1
|
Brennan S, Chen S, Makwana S, Esposito S, McGuinness LR, Alnaimi AIM, Sims MW, Patel M, Aziz Q, Ojake L, Roberts JA, Sharma P, Lodwick D, Tinker A, Barrett-Jolley R, Dart C, Rainbow RD. Identification and characterisation of functional K ir6.1-containing ATP-sensitive potassium channels in the cardiac ventricular sarcolemmal membrane. Br J Pharmacol 2024; 181:3380-3400. [PMID: 38763521 DOI: 10.1111/bph.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Simona Esposito
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiac Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Qadeer Aziz
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leona Ojake
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James A Roberts
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrew Tinker
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
3
|
Metabolic Shades of S-D-Lactoylglutathione. Antioxidants (Basel) 2022; 11:antiox11051005. [PMID: 35624868 PMCID: PMC9138017 DOI: 10.3390/antiox11051005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
S-D-lactoylglutathione (SDL) is an intermediate of the glutathione-dependent metabolism of methylglyoxal (MGO) by glyoxalases. MGO is an electrophilic compound that is inevitably produced in conjunction with glucose breakdown and is essentially metabolized via the glyoxalase route. In the last decades, MGO metabolism and its cytotoxic effects have been under active investigation, while almost nothing is known about SDL. This article seeks to fill the gap by presenting an overview of the chemistry, biochemistry, physiological role and clinical importance of SDL. The effects of intracellular SDL are investigated in three main directions: as a substrate for post-translational protein modifications, as a reservoir for mitochondrial reduced glutathione and as an energy currency. In essence, all three approaches point to one direction, namely, a metabolism-related regulatory role, enhancing the cellular defense against insults. It is also suggested that an increased plasma concentration of SDL or its metabolites may possibly serve as marker molecules in hemolytic states, particularly when the cause of hemolysis is a disturbance of the pay-off phase of the glycolytic chain. Finally, SDL could also represent a useful marker in such metabolic disorders as diabetes mellitus or ketotic states, in which its formation is expected to be enhanced. Despite the lack of clear-cut evidence underlying the clinical and experimental findings, the investigation of SDL metabolism is a promising field of research.
Collapse
|
4
|
Norton CE, Boerman EM, Segal SS. Differential hyperpolarization to substance P and calcitonin gene-related peptide in smooth muscle versus endothelium of mouse mesenteric artery. Microcirculation 2021; 28:e12733. [PMID: 34633728 PMCID: PMC9996665 DOI: 10.1111/micc.12733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We sought to define how sensory neurotransmitters substance P and calcitonin gene-related peptide (CGRP) affect membrane potential of vascular smooth muscle and endothelium. METHODS Microelectrodes recorded membrane potential of smooth muscle from pressurized mouse mesenteric arteries (diameter, ~150 µm) and in endothelial tubes. RESULTS Resting potential was similar (~ -45 mV) for each cell layer. Substance P hyperpolarized smooth muscle and endothelium ~ -15 mV; smooth muscle hyperpolarization was abolished by endothelial disruption or NO synthase inhibition. Blocking KCa channels (apamin + charybdotoxin) attenuated hyperpolarization in both cell types. CGRP hyperpolarized endothelium and smooth muscle ~ -30 mV; smooth muscle hyperpolarization was independent of endothelium. Blocking KCa channels prevented hyperpolarization to CGRP in endothelium but not smooth muscle. Inhibiting KATP channels with glibenclamide or genetic deletion of KIR 6.1 attenuated hyperpolarization in smooth muscle but not endothelium. Pinacidil (KATP channel agonist) hyperpolarized smooth muscle more than endothelium (~ -35 vs. ~ -20 mV). CONCLUSIONS Calcitonin gene-related peptide elicits greater hyperpolarization than substance P. Substance P hyperpolarizes both cell layers through KCa channels and involves endothelium-derived NO in smooth muscle. Endothelial hyperpolarization to CGRP requires KCa channels, while KATP channels mediate hyperpolarization in smooth muscle. Differential K+ channel activation in smooth muscle and endothelium through sensory neurotransmission may selectively tune mesenteric blood flow.
Collapse
Affiliation(s)
- Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Erika M. Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, Columbia, Missouri, USA
| |
Collapse
|
5
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
6
|
Wang J, Bai J, Duan P, Wang H, Li Y, Zhu Q. Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKT-FoxO1 signalling pathway. J Cell Mol Med 2021; 25:3935-3949. [PMID: 33547878 PMCID: PMC8051713 DOI: 10.1111/jcmm.16346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the expression of inwardly rectifying potassium channel 6.1 (Kir6.1) in heart mitochondria is significantly reduced in type 1 diabetes. However, whether its expression and function are changed and what role it plays in type 2 diabetic cardiomyopathy (DCM) have not been reported. This study investigated the role and mechanism of Kir6.1 in DCM. We found that the cardiac function and the Kir6.1 expression in DCM mice were decreased. We generated mice overexpressing or lacking Kir6.1 gene specifically in the heart. Kir6.1 overexpression improved cardiac dysfunction in DCM. Cardiac‐specific Kir6.1 knockout aggravated cardiac dysfunction. Kir6.1 regulated the phosphorylation of AKT and Foxo1 in DCM. We further found that Kir6.1 overexpression also improved cardiomyocyte dysfunction and up‐regulated the phosphorylation of AKT and FoxO1 in neonatal rat ventricular cardiomyocytes with insulin resistance. Furthermore, FoxO1 activation down‐regulated the expression of Kir6.1 and decreased the mitochondrial membrane potential (ΔΨm) in cardiomyocytes. FoxO1 inactivation up‐regulated the expression of Kir6.1 and increased the ΔΨm in cardiomyocytes. Chromatin immunoprecipitation assay demonstrated that the Kir6.1 promoter region contains a functional FoxO1‐binding site. In conclusion, Kir6.1 improves cardiac dysfunction in DCM, probably through the AKT‐FoxO1 signalling pathway.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jing Bai
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Peng Duan
- Department of Cardiology, Chinese PLA No. 371 Hospital, Henan, China
| | - Hao Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Qinglei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Geiger R, Fatima N, Schooley JF, Smyth JT, Haigney MC, Flagg TP. Novel cholesterol-dependent regulation of cardiac K ATP subunit expression revealed using histone deacetylase inhibitors. Physiol Rep 2021; 8:e14675. [PMID: 33356020 PMCID: PMC7757372 DOI: 10.14814/phy2.14675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
We recently discovered that the histone deacetylase inhibitor, trichostatin A (TSA), increases expression of the sulfonylurea receptor 2 (SUR2; Abcc9) subunit of the ATP-sensitive K+ (KATP ) channel in HL-1 cardiomyocytes. Interestingly, the increase in SUR2 was abolished with exogenous cholesterol, suggesting that cholesterol may regulate channel expression. In the present study, we tested the hypothesis that TSA increases SUR2 by depleting cholesterol and activating the sterol response element binding protein (SREBP) family of transcription factors. Treatment of HL-1 cardiomyocytes with TSA (30 ng/ml) caused a time-dependent increase in SUR2 mRNA expression that correlates with the time course of cholesterol depletion assessed by filipin staining. Consistent with the cholesterol-dependent regulation of SREBP increasing SUR2 mRNA expression, we observe a significant increase in SREBP cleavage and translocation to the nucleus following TSA treatment that is inhibited by exogenous cholesterol. Further supporting the role of SREBP in mediating the effect of TSA on KATP subunit expression, SREBP1 significantly increased luciferase reporter gene expression driven by the upstream SUR2 promoter. Lastly, HL-1 cardiomyocytes treated with the SREBP inhibitor PF429242 significantly suppresses the effect of TSA on SUR2 gene expression. These results demonstrate that SREBP is an important regulator of KATP channel expression and suggest a novel method by which hypercholesterolemia may exert negative effects on the cardiovascular system, namely, by suppressing expression of the KATP channel.
Collapse
Affiliation(s)
- Robert Geiger
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Naheed Fatima
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - James F. Schooley
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Mark C. Haigney
- Department of MedicineUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Thomas P. Flagg
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| |
Collapse
|
8
|
Glucagon-Like Peptide-1 Analog Liraglutide Attenuates Pressure-Overload Induced Cardiac Hypertrophy and Apoptosis through Activating ATP Sensitive Potassium Channels. Cardiovasc Drugs Ther 2020; 35:87-101. [PMID: 33057968 DOI: 10.1007/s10557-020-07088-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to investigate whether inhibition of glucagon-like peptide-1 (GLP-1) on pressure overload induced cardiac hypertrophy and apoptosis is related to activation of ATP sensitive potassium (KATP) channels. METHODS Male SD rats were randomly divided into five groups: sham, control (abdominal aortic constriction), GLP-1 analog liraglutide (0.3 mg/kg/twice day), KATP channel blocker glibenclamide (5 mg/kg/day), and liraglutide plus glibenclamide. RESULTS Relative to the control on week 16, liraglutide upregulated protein and mRNA levels of KATP channel subunits Kir6.2/SUR2 and their expression in the myocardium, vascular smooth muscle, aortic endothelium, and cardiac microvasculature. Consistent with a reduction in aortic wall thickness (61.4 ± 7.6 vs. 75.0 ± 7.6 μm, p < 0.05), liraglutide enhanced maximal aortic endothelium-dependent relaxation in response to acetylcholine (71.9 ± 8.7 vs. 38.6 ± 4.8%, p < 0.05). Along with a reduction in heart to body weight ratio (2.6 ± 0.1 vs. 3.4 ± 0.4, mg/g, p < 0.05) by liraglutide, hypertrophied cardiomyocytes (371.0 ± 34.4 vs. 933.6 ± 156.6 μm2, p < 0.05) and apoptotic cells (17.5 ± 8.2 vs. 44.7 ± 7.9%, p < 0.05) were reduced. Expression of anti-apoptotic protein BCL-2 and contents of myocardial ATP were augmented, and expression of cleaved-caspase 3 and levels of serum Tn-I/-T were reduced. Echocardiography and hemodynamic measurement showed that cardiac systolic function was enhanced as evidenced by increased ejection fraction (88.4 ± 4.8 vs. 73.8 ± 5.1%, p < 0.05) and left ventricular systolic pressure (105.2 ± 10.8 vs. 82.7 ± 7.9 mmHg, p < 0.05), and diastolic function was preserved as shown by a reduction of ventricular end-diastolic pressure (-3.1 ± 2.9 vs. 6.7 ± 2.8 mmHg, p < 0.05). Furthermore, left ventricular internal diameter at end-diastole (5.8 ± 0.5 vs. 7.7 ± 0.6 mm, p < 0.05) and left ventricular internal diameter at end-systole (3.0 ± 0.6 vs. 4.7 ± 0.4 mm, p < 0.05) were improved. Dietary administration of glibenclamide alone did not alter all the parameters measured but significantly blocked liraglutide-exerted cardioprotection. CONCLUSION Liraglutide ameliorates cardiac hypertrophy and apoptosis, potentially via activating KATP channel-mediated signaling pathway. These data suggest that liraglutide might be considered as an adjuvant therapy to treat patients with heart failure.
Collapse
|
9
|
Davis MJ, Kim HJ, Zawieja SD, Castorena-Gonzalez JA, Gui P, Li M, Saunders BT, Zinselmeyer BH, Randolph GJ, Remedi MS, Nichols CG. Kir6.1-dependent K ATP channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gain-of-function. J Physiol 2020; 598:3107-3127. [PMID: 32372450 DOI: 10.1113/jp279612] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Spontaneous contractions are essential for normal lymph transport and these contractions are exquisitely sensitive to the KATP channel activator pinacidil. KATP channel Kir6.1 and SUR2B subunits are expressed in mouse lymphatic smooth muscle (LSM) and form functional KATP channels as verified by electrophysiological techniques. Global deletion of Kir6.1 or SUR2 subunits results in severely impaired lymphatic contractile responses to pinacidil. Smooth muscle-specific expression of Kir6.1 gain-of-function mutant (GoF) subunits results in profound lymphatic contractile dysfunction and LSM hyperpolarization that is partially rescued by the KATP inhibitor glibenclamide. In contrast, lymphatic endothelial-specific expression of Kir6.1 GoF has essentially no effect on lymphatic contractile function. The high sensitivity of LSM to KATP channel GoF offers an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1 or SUR2, and suggests that glibenclamide may be an appropriate therapeutic agent. ABSTRACT This study aimed to understand the functional expression of KATP channel subunits in distinct lymphatic cell types, and assess the consequences of altered KATP channel activity on lymphatic pump function. KATP channel subunits Kir6.1 and SUR2B were expressed in mouse lymphatic muscle by PCR, but only Kir6.1 was expressed in lymphatic endothelium. Spontaneous contractions of popliteal lymphatics from wild-type (WT) (C57BL/6J) mice, assessed by pressure myography, were very sensitive to inhibition by the SUR2-specific KATP channel activator pinacidil, which hyperpolarized both mouse and human lymphatic smooth muscle (LSM). In vessels from mice with deletion of Kir6.1 (Kir6.1-/- ) or SUR2 (SUR2[STOP]) subunits, contractile parameters were not significantly different from those of WT vessels, suggesting that basal KATP channel activity in LSM is not an essential component of the lymphatic pacemaker, and does not exert a strong influence over contractile strength. However, these vessels were >100-fold less sensitive than WT vessels to pinacidil. Smooth muscle-specific expression of a Kir6.1 gain-of-function (GoF) subunit resulted in severely impaired lymphatic contractions and hyperpolarized LSM. Membrane potential and contractile activity was partially restored by the KATP channel inhibitor glibenclamide. In contrast, lymphatic endothelium-specific expression of Kir6.1 GoF subunits had negligible effects on lymphatic contraction frequency or amplitude. Our results demonstrate a high sensitivity of lymphatic contractility to KATP channel activators through activation of Kir6.1/SUR2-dependent channels in LSM. In addition, they offer an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1/SUR2.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Hae Jin Kim
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Peichun Gui
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Brian T Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maria S Remedi
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
10
|
ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 2020; 117:7461-7470. [PMID: 32170008 DOI: 10.1073/pnas.1922095117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K+ channels (KATP), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP]i decreases to increase the openings of KATP channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca2+]i levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and KATP channels and the minor role of inward rectifier K+ (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.
Collapse
|
11
|
Subbotina E, Yang HQ, Gando I, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of ABCC9 variants identified in sudden unexpected natural death. Forensic Sci Int 2019; 298:80-87. [PMID: 30878466 DOI: 10.1016/j.forsciint.2019.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic variation in ion channel genes ('channelopathies') are often associated with inherited arrhythmias and sudden death. Genetic testing ('molecular autopsies') of channelopathy genes can be used to assist in determining the likely causes of sudden unexpected death. However, different in silico approaches can yield conflicting pathogenicity predictions and assessing their impact on ion channel function can assist in this regard. METHODS AND RESULTS We performed genetic testing of cases of sudden expected death in the New York City metropolitan area and found four rare or novel variants in ABCC9, which codes for the regulatory SUR2 subunit of KATP channels. All were missense variants, causing amino acid changes in the protein. Three of the variants (A355S, M941V, and K1379Q) were in cases of infants less than six-months old and one (H1305Y) was in an adult. The predicted pathogenicities of the variants were conflicting. We have introduced these variants into a human SUR2A cDNA, which we coexpressed with the Kir6.2 pore-forming subunit in HEK-293 cells and subjected to patch clamp and biochemical assays. Each of the four variants led to gain-of-function phenotypes. The A355S and M941V variants increased in the overall patch current. The sensitivity of the KATP channels to inhibitory 'cytosolic' ATP was repressed for the M941V, H1305Y and K1379Q variants. None of the variants had any effect on the unitary KATP channel current or the surface expression of KATP channels, as determined with biotinylation assays, suggesting that all of the variants led to an enhanced open state. CONCLUSIONS All four variants caused a gain-of-function phenotype. Given the expression of SUR2-containing KATP channels in the heart and specialized cardiac conduction, vascular smooth muscle and respiratory neurons, it is conceivable that electrical silencing of these cells may contribute to the vulnerability element, which is a component of the triple risk model of sudden explained death in infants. The gain-of-function phenotype of these ABCC9 variants should be considered when assessing their potential pathogenicity.
Collapse
Affiliation(s)
| | - Hua-Qian Yang
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Ivan Gando
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA
| | - Nori Williams
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Barbara A Sampson
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - Yingying Tang
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY USA
| | - William A Coetzee
- Departments of Pediatrics, NYU School of Medicine, New York, NY 10016 USA; Departments of Physiology & Neuroscience NYU School of Medicine, New York, NY 10016 USA; Departments of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA.
| |
Collapse
|
12
|
Gojkovic-Bukarica L, Markovic-Lipkovski J, Heinle H, Cirovic S, Rajkovic J, Djokic V, Zivanovic V, Bukarica A, Novakovic R. The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
13
|
Lu J, Pan SS, Wang QT, Yuan Y. Alterations of Cardiac K ATP Channels and Autophagy Contribute in the Late Cardioprotective Phase of Exercise Preconditioning. Int Heart J 2018; 59:1106-1115. [PMID: 30101842 DOI: 10.1536/ihj.17-003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The cardiac effects of exercise preconditioning (EP) are well established; however, the mechanisms involving cardiac ATP-sensitive potassium channel (KATP channel) subunits and autophagy are yet to be fully established. The present work aims to investigate the alterations of cardiac KATP channel subunits Kir6.2, SUR2A, and autophagy-related LC3 during the late cardioprotective phase of EP against exhaustive exercise-induced myocardial injury. Rats run on treadmill for four running time intervals, each with 10 minutes running and rest. Exhaustive exercise was performed 24 h after EP. Cardiac biomarkers, cTnI and NT-proBNP, along with the histological stain, were served as indicators of myocardial injury. Cardiac KATP channel subunits Kir6.2 and SUR2A were analyzed in this study, and autophagy was evaluated by LC3. The results revealed that EP reduced the exhaustive exercise-induced high level of serum cTnI and myocardial ischemia/hypoxia; however, it did not reveal any changes in the serum NT-proBNP level or cardiac BNP. Cardiac SUR2A mRNA significantly upregulated during the exhaustive exercise. The high levels of Kir6.2, SUR2A, LC3IIpuncta and LC3II turnover observed after exhaustive exercise were significantly mitigated by EP in the late phase. These results suggest that EP alleviates myocardial injury induced by exhaustive exercise through the downregulation of cardiac KATP channels and autophagy.
Collapse
Affiliation(s)
- Jiao Lu
- School of Kinesiology, Shanghai University of Sport
| | | | | | - Yang Yuan
- School of Kinesiology, Shanghai University of Sport
| |
Collapse
|
14
|
Ramratnam M, Kenny B, Kyle JW, Wiedmeyer B, Hacker TA, Barefield DY, McNally EM, Makielski JC. Transgenic overexpression of the SUR2A-55 splice variant in mouse heart reduces infract size and promotes protective mitochondrial function. Heliyon 2018; 4:e00677. [PMID: 29998196 PMCID: PMC6037880 DOI: 10.1016/j.heliyon.2018.e00677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023] Open
Abstract
ATP-sensitive potassium channels found in both the sarcolemma (sarcKATP) and mitochondria (mitoKATP) of cardiomyocytes are important mediators of cardioprotection during ischemic heart disease. Sulfonylurea receptor isoforms (SUR2), encoded by Abcc9, an ATP-binding cassette family member, form regulatory subunits of the sarcKATP channel and are also thought to regulate mitoKATP channel activity. A short-form splice variant of SUR2 (SUR2A-55) was previously shown to target mitochondria and display diaxoxide and ATP insensitive KATP activity when co-expressed with the inward rectifier channels Kir6.2 and Kir6.1. We hypothesized that mice with cardiac specific overexpression of SUR2A-55 would mediate cardioprotection from ischemia by altering mitoKATP properties. Mice overexpressing SUR2A-55 (TGSUR2A-55) in cardiomyocytes were generated and showed no significant difference in echocardiographic measured chamber dimension, percent fractional shortening, heart to body weight ratio, or gross histologic features compared to normal mice at 11–14 weeks of age. TGSUR2A-55 had improved hemodynamic functional recovery and smaller infarct size after ischemia reperfusion injury compared to WT mice in an isolated hanging heart model. The mitochondrial membrane potential of TGSUR2A-55 mice was less sensitive to ATP, diazoxide, and Ca2+ loading. These data suggest that the SUR2A-55 splice variant favorably affects mitochondrial function leading to cardioprotection. These data support a role for the regulation of mitoKATP activity by SUR2A-55.
Collapse
Affiliation(s)
- Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Barrett Kenny
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - John W Kyle
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Brandi Wiedmeyer
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States
| | - Jonathan C Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
15
|
Zhang HT, Zhang T, Chai M, Sun JJ, Yu XY, Liu CZ, Huang CC. Effect of tobacco smoke on hydrogen sulfide-induced rat thoracic aorta relaxation. ACTA ACUST UNITED AC 2017; 50:e5592. [PMID: 28177058 PMCID: PMC5390530 DOI: 10.1590/1414-431x20165592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/19/2016] [Indexed: 11/30/2022]
Abstract
Levels of hydrogen sulfide (H2S), a gaseous signaling molecule, are reduced in the serum of individuals who smoke. We hypothesized that tobacco smoke influenced smooth muscle relaxation by decreasing H2S levels and this effect could also influence expression of cystathionine γ-lyase (CSE) and sulfonylurea receptor-2 (SUR-2). The aim of this study was to explore the effect of tobacco smoke on H2S-mediated rat thoracic aorta relaxation and its possible mechanism. Thirty-two Sprague-Dawley rats were divided into four groups: control (C) group, short-term smoker (SS) group, mid-term smoker (MS) group, and long-term smoker (LS) group. H2S concentrations in serum, action of H2S on rat aortic vascular relaxation, and expression of CSE and SUR-2 in thoracic aortic smooth muscle were measured. Although there was no significant difference in H2S between the C and the SS groups, concentration of H2S was significantly reduced in both the LS and MS groups compared to control (P<0.01). Furthermore, H2S was significantly lower in the LS than in the MS group (P<0.05). Rat aortic vascular relaxation was lower in all three treatment groups compared to the control, with the most significant decrease observed in the LS group (P<0.05 compared to the MS group). Expression of CSE and SUR-2 was reduced in the LS and MS groups compared to control (P<0.05), with the lowest levels observed in the LS group (P<0.05). Therefore, tobacco smoke reduced expression of CSE and SUR-2 in rat thoracic aorta, which may inhibit H2S production and vascular dilation.
Collapse
Affiliation(s)
- H T Zhang
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - T Zhang
- Department of Cardiology, The First People's Hospital of Chuzhou, Chuzhou, China
| | - M Chai
- Department of Cardiology, Lung and Blood Vessel Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Beijing, China
| | - J J Sun
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - X Y Yu
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - C Z Liu
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - C C Huang
- Department of Cardiology, Air Force General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
D'Amore C, Orso G, Fusi F, Pagano MA, Miotto G, Forgiarini A, De Martin S, Castellani G, Ribaudo G, Rennison D, Brimble MA, Hopkins B, Ferrarese A, Bova S. An NBD Derivative of the Selective Rat Toxicant Norbormide as a New Probe for Living Cell Imaging. Front Pharmacol 2016; 7:315. [PMID: 27721792 PMCID: PMC5034647 DOI: 10.3389/fphar.2016.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/01/2016] [Indexed: 11/29/2022] Open
Abstract
Norbormide (NRB) is a unique compound that acts directly on rat vascular myocytes to trigger a contractile process, through an as yet unknown mechanism, which results in the selective contraction of rat peripheral arteries. To gain insight into the mechanisms involved in NRB rat-selective activity, we investigated the subcellular distribution of NRB-AF12, a nitrobenzoxadiazole (NBD)-derivative of NRB, in living NRB-sensitive and NRB-insensitive cells. In both cell types, NRB-AF12 localized to the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, lysosomes, and endosomes; however, in NRB-sensitive cells, the fluorescence also extended to the plasma membrane. NRB-AF12 was rapidly internalized into the cells, could easily be washed out and then reloaded back into the same cells, all with a high degree of reproducibility. Cells exposed for 24 h to NRB-AF12 did not show apparent signs of toxicity, even at concentrations of the dye (10 μM) much higher than those required for fluorescence labeling (500 ηM). The distribution pattern of NRB-AF12 fluorescence was near identical to that of ER-Tracker® (Er-Tr), a fluorescent derivative of glibenclamide, a known KATP channel blocker. Displacement tests did not demonstrate, but at the same time did not rule out the possibility of a common target for ER-Tr, NRB-AF12, NRB, and glibenclamide. On the basis of these results we hypothesize a common target site for NRB-AF12 and ER-Tr, and a similar target profile for NRB and glibenclamide, and propose NRB-AF12 as an alternative fluorescence probe to ER-Tracker. Furthermore, NRB-based fluorescence derivatives could be designed to selectively label single cellular structures.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Surgical and Biomedical Sciences, University of Perugia Perugia, Italy
| | | | - Fabio Fusi
- Department of Life Sciences, University of Siena Siena, Italy
| | - Mario A Pagano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padua Padua, Italy
| | | | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Giulia Castellani
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - David Rennison
- School of Chemical Sciences, University of Auckland Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland Auckland, New Zealand
| | - Brian Hopkins
- School of Chemical Sciences, University of AucklandAuckland, New Zealand; Landcare ResearchLincoln, New Zealand
| | - Alessandro Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| |
Collapse
|
17
|
Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2016; 31:17-36. [PMID: 27567103 DOI: 10.1111/fcp.12232] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/09/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Astragalus membranaceus Bunge has been used to treat numerous diseases for thousands of years. As the main active substance of Astragalus membranaceus Bunge, astragaloside IV (AS-IV) also demonstrates the potent protective effect on focal cerebral ischemia/reperfusion, cardiovascular disease, pulmonary disease, liver fibrosis, and diabetic nephropathy. Based on studies published during the past several decades, the current state of AS-IV research and the pharmacological effects are detailed, elucidated, and summarized. This review systematically summarizes the pharmacological effects, metabolism mechanism, and the toxicity of AS-IV. AS-IV has multiple pharmacologic effects, including anti-inflammatory, antifibrotic, antioxidative stress, anti-asthma, antidiabetes, immunoregulation, and cardioprotective effect via numerous signaling pathways. According to the existing studies and clinical practices, AS-IV possesses potential for broad application in many diseases.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaojiao Hou
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Rongfang Xu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| | - Chang Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Menbayaer Tu
- Engineering Research Center of Chinese Traditional Veterinary Medicine, Beijing, China
| |
Collapse
|
18
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
19
|
Li S, Chen S, Yang W, Liao L, Li S, Li J, Zheng Y, Zhu D. Allicin relaxes isolated mesenteric arteries through activation of PKA-K ATP channel in rat. J Recept Signal Transduct Res 2016; 37:17-24. [PMID: 27049346 DOI: 10.3109/10799893.2016.1155065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Allicin is a natural effective organosulfur compound isolated from garlic, which possesses many beneficial properties, such as antibacterial, anti-inflammatory, antimicrobial, hypotensive and hypolipidemic. In the present study, we investigated the effects and the underlying mechanisms of allicin on isolated mesenteric arteries (MAs). We examined MAs relaxation induced by allicin on rat-isolated mesenteric artery (MA) rings, the KATP channels with patch, and the expression of Kir6.1 and SUR2B with western blotting and NO production with Diaminofluorescein-FM diacetate (DAF-FMDA) in rat mesenteric artery smooth muscle cells (MASMCs). The results showed that allicin elicited the dose-dependent vasorelaxation effect with phenylephrine (PE) precontracted rat MA rings. The vasorelaxation effect was endothelium and NO independent but could be diminished by inhibition of PKA and KATP channels in the vascular smooth muscle. Allicin activated KATP channels in rat MASMCs, and the activation of KATP channels was inhibited by the inhibitors of PKA and KATP channels. But allicin had no effect on the expression of KATP subtypes Kir6.1 and SUR2B. These observations suggest that allicin exerts vasorelaxation effect through activation of PKA-KATP-signaling pathway.
Collapse
Affiliation(s)
- Shuzhen Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shuo Chen
- b Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University-Daqing , PR China , and
| | - Weiwei Yang
- c College of Food Science, Northeast Agricultural University , PR China
| | - Lin Liao
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Shanshan Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Jiali Li
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Yaqin Zheng
- a Department of Biopharmaceutical Sciences , College of Pharmacy, Harbin Medical University , PR China
| | - Daling Zhu
- c College of Food Science, Northeast Agricultural University , PR China
| |
Collapse
|
20
|
Nichols CG. Adenosine Triphosphate-Sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin 2016; 8:323-35. [PMID: 27261824 DOI: 10.1016/j.ccep.2016.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The subunit makeup of the family of adenosine triphosphate-sensitive potassium channel (KATP) channels is more complex and labile than thought. The growing association of Kir6.1 and SUR2 variants with specific cardiovascular electrical and contractile derangements and the clear association with Cantu syndrome establish the importance of appropriate activity in normal function of the heart and vasculature. Further studies of such patients will reveal new mutations in KATP subunits and perhaps in proteins that regulate KATP synthesis, trafficking, or location, all of which may ultimately benefit therapeutically from the unique pharmacology of KATP channels.
Collapse
Affiliation(s)
- Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
21
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
22
|
Ujike A, Otsuguro KI, Miyamoto R, Yamaguchi S, Ito S. Bidirectional effects of hydrogen sulfide via ATP-sensitive K+ channels and transient receptor potential A1 channels in RIN14B cells. Eur J Pharmacol 2015; 764:463-470. [DOI: 10.1016/j.ejphar.2015.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
|
23
|
Molecular analysis of ATP-sensitive K(+) channel subunits expressed in mouse portal vein. Vascul Pharmacol 2015; 75:29-39. [PMID: 26163942 DOI: 10.1016/j.vph.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Several combinations of inwardly rectifying K(+) channel 6.x family pore-forming (KIR6.x) subunits associated with sulphonylurea receptor (SUR.x) subunits have been detected among ATP-sensitive K(+) (KATP) channels. It remains to be established which of these is expressed in native vascular smooth muscle. METHODS Pharmacological and electrophysiological properties of KATP channels in mouse portal vein were investigated using tension measurements and patch-clamp techniques. Molecular biological analyses were also performed to investigate the structural properties of these channels. RESULTS Spontaneous contractions in mouse portal vein were reversibly reduced by pinacidil and MCC-134, and the pinacidil-induced relaxation was antagonized by glibenclamide and U-37883A. In cell-attached mode, pinacidil activated glibenclamide-sensitive K(+) channels with a conductance (35 pS) similar to that of KIR6.1. RT-PCR analysis revealed the expression of KIR6.1, KIR6.2 and SUR2B transcripts. Using real-time PCR methods, the quantitative expression of KIR6.1 was much greater than that of KIR6.2. Immunohistochemical studies indicated the presence of KIR6.1 and SUR2B proteins in the smooth muscle layers of mouse portal vein and in single smooth muscle cells dispersed from mouse portal vein. CONCLUSIONS The results indicate that native KATP channels in mouse portal vein are likely to be composed of a heterocomplex of KIR6.1 and SUR2B subunits.
Collapse
|
24
|
Chou S, Ayabe S, Sekine N. Myocardial Injury without Electrocardiographic Changes after a Suicide Attempt by an Overdose of Glimepiride and Zolpidem: A Case Report and Literature Review. Intern Med 2015; 54:2727-33. [PMID: 26521901 DOI: 10.2169/internalmedicine.54.4748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 40-year-old diabetic man was admitted to our hospital for poor glycemic control. During hospitalization, he took 42 mg glimepiride and 50 mg zolpidem as a suicide attempt. The following day, the creatine kinase-MB fraction and troponin I levels were elevated to 112 IU/L and 8.77 ng/mL, respectively, without any electrocardiographic abnormalities. The patient recovered completely without any complications. Four weeks later, coronary computed tomography angiography and myocardial perfusion scintigraphy revealed moderate one-vessel coronary disease without the evidence of myocardial ischemia or old infarction. Cardiac-specific markers must be considered in sulfonylurea-induced hypoglycemic patients, particularly when the patient is unconscious and does not exhibit any clinical manifestations.
Collapse
Affiliation(s)
- Shengpu Chou
- Department of Endocrinology and Metabolism, JCHO Tokyo Shinjuku Medical Center, Japan
| | | | | |
Collapse
|
25
|
Iwasa K, Zhu HL, Shibata A, Maehara Y, Teramoto N. Molecular analysis of ATP-sensitive K⁺ channel subunits expressed in mouse vas deferens myocytes. Br J Pharmacol 2014; 171:145-57. [PMID: 24117345 DOI: 10.1111/bph.12437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE ATP-sensitive K(+)(K(ATP)) channels, which are composed of K(IR)6.x associated with sulphonylurea receptor (SUR) subunits, have been detected in native smooth muscle cells, but it is currently not known which of these is expressed in mouse vas deferens myocytes. EXPERIMENTAL APPROACH Pharmacological and electrophysiological properties of K(ATP) channels in mouse vas deferens myocytes were investigated using patch clamp techniques. Molecular biological analyses were performed to examine the properties of these K(ATP) channels. KEY RESULTS During conventional whole-cell recording, pinacidil elicited an inward current that was suppressed by glibenclamide, a sulfonylurea agent, and by U-37883A, a selective K(IR)6.1 blocker. When 0.3 mM ATP was added to the pipette solution, the peak amplitude of the pinacidil-induced current was much smaller than that recorded in its absence. When 3 mM UDP, GDP or ADP was included in the pipette solution, an inward current was elicited after establishment of the conventional whole-cell configuration, with potency order being UDP > GDP > ADP. These nucleoside diphosphate-induced inward currents were suppressed by glibenclamide. MCC-134, a SUR modulator, induced glibenclamide-sensitive K(ATP) currents that were similar to those induced by 100 μM pinacidil. In the cell-attached configuration, pinacidil activated channels with a conductance similar to that of K(IR)6.1. Reverse transcription PCR analysis revealed the expression of K(IR)6.1 and SUR2B transcripts and immunohistochemical studies indicated the presence of K(IR)6.1 and SUR2B proteins in the myocytes. CONCLUSIONS AND IMPLICATIONS Our results indicate that native K(ATP) channels in mouse vas deferens myocytes are a heterocomplex of K(IR)6.1 channels and SUR2B subunits.
Collapse
Affiliation(s)
- Kazuomi Iwasa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
26
|
Dual response of the KATP channels to staurosporine: a novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes. Biochem Pharmacol 2014; 91:266-75. [PMID: 24998494 DOI: 10.1016/j.bcp.2014.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.
Collapse
|
27
|
Ma Y, Wang Y, Gao Y, Fu Y, Li J. Total flavonoids from Ganshanbian (Herba Hyperici Attenuati) effect the expression of CaL-α1C and KATP-Kir6.1 mRNA of the myocardial cell membrane in myocardial ischemia-reperfusion arrhythmia rats. J TRADIT CHIN MED 2014; 34:357-61. [DOI: 10.1016/s0254-6272(14)60102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Marques-Neto SR, Ferraz EB, Rodrigues DC, Njaine B, Rondinelli E, Campos de Carvalho AC, Nascimento JHM. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 2014; 28:125-135. [PMID: 24258356 DOI: 10.1007/s10557-013-6503-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. METHODS AND RESULTS Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. CONCLUSION The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.
Collapse
Affiliation(s)
- Silvio Rodrigues Marques-Neto
- Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, 21.941-902, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Burley DS, Cox CD, Zhang J, Wann KT, Baxter GF. Natriuretic peptides modulate ATP-sensitive K(+) channels in rat ventricular cardiomyocytes. Basic Res Cardiol 2014; 109:402. [PMID: 24477916 PMCID: PMC3951884 DOI: 10.1007/s00395-014-0402-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 12/10/2013] [Accepted: 01/10/2014] [Indexed: 11/28/2022]
Abstract
B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), and (Cys-18)-atrial natriuretic factor (4–23) amide (C-ANF), are cytoprotective under conditions of ischemia–reperfusion, limiting infarct size. ATP-sensitive K+ channel (KATP) opening is also cardioprotective, and although the KATP activation is implicated in the regulation of cardiac natriuretic peptide release, no studies have directly examined the effects of natriuretic peptides on cardiac KATP activity. Normoxic cardiomyocytes were patch clamped in the cell-attached configuration to examine sarcolemmal KATP (sKATP) activity. The KATP opener pinacidil (200 μM) increased the open probability of the patch (NPo; values normalized to control) at least twofold above basal value, and this effect was abolished by HMR1098 10 μM, a selective KATP blocker (5.23 ± 1.20 versus 0.89 ± 0.18; P < 0.001). We then examined the effects of BNP, CNP, C-ANF and 8Br-cGMP on the sKATP current. Bath application of BNP (≥10 nM) or CNP (≥0.01 nM) suppressed basal NPo (BNP: 1.00 versus 0.56 ± 0.09 at 10 nM, P < 0.001; CNP: 1.0 versus 0.45 ± 0.16, at 0.01 nM, P < 0.05) and also abolished the pinacidil-activated current at concentrations ≥10 nM. C-ANF (≥10 nM) enhanced KATP activity (1.00 versus 3.85 ± 1.13, at 100 nM, P < 0.05). The cGMP analog 8Br-cGMP 10 nM dampened the pinacidil-activated current (2.92 ± 0.60 versus 1.53 ± 0.32; P < 0.05). Natriuretic peptides modulate sKATP current in ventricular cardiomyocytes. This may be at least partially associated with their ability to augment intracellular cGMP concentrations via NPR-A/B, or their ability to bind NPR-C with high affinity. Although the mechanism of modulation requires elucidation, these preliminary data give new insights into the relationship between natriuretic peptide signaling and sKATP in the myocardium.
Collapse
Affiliation(s)
- Dwaine S Burley
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK,
| | | | | | | | | |
Collapse
|
30
|
Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L, Emanuele E, Tammaro P. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol 2013; 168:3506-13. [PMID: 23739550 DOI: 10.1016/j.ijcard.2013.04.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alterations in coronary vasomotor tone may participate in the pathogenesis of acute myocardial infarction (AMI). Vascular ATP-sensitive K(+) (KATP) channels, formed by Kir6.x/SUR2B, are key regulators of coronary tone and mutations in cardiac (Kir6.2/SUR2A) KATP channels result in heart disease. Here we explore the pathophysiological mechanism of a rare mutation (V734I) found in exon 17 of the ABCC9 gene, estimated to cause a 6.4-fold higher risk of AMI before the age of 60. METHODS AND RESULTS Eleven patients carrying the mutation were identified; they presented AMI of vasospastic origin associated with increased plasma levels of endothelin-1 and increased leukocyte ROCK activity. The effects of the mutation on the functional properties of the two splice variants of ABCC9 (SUR2A and SUR2B) were studied using patch-clamp electrophysiology. The mutation reduced the sensitivity to MgATP inhibition of Kir6.2/SUR2B channels but not of Kir6.2/SUR2A and Kir6.1/SUR2B channels. Furthermore, the stimulatory effects of MgNDP (MgADP, MgGDP and MgUDP) were unaltered in mutant Kir6.2/SUR2A and Kir6.1/SUR2B channels. In contrast, mutant channels composed of Kir6.2 and SUR2B were less sensitive to MgNDP activation, assessed in the presence of MgATP. The antianginal drug nicorandil activated Kir6.2/SUR2B-V734I channels, thus substituting for the loss of MgNDP stimulation, suggesting that this drug could be of therapeutic use in the treatment of AMI associated with V734I. CONCLUSIONS The 734I allele in ABCC9 may influence susceptibility to AMI by impairing the response of vascular, but not cardiac, KATP channels to intracellular nucleotides. This is the first human mutation in an ion channel gene to be implicated in AMI.
Collapse
Affiliation(s)
- Keith J Smith
- Faculty of Life Sciences, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
ATP-sensitive potassium (KATP) channels were first discovered in the heart 30 years ago. Reconstitution of KATP channel activity by coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein subfamily has led to the elucidation of many details of channel gating and pore properties. In addition, the essential roles of Kir6.x and SURx subunits in generating cardiac and vascular KATP(2) and the detrimental consequences of genetic deletions or mutations in mice have been recognized. However, despite this extensive body of knowledge, there has been a paucity of defined roles of KATP subunits in human cardiovascular diseases, although there are reports of association of a single Kir6.1 variant with the J-wave syndrome in the ECG, and 2 isolated studies have reported association of loss of function mutations in SUR2 with atrial fibrillation and heart failure. Two new studies convincingly demonstrate that mutations in the SUR2 gene are associated with Cantu syndrome, a complex multi-organ disorder characterized by hypertrichosis, craniofacial dysmorphology, osteochondrodysplasia, patent ductus arteriosus, cardiomegaly, pericardial effusion, and lymphoedema. This realization of previously unconsidered consequences provides significant insight into the roles of the KATP channel in the cardiovascular system and suggests novel therapeutic possibilities.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
32
|
The KCNJ8-S422L variant previously associated with J-wave syndromes is found at an increased frequency in Ashkenazi Jews. Eur J Hum Genet 2013; 22:94-8. [PMID: 23632791 DOI: 10.1038/ejhg.2013.78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/11/2013] [Accepted: 03/27/2013] [Indexed: 02/03/2023] Open
Abstract
J-wave syndromes have been associated with increased risk of ventricular fibrillation and sudden cardiac death. Previous studies have identified the KCNJ8-S422L variant in heterozygous form in individuals with J-wave syndromes. Its absence in over 1500 controls, coupled with in vitro analysis, have led to the conclusion that S422L is pathogenic. We previously performed whole-genome sequencing in a family quartet of Ashkenazi Jewish decent with no history of J-wave syndrome. Re-examination of these data reveals that both parents are heterozygous for the S422L variant, while the 12-year old son carries two copies--thus representing the first reported case of a S422L homozygote. In order to examine whether the S422L mutation might segregate at appreciable frequencies in specific populations, we genotyped the variant in a panel consisting of 722 individuals from 22 European, Middle Eastern non-Jewish, Ashkenazi Jewish, and non-Ashkenazi Jewish populations. We found that the S422L allele was at a significantly higher frequency in Ashkenazi Jews (~4%) compared with other populations in our survey, which have frequencies <0.25%. We also performed ECGs in both male members of the family quartet. The homozygous boy demonstrated no clinically significant ECG abnormalities, while the heterozygous father presented with a subtle J-wave point elevation. Our results suggest that either (a) previous studies implicating S422L as pathogenic for J-wave syndromes failed to appropriately account for European population structure and the variant is likely benign, or (b) Ashkenazi Jews may be at significantly increased risk of J-wave syndromes and ultimately sudden cardiac death.
Collapse
|
33
|
Functional roles of KATP channel subunits in metabolic inhibition. J Mol Cell Cardiol 2013; 62:90-8. [PMID: 23624089 DOI: 10.1016/j.yjmcc.2013.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/11/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022]
Abstract
ATP-sensitive potassium channel (KATP) activation can drastically shorten action potential duration (APD) in metabolically compromised myocytes. We showed previously that SUR1 with Kir6.2 forms the functional channel in mouse atria while Kir6.2 and SUR2A predominate in ventricles. SUR1 is more sensitive to metabolic stress than SUR2A, raising the possibility that KATP in atria and ventricles may respond differently to metabolic stress. Action potential duration (APD) and calcium transient duration (CaTD) were measured simultaneously in both atria and ventricles by optical mapping of the posterior surface of Langendorff-perfused hearts from C57BL wild-type (WT; n=11), Kir6.2(-/-) (n=5), and SUR1(-/-) (n=6) mice during metabolic inhibition (MI, 0mM glucose+2mM sodium cyanide). After variable delay, MI led to significant shortening of APD in WT hearts. On average, atrial APD shortened by 60.5 ± 2.7% at 13.1 ± 2.1 min (n=6, p<0.01) after onset of MI. Ventricular APD shortening (56.4 ± 10.0% shortening at 18.2 ± 1.8 min) followed atrial APD shortening. In SUR1(-/-) hearts (n=6), atrial APD shortening was abolished, but ventricular shortening (65.0 ± 15.4% at 25.33 ± 4.48 min, p<0.01) was unaffected. In Kir6.2(-/-) hearts, two disparate responses to MI were observed; 3 of 5 hearts displayed slight shortening of APD in the ventricles (24 ± 3%, p<0.05) and atria (39.0 ± 1.9%, p<0.05) but this shortening occurred later and to much less extent than in WT (p<0.05). Marked prolongation of ventricular APD was observed in the remaining hearts (327% and 489% prolongation) and was associated with occurrence of ventricular tachyarrhythmias. The results confirm that Kir6.2 contributes to APD shortening in both atria and ventricle during metabolic stress, and that SUR1 is required for atrial APD shortening while SUR2A is required for ventricular APD shortening. Importantly, the results show that the presence of SUR1-dependent KATP in the atria results in the action potential being more susceptible to metabolically driven shortening than the ventricle.
Collapse
|
34
|
Cardiac KATP channel alterations associated with acclimation to hypoxia in goldfish (Carassius auratus L.). Comp Biochem Physiol A Mol Integr Physiol 2013; 164:554-64. [DOI: 10.1016/j.cbpa.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/24/2012] [Accepted: 12/25/2012] [Indexed: 01/21/2023]
|
35
|
Sotres-Vega A, Santibañez-Salgado JA, Villalba-Caloca J, Gaxiola-Gaxiola M, Ramos-Abraham C, Rosales-Torres AM, Jiménez-García LF. Canine tracheal cartilage cryopreservation: freezing injury is not related to caspase-3 expression. Biopreserv Biobank 2013; 11:45-50. [PMID: 24845254 DOI: 10.1089/bio.2012.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Currently, there are no surgical strategies to treat tracheal lesions longer than 7 cm. Such patients are not candidates for tracheal resection or end-to-end anastomosis and are thus left with only repeated palliative procedures to relieve their respiratory insufficiency. Experimental studies using cryopreserved trachea have produced contradictory results, limiting the clinical application of this technique. We evaluated caspase-3 expression and the histological integrity of canine tracheal cartilage cryopreserved using two different solutions, two temperatures, and varying lengths of storage time. Thirty canine tracheal segments of 5 rings were studied. Group 1: Control without cryopreservation. Groups 2 and 4: Cryopreserved in F12K media with 20% fetal bovine serum (FBS) at -70°C for 48 hours. Groups 3 and 5: Cryopreserved in 90% FBS at -70°C for 48 hours. Groups 4 and 5 were then stored for 15 days in liquid nitrogen. All of the segments were thawed, fixed in wax, and cut into rings. Three rings were selected for caspase-3 expression and histological evaluation. Staining of cartilage matrices was significantly modified in the tracheal segments of Group 5. The central region of the cartilage ring was more vulnerable to the effects of freezing than the edges. Under the same cryopreservation temperature and storage time, tracheal cartilage integrity is better preserved when F12K media is used. Caspase-3 expression is not related to cartilage injury from the cryopreservation process.
Collapse
Affiliation(s)
- Avelina Sotres-Vega
- 1 Lung Transplantation Research Unit, National Institute of Respiratory Diseases "Ismael Cosio Villegas" , Tlalpan, Mexico
| | | | | | | | | | | | | |
Collapse
|
36
|
Kline CF, Mohler PJ. Evolving form to fit function: cardiomyocyte intercalated disc and transverse-tubule membranes. CURRENT TOPICS IN MEMBRANES 2013; 72:121-58. [PMID: 24210429 DOI: 10.1016/b978-0-12-417027-8.00004-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The vertebrate cardiac myocyte has evolved a highly organized cellular membrane architecture and cell-cell contacts in order to effectively transmit precisely timed and homogeneous depolarizing waves without failure (>2 billion times/human life span). Two unique specialized membrane domains, the intercalated disc and the transverse tubule (T-tubule), function to ensure the rapid and coordinated propagation of the action potential throughout the heart. Based on their critical roles in structure, signaling, and electric inter- and intracellular communication, it is not surprising that dysfunction in these membrane structures is associated with aberrant vertebrate physiology, resulting in potentially fatal congenital and acquired disease. This chapter will review the fundamental components of cardiomyocyte intercalated disc and transverse-tubule membranes with a focus on linking dysfunction in these membranes with human cardiovascular disease.
Collapse
Affiliation(s)
- Crystal F Kline
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
37
|
Moran O, Grottesi A, Chadburn AJ, Tammaro P. Parametrisation of the free energy of ATP binding to wild-type and mutant Kir6.2 potassium channels. Biophys Chem 2012; 171:76-83. [PMID: 23219002 DOI: 10.1016/j.bpc.2012.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022]
Abstract
ATP-sensitive K(+) (K(ATP)) channels, comprised of pore-forming Kir6.x and regulatory SURx subunits, play important roles in many cellular functions; because of their sensitivity to inhibition by intracellular ATP, K(ATP) channels provide a link between cell metabolism and membrane electrical activity. We constructed structural homology models of Kir6.2 and a series of Kir6.2 channels carrying mutations within the putative ATP-binding site. Computational docking was carried out to determine the conformation of ATP in its binding site. The Linear Interaction Energy (LIE) method was used to estimate the free-energy of ATP binding to wild-type and mutant Kir6.2 channels. Comparisons of the theoretical binding free energies for ATP with those determined from mutational experiments enabled the identification of the most probable conformation of ATP bound to the Kir6.2 channel. A set of LIE parameters was defined that may enable prediction of the effects of additional Kir6.2 mutations within the ATP binding site on the affinity for ATP.
Collapse
|
38
|
Hong M, Bao L, Kefaloyianni E, Agullo-Pascual E, Chkourko H, Foster M, Taskin E, Zhandre M, Reid DA, Rothenberg E, Delmar M, Coetzee WA. Heterogeneity of ATP-sensitive K+ channels in cardiac myocytes: enrichment at the intercalated disk. J Biol Chem 2012; 287:41258-67. [PMID: 23066018 DOI: 10.1074/jbc.m112.412122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ventricular ATP-sensitive potassium (K(ATP)) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative K(ATP) channel-associated proteins. We investigated whether the association of K(ATP) channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between K(ATP) channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that K(ATP) channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that K(ATP) channels are clustered within nanometer distances from junctional proteins. The local K(ATP) channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The K(ATP) channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell K(ATP) channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of K(ATP) channels was absent in the PKP2 deficient mice, but the K(ATP) channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of K(ATP) channel distribution within a cardiac myocyte. The higher K(ATP) channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia.
Collapse
Affiliation(s)
- Miyoun Hong
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Toib A, Zhang HX, Broekelmann TJ, Hyrc KL, Guo Q, Chen F, Remedi MS, Nichols CG. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality. J Mol Cell Cardiol 2012; 53:437-45. [PMID: 22796573 PMCID: PMC3423334 DOI: 10.1016/j.yjmcc.2012.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 06/23/2012] [Accepted: 07/02/2012] [Indexed: 11/26/2022]
Abstract
Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.
Collapse
Affiliation(s)
- Amir Toib
- Department of Pediatrics, St. Louis, MO, 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Szabó C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 2012; 164:853-65. [PMID: 21198548 DOI: 10.1111/j.1476-5381.2010.01191.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vascular tissues, hydrogen sulphide (H(2)S) is mainly produced from L-cysteine by the cystathionine gamma-lyase (CSE) enzyme. Recent studies show that administration of H(2)S to endothelial cells in culture stimulates cell proliferation, migration and tube formation. In addition, administration of H(2)S to chicken chorioallantoic membranes stimulates blood vessel growth and branching. Furthermore, in vivo administration of H(2)S to mice stimulates angiogenesis, as demonstrated in the Matrigel plug assay. Pathways involved in the angiogenic response of H(2)S include the PI-3K/Akt pathway, the mitogen activated protein kinase pathway, as well as ATP-sensitive potassium channels. Indirect evidence also suggests that the recently demonstrated role of H(2)S as an inhibitor of phosphodiesterases may play an additional role in its pro-angiogenic effect. The endogenous role of H(2)S in the angiogenic response has been demonstrated in the chicken chorioallantoic membranes, in endothelial cells in vitro and ex vivo. Importantly, the pro-angiogenic effect of vascular endothelial growth factor (but not of fibroblast growth factor) involves the endogenous production of H(2)S. The pro-angiogenic effects of H(2)S are also apparent in vivo: in a model of hindlimb ischaemia-induced angiogenesis, H(2)S induces a marked pro-angiogenic response; similarly, in a model of coronary ischaemia, H(2)S exerts angiogenic effects. Angiogenesis is crucial in the early stage of wound healing. Accordingly, topical administration of H(2)S promotes wound healing, whereas genetic ablation of CSE attenuates it. Pharmacological modulation of H(2)S-mediated angiogenic pathways may open the door for novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, 77555-1102, USA.
| | | |
Collapse
|
41
|
Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, Coetzee WA. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol 2012; 52:596-607. [PMID: 22245446 DOI: 10.1016/j.yjmcc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
Abstract
Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels.
Collapse
|
42
|
Liu Y, Zhang J, Yu L, Cao F, Rao J, Li J, Jiang C, Falck JR, Jacobs ER, Zhu D. A soluble epoxide hydrolase inhibitor--8-HUDE increases pulmonary vasoconstriction through inhibition of K(ATP) channels. Pulm Pharmacol Ther 2011; 25:69-76. [PMID: 22155000 DOI: 10.1016/j.pupt.2011.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/07/2011] [Accepted: 11/26/2011] [Indexed: 11/17/2022]
Abstract
Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid, are endogenously produced epoxides that act as substrates for the soluble epoxide hydrolase (sEH). Recent studies indicate that EETs increase the tension of rat pulmonary arteries (PAs), and inhibition of sEH augments hypoxic pulmonary vasoconstriction. However, the mechanisms underlying the proconstrictive effects of sEH inhibitors in pulmonary artery smooth muscle cells (PASMCs) are unclear. In the present study, we used a sEH inhibitor, 12-(3-hexylureido) dodec-8-enoic acid (8-HUDE), to examine the ionic mechanisms underlying the constriction of PAs. 8-HUDE increased the tension of rat PAs to 145% baseline in a manner which was effectively eliminated by 10 μmol/L glibenclamide, an inhibitor of ATP-sensitive K(+) (K(ATP)) channels. Whole cell currents of HEK cells transfected with Kir6.1 or SUR2B were activated by K(ATP) channel opener pinacidil, inhibited by K(ATP) channel inhibitor glibenclamide or inhibited by 8-HUDE in a concentration-dependent manner with an IC50 value of 40 uM. In addition, 8-HUDE inhibited the expression of Kir6.1 and SUR2B at both mRNA and protein level in rat PASMCs. These observations suggest that 8-HUDE exerts acute effects on K(ATP) channel activity as well as subacute effects through decreased channel expression, and these effects are, at least in part, via the Kir6.1/SUR2B channel.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/biosynthesis
- Animals
- Blotting, Western
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Epoxide Hydrolases/antagonists & inhibitors
- Fatty Acids, Monounsaturated/pharmacology
- Female
- HEK293 Cells
- Humans
- KATP Channels/antagonists & inhibitors
- KATP Channels/biosynthesis
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/drug effects
- Patch-Clamp Techniques
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/biosynthesis
- Pulmonary Artery/drug effects
- Pulmonary Circulation/drug effects
- Rats
- Rats, Wistar
- Real-Time Polymerase Chain Reaction
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/biosynthesis
- Sulfonylurea Receptors
- Vasoconstriction/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Yun Liu
- Department of Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Astragaloside IV Regulates Expression of ATP-sensitive Potassium Channel Subunits after Ischemia-reperfusion in Rat Ventricular Cardiomyocytes. J TRADIT CHIN MED 2011; 31:321-6. [DOI: 10.1016/s0254-6272(12)60012-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Barajas-Martínez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, Boyle M, Surman T, Urrutia J, Veltmann C, Schimpf R, Borggrefe M, Wolpert C, Ibrahim BB, Sánchez-Chapula JA, Winters S, Haïssaguerre M, Antzelevitch C. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm 2011; 9:548-55. [PMID: 22056721 DOI: 10.1016/j.hrthm.2011.10.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/30/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Adenosine triphosphate (ATP)-sensitive potassium cardiac channels consist of inward-rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). OBJECTIVE To examine the association of mutations in KCNJ8 with Brugada syndrome (BrS) and early repolarization syndrome (ERS) and to elucidate the mechanism underlying the gain of function of ATP-sensitive potassium channel current. METHODS Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch-clamp methods were used to study mutated channels expressed in TSA201 cells. RESULTS The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS probands but was absent in 430 alleles from ethnically matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole-cell patch-clamp studies showed a 2-fold gain of function of glibenclamide-sensitive ATP-sensitive potassium channel current when KCNJ8-S422L was coexpressed with SUR2A-wild type. Inside-out patch-clamp evaluation yielded a significantly greater half maximal inhibitory concentration for ATP in the mutant channels (785.5 ± 2 vs 38.4 ± 3 μM; n = 5; P <.01), pointing to incomplete closing of the ATP-sensitive potassium channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/corrected QT intervals, likely owing to their effect to induce an increase in L-type calcium channel current (I(Ca-L)). CONCLUSIONS Our results support the hypothesis that KCNJ8 is a susceptibility gene for BrS and ERS and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in ATP-sensitive potassium channel current is due to reduced sensitivity to intracellular ATP.
Collapse
Affiliation(s)
- Hector Barajas-Martínez
- Molecular Genetics Department, Masonic Medical Research Laboratory, Utica, New York 13501, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Graciotti L, Becker J, Granata AL, Procopio AD, Tessarollo L, Fulgenzi G. Dystrophin is required for the normal function of the cardio-protective K(ATP) channel in cardiomyocytes. PLoS One 2011; 6:e27034. [PMID: 22066028 PMCID: PMC3205025 DOI: 10.1371/journal.pone.0027034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/09/2011] [Indexed: 12/19/2022] Open
Abstract
Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.
Collapse
Affiliation(s)
- Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jodi Becker
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Anna Luisa Granata
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, INRCA, Ancona, Italy
| | - Lino Tessarollo
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GF); (LT)
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Neural Development Group, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (GF); (LT)
| |
Collapse
|
46
|
Patel JC, Witkovsky P, Coetzee WA, Rice ME. Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels. J Neurochem 2011; 118:721-36. [PMID: 21689107 DOI: 10.1111/j.1471-4159.2011.07358.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H(2)O(2) produced from glutamate receptor activation inhibits dopamine release via K(ATP) channels. Sources of modulatory H(2)O(2) include striatal medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H(2)O(2)/K(ATP)-channel-mediated inhibition and assessed whether modulatory K(ATP) channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a K(ATP)-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H(2)O(2) levels, revealed a time window for inhibition of 500-1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 K(ATP)-channel subunits on dopaminergic axons. Consistent with the presence of functional K(ATP) channels on dopaminergic axons, K(ATP)-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express K(ATP) channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H(2)O(2) acting at K(ATP) channels on dopaminergic axons, including a role in paired-pulse suppression.
Collapse
Affiliation(s)
- Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
47
|
Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res 2011; 108:607-18. [PMID: 21372292 DOI: 10.1161/circresaha.110.224279] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The L-type cardiac calcium channel (LTCC) plays a prominent role in the electric and mechanical function of the heart. Mutations in the LTCC have been associated with a number of inherited cardiac arrhythmia syndromes, including Timothy, Brugada, and early repolarization syndromes. Elucidation of the genetic defects associated with these syndromes has led to a better understanding of molecular and cellular mechanisms and the development of novel therapeutic approaches to dealing with the arrhythmic manifestations. This review provides an overview of the molecular structure and function of the LTCC, the genetic defects in these channels known to contribute to inherited disorders, and the underlying molecular and cellular mechanisms contributing to the development of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Carlo Napolitano
- Executive Director and Director of Research, Gordon K. Moe Scholar, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY 13501, USA.
| | | |
Collapse
|
48
|
The Effects of Potassium Channel Opener P1075 on the Human Saphenous Vein and Human Internal Mammary Artery. J Cardiovasc Pharmacol 2011; 57:648-55. [DOI: 10.1097/fjc.0b013e3182145850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Jilkina O, Glogowski M, Kuzio B, Zhilkin PA, Gussakovsky E, Kupriyanov VV. Defects in myoglobin oxygenation in KATP-deficient mouse hearts under normal and stress conditions characterized by near infrared spectroscopy and imaging. Int J Cardiol 2011; 149:315-22. [DOI: 10.1016/j.ijcard.2010.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/22/2009] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
|
50
|
Collin S, Sennoun N, Dron AG, de la Bourdonnaye M, Montemont C, Asfar P, Lacolley P, Meziani F, Levy B. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock. Intensive Care Med 2011; 37:861-9. [DOI: 10.1007/s00134-011-2169-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
|