1
|
Nie H, Huang ZS, Liu G, Li TS. Diabetes-induced alteration of metal ion levels declines the activity of MMPs to decrease aortic aneurysm risk. Life Sci 2025; 360:123243. [PMID: 39549935 DOI: 10.1016/j.lfs.2024.123243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
AIMS Diabetes mellitus (DM) links the risk of cardiovascular diseases. Inverse to the enhanced expression of matrix metalloproteinases (MMPs), the development of aortic aneurysm is lower in diabetic population. We examined the hypothesis that DM-induced alteration of metal ion levels declines the activity of MMPs to decrease aortic aneurysm risk. METHODS & RESULTS By culturing vascular smooth muscle cells (VSMCs) or macrophages with different concentrations of glucose in the medium, we confirmed that high glucose significantly increased the expression of fibronectin and CTGF in VSMCs, and induced MMP2 expression and MMP9 secretion in macrophages. We also established an abdominal aortic aneurysm model in streptozotocin-induced diabetic mice and evaluated aneurysm development six weeks later. Compared to the healthy controls, diabetic mice had significantly lower levels of Zn2+ and Mg2+ in serum and developed significantly smaller sizes of aneurysms with higher expression of fibronectin and CTGF; but dietary zinc supplementation to diabetic mice effectively neutralized these differences. Gelatin zymography assay indicated that the enzymatic digestion activity of MMP2 was changed under different concentrations of ZnSO4 and MgSO4. Clinical data analysis also confirmed that DM, serum Zn2+ level, and aortic aneurysm risk closely correlated with each other. CONCLUSION It seems that DM-induced alteration of metal ion levels declines the activity of MMPs to negate aortic aneurysm development. Our data provide novel mechanistical insight and therapeutic strategy for aortic aneurysms.
Collapse
Affiliation(s)
- Han Nie
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; Department of Stem Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Zi-Sheng Huang
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Geng Liu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; Department of Stem Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; Department of Stem Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
2
|
Hasan M, Yadav P, Ansari MA, Ali S, Khan HA. Therapeutic Dose of Zinc Aspartate and Zinc Citrate Attenuates Disease Activity Indices in Rheumatoid Arthritis. Biol Trace Elem Res 2024:10.1007/s12011-024-04439-3. [PMID: 39535573 DOI: 10.1007/s12011-024-04439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Zinc aspartate and zinc citrate have been used as zinc supplements in different health conditions. Taking into consideration their anti-inflammatory, immunomodulatory, anti-oxidant and antimicrobial properties, the present study has been designed to analyse the effect of zinc aspartate and zinc citrate treatment at therapeutic dose level on disease severity index, haematological, serological, antimicrobial and radiological markers of rheumatoid arthritis in Wistar rats. Bactericidal potential of the two organic zinc compounds was analysed in vitro in clinically isolated Escherichia coli. Arthritis was induced in male Wistar rats by intradermal injection of an emulsion containing collagen type II and Complete Freund's Adjuvant (CFA) containing 1 mg mL-1 Mycobacterium tuberculosis H37Ra. Zinc aspartate and zinc citrate were orally administered after the onset of the disease for 4 weeks. Ameliorative effect of zinc aspartate and zinc citrate was evaluated by analysing indices of severity and disease activity markers of rheumatoid arthritis. The liver and kidney function tests were performed to evaluate any possible adverse effect of compounds. Antimicrobial activity of the zinc compounds was assessed in clinically isolated E. coli by MTT assay. Zinc aspartate and zinc citrate equivalent to a therapeutic dose of 50 mg/day of elemental zinc attenuated the clinical characteristic of rheumatoid arthritis in the animal model of arthritis, collagen-induced arthritis (CIA). Both zinc salts also exhibited antimicrobial effects against E. coli. The selected dose of zinc aspartate and zinc citrate showed no adverse effects in treated rats. This study highlights the potentiality of zinc compounds as antiarthritic agents and also point to its preventive effects on microbial growth that has been observed in rheumatoid arthritis patients due to their increased sensitivity for bacterial infection.
Collapse
Affiliation(s)
- Mohammad Hasan
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pooja Yadav
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mairaj Ahmed Ansari
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Haider A Khan
- Heavy Metal and Preventive Toxicology Lab, Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Dinga E, Marume U, Chelopo GM. Effect of Melia azedarach seed mediated nano-ZnO on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. Trop Anim Health Prod 2024; 56:371. [PMID: 39477912 PMCID: PMC11525381 DOI: 10.1007/s11250-024-04217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
The current study was conducted to investigate the effect of Melia azedarach seed-mediated ZnO nanoparticles on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. A total of 48 pigs were allocated to the following six treatments replicated 8 times: Negative Control (NC, No antibiotic), Treatment 2: Positive control (PC) given a conventional antibiotic (Oxytetracycline, 40 mg/kg feed); Treatment 3: Nano-ZnO 300 mg/L (N300ZnO), Treatment 4: Group given 150 mg/L Melia azedarach seed mediated nano-ZnO (N150MA), Treatment 5: Group given 300 mg/L Melia azedarach seed mediated nano-ZnO (N300MA), Treatment 6: Group given 450 mg/L Melia azedarach seed mediated nano-ZnO (N450MA). The experiment was conducted over 7 weeks. Melia azedarach seed-mediated ZnO nanoparticles had no significant effect on growth performance apart from average daily feed intake (ADFI) with treatment 3 having the highest value. It significantly affected protein consumption and growth efficiency but not protein efficiency ratio and specific growth rate. Melia azedarach seed-mediated ZnO nanoparticles had no significant impact on nutritional parameters, serum minerals apart from phosphorus which can negatively affect renal functioning.
Collapse
Affiliation(s)
- E Dinga
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa.
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa.
| | - U Marume
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| | - G M Chelopo
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| |
Collapse
|
4
|
Yang F, Smith MJ, Siow RC, Aarsland D, Maret W, Mann GE. Interactions between zinc and NRF2 in vascular redox signalling. Biochem Soc Trans 2024; 52:269-278. [PMID: 38372426 PMCID: PMC10903478 DOI: 10.1042/bst20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3β (GSK3β) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Fan Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Matthew J. Smith
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard C.M. Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, U.K
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College, London, U.K
| | - Giovanni E. Mann
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
5
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Mohtashamian A, Soleimani A, Gilasi HR, Kheiripour N, Moeini Taba SM, Sharifi N. Association of Zinc Status with Matrix Metalloproteinases, Advanced Glycation End-Products, and Blood Pressure in Patients with Chronic Kidney Disease. Biol Trace Elem Res 2023; 201:4275-4285. [PMID: 36515817 DOI: 10.1007/s12011-022-03524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Inflammation, oxidative stress, and hypertension trigger the development of chronic kidney disease (CKD). Zinc is known to have antioxidant and anti-inflammatory properties and a possible role in regulating blood pressure. The aim of this study was to investigate the correlation of serum zinc with matrix metalloproteinase-2 and-9 (MMP-2, MMP-9), advanced glycation end products (AGEs), and blood pressure in patients with CKD. This cross-sectional study included 90 patients with CKD. Serum zinc and the levels of MMP-2, MMP-9, AGEs, and creatinine were measured using validated biochemical methods. Three 24-h food recalls were completed to evaluate dietary zinc intake. Systolic and diastolic blood pressure (SBP, DBP) were measured using a digital sphygmomanometer. Participants' mean age was 60.68 ± 8.81 years. The prevalence of zinc deficiency in our participants was 10%. Serum zinc was negatively correlated with MMP-9 (r = - 0.231, p = 0.032) and creatinine (r = - 0.304, p = 0.004). However, after adjusting for confounding variables, the association between serum zinc and MMP-9 was near the significance level (β = - 0.174, p = 0.09) and zinc remained in the model as one of the predictors. Serum zinc was positively correlated with the dietary intake of zinc (r = 0.241, p = 0.025) and estimated glomerular filtration rate (eGFR) (r = 0.259, p = 0.015). In conclusion, our results showed that serum zinc might be one of the predictors of serum MMP-9 in patients with CKD. In addition, serum zinc was positively associated with its dietary intake and eGFR. Future longitudinal studies or clinical trials are required to reveal any causal association between zinc status and profibrotic or inflammatory biomarkers among patients with CKD.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Gilasi
- Department of Epidemiology and Biostatistics, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran
| | - Seyed Masoud Moeini Taba
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, 87159-734741, Iran.
| |
Collapse
|
7
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Mladenov M, Bogdanov J, Bogdanov B, Hadzi-Petrushev N, Kamkin A, Stojchevski R, Avtanski D. Efficacy of the monocarbonyl curcumin analog C66 in the reduction of diabetes-associated cardiovascular and kidney complications. Mol Med 2022; 28:129. [PMID: 36316651 PMCID: PMC9620630 DOI: 10.1186/s10020-022-00559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-β/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Jane Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Bogdan Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
9
|
Wang H, Tian Y, Zhang Q, Liu W, Meng L, Jiang X, Xin Y. Essential role of Nrf2 in sulforaphane-induced protection against angiotensin II-induced aortic injury. Life Sci 2022; 306:120780. [PMID: 35839861 DOI: 10.1016/j.lfs.2022.120780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
AIMS Cardiovascular disease (CVD) is the leading cause of death worldwide. Inflammation and oxidative stress are the primary factors underlying angiotensin II (Ang II)-induced aortic damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important antioxidative stress factor. Sulforaphane (SFN), which is naturally found in cruciferous vegetables, is an Nrf2 agonist that is safe for oral administration. Here, we aimed to explore the potential of SFN in protecting against Ang II-induced aortic damage by upregulating Nrf2 expression via the extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3 beta (GSK-3β)/Fyn pathway. MAIN METHODS AND KEY FINDINGS Wild-type (WT) C57BL/6J and Nrf2-knockout (Nrf2-KO) mice were injected with Ang II to induce aortic inflammation, oxidative stress, and cardiac remodeling (increased fibrosis and wall thickness). SFN treatment prevented aortic damage via Nrf2 activation in the WT mice. However, the protective effect of SFN on Ang II-induced aortic damage and upregulation of genes downstream of Nrf2 were not observed in Nrf2-KO mice. SFN induced the upregulation of aortic Nrf2 and inhibited the accumulation of ERK, GSK-3β, and Fyn in the nuclei. SIGNIFICANCE These results revealed that Nrf2 plays a central role in protecting against Ang II-induced aortic injury. Furthermore, SFN prevented Ang II-induced aortic damage by activating Nrf2 through the ERK/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Mechanisms Underlying the Protective Effect of Maternal Zinc (ZnSO4 or Zn-Gly) against Heat Stress-Induced Oxidative Stress in Chicken Embryo. Antioxidants (Basel) 2022; 11:antiox11091699. [PMID: 36139773 PMCID: PMC9495990 DOI: 10.3390/antiox11091699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes’ oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis.
Collapse
|
11
|
He P, Li H, Liu M, Zhang Z, Zhang Y, Zhou C, Li Q, Liu C, Qin X. U-shaped Association Between Dietary Zinc Intake and New-onset Diabetes: A Nationwide Cohort Study in China. J Clin Endocrinol Metab 2022; 107:e815-e824. [PMID: 34448874 PMCID: PMC8902942 DOI: 10.1210/clinem/dgab636] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 01/07/2023]
Abstract
AIMS We aimed to investigate the relationship of dietary zinc intake with new-onset diabetes among Chinese adults. MATERIALS AND METHODS A total of 16 257 participants who were free of diabetes at baseline from the China Health and Nutrition Survey were included. Dietary intake was measured by 3 consecutive 24-hour dietary recalls combined with a household food inventory. Participants with self-reported physician-diagnosed diabetes, or fasting glucose ≥ 7.0 mmol/L, or glycated hemoglobin ≥ 6.5% during the follow-up were defined as having new-onset diabetes. RESULTS A total of 1097 participants developed new-onset diabetes during a median follow-up duration of 9.0 years. Overall, the association between dietary zinc intake and new-onset diabetes followed a U-shape (P for nonlinearity < 0.001). The risk of new-onset diabetes was significantly lower in participants with zinc intake < 9.1 mg/day (per mg/day: hazard ratio [HR], 0.73; 95% CI, 0.60-0.88), and higher in those with zinc intake ≥ 9.1 mg/day (per mg/day: HR, 1.10; 95% CI, 1.07-1.13). Consistently, when dietary zinc intake was assessed as deciles, compared with those in deciles 2-8 (8.9 -<12.2 mg/day), the risk of new-onset diabetes was higher for decile 1 (<8.9 mg/day: HR, 1.29; 95% CI, 1.04-1.62), and deciles 9 to 10 (≥12.2 mg/day: HR, 1.62; 95% CI, 1.38-1.90). Similar U-shaped relations were found for plant-derived or animal-derived zinc intake with new-onset diabetes (all P for nonlinearity < 0.001). CONCLUSIONS There was a U-shaped association between dietary zinc intake and new-onset diabetes in general Chinese adults, with an inflection point at about 9.1 mg/day.
Collapse
Affiliation(s)
- Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Huan Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Zhuxian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Qinqin Li
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
| | - Chengzhang Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
12
|
MacKenzie S, Bergdahl A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022; 10:biomedicines10010139. [PMID: 35052818 PMCID: PMC8773686 DOI: 10.3390/biomedicines10010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress represents an impaired metabolic system that promotes damage to cells and tissues. This is the predominant factor that leads to the development and progression of diabetes and diabetic complications. Research has indicated that zinc plays a consequential mechanistic role in the protection against oxidative stress as zinc is required for the proper functioning of the antioxidant system, the suppression of inflammatory mediators, and the modulation of zinc transporters. Recently, the mechanisms surrounding ZnT8, ZIP7, and metallothionein have shown to be of particular pathogenic importance and are considered as potential therapeutic targets in disease management. The literature has shown that zinc dysregulation is associated with diabetes and may be considered as a leading contributor to the deleterious vascular alterations exhibited by the disease. Although further investigation is required, studies have indicated the favorable use of zinc supplementation in the protection against and prevention of oxidative stress and its consequences over the course of the condition. This review aims to provide a comprehensive account of zinc homeostasis, the oxidative mechanisms governed by zinc status, current therapeutic targets, and the impact of zinc supplementation in the prevention of disease onset and in mitigating vascular complications.
Collapse
|
13
|
Zhang X, Guan T, Yang B, Chi Z, Wan Q, Gu HF. SLC30A7 has anti-oxidant stress effects in high glucose-induced apoptosis via the NFE2L2/HMOX1 signal transduction pathway. Diabetes Res Clin Pract 2021; 172:108445. [PMID: 32949653 DOI: 10.1016/j.diabres.2020.108445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
AIMS Apoptosis and oxidant stress are known to be involved in the pathogenesis of diabetic kidney disease (DKD). We have previously reported that zinc transporter 7 in SLC30 family (SLC30A7) inhibits apoptosis in rat peritoneal mesothelial cells under high glucose (HG) conditions. In the current study, we aimed to investigate whether SLC30A7 had effect for anti-oxidant stress in renal tubular epithelial cells under HG. METHODS SLC30A7 in HG-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells)/kidneys of STZ-induced diabetic mice was examined and the activity of nuclear factor erythroid 2-related factor 2 (NFE2L2) was further analyzed by using real time RT-PCR, siRNA and Western blot protocols. RESULTS SLC30A7 was found to be up-regulated, while NFE2L2 was activated in kidneys of STZ-induced diabetic mice and HG-induced apoptosis of NRK-52E cells. Knock-down of SLC30A7 with siRNA protocol resulted in lower intracellular free zinc levels in the cells and decreased zinc distribution in the Golgi apparatus. Furthermore, knock-down of NFE2L2 down-regulated its target HMOX1 gene expression, decreased SLC30A7 activity but increased HG-induced apoptosis. CONCLUSION The current study provides new evidence that SLC30A7 has anti-oxidant stress effects in HG-induced apoptosis via the NFE2L2/HMOX1 signal transduction pathway.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province 518000, PR China; Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Tingwen Guan
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province 110001, PR China
| | - Boxuan Yang
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province 110001, PR China
| | - Zhihong Chi
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province 110001, PR China
| | - Qijun Wan
- Department of Nephrology, Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province 518000, PR China
| | - Harvest F Gu
- Center for Pathophysiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, PR China.
| |
Collapse
|
14
|
The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants (Basel) 2021; 10:antiox10020157. [PMID: 33499118 PMCID: PMC7912156 DOI: 10.3390/antiox10020157] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and increased oxidative stress are contributing factors to many non-communicable diseases. A growing body of evidence indicates that dietary nutrients can activate the immune system and may lead to the overproduction of pro-inflammatory cytokines. Fatty acids as macronutrients are key players for immunomodulation, with n-3 polyunsaturated fatty acids having the most beneficial effect, while polyphenols and carotenoids seem to be the most promising antioxidants. Psoriasis is a chronic, immune-mediated inflammatory disease with multifactorial etiology. Obesity is a major risk factor for psoriasis, which leads to worse clinical outcomes. Weight loss interventions and, generally, dietary regimens such as gluten-free and Mediterranean diet or supplement use may potentially improve psoriasis’ natural course and response to therapy. However, data about more sophisticated nutritional patterns, such as ketogenic, very low-carb or specific macro- and micro-nutrient substitution, are scarce. This review aims to present the effect of strictly structured dietary nutrients, that are known to affect glucose/lipid metabolism and insulin responses, on chronic inflammation and immunity, and to discuss the utility of nutritional regimens as possible therapeutic tools for psoriasis and psoriatic arthritis.
Collapse
|
15
|
Dham D, Roy B, Gowda A, Pan G, Sridhar A, Zeng X, Thandavarayan RA, Palaniyandi SS. 4-Hydroxy-2-nonenal, a lipid peroxidation product, as a biomarker in diabetes and its complications: challenges and opportunities. Free Radic Res 2021; 55:547-561. [PMID: 33336611 DOI: 10.1080/10715762.2020.1866756] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over 30 million Americans are diagnosed with diabetes and this number is only expected to increase. There are various causes that induce complications with diabetes, including oxidative stress. In oxidative stress, lipid peroxidation-derived reactive carbonyl species such as 4-hydroxy-2-nonenal (4-HNE) is shown to cause damage in organs that leads to diabetic complications. We provided evidence to show that 4-HNE or/and 4-HNE-protein adducts are elevated in various organ systems of diabetic patients and animal models. We then discussed the advantages and disadvantages of different methodologies used for the detection of 4-HNE in diabetic tissues. We also discussed how novel approaches such as electrochemistry and nanotechnology can be used for monitoring 4-HNE levels in biological systems in real-time. Thus, this review enlightens the involvement of 4-HNE in the pathogenesis of diabetes and its complications and efficient methods to identify it. Furthermore, the article presents that 4-HNE can be developed as a biomarker for end-organ damage in diabetes such as diabetic cardiac complications.
Collapse
Affiliation(s)
- Deiva Dham
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Amita Gowda
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Arun Sridhar
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Rajarajan A Thandavarayan
- Department of Cardiovascular Sciences, Centre for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.,Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Hajji M, Khedher R, Mrad M, Bassem HM, Rafrafi N, Chouchi S, Feki M, Bahlous A, Zouaghi K, Fellah H. Effects of Zinc supplementation on serum copper to Zinc and CRP to albumin ratios in hemodialysis patients. J Med Biochem 2021; 40:193-198. [PMID: 33776569 PMCID: PMC7982281 DOI: 10.5937/jomb0-26698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background Zinc (Zn) deficiency is a common condition and could contribute to poor outcomes in hemodialysis (HD) patients. The aim of this study was to evaluate the effects of Zn supplementation on serum copper (Cu) to Zn and C-reactive protein (CRP) to albumin ratios (CAR) in HD patients. Methods Seventy-seven HD patients were enrolled in a multicentre simple-blind randomized clinical trial. Only 37 HD patients completed the study; they were randomly divided into two groups and supplemented with zinc sulphate (n=17) or placebo (n=20) for two months. Serum Zn and Cu were measured by atomic absorption spectrophotometry. Serum albumin and hypersensitive-CRP were assessed by colorimetric and immunoturbidimetric method, respectively. Determinations were performed before and after supplementation. Results After two months of supplementation, serum Zn significantly increased, and Cu to Zn ratio decreased in Zn supplemented group, but remained unchanged in the placebo group. In parallel, serum albumin concentrations significantly increased, and CAR decreased in Zn supplemented group only. Conclusions Zn supplementation reduces Cu to Zn and CRP to albumin ratios in HD patients. These changes point towards an improvement in nutritional, oxidative and inflammatory status. The study findings suggest that correcting Zn deficiency reduces poor outcomes in HD patients.
Collapse
Affiliation(s)
- Marwa Hajji
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Laboratory of Biochemistry, Tunis, Tunisia
| | - Rania Khedher
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Department of Nephrology, Tunis, Tunisia
| | - Mehdi Mrad
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Pasteur Institute, Laboratory of Biochemistry, Tunis, Tunisia
| | - Hammami Mohamed Bassem
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Laboratory of Biochemistry, Tunis, Tunisia
| | | | | | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Laboratory of Biochemistry, Tunis, Tunisia
| | - Afef Bahlous
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Pasteur Institute, Laboratory of Biochemistry, Tunis, Tunisia
| | - Karim Zouaghi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Department of Nephrology, Tunis, Tunisia
| | - Hayet Fellah
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia.,Rabta University Hospital, Laboratory of Biochemistry, Tunis, Tunisia
| |
Collapse
|
17
|
Yu L, Liu Y, Jin Y, Liu T, Wang W, Lu X, Zhang C. Zinc Supplementation Prevented Type 2 Diabetes-Induced Liver Injury Mediated by the Nrf2-MT Antioxidative Pathway. J Diabetes Res 2021; 2021:6662418. [PMID: 34307690 PMCID: PMC8279848 DOI: 10.1155/2021/6662418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 12/03/2022] Open
Abstract
Zinc is an essential trace element that is often reduced under the type 1 diabetic condition. Previous studies demonstrated that zinc deficiency enhanced type 1 diabetes-induced liver injury and that zinc supplementation significantly helped to prevent this. Due to the differences in pathogenesis between type 1 and type 2 diabetes, it is unknown whether zinc supplementation can induce a beneficial effect on type 2 diabetes-induced liver injury. This possible protective mechanism was investigated in the present study. A high-fat diet, along with a one-time dose of streptozotocin, was applied to metallothionein (MT) knockout mice, nuclear factor-erythroid 2-related factor (Nrf) 2 knockout mice, and age-matched wild-type (WT) control mice, in order to induce type 2 diabetes. This was followed by zinc treatment at 5 mg/kg body weight given every other day for 3 months. Global metabolic disorders of both glucose and lipids were unaffected by zinc supplementation. This induced preventive effects on conditions caused by type 2 diabetes like oxidative stress, apoptosis, the subsequent hepatic inflammatory response, fibrosis, hypertrophy, and hepatic dysfunction. Additionally, we also observed that type 2 diabetes reduced hepatic MT expression, while zinc supplementation induced hepatic MT expression. This is a crucial antioxidant. A mechanistic study showed that MT deficiency blocked zinc supplementation-induced hepatic protection under the condition of type 2 diabetes. This suggested that endogenous MT is involved in the hepatic protection of zinc supplementation in type 2 diabetic mice. Furthermore, zinc supplementation-induced hepatic MT increase was unobserved once Nrf2 was deficient, indicating that Nrf2 mediated the upregulation of hepatic MT in response to zinc supplementation. Results of this study indicated that zinc supplementation prevented type 2 diabetes-induced liver injury through the activation of the Nrf2-MT-mediated antioxidative pathway.
Collapse
Affiliation(s)
- Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yichun Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Tinghao Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenhan Wang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Wu J, Sun X, Jiang Z, Jiang J, Xu L, Tian A, Sun X, Meng H, Li Y, Huang W, Jia Y, Wu H. Protective role of NRF2 in macrovascular complications of diabetes. J Cell Mol Med 2020; 24:8903-8917. [PMID: 32628815 PMCID: PMC7417734 DOI: 10.1111/jcmm.15583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Macrovascular complications develop in over a half of the diabetic individuals, resulting in high morbidity and mortality. This poses a severe threat to public health and a heavy burden to social economy. It is therefore important to develop effective approaches to prevent or slow down the pathogenesis and progression of macrovascular complications of diabetes (MCD). Oxidative stress is a major contributor to MCD. Nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) governs cellular antioxidant defence system by activating the transcription of various antioxidant genes, combating diabetes‐induced oxidative stress. Accumulating experimental evidence has demonstrated that NRF2 activation protects against MCD. Structural inhibition of Kelch‐like ECH‐associated protein 1 (KEAP1) is a canonical way to activate NRF2. More recently, novel approaches, such as activation of the Nfe2l2 gene transcription, decreasing KEAP1 protein level by microRNA‐induced degradation of Keap1 mRNA, prevention of proteasomal degradation of NRF2 protein and modulation of other upstream regulators of NRF2, have emerged in prevention of MCD. This review provides a brief introduction of the pathophysiology of MCD and the role of oxidative stress in the pathogenesis of MCD. By reviewing previous work on the activation of NRF2 in MCD, we summarize strategies to activate NRF2, providing clues for future intervention of MCD. Controversies over NRF2 activation and future perspectives are also provided in this review.
Collapse
Affiliation(s)
- Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jun Jiang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuechun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Li
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Ye Jia
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Matter RM, Elbarbary NS, Ismail EAR, Darwish YW, Nada AS, Banoub VP. Zinc supplementation improves glucose homeostasis in patients with β-thalassemia major complicated with diabetes mellitus: A randomized controlled trial. Nutrition 2019; 73:110702. [PMID: 32007694 DOI: 10.1016/j.nut.2019.110702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The development of abnormal glucose tolerance in β-thalassemia major (β-TM) is associated with alterations in the oxidant-antioxidant status. Zinc is an antioxidant and an essential element for insulin synthesis, storage, and secretion. This randomized controlled trial assessed the effect of oral zinc supplementation on glucose homeostasis in pediatric β-TM patients complicated with diabetes mellitus (DM). METHODS Eighty patients were randomly assigned into two groups: an intervention group that received oral zinc in a dose of 40 mg/d for 12 wk and a placebo group. Hemolysis markers, serum ferritin, fasting blood glucose (FBG), fructosamine, fasting C-peptide, urinary albumin excretion (UAE), and serum zinc levels were assessed. Homeostasis model assessment insulin resistance index (HOMA-IR) was calculated. RESULTS Baseline clinical and laboratory parameters were consistent among both groups. Baseline zinc levels were decreased in both groups compared with control values. After 12 wk, supplementation with zinc for the intervention group resulted in a significant decrease in lactate dehydrogenase, serum ferritin, FBG, fructosamine, HOMA-IR, and UAE, whereas fasting C-peptide was higher compared with baseline levels and with the placebo group (P < 0.05). Baseline serum zinc was negatively correlated to FBG (r = -0.534, P < 0.001) and fructosamine (r = -0.555, P < 0.001) but positively correlated to fasting C-peptide (r = 0.777, P = 0.002). CONCLUSIONS Zinc supplementation as an adjuvant therapy in β-TM patients with DM reduced iron burden, decreased hyperglycemia, increased insulin secretion, and improved glycemic control without any adverse effects.
Collapse
Affiliation(s)
- Randa Mahmoud Matter
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Yasser Wagih Darwish
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Shafik Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | |
Collapse
|
20
|
Nosrati R, Kheirouri S, Ghodsi R, Ojaghi H. The effects of zinc treatment on matrix metalloproteinases: A systematic review. J Trace Elem Med Biol 2019; 56:107-115. [PMID: 31442948 DOI: 10.1016/j.jtemb.2019.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Zinc (Zn) acts as a cofactor of matrix metalloproteinases (MMPs) and is vital for their activity and controlling their expression. Alteration of Zn in the body could affect the expression, activity, and destructive impacts of MMPs. OBJECTIVE This systematic review aimed to summarize existing evidence on the effects of Zn treatment on the expression and activity of MMPs. METHOD International sources from Pub Med, Scopus and Google Scholar were searched for the original and English-language studies, published up to the end of May 2018. RESULTS During the initial search, 179 records were found, and 135 articles of them remained after the exclusion of duplicate articles. 47 studies met the inclusion criteria, after multiple stages of screening and critical reviews of articles. CONCLUSION Approximately 62% of the included studies (29 of 47) showed an inhibitory impact of Zn on MMPs production and activities. The inhibitory or stimulatory effect of Zn on MMPs seems to depend on physiological conditions of the cells or animals used, dose of Zn used, and duration of treatment.
Collapse
Affiliation(s)
- Rahmat Nosrati
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Ojaghi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Iran
| |
Collapse
|
21
|
Do VQ, Park KH, Seo YS, Park JM, Kim B, Kim SK, Sung JH, Lee MY. Inhalation exposure to cigarette smoke induces endothelial nitric oxide synthase uncoupling and enhances vascular collagen deposition in streptozotocin-induced diabetic rats. Food Chem Toxicol 2019; 136:110988. [PMID: 31759066 DOI: 10.1016/j.fct.2019.110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Smoking is an acknowledged risk factor for vascular disorders, and vascular complication is a main outcome of diabetes. Hence, we investigated the impact of cigarette smoke on blood vessels in diabetes, postulating that smoking might aggravate diabetic vascular impairment. Sprague-Dawley rats were divided into four groups: control, cigarette smoke-exposed, diabetic, and cigarette smoke-exposed diabetic groups. Streptozotocin-induced diabetic rats were exposed to cigarette smoke by inhalation at total particulate matter concentration of 200 μg/L for 4 h/day, 5 day/week for a total of 4 weeks. Diabetes caused structural change of aorta, but additional cigarette smoke exposure did not induce further alteration. Collagen, a marker for fibrosis, was increased in media of diabetic aorta, and this increase was augmented by cigarette smoke. Cigarette smoke induced endothelial nitric oxide synthase (eNOS) uncoupling in the diabetic group. Malondialdehyde was increased and glutathione was decreased in blood from diabetes, but these effects were not exaggerated by cigarette smoke. Cigarette smoke caused NADPH oxidase (NOX) 2 expression in diabetic aorta and enhanced diabetes-induced NOX4 expression in aorta. Taken together, cigarette smoke exposure can aggravate vascular fibrosis and induce eNOS uncoupling in diabetes under experimental condition, suggesting that smoking might exacerbate diabetic vascular impairments.
Collapse
Affiliation(s)
- Van Quan Do
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Hoon Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hyuck Sung
- Bio Technology Division, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
22
|
Álvarez‐Cilleros D, López‐Oliva ME, Morales‐Cano D, Barreira B, Pérez‐Vizcaíno F, Goya L, Ramos S, Martín MÁ. Dietary Cocoa Prevents Aortic Remodeling and Vascular Oxidative Stress in Diabetic Rats. Mol Nutr Food Res 2019; 63:e1900044. [DOI: 10.1002/mnfr.201900044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Maria Elvira López‐Oliva
- Departamento de Fisiología. Facultad de FarmaciaUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Daniel Morales‐Cano
- Departamento de Farmacología. Facultad de MedicinaUniversidad Complutense de Madrid 28040 Madrid Spain
- CIBER de Enfermedades Respiratorias, ISCIII 28029 Madrid, and Instituto de Investigación Sanitaria Gregorio Marañón 28007 Madrid Spain
| | - Bianca Barreira
- Departamento de Farmacología. Facultad de MedicinaUniversidad Complutense de Madrid 28040 Madrid Spain
- CIBER de Enfermedades Respiratorias, ISCIII 28029 Madrid, and Instituto de Investigación Sanitaria Gregorio Marañón 28007 Madrid Spain
| | - Francisco Pérez‐Vizcaíno
- Departamento de Farmacología. Facultad de MedicinaUniversidad Complutense de Madrid 28040 Madrid Spain
- CIBER de Enfermedades Respiratorias, ISCIII 28029 Madrid, and Instituto de Investigación Sanitaria Gregorio Marañón 28007 Madrid Spain
| | - Luis Goya
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición 28040 Madrid Spain
| | - Sonia Ramos
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición 28040 Madrid Spain
| | - María Ángeles Martín
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición 28040 Madrid Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII 28029 Madrid Spain
| |
Collapse
|
23
|
Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S. A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:397-405. [PMID: 30678925 DOI: 10.1016/j.msec.2018.12.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
Green synthesis of ZnO nanoparticles (NPs) using the plants' extract and their potential application have driven a tremendous interest in recent years. This study reports a green microwave-assisted method for synthesis of ZnO NPs using Silybum marianum L. seed extract. Characteristics of the as-prepared sample was explored in terms of crystalline phase, morphology, composition, surface area, optical, and thermal properties. The particles of the biosynthesized sample (ZnO/extract) had smaller sizes than the chemically produced one (ZnO). The existence of biomolecules from Silybum marianum L seed extract linked to the ZnO/extract sample was approved by various analyses. The ZnO/extract sample was used for treating alloxan-induced diabetic rats and its efficiency was compared with ZnO, extract, and insulin treatments. For this purpose, the levels of blood glucose, insulin, total cholesterol, total triglyceride, and high-density lipoprotein were measured before and after treating with the studied treatment agents and compared with each other. Moreover, the antibacterial activities of both ZnO samples were investigated against E. coli to assess their potential antibacterial application. From the results, ZnO/extract NPs represented an outstanding performance in overcoming the diabetic disorders and good antibacterial activity against the studied bacteria.
Collapse
Affiliation(s)
- Farid Mohammadi Arvanag
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - Shima Rahim Pouran
- Centre of Advanced Manufacturing and Materials Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
24
|
Korakas E, Dimitriadis G, Raptis A, Lambadiari V. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? Nutrients 2018; 10:E1912. [PMID: 30518065 PMCID: PMC6316552 DOI: 10.3390/nu10121912] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The role of nutrition in the pathogenesis of cardiovascular disease has long been debated. The established notion of the deleterious effects of fat is recently under question, with numerous studies demonstrating the benefits of low-carbohydrate, high-fat diets in terms of obesity, diabetes, dyslipidemia, and metabolic derangement. Monounsaturated and polyunsaturated fatty acids, especially n-3 PUFAs (polyunsaturated fatty acids), are the types of fat that favor metabolic markers and are key components of the Mediterranean Diet, which is considered an ideal dietary pattern with great cardioprotective effects. Except for macronutrients, however, micronutrients like polyphenols, carotenoids, and vitamins act on molecular pathways that affect oxidative stress, endothelial function, and lipid and glucose homeostasis. In relation to these metabolic markers, the human gut microbiome is constantly revealed, with its composition being altered by even small dietary changes and different microbial populations being associated with adverse cardiovascular outcomes, thus becoming the target for potential new treatment interventions. This review aims to present the most recent data concerning different dietary patterns at both the macro- and micronutrient level and their association with atherosclerosis, obesity, and other risk factors for cardiovascular disease.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - George Dimitriadis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Athanasios Raptis
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| | - Vaia Lambadiari
- Second Department of Internal Medicine and Research Institute, University General Hospital Attikon, 124 62 Haidari, Greece.
| |
Collapse
|
25
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Negi CK, Jena G. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations. Eur J Pharmacol 2018; 843:12-26. [PMID: 30359563 DOI: 10.1016/j.ejphar.2018.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Oxidative stress and inflammation are the mediators of diabetes and related secondary complications. Oxidative stress arises because of the excessive production of reactive oxygen species and diminished antioxidant production due to impaired Nrf2 activation, the master regulator of endogenous antioxidant. It has been established from various animal models that the transcription factor Nrf2 provides cytoprotection, ameliorates oxidative stress, inflammation and delays the progression of diabetes and its associated complications. Whereas, deletion of the transcription factor Nrf2 amplifies tissue level pathogenic alterations. In addition, Nrf2 also regulates the expression of numerous cellular defensive genes and protects against oxidative stress-mediated injuries in diabetes. The present review provides an overview on the role of Nrf2 in type 1 diabetes and explores if it could be a potential target for the treatment of diabetes and related complications. Further, the rationality of different agent's intervention has been discussed to mitigate organ damages induced by diabetes.
Collapse
Affiliation(s)
- Chander K Negi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
27
|
Park Y, Zhang J, Cai L. Reappraisal of metallothionein: Clinical implications for patients with diabetes mellitus. J Diabetes 2018; 10:213-231. [PMID: 29072367 DOI: 10.1111/1753-0407.12620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 08/29/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS, respectively) are byproducts of cellular physiological processes of the metabolism of intermediary nutrients. Although physiological defense mechanisms readily convert these species into water or urea, an improper balance between their production and removal leads to oxidative stress (OS), which is harmful to cellular components. This OS may result in uncontrolled growth or, ultimately, cell death. In addition, ROS and RNS are closely related to the development of diabetes and its complications. Therefore, numerous researchers have proposed the development of strategies for the removal of ROS/RNS to prevent or treat diabetes and its complications. Some molecules that are synthesized in the body or obtained from food participate in the removal and neutralization of ROS and RNS. Metallothionein, a cysteine-rich protein, is a metal-binding protein that has a wide range of functions in cellular homeostasis and immunity. Metallothionein can be induced by a variety of conditions, including zinc supplementation, and plays a crucial role in mediating anti-OS, anti-apoptotic, detoxification, and anti-inflammatory effects. Metallothionein can modulate various stress-induced signaling pathways (mitogen-activated protein kinase, Wnt, nuclear factor-κB, phosphatidylinositol 3-kinase, sirtuin 1/AMP-activated protein kinase and fibroblast growth factor 21) to alleviate diabetes and diabetic complications. However, a deeper understanding of the functional, biochemical, and molecular characteristics of metallothionein is needed to bring about new opportunities for OS therapy. This review focuses on newly proposed functions of a metallothionein and their implications relevant to diabetes and its complications.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Hanyang University, College of Medicine and Engineering, Seoul, South Korea
| | - Jian Zhang
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Department of Pediatrics, Pediatrics Research Institute, University of Louisville, Louisville, Kentucky, USA
- Department of Radiation Oncology, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Liu Y, Zhu H, Hong H, Wang W, Liu F. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017; 6:649-655. [PMID: 29203637 PMCID: PMC5935811 DOI: 10.1302/2046-3758.612.bjr-2016-0137.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear. Methods To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured. Results CoNPs and Co2+ can induce the increase of ROS and inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). However, Zn pretreatment can significantly prevent cytotoxicity induced by CoNPs and Co2+, decrease ROS production, and decrease levels of inflammatory cytokines in Balb/3T3 mouse fibroblast cells. Conclusion These results suggest that Zn pretreatment can provide protection against inflammation and cytotoxicity induced by CoNPs and Co2+ in Balb/3T3 cells. Cite this article: Y. Liu, H. Zhu, H. Hong, W. Wang, F. Liu. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Res 2017;6:649–655. DOI: 10.1302/2046-3758.612.BJR-2016-0137.R2.
Collapse
Affiliation(s)
- Y Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - H Zhu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - H Hong
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - W Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| | - F Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
29
|
Giacconi R, Cai L, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017; 43:770-784. [PMID: 28845600 DOI: 10.1002/biof.1386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
30
|
Wang S, Gu J, Xu Z, Zhang Z, Bai T, Xu J, Cai J, Barnes G, Liu Q, Freedman JH, Wang Y, Liu Q, Zheng Y, Cai L. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway. J Cell Mol Med 2017; 21:1182-1192. [PMID: 28158919 PMCID: PMC5431126 DOI: 10.1111/jcmm.13050] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.
Collapse
Affiliation(s)
- Shudong Wang
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Junlian Gu
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Zheng Xu
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Zhiguo Zhang
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Tao Bai
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jianxiang Xu
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Jun Cai
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Gregory Barnes
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- Autism CenterUniversity of LouisvilleLouisvilleKYUSA
| | - Qiu‐Ju Liu
- Department of Hematology DisordersThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jonathan H. Freedman
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Yonggang Wang
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Quan Liu
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yang Zheng
- Cardiovascular CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Lu Cai
- Department of PediatricsKosair Children's Hospital Research InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
- Wendy Novak Diabetes Care CenterUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
31
|
Al-Waili N, Al-Waili H, Al-Waili T, Salom K. Natural antioxidants in the treatment and prevention of diabetic nephropathy; a potential approach that warrants clinical trials. Redox Rep 2017; 22:99-118. [PMID: 28276289 PMCID: PMC6837693 DOI: 10.1080/13510002.2017.1297885] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease and effective and new therapeutic approaches are needed in diabetic nephropathy and chronic kidney diseases. Oxidative stress and inflammatory process are important factors contributing to kidney damage by increasing production of oxidants. KEAP1/Nrf2/ARE pathway regulates the transcription of many antioxidant genes and modulation of the pathway up regulates antioxidants. NFB controls the expression of genes involved in the inflammatory response. Natural substances have antioxidant and anti-inflammatory activities and have an impact on NFB and KEAP1/Nrf2/ARE pathways. The preclinical studies explored the effectiveness of whole herbs, plants or seeds and their active ingredients in established diabetic nephropathy. They ameliorate oxidative stress induced kidney damage, enhance antioxidant system, and decrease inflammatory process and fibrosis; most likely by activating KEAP1/Nrf2/ARE pathway and by deactivating NFB pathway. Whole natural products contain balanced antioxidants that might work synergistically to induce beneficial therapeutic outcome. In this context, more clinical studies involving whole plants or herbal products or mixtures of different herbs and plants and their active ingredients might change our strategies for the management of diabetic nephropathy. The natural products might be useful as preventive interventions and studies are required in this field.
Collapse
Affiliation(s)
- Noori Al-Waili
- New York Medical Care for Nephrology, Al-Waili Foundation for Science, New York, USA
| | - Hamza Al-Waili
- New York Medical Care for Nephrology, Al-Waili Foundation for Science, New York, USA
| | - Thia Al-Waili
- New York Medical Care for Nephrology, Al-Waili Foundation for Science, New York, USA
| | - Khelod Salom
- New York Medical Care for Nephrology, Al-Waili Foundation for Science, New York, USA
| |
Collapse
|
32
|
Protective effects of Zn 2+ against cobalt nanoparticles and cobalt chloride-induced cytotoxicity of RAW 264.7cells via ROS pathway. Biochem Biophys Res Commun 2017; 486:357-363. [DOI: 10.1016/j.bbrc.2017.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/12/2017] [Indexed: 01/05/2023]
|
33
|
Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel) 2017; 6:antiox6020024. [PMID: 28353636 PMCID: PMC5488004 DOI: 10.3390/antiox6020024] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules, contributing to the oxidative damage of cells and tissues. This consequently contributes to the development of several chronic diseases. In particular, zinc is one of the most relevant minerals to human health, because of its antioxidant properties. This review aims to provide updated information about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system. In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the protection against oxidative stress in several diseases.
Collapse
|
34
|
Gu J, Cheng Y, Wu H, Kong L, Wang S, Xu Z, Zhang Z, Tan Y, Keller BB, Zhou H, Wang Y, Xu Z, Cai L. Metallothionein Is Downstream of Nrf2 and Partially Mediates Sulforaphane Prevention of Diabetic Cardiomyopathy. Diabetes 2017; 66:529-542. [PMID: 27903744 PMCID: PMC5248986 DOI: 10.2337/db15-1274] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Abstract
We have reported that sulforaphane (SFN) prevented diabetic cardiomyopathy in both type 1 and type 2 diabetes (T2DM) animal models via the upregulation of nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and metallothionein (MT). In this study, we tested whether SFN protects the heart from T2DM directly through Nrf2, MT, or both. Using Nrf2-knockout (KO), MT-KO, and wild-type (WT) mice, T2DM was induced by feeding a high-fat diet for 3 months followed by a small dose of streptozotocin. Age-matched controls were given a normal diet. Both T2DM and control mice were then treated with or without SFN for 4 months by continually feeding a high-fat or normal diet. SFN prevented diabetes-induced cardiac dysfunction as well as diabetes-associated cardiac oxidative damage, inflammation, fibrosis, and hypertrophy, with increases in Nrf2 and MT expressions in the WT mice. Both Nrf2-KO and MT-KO diabetic mice exhibited greater cardiac damage than WT diabetic mice. SFN did not provide cardiac protection in Nrf2-KO mice, but partially or completely protected the heart from diabetes in MT-KO mice. SFN did not induce MT expression in Nrf2-KO mice, but stimulated Nrf2 function in MT-KO mice. These results suggest that Nrf2 plays the indispensable role for SFN cardiac protection from T2DM with significant induction of MT and other antioxidants. MT expression induced by SFN is Nrf2 dependent, but is not indispensable for SFN-induced cardiac protection from T2DM.
Collapse
Affiliation(s)
- Junlian Gu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Yanli Cheng
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Hao Wu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Kong
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Shudong Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zheng Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
| | - Zhiguo Zhang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Bradley B Keller
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY
| | - Honglan Zhou
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhonggao Xu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cai
- The First Hospital of Jilin University, Changchun, Jilin, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
35
|
Fu J, Hou Y, Xue P, Wang H, Xu Y, Qu W, Zhang Q, Pi J. Nrf2 in Type 2 diabetes and diabetic complications: Yin and Yang. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Jagadapillai R, Rane MJ, Lin X, Roberts AM, Hoyle GW, Cai L, Gozal E. Diabetic Microvascular Disease and Pulmonary Fibrosis: The Contribution of Platelets and Systemic Inflammation. Int J Mol Sci 2016; 17:1853. [PMID: 27834824 PMCID: PMC5133853 DOI: 10.3390/ijms17111853] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
Diabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded. We described the potential involvement of diabetes-induced platelet-endothelial interactions in perpetuating vascular inflammation and oxidative injury leading to fibrotic changes in the lung. Changes in nitric oxide synthase (NOS) activation and decreased NO bioavailability in the diabetic lung increase platelet activation and vascular injury and may account for platelet hyperreactivity reported in diabetic patients. Additionally, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has been reported to mediate pancreatic islet damage, and is implicated in the onset of diabetes, inflammation and vascular injury. Many growth factors and diabetes-induced agonists act via the JAK/STAT pathway. Other studies reported the contribution of the JAK/STAT pathway to the regulation of the pulmonary fibrotic process but the role of this pathway in the development of diabetic lung fibrosis has not been considered. These observations may open new therapeutic perspectives for modulating multiple pathways to mitigate diabetes onset or its pulmonary consequences.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Madhavi J Rane
- Medicine/Nephrology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Xingyu Lin
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Department of Thoracic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Andrew M Roberts
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Physiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Gary W Hoyle
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40292, USA.
| | - Lu Cai
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Radiation Oncology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| | - Evelyne Gozal
- Department of Pediatrics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Physiology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
- Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
37
|
Maremanda KP, Khan S, Jena GB. Role of Zinc Supplementation in Testicular and Epididymal Damages in Diabetic Rat: Involvement of Nrf2, SOD1, and GPX5. Biol Trace Elem Res 2016; 173:452-64. [PMID: 27025721 DOI: 10.1007/s12011-016-0674-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
Abstract
Zinc (Zn) is one of the most important trace elements required for several biological processes. Diabetes negatively affects many organs, and diabetic patients are often hypozincemic. The present study aims to investigate the role of Zn supplementation in the testes, epididymis, and sperms of streptozotocin (STZ)-induced diabetic rat. Serum, testicular, and sperm Zn contents were found to be altered in diabetic rat. Biochemical, histopathological, and protein expression profiles were determined to decipher the role of Zn in protecting the cellular perturbations. Further, histopathological analyses of testes and epididymis showed deranged architecture along with other noted abnormalities. Diabetic testes showed decreased Nrf2, HO-1, SOD1, PCNA, and Bcl-2 expressions whereas increased COX-2, NF-κB, MT, IL-6, and p-ERK levels. SOD1 and GPX5 were decreased in the epididymis of diabetic rat, whereas Zn supplementation attenuated these changes. The present results demonstrate the beneficial role of Zn supplementation in diabetes-associated testicular alterations of rat.
Collapse
Affiliation(s)
- Krishna Prahlad Maremanda
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
| | - Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, -160062, India.
| |
Collapse
|
38
|
Chen J, Wang S, Luo M, Zhang Z, Dai X, Kong M, Cai L, Wang Y, Shi B, Tan Y. From the Cover: Zinc Deficiency Worsens and Supplementation Prevents High-Fat Diet Induced Vascular Inflammation, Oxidative Stress, and Pathological Remodeling. Toxicol Sci 2016; 153:124-136. [PMID: 27370414 DOI: 10.1093/toxsci/kfw110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Obesity has become a common public health problem in the world and raises the risk of various cardiovascular diseases. Zinc is essential for multiple organs in terms of normal structure and function. The present study investigated the effects of high fat diet (HFD) induced obesity on the aorta in mice, and evaluated whether it can be affected by zinc deficiency or supplementation. Four-week-old male C57BL/6J mice were fed HFD with varied amounts of zinc (deficiency, adequate and supplementation) for 3 and 6 months. Results showed that HFD feeding induced a time-dependent aortic remodeling, demonstrated by increased vessel wall thickness, tunica cell proliferation and fibrotic responses, and inflammatory response, reflected by increased expression of inflammatory cytokines (tumor necrosis factor-α and vascular cell adhesion molecule 1). HFD feeding also caused aortic oxidative damage, reflected by 3-nitrotyrosine and 4-hydroxy-2-nonenal accumulation, and down-regulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and function, shown by down-regulation of its downstream antioxidants, catalase, NAD(P)H dehydrogenase (quinone 1), and metallothionein expression. The vascular effects of obesity-induced by HFD was exacerbated by zinc deficiency but significantly improved by zinc supplementation. In addition, down-regulation of Nrf2 function and associated antioxidants expression were also worsened by zinc deficiency but improved by zinc supplementation. These results suggest that HFD induces aortic remodeling, which can be exacerbated by zinc deficiency and improved by zinc supplementation.
Collapse
Affiliation(s)
- Jun Chen
- *Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an 710061, China Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| | - Shudong Wang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 Center of Cardiovascular Disease, The First Hospital of Jilin University, Changchun 130000, China
| | - Manyu Luo
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 Department of Nephrology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhiguo Zhang
- Center of Cardiovascular Disease, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiaozhen Dai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 School of Biomedicine, Chengdu Medical College, Chengdu 610500, China
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, Kentucky 40202
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| | - Yuehui Wang
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Bingyin Shi
- *Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an 710061, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
39
|
Assessment of the Protective Role of Prenatal Zinc versus Insulin Supplementation on Fetal Cardiac Damage Induced by Maternal Diabetes in Rat Using Caspase-3 and KI67 Immunohistochemical Stains. Cardiol Res Pract 2016; 2016:7469549. [PMID: 26925289 PMCID: PMC4748104 DOI: 10.1155/2016/7469549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/03/2022] Open
Abstract
Maternal diabetes mellitus (DM) affects early organogenesis. Metabolic disorders of DM are associated with a depleted zinc status. This study evaluated the effect of maternal DM on cardiac development of rat fetuses and protective roles of prenatal zinc versus insulin supplementation. Pregnant rats were divided into 4 groups ((I) control, (II) STZ-induced DM, (III) STZ-induced DM treated with Zn, and (IV) STZ induced DM treated with insulin), all sacrificed on GD 20. Fetal heart weight of diabetic rats showed significant decrease compared to controls (P < 0.05). H&E stained section of controls had normal appearance of the myocardium, compared to diabetics that showed myocardial disarray with characteristic degenerative changes. Sections of zinc treated group showed restored architecture of normal myofibrils with minimal degenerative changes, while those of insulin treated group show partial restoration of the normal architecture of cardiomyocytes with focal improvement of cardiac tissue. Caspase-3 immunostained slides showed positive cytoplasmic immunoreactivity in diabetic group. But KI67 immunostained slides revealed negative nuclear immunoreaction in diabetics. We observed that gestational diabetes was associated with increased risk of fetal myocardial damage that might be caused by increased apoptotic level. Treating diabetic pregnant subjects with zinc and insulin was associated with improvement in myocardial integrity.
Collapse
|
40
|
Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, Jin C, Duan H, Li H, Peng Y. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep 2016; 6:19396. [PMID: 26759189 PMCID: PMC4725374 DOI: 10.1038/srep19396] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/07/2015] [Indexed: 11/15/2022] Open
Abstract
DL-3-n-butylphthalide (NBP) is a therapeutic drug used for ischemic stroke treatment. Here, we investigated the impact of NBP on the development of rat diabetic cataract induced by intraperitoneal injection of streptozotocin (STZ). NBP was then administrated by oral gavage for nine weeks. Cataract development was monitored through ophthalmoscope inspections. The levels of blood glucose and serum reactive oxygen species (ROS), malondialdehyde (MDA) and 8-Hydroxydeovexyguanosine (8-OHdG) were measured. Total and soluble protein and oxidative stress parameters, such as 2, 4- dinitrophenylhydrazone (DNP), 4-hydroxynonenal (4-HNE) and MDA in the lenses were determined by Western blot and thiobarbituric acid analyses. The expressions of NF-E2-related factor 2 (Nrf2) and its downstream antioxidant enzymes, thioredoxin (TRX), Catalase and nuclear accumulation of Nrf2 were determined by Western blot and immunohistochemistry analyses. We showed that NBP treatment significantly improved the cataract scores, the levels of DNP, 4-HNE, and MDA in the lens compared to the non-treated groups. NBP also enhanced the expressions of Nrf2, TRX and catalase in the lens of diabetic rats. In addition, NBP treatment also decreased levels of blood glucose, serum MDA and 8-OHdG. These results suggested that NBP treatment significantly delayed the onset and progression of diabetic cataract by inhibiting the oxidative stresses.
Collapse
Affiliation(s)
- Fuxu Wang
- Department of Hematology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Jia Ma
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Fei Han
- Department of Digestology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Xiujin Guo
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Li Meng
- Laboratorical center for Electron Microscopy, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Yufeng Sun
- Department of Digestology, the Second Hospital of Hebei Medical University, 215 Western Heping Road, Shijiazhuang 050000, China
| | - Cheng Jin
- Department of Histology and Embryology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Hang Li
- Department of Histology and Embryology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China.,Department of Pathology, Hebei Medical University, 361 Eastern Zhongshan Road, Shijiazhuang 050017, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Theoretical assessment of production routes for 63Zn by cyclotron. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-015-4675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Ranasinghe P, Pigera S, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. ACTA ACUST UNITED AC 2015; 23:44. [PMID: 26381880 PMCID: PMC4573932 DOI: 10.1186/s40199-015-0127-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
Background Diabetes mellitus is a leading cause of morbidity and mortality worldwide. Studies have shown that Zinc has numerous beneficial effects in both type-1 and type-2 diabetes. We aim to evaluate the literature on the mechanisms and molecular level effects of Zinc on glycaemic control, β-cell function, pathogenesis of diabetes and its complications. Methods A review of published studies reporting mechanisms of action of Zinc in diabetes was undertaken in PubMed and SciVerse Scopus medical databases using the following search terms in article title, abstract or keywords; (“Zinc” or “Zn”) and (“mechanism” or “mechanism of action” or “action” or “effect” or “pathogenesis” or “pathology” or “physiology” or “metabolism”) and (“diabetes” or “prediabetes” or “sugar” or “glucose” or “insulin”). Results The literature search identified the following number of articles in the two databases; PubMed (n = 1799) and SciVerse Scopus (n = 1879). After removing duplicates the total number of articles included in the present review is 111. Our results show that Zinc plays an important role in β-cell function, insulin action, glucose homeostasis and the pathogenesis of diabetes and its complications. Conclusion Numerous in-vitro and in-vivo studies have shown that Zinc has beneficial effects in both type-1 and type-2 diabetes. However further randomized double-blinded placebo-controlled clinical trials conducted for an adequate duration, are required to establish therapeutic safety in humans. Electronic supplementary material The online version of this article (doi:10.1186/s40199-015-0127-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | - Shehani Pigera
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Prasad Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Godwin R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
43
|
Sárközy M, Szűcs G, Pipicz M, Zvara Á, Éder K, Fekete V, Szűcs C, Bárkányi J, Csonka C, Puskás LG, Kónya C, Ferdinandy P, Csont T. The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats. Cardiovasc Diabetol 2015; 14:85. [PMID: 26126619 PMCID: PMC4499218 DOI: 10.1186/s12933-015-0248-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. Methods Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. Results Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). Conclusions MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-015-0248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
| | - Veronika Fekete
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | | | | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - László G Puskás
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Kónya
- Béres Pharmaceuticals Ltd, Budapest, Hungary.
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary. .,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
44
|
Yan X, Chen J, Zhang C, Zeng J, Zhou S, Zhang Z, Lu X, Chen J, Feng W, Li X, Tan Y. Fibroblast growth factor 21 deletion aggravates diabetes-induced pathogenic changes in the aorta in type 1 diabetic mice. Cardiovasc Diabetol 2015; 14:77. [PMID: 27391008 PMCID: PMC4484638 DOI: 10.1186/s12933-015-0241-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/02/2015] [Indexed: 12/03/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an important regulator in glucose and lipid metabolism, and has been considered as a potential therapy for diabetes. The effect of FGF21 on the development and progression of diabetes-induced pathogenic changes in the aorta has not currently been addressed. To characterize these effects, type 1 diabetes was induced in both FGF21 knockout (FGF21KO) and C57BL/6 J wild type (WT) mice via multiple-dose streptozotocin injection. FGF21KO diabetic mice showed both earlier and more severe aortic remodeling indicated by aortic thickening, collagen accumulation and fibrotic mediator connective tissue growth factor expression. This was accompanied by significant aortic cell apoptosis than in WT diabetic mice. Further investigation found that FGF21 deletion exacerbated aortic inflammation and oxidative stress reflected by elevated expression of tumor necrosis factor α and transforming growth factor β, and the accumulation of 3-nitrotyrocine and 4-Hydroxynonenal. FGF21 administration can reverse the pathologic changes in FGF21KO diabetic mice. These findings demonstrate that FGF21 deletion aggravates aortic remodeling and cell death probably via exacerbation of aortic inflammation and oxidative stress. This marks FGF21 as a potential therapy for the treatment of aortic damage due to diabetes.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Pediatrics of the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, the Third Hospital Affiliate to Wenzhou Medical University, Ruian, China.,Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Jun Chen
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, the Third Hospital Affiliate to Wenzhou Medical University, Ruian, China
| | - Jun Zeng
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Shanshan Zhou
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Departments of Cardiovascular Disorders and Geriatrics of the First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Departments of Cardiovascular Disorders and Geriatrics of the First Hospital of Jilin University, Changchun, China
| | - Xuemian Lu
- Department of Endocrinology, the Third Hospital Affiliate to Wenzhou Medical University, Ruian, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China. .,Chinese-American Research Institute for Pediatrics of the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China. .,Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA. .,Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA.
| |
Collapse
|
45
|
Falfushynska H, Gnatyshyna L, Fedoruk O, Mitina N, Zaichenko A, Stoliar O, Stoika R. Hepatic metallothioneins in molecular responses to cobalt, zinc, and their nanoscale polymeric composites in frog Rana ridibunda. Comp Biochem Physiol C Toxicol Pharmacol 2015; 172-173:45-56. [PMID: 25988936 DOI: 10.1016/j.cbpc.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
Despite numerous studies suggesting a dramatic decline of amphibians, the biochemical mechanisms of adaptation in these animals to polluted environment are poorly studied. The aim of this study was to elucidate the ability to release cobalt (Co) and zinc (Zn) from their nanoscale complexes (NCs) derived from the polymeric substance of N-vinylpyrrolidone (PS) in the liver of amphibian (Rana ridibunda). Frog males were subjected to 14days exposure to waterborne Co(2+) (50μg/L), Zn(2+) (100μg/L), as well as corresponding concentrations of Co-NC, Zn-NC or PS. Main attention was paid to MT's interrelations with indices of stress and toxicity. Only Co(2+) and Zn(2+) caused elevation of the correspondent metal in MTs. Co(2+) caused down-regulation of cathepsin D activity, while Zn(2+), Zn-NC and the PS up-regulated this activity. Zn(2+) provoked 1.6 times increase of metal-bounded form of the MT (MT-Me), while all other exposures caused the elevation of the ratio of MT total protein concentration (MT-SH) and concentrations of the MT-Me and/or immunoreactive (MTi) form (up to ~10 times) accompanied by a decrease in the levels of oxyradicals. The increased DNA fragmentation and down-regulation of caspase-3 activity in relation to the redox state of glutathione and/or lactate/pyruvate were shown at all exposures. These data indicate the vulnerability of the redox state of cellular thiols and inability to release Co and Zn from NCs in frog's liver.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Olga Fedoruk
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Natalia Mitina
- Lviv National Polytechnic University (LNPU), Lviv, Ukraine
| | | | - Oksana Stoliar
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | | |
Collapse
|
46
|
Wang F, Li Y, Cao Y, Li C. Zinc might prevent heat-induced hepatic injury by activating the Nrf2-antioxidant in mice. Biol Trace Elem Res 2015; 165:86-95. [PMID: 25586622 DOI: 10.1007/s12011-015-0228-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Zinc (Zn) is generally known to be an essential trace element with growth-promoting and antioxidant activities. The present study was performed to clarify the role of Zn in the livers of heat-treated mice. Eight-week-old male mice were divided into control (Con), heat treatment (HT) and heat treatment plus zinc groups (HT + Zn) and were fed diets containing 60, 60, or 300 mg/kg Zn (zinc sulfate), respectively. After 30 days of feeding on their respective diets, the control group was maintained at a controlled temperature (25 °C), whereas the HT and HT + Zn groups were exposed to an elevated ambient temperature (40-42 °C) for 2 h each day. After heat exposure for seven consecutive days, sera and liver tissues were collected. The mice in the HT group exhibited reduced liver weights and lower hepatosomatic indices. Histological findings revealed that the hepatocytes of the HT group were subjected to serious damage and exhibited irregular arrangements and nuclear pyknosis. Moreover, in the HT group, the hepatic malondialdehyde levels were significantly increased, while the serum alkaline phosphatase levels, hepatic copper/zinc-superoxide dismutase (CuZn-SOD) and glutathione peroxidase activities were significantly reduced compared to those of the control group. However, in the HT + Zn group, the histomorphology of the liver was restored, the serum aspartate aminotransferase (AST) level was significantly decreased, and the hepatic CuZn-SOD activity was significantly increased compared to the HT group. Furthermore, expressions of the hepatic Nrf2 protein and Nrf2, Keap1, and NQO1 genes in the HT + Zn group were not only higher than the HT group but also higher than the control group. Zn might alleviate heat-induced hepatic injury as revealed by restored histomorphology and AST level. Our results further suggest that Zn might exert its protective effects via the activation of the Nrf2-antioxidant pathway.
Collapse
Affiliation(s)
- F Wang
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
47
|
McCarty MF, DiNicolantonio JJ. The protection conferred by chelation therapy in post-MI diabetics might be replicated by high-dose zinc supplementation. Med Hypotheses 2015; 84:451-5. [DOI: 10.1016/j.mehy.2015.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
|
48
|
Yan X, Chen J, Zhang C, Zhou S, Zhang Z, Chen J, Feng W, Li X, Tan Y. FGF21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med 2015; 19:1557-68. [PMID: 25823710 PMCID: PMC4511354 DOI: 10.1111/jcmm.12530] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in energy homoeostasis. The unaddressed question of FGF21’s effect on the development and progression of diabetic cardiomyopathy (DCM) is investigated here with FGF21 knockout (FGF21KO) diabetic mice. Type 1 diabetes was induced in both FGF21KO and C57BL/6J wild-type (WT) mice via streptozotocin. At 1, 2 and 4 months after diabetes onset, the plasma FGF21 levels were significantly decreased in WT diabetic mice compared to controls. There was no significant difference between FGF21KO and WT diabetic mice in blood glucose and triglyceride levels. FGF21KO diabetic mice showed earlier and more severe cardiac dysfunction, remodelling and oxidative stress, as well as greater increase in cardiac lipid accumulation than WT diabetic mice. Western blots showed that increased cardiac lipid accumulation was accompanied by further increases in the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its target protein CD36, along with decreases in the phosphorylation of AMP-activated protein kinase and the expression of hexokinase II and peroxisome proliferator-activated receptor gamma co-activator 1α in the heart of FGF21KO diabetic mice compared to WT diabetic mice. Our results demonstrate that FGF21 deletion-aggravated cardiac lipid accumulation is likely mediated by cardiac Nrf2-driven CD36 up-regulation, which may contribute to the increased cardiac oxidative stress and remodelling, and the eventual development of DCM. These findings suggest that FGF21 may be a therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Jun Chen
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Scool of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China
| | - Shanshan Zhou
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Cardiovascular Disorders of the First Hospital of Jilin University, Changchun, China
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Cardiovascular Disorders of the First Hospital of Jilin University, Changchun, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications at the Wenzhou Medical University, Wenzhou, China.,Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, School of Medicine, Louisville, USA.,Department of Pharmacology and Toxicology of the University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
49
|
Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, Zhou S, Zhang C, Cai L, Lu X, Cheng M. Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicol Lett 2015; 233:114-124. [PMID: 25617602 DOI: 10.1016/j.toxlet.2015.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/11/2015] [Accepted: 01/18/2015] [Indexed: 12/22/2022]
Abstract
Whether zinc is able to improve diabetes-induced liver injury remains unknown. Transgenic type 1 diabetic (OVE26) mice develop hyperglycemia at 3 weeks old; therefore therapeutic effect of zinc on diabetes-induced liver injury was investigated in OVE26 mice. Three-month old OVE26 and age-matched wild-type mice were treated by gavage with saline or zinc at 5mg/kg body-weight every other day for 3 months. Hepatic injury was examined by serum alanine aminotransferase (ALT) level with liver histopathological and biochemical changes. OVE26 mice at 6 months old showed significant increases in serum ALT level and hepatic oxidative damage, endoplasmic reticulum stress and associated cell death, mild inflammation, and fibrosis. However, all these hepatic morphological and functional changes were significantly prevented in 3-month zinc-treated OVE26 mice. Mechanistically, zinc treatment significantly increased hepatic metallothionein, a protein with known antioxidant activity, in both wild-type and OVE26 mice. These results suggest that there were significantly functional, structural and biochemical abnormalities in the liver of OVE26 diabetic mice at 6 months old; however, all these changes could be prevented with zinc treatment, which was associated with the upregulation of hepatic metallothionein expression.
Collapse
Affiliation(s)
- Tingting Liang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China; The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Quan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Weixia Sun
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Xin
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; The Key Laboratory of Pathobiology of Ministry of Education at The Norman Bethune Medical College of Jilin University, Changchun, Jilin 130021, China
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yi Tan
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA
| | - Shanshan Zhou
- Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA; The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chi Zhang
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China
| | - Lu Cai
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China; Kosair Children's Hospital Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, KY 40202, USA.
| | - Xuemian Lu
- The RuiAn Center of Chinese-American Research Institute for Diabetic Complications, The Department of Endocrinology of The Third Affiliated Hospital of Wenzhou Medical University, RuiAn, Zhejiang 325200, China
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China.
| |
Collapse
|
50
|
Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats. Mar Drugs 2015; 13:788-805. [PMID: 25648511 PMCID: PMC4344602 DOI: 10.3390/md13020788] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.
Collapse
|