTL3) binds and inactivates activin, a growth factor involved with cell growth and differentiation. We have previously shown FSTL3 overexpression in invasive breast cancers, but its clinical relevance remained unexplored. Here we evaluate FSTL3 as a prognostic tool and its relation with clinical and pathological features of breast cancer. A cohort of 154 women diagnosed with invasive breast cancer between 2008 and 2012 was followed up for 5 years. Tumor samples were processed by immunohistochemistry to detect FSTL3 expression in tumor epithelium. FSTL3 expression was classified semiquantitatively and tested for possible correlation with age, menopause status, stage, tumor histological type and grade, estrogen receptor, progesterone receptor, and HER2 expression. Survival plots with Kaplan-Mayer statistics were used to assess whether FSTL3 expression predicted disease-free survival. Our findings show that FSTL3 staining was unrelated to menopausal status, histological type, disease stage, or receptor profile. However, the intensity of FSTL3 immunostaining correlated inversely with tumor size (r = -0.366, p<0.001) and with nuclear grade (p<0.01). The intensity of FSTL3 expression in the tumoral epithelium was not predictive of the disease-free survival (p = 0.991, log-rank test), even though the follow-up length and the study size were sufficient to detect a significant reduction in disease-free survival among women with stage III-IV compared to stage I-II disease (p<0.001). FSTL3 expression in invasive breast cancer is inversely associated with tumor size and nuclear grade but it does not predict disease relapse in the short term.
Collapse
Affiliation(s)
- Henrique L Couto
- Division of Human Reproduction and Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of Oncology, Hospital Alberto Cavalcanti, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nivaldo H Toppa
- Laboratório Analys Patologia, Belo Horizonte, Minas Gerais, Brazil
| | - Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alberto J Wainstein
- Department of Oncology, Hospital Alberto Cavalcanti, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Division of Human Reproduction and Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Increased Expression of Follistatin in Breast Cancer Reduces Invasiveness and Clinically Correlates with Better Survival. Cancer Genomics Proteomics 2018. [PMID: 28647698 DOI: 10.21873/cgp.20035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIM Activin and its antagonist follistatin (FST) have been implicated in several solid tumours. This study investigated the role of FST in breast cancer. MATERIALS AND METHODS FST expression was examined using reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative polymerase chain reaction (qPCR) and immunohistochemistry in a cohort of breast cancer samples. Expression was correlated to pathological and prognostic parameters in our patient cohort. FST was overexpressed in MCF-7 cells and assays for growth and invasion were performed. RESULTS FST is expressed in breast tissue, in the cytoplasm of mammary epithelial cells. Expression was decreased in breast cancer tissue in comparison to normal mammary tissue. Over-expression of FST in vitro led to significantly increased growth rate and reduced invasion. Higher FST associates with lower-grade tumours and better survival. CONCLUSION Our results suggest a role for FST as a suppressor of invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Jeyna Resaul
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Rachel Hargest
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K
| | - Wen Guo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K.
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, U.K.
| |
Collapse
|
21
|
do Imperio GE, Bloise E, Javam M, Lye P, Constantinof A, Dunk C, Dos Reis FM, Lye SJ, Gibb W, Ortiga-Carvalho TM, Matthews SG. Chorioamnionitis Induces a Specific Signature of Placental ABC Transporters Associated with an Increase of miR-331-5p in the Human Preterm Placenta. Cell Physiol Biochem 2018; 45:591-604. [PMID: 29402780 PMCID: PMC7202864 DOI: 10.1159/000487100] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/10/2017] [Indexed: 12/16/2022] Open
Abstract
Background/Aims The ATP-binding cassette (ABC) transporters mediate drug biodisposition and immunological responses in the placental barrier. In vitro infective challenges alter expression of specific placental ABC transporters. We hypothesized that chorioamnionitis induces a distinct pattern of ABC transporter expression. Methods Gene expression of 50 ABC transporters was assessed using TaqMan® Human ABC Transporter Array, in preterm human placentas without (PTD; n=6) or with histological chorioamnionitis (PTDC; n=6). Validation was performed using qPCR, immunohistochemistry and Western blot. MicroRNAs known to regulate P-glycoprotein (P-gp) were examined by qPCR. Results Up-regulation of ABCB9, ABCC2 and ABCF2 mRNA was detected in chorioamnionitis (p<0.05), whereas placental ABCB1 (P-gp; p=0.051) and ABCG2 (breast cancer resistance protein-BCRP) mRNA levels (p=0.055) approached near significant up-regulation. In most cases, the magnitude of the effect significantly correlated to the severity of inflammation. Upon validation, increased placental ABCB1 and ABCG2 mRNA levels (p<0.05) were observed. At the level of immunohistochemistry, while BCRP was increased (p<0.05), P-gp staining intensity was significantly decreased (p<0.05) in PTDC. miR-331-5p, involved in P-gp suppression, was upregulated in PTDC (p<0.01) and correlated to the grade of chorioamnionitis (p<0.01). Conclusions Alterations in the expression of ABC transporters will likely lead to modified transport of clinically relevant compounds at the inflamed placenta. A better understanding of the potential role of these transporters in the events surrounding PTD may also enable new strategies to be developed for prevention and treatment of PTD.
Collapse
Affiliation(s)
- Guinever Eustaquio do Imperio
- Departments of Physiology, Toronto, Ontario, Canada.,Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrrico Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Departments of Morphology, Belo Horizonte, Brazil
| | - Mohsen Javam
- Departments of Physiology, Toronto, Ontario, Canada
| | | | | | - Caroline Dunk
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Stephen James Lye
- Departments of Physiology, Toronto, Ontario, Canada.,Obstetrics and Gynecology, Toronto, Ontario, Canada.,Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - William Gibb
- Departments of Obstetrics & Gynecology and Department of Cellular & Molecular Medicine, University of Ottawa, Toronto, Ontario, Canada
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen Giles Matthews
- Departments of Physiology, Toronto, Ontario, Canada.,Obstetrics and Gynecology, Toronto, Ontario, Canada.,Medicine, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Zhang L, Liu K, Han B, Xu Z, Gao X. The emerging role of follistatin under stresses and its implications in diseases. Gene 2017; 639:111-116. [PMID: 29020616 DOI: 10.1016/j.gene.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/18/2017] [Accepted: 10/07/2017] [Indexed: 12/18/2022]
Abstract
Follistatin (FST), a single-chain glycosylated protein, is expressed in various tissues. The essential biological function of FST is binding and neutralizing transforming growth factor β (TGF-β) superfamily, including activin, myostatin, and bone morphogenetic protein (BMP). Emerging evidence indicates that FST also serves as a stress responsive protein, which plays a protective role under a variety of stresses. In most cases, FST performs the protective function through its neutralization of TGF-β superfamily. However, under certain circumstances, FST translocates into the nucleus to maintain cellular homeostasis independent of its extracellular antagonism activity. This review provides integrated insight into the most recent advances in understanding the role of FST under various stresses, and the clinical implications corresponding to these findings and discusses the mechanisms to be further studied.
Collapse
Affiliation(s)
- Lingda Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kangli Liu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Han
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast Cancer Res 2017; 19:66. [PMID: 28583174 PMCID: PMC5460489 DOI: 10.1186/s13058-017-0857-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022] Open
Abstract
Background Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-β superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. Methods Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. Results Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. Conclusions These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0857-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Serum cytokine profile in patients with breast cancer. Cytokine 2017; 89:173-178. [DOI: 10.1016/j.cyto.2015.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
|
25
|
Leto G, Incorvaia L, Flandina C, Ancona C, Fulfaro F, Crescimanno M, Sepporta MV, Badalamenti G. Clinical Impact of Cystatin C/Cathepsin L and Follistatin/Activin A Systems in Breast Cancer Progression: A Preliminary Report. Cancer Invest 2016; 34:415-423. [DOI: 10.1080/07357907.2016.1222416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gaetano Leto
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Carla Flandina
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | - Chiara Ancona
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| | - Marilena Crescimanno
- Department of Sciences for Health Promotion, School of Medicine, University of Palermo, Palermo, Italy
| | | | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
27
|
Mangé A, Dimitrakopoulos L, Soosaipillai A, Coopman P, Diamandis EP, Solassol J. An integrated cell line-based discovery strategy identified follistatin and kallikrein 6 as serum biomarker candidates of breast carcinoma. J Proteomics 2016; 142:114-21. [PMID: 27168011 DOI: 10.1016/j.jprot.2016.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/07/2016] [Accepted: 04/27/2016] [Indexed: 01/28/2023]
Abstract
UNLABELLED Secreted proteins constitute a relevant source of putative cancer biomarkers. Here, we compared the secretome of a series of four genetically-related breast cancer cell lines as a model of aggressiveness using quantitative mass spectrometry. 537 proteins (59.5% of the total identified proteins) predicted to be released or shed from cells were identified. Using a scoring system based on i) iTRAQ value, ii) breast cancer tissue mRNA expression levels, and iii) immunohistochemical staining (public database), a short list of 10 candidate proteins was selected. Using specific ELISA assays, the expression level of the top five proteins was measured in a verification set of 56 patients. The four significantly differentially expressed proteins were then validated in a second independent set of 353 patients. Finally, follistatin (FST) and kallikrein 6 (KLK6) in serum were significantly higher (p-value < 0.0001) in invasive breast cancer patients compared with non-cancerous controls. Using specific cut-off values, FST distinguished breast cancer samples from healthy controls with a sensitivity of 65% and an accuracy of 68%, whereas KLK6 achieved a sensitivity of 55% and an accuracy of 61%. Therefore, we concluded that FST and KLK6 may have significance in breast cancer detection. BIOLOGICAL SIGNIFICANCE Discovery of new serum biomarkers that exhibit increased sensitivity and specificity compared to current biomarkers appears to be an essential field of research in cancer. Most biological markers show insufficient diagnostic sensitivity for early breast cancer detection and, for the majority of them, their concentrations are elevated only in metastatic forms of the disease. It is therefore essential to identify clinically reliable biomarkers and develop effective approaches for cancer diagnosis. One promising approach in this field is the study of secreted proteins through proteomic analysis of in vitro progression breast cancer models. Here we have shown that FST and KLK6 are elevated in breast cancer patient serum compared to healthy controls. We expect that our discovery strategy will help to identify cancer-specific and body-fluid-accessible biomarkers.
Collapse
Affiliation(s)
- Alain Mangé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lampros Dimitrakopoulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peter Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jérôme Solassol
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France; INSERM, U1194, Montpellier, F-34298, France; Université de Montpellier, Montpellier, F-34090, France; Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
28
|
Wilson C, Ottewell P, Coleman RE, Holen I. The differential anti-tumour effects of zoledronic acid in breast cancer - evidence for a role of the activin signaling pathway. BMC Cancer 2015; 15:55. [PMID: 25884855 PMCID: PMC4329195 DOI: 10.1186/s12885-015-1066-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background Neo-adjuvant breast cancer clinical trials of zoledronic acid (ZOL) have shown that patients with oestrogen negative (ER-ve) tumours have improved disease outcomes. We investigated the molecular mechanism behind this differential anti-tumour effect according to ER status, hypothesising it may in part be mediated via the activin signaling pathway. Methods The effects of activin A, its inhibitor follistatin and zoledronic acid on proliferation of breast cancer cells was evaluated using either an MTS proliferation assay or trypan blue. Secretion of activin A and follistatin in conditioned medium (CM) from MDA-MB-231, MDA-MB-436, MCF7 and T47D cell lines were measured using specific ELISAs. The effects of ZOL on phosphorylation domains of Smad2 (pSmad2c + pSmad2L) were evaluated using immunofluorescence. Changes seen in vitro were confirmed in a ZOL treated subcutaneous ER-ve MDA-MB-436 xenograft model. Results Activin A inhibits proliferation of both ER-ve and oestrogen positive (ER + ve) breast cancer cells, an effect impaired by follistatin. ZOL significantly inhibits proliferation and the secretion of follistatin from ER-ve cells only, which increases the biological activity of the canonical activin A pathway by significantly increasing intracellular pSmad2c and decreasing nuclear accumulation of pSmad2L. In vivo, ZOL significantly decreases follistatin and pSmad2L expression in ER-ve subcutaneous xenografts compared to saline treated control animals. Conclusions This is the first report showing a differential effect of ZOL, according to ER status, on the activin pathway and its inhibitors in vitro and in vivo. These data suggest a potential molecular mechanism contributing to the differential anti-tumour effects reported from clinical trials and requires further evaluation in clinical samples.
Collapse
Affiliation(s)
- Caroline Wilson
- Academic Unit of Clinical Oncology, University of Sheffield, Medical School, Sheffield, UK.
| | - Penelope Ottewell
- Academic Department of Oncology, University of Sheffield, Medical School, Sheffield, UK.
| | - Robert E Coleman
- Academic Unit of Clinical Oncology, University of Sheffield, Medical School, Sheffield, UK.
| | - Ingunn Holen
- Academic Unit of Clinical Oncology, University of Sheffield, Medical School, Sheffield, UK.
| |
Collapse
|
29
|
Borges LE, Bloise E, Dela Cruz C, Massai L, Ciarmela P, Apa R, Luisi S, Severi FM, Petraglia F, Reis FM. Expression, localization and control of activin A release from human umbilical vein endothelial cells. Growth Factors 2015; 33:243-9. [PMID: 26340032 DOI: 10.3109/08977194.2015.1071809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activin-A is a member of the TGFβ superfamily found in maternal and umbilical cord blood throughout gestation. We investigated whether human umbilical vein endothelial cells (HUVEC) express activin-A in vivo and tested the effects of vasoactive (endothelin-1), pro-inflammatory (interferon-γ, interleukin-8) and anti-inflammatory (dexamethasone, urocortin) factors on activin-A release by isolated HUVEC in vitro. Activin βA subunit protein and mRNA were strongly localized in the endothelial cells of umbilical veins and were also detectable in scattered cells of the cord connective tissue. Dimeric activin-A was detected in the HUVEC culture medium at picomolar concentrations. Activin-A release by HUVEC decreased after cell incubation with urocortin (p < 0.01), whereas no effect was observed with interleukin-8, interferon-γ, endothelin-1 or dexamethasone. In summary, activin-A is present in the human umbilical vein endothelium in vivo and is produced and released by isolated HUVEC. Activin-A secretion is inhibited in vitro by urocortin, a neuropeptide with predominantly anti-inflammatory action.
Collapse
Affiliation(s)
- Lavinia E Borges
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Enrrico Bloise
- b Laboratory of Translational Endocrinology , Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Cynthia Dela Cruz
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Lauretta Massai
- c Department of Medical, Surgical and Neurological Sciences , University of Siena , Italy
| | - Pasquapina Ciarmela
- d Department of Experimental and Clinical Medicine , Polytechnic University of Marche , Ancona , Italy
| | - Rosanna Apa
- e Institute of Obstetrics and Gynaecology, Università Cattolica del Sacro Cuore , Rome , Italy , and
| | - Stefano Luisi
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Filiberto M Severi
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Felice Petraglia
- f Department of Molecular and Developmental Medicine , Obstetrics and Gynecology, University of Siena , Siena , Italy
| | - Fernando M Reis
- a Department of Obstetrics and Gynecology , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
30
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gao X, Dong H, Lin C, Sheng J, Zhang F, Su J, Xu Z. Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis. Nucleic Acids Res 2014; 42:10720-30. [PMID: 25159612 PMCID: PMC4176339 DOI: 10.1093/nar/gku778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Follistatin (FST) performs several vital functions in the cells, including protection from apoptosis during stress. The expression of FST is up-regulated in response to glucose deprivation by an unknown mechanism. We herein showed that the induction of FST by glucose deprivation was due to an increase in the half-life of its mRNA. We further identified an AU-rich element (ARE) in the 3′UTR of FST mRNA that mediated its decay. The expression of FST was elevated after knocking down AUF1 and reduced when AUF1 was further expressed. In vitro binding assays and RNA pull-down assays revealed that AUF1 interacted with FST mRNA directly via its ARE. During glucose deprivation, a majority of AUF1 shuttled from cytoplasm to nucleus, resulting in dissociation of AUF1 from FST mRNA and thus stabilization of FST mRNA. Finally, knockdown of AUF1 decreased whereas overexpression of AUF1 increased glucose deprivation-induced apoptosis. The apoptosis promoting effect of AUF1 was eliminated in FST expressing cells. Collectively, this study provided evidence that AUF1 is a negative regulator of FST expression and participates in the regulation of cell survival under glucose deprivation.
Collapse
Affiliation(s)
- Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haojie Dong
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Lin
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jinfeng Su
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
32
|
Karve TM, Preet A, Sneed R, Salamanca C, Li X, Xu J, Kumar D, Rosen EM, Saha T. BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells. PLoS One 2012; 7:e37697. [PMID: 22685544 PMCID: PMC3365892 DOI: 10.1371/journal.pone.0037697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.
Collapse
Affiliation(s)
- Tejaswita M. Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Anju Preet
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rosie Sneed
- University of District of Columbia, Washington, D.C., United States of America
| | - Clara Salamanca
- Canadian Ovarian Tissue Bank, BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Jingwen Xu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Deepak Kumar
- University of District of Columbia, Washington, D.C., United States of America
| | - Eliot M. Rosen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Tapas Saha
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (TS)
| |
Collapse
|
33
|
Ciarmela P, Bloise E, Gray PC, Carrarelli P, Islam MS, De Pascalis F, Severi FM, Vale W, Castellucci M, Petraglia F. Activin-A and myostatin response and steroid regulation in human myometrium: disruption of their signalling in uterine fibroid. J Clin Endocrinol Metab 2011; 96:755-65. [PMID: 21177794 PMCID: PMC3047220 DOI: 10.1210/jc.2010-0501] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Investigation of activin-A (A) and myostatin (M) in human myometrium (HM) and leiomyoma (HL) will explain their involvement in human myometrial pathophysiology. OBJECTIVE We aimed to investigate A and M response and steroid regulation in HM. We also evaluated A and M expression and response in HL. DESIGN Tissues were analyzed and cultured. PATIENTS Patients included fertile (in proliferative phase) and menopausal women undergoing hysterectomy. INTERVENTIONS HM explant cultures were treated with A and M (for Smad-7 mRNA quantification) or estrogen and progesterone (for A and M mRNA quantification). A and M expression levels were also evaluated in menopausal (physiological absence of steroids) HM specimens. A and M and their receptors were evaluated in HL (n = 8, diameter 5-8 cm) compared with their matched HM. HL explants cultures were treated with A and M (for Smad7 mRNA quantification), and, to explain the absence of response, the levels of follistatin, follistatin-related gene (FLRG), and Cripto were evaluated. RESULTS A and M increased Smad7 expression in HM explants. A and M mRNAs were both reduced after estradiol treatment, unchanged after progesterone treatment, but were higher in menopausal than fertile (in proliferative phase) specimens. A, M, and FLRG were expressed at higher levels in HL compared with adjacent HM, whereas the receptors, follistatin, and Smad7 mRNAs resulted unchanged. Cripto mRNA was expressed only in HL. CONCLUSIONS A and M act on human HM and are regulated by steroids. In HL there is an increase of A, M, FLRG, and Cripto expression.
Collapse
Affiliation(s)
- Pasquapina Ciarmela
- Department of Molecular Pathology and Innovative Therapies, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bloise E, Cassali G, Ferreira M, Ciarmela P, Petraglia F, Reis F. Activin-related proteins in bovine mammary gland: Localization and differential expression during gestational development and differentiation. J Dairy Sci 2010; 93:4592-601. [DOI: 10.3168/jds.jds.2009-2981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 07/02/2010] [Indexed: 11/19/2022]
|
35
|
Gao X, Wei S, Lai K, Sheng J, Su J, Zhu J, Dong H, Hu H, Xu Z. Nucleolar follistatin promotes cancer cell survival under glucose-deprived conditions through inhibiting cellular rRNA synthesis. J Biol Chem 2010; 285:36857-64. [PMID: 20843798 DOI: 10.1074/jbc.m110.144477] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solid tumor development is frequently accompanied by energy-deficient conditions such as glucose deprivation and hypoxia. Follistatin (FST), a secretory protein originally identified from ovarian follicular fluid, has been suggested to be involved in tumor development. However, whether it plays a role in cancer cell survival under energy-deprived conditions remains elusive. In this study, we demonstrated that glucose deprivation markedly enhanced the expression and nucleolar localization of FST in HeLa cells. The nucleolar localization of FST relied on its nuclear localization signal (NLS) comprising the residues 64-87. Localization of FST to the nucleolus attenuated rRNA synthesis, a key process for cellular energy homeostasis and cell survival. Overexpression of FST delayed glucose deprivation-induced apoptosis, whereas down-regulation of FST exerted the opposite effect. These functions depended on the presence of an intact NLS because the NLS-deleted mutant of FST lost the rRNA inhibition effect and the cell protective effect. Altogether, we identified a novel nucleolar function of FST, which is of importance in the modulation of cancer cell survival in response to glucose deprivation.
Collapse
Affiliation(s)
- Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Serum follistatin in patients with prostate cancer metastatic to the bone. Clin Exp Metastasis 2010; 27:549-55. [PMID: 20623366 DOI: 10.1007/s10585-010-9344-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/01/2010] [Indexed: 01/19/2023]
Abstract
The clinical significance of circulating follistatin (FLST), an inhibitor of the multifunctional cytokine activin A (Act A), was investigated in patients with prostate cancer (PCa). The serum concentrations of this molecule were determined by an enzyme-linked immunosorbent assay (ELISA) in PCa patients with (M+) or without (M0) bone metastases, in patients with benign prostate hyperplasia (BPH) and in healthy subjects (HS). The effectiveness of FLST in detecting PCa patients with skeletal metastases was determined by the receiver operating characteristic (ROC) curve analysis. Serum FLST was significantly higher in PCa patients than in BPH patients (P = 0.001) or HS (P = 0.011). Conversely, in BPH patients, FLST levels resulted lower than in HS (P = 0.025). In cancer patients the serum concentrations of FLST significantly correlated with the presence of bone metastases (P = 0.0005) or increased PSA levels (P = 0.04). Interestingly, significant differences in the ratio between FLST and Act A serum concentrations (FLST/Act A) were observed between HS and BPH patients (P = 0.001) or PCa patients (P = 0.0005). Finally, ROC curve analysis, highlighted a sound diagnostic performance of FLST in detecting M+ patients (P = 0.0001). However, the diagnostic effectiveness of FLST did not result significantly superior to that of Act A or PSA. These findings suggest that FLST may be regarded as a potential, molecular target in the treatment of metastatic bone disease while its clinical role as soluble marker in the clinical management of PCa patients with bone metastases needs to be better defined.
Collapse
|