1
|
Bisht V, Das B, Navani NK. Bacteriocins sourced from traditional fermented foods for ensuring food safety: the microbial guards. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4070-4084. [PMID: 39092901 DOI: 10.1002/jsfa.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Concerns about food safety have consistently driven the exploration of potent antimicrobials with probiotic origins. Identification of probiotic-derived bacteriocins as robust alternatives to antibiotics has gained traction following the COVID-19 pandemic. Additionally, the global market is witnessing an increasing preference for minimally processed food products free from chemical additives. Another contributing factor to the search for potent antimicrobials is the escalating number of infections caused by antibiotic-resistant bacteria and the need to mitigate the significant damage inflicted on the commensal human microbiota by broad-spectrum antibiotics. As an alternative bio-preservation strategy, there is substantial enthusiasm for the use of bacteriocins or starter cultures producing bacteriocins in preserving a variety of food items. This review specifically focuses on bacteriocins originating from lactic acid bacteria associated with fermented foods and explores their technological applications as nanobiotics. The food-grade antibiotic alternatives, whether utilized independently or in combination with other antimicrobials and administered directly or encapsulated, are anticipated to possess qualities of safety, stability and non-toxicity suitable for application in the food sector. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
2
|
Chen X, Bai H, Mo W, Zheng X, Chen H, Yin Y, Liao Y, Chen Z, Shi Q, Zuo Z, Liang Z, Peng H. Lactic Acid Bacteria Bacteriocins: Safe and Effective Antimicrobial Agents. Int J Mol Sci 2025; 26:4124. [PMID: 40362364 PMCID: PMC12071495 DOI: 10.3390/ijms26094124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Antibiotic-resistant bacteria are major contributors to food spoilage, animal diseases, and the emergence of multidrug-resistant (MDR) bacteria in healthcare, highlighting the urgent need for effective treatments. Bacteriocins produced by lactic acid bacteria (LAB) have gained attention for their non-toxic nature and strong antimicrobial properties. LAB-derived bacteriocins have been successfully applied in food preservation and are classified by the U.S. Food and Drug Administration (FDA) as 'food-grade' or 'generally recognized as safe' (GRAS). This review summarizes recent progress in the production, purification, and emerging applications of LAB bacteriocins. It emphasizes their versatility in food preservation, agriculture, and medicine, providing insights into their role in antimicrobial development and functional food innovation.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Huili Bai
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Hailan Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Yangyan Yin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Zhongwei Chen
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Zhengmin Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| |
Collapse
|
3
|
Sabri M, El Handi K, Calvano CD, Bianco M, De Stradis A, Valentini F, Elbeaino T. Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection. Microbiol Res 2025; 293:128071. [PMID: 39826220 DOI: 10.1016/j.micres.2025.128071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions. In this study, we explored the antibacterial activity of the lactic acid bacterium Leuconostoc mesenteroides strain MS4-derived bacteriocins against Xfp, utilizing a combination of in vitro and in planta experiments. In particular, the cell-free precipitate (CFP) derived from strain MS4 culture in MRS broth, suppressed Xfp growth on BCYE agar plate, whereas protease K-treated CFP was inactive, highlighting the presence of antimicrobial compounds of proteinaceous nature. Additionally, fluorescence and transmission electron microscopy analyses showed that the CFP exhibits a bactericidal effect on Xfp cells, characterized by membrane disruption and subsequent cellular damage. The whole-genome sequencing and bioinformatic analysis revealed that MS4 genome consists of a circular chromosome of 1860,891 bp and a circular plasmid of 37,317 bp and most importantly to encompass six bacteriocin-encoding genes, with a peptide size ranging from 45 to 59 amino acids. MALDI-TOF/TOF MS and RPLC-ESI-MS assays performed on cell-free supernatant (CFS) confirmed the secretion of four (out of 6) bacteriocins (denoted MK-45, MR-53, MW-56, and MG-58) by MS4 in MRS broth. In spot assays, these bacteriocins displayed significant lethality against Xfp, with a minimum lethal concentration between 0.2 and 0.4 mg/mL. The application of CFP on Xfp-infected Nicotiana benthamiana plants, implemented both as preventive and curative approach, successfully controlled the infection, resulting in no visible symptoms 40 days post-inoculation. The finding of MS4 as a natural source of various potent bacteriocins against Xfp, coupled with a significant production under low-cost and uncomplicated laboratory conditions, make of MS4 a cost-effective and realistic option for sustainable management of Xf-related diseases.
Collapse
Affiliation(s)
- Miloud Sabri
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy
| | - Kaoutar El Handi
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy
| | - Cosima Damiana Calvano
- Interdepartmental SMART Center, Department of Chemistry, University of Bari, Via E. Orabona 4, Bari 70126, Italy
| | - Mariachiara Bianco
- Interdepartmental SMART Center, Department of Chemistry, University of Bari, Via E. Orabona 4, Bari 70126, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, Bari 70126, Italy
| | - Franco Valentini
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy
| | - Toufic Elbeaino
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy.
| |
Collapse
|
4
|
Huang T, Li Z, Qu X, Yao G, Kwok LY, He Q, Zhang H. Preliminary Purification and Partial Characterization of a Functional Bacteriocin of Lacticaseibacillus paracasei Zhang and Mining for its Gene Cluster. Probiotics Antimicrob Proteins 2025; 17:487-499. [PMID: 38748307 PMCID: PMC11926035 DOI: 10.1007/s12602-024-10249-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 03/21/2025]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) have good potential for use as food biopreservatives. Lacticaseibacillus paracasei Zhang (L. paracasei Zhang) is both a food use and a probiotic bacterium. This study aimed to purify and preliminary characterize the active antibacterial metabolite of L. paracasei Zhang. The cell-free supernatant of L. paracasei Zhang was collected and purified by ultrafiltration and gel filtration chromatography. The 1-3 kDa active fraction could inhibit the growth of Staphylococcus aureus but not Escherichia coli. Further antibacterial activity assays revealed its capacity to suppress various foodborne and human opportunistic pathogens (including Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa, Listeria monocytogenes, and Bacillus cereus), but not fungi. The antibacterial activity showed good tolerance to heat (40 to 100 °C), acid-base (pH 2-3 and pH 6-10), and digestions by a number of industrial and animal/human enzymes (such as trypsin, pepsin, α-amylase, and protease K, except papain); these desired properties make it a suitable biopreservative to be used in harsh and complex industrial production processes. The high papain sensitivity suggested a proteinaceous/peptide nature of the bioactivity. Moreover, our genomic data mining for bacteriocin through BAGEL4 revealed an area of interest encoding a complete set of putative genes required for bacteriocin production. In conclusion, our study showed that L. paracasei Zhang can produce extracellular functional antibacterial metabolite, likely a class II bacteriocin. Our preliminary extraction and characterization of the active metabolite demonstrated that it has good potential to be used as a biopreservative or an agent for suppressing gastrointestinal infections.
Collapse
Affiliation(s)
- Tian Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhaojie Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Xinan Qu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- Qingdao Special Food Research Institute, QingdaoShandong, 266109, China
| | - Guoqiang Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Department of College of Food Science and Engineering, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Saihan District, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
5
|
Oh SE, Heo S, Lee G, Kim J, Kwak MS, Jeong DW. Antibacterial Effects of Synthetic Plantaricins Against Staphylococcus aureus. Antibiotics (Basel) 2025; 14:311. [PMID: 40149120 PMCID: PMC11939208 DOI: 10.3390/antibiotics14030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Plantaricins without a signal sequence were synthesized based on bacteriocins, plantaricins A, E, F, J, and K, of Lactiplantibacillus plantarum KM2. The antibacterial activities of four combinations of synthetic plantaricins-spPlnA, E&F, E&J, and J&K-were identified against Staphylococcus aureus ATCC 12692. And in this experiment, we aimed to identify the antimicrobial mechanism of the synthesized plantaricin sample against S. aureus. Methods/Results: The minimal inhibitory concentrations for each combination were 1.4 μg/mL, 1.8 μg/mL, 1.6 μg/mL, and 1.6 μg/mL, respectively. Raman spectra changed after treating S. aureus ATCC 12692 with synthetic plantaricins. Furthermore, transmission electron microscopy results revealed that the four synthetic plantaricin combinations could induce the cell lysis of S. aureus ATCC 12692. Finally, the four synthetic plantaricin combinations maintained their antibacterial effect at temperatures below 40 °C, and at pH levels of pH = (4-7). Except for spPlnJ&K, they are stable against the action of α-amylase and lysozyme. Overall, these results indicate that, excepting spPlnJ&K, the three synthetic plantaricin combinations exhibit similar antibacterial activity. Conclusions: Through this study, we confirmed that synthetic plantaricin exhibited antimicrobial activity against S. aureus, demonstrating its potential as a direct antimicrobial agent. However, since the antimicrobial activity decreased due to protease, it was confirmed that its use is limited in environments where protease is present.
Collapse
Affiliation(s)
- Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.-E.O.); (S.H.); (G.L.)
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.-E.O.); (S.H.); (G.L.)
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.-E.O.); (S.H.); (G.L.)
| | - Jina Kim
- Insight View Tech, Hwasung 18469, Republic of Korea;
| | - Mi-Sun Kwak
- Kookmin Bio Corporation, Seoul 02826, Republic of Korea;
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea; (S.-E.O.); (S.H.); (G.L.)
| |
Collapse
|
6
|
Ladjouzi R, Taminiau B, Daube G, Lucau-Danila A, Drider D. The efficacy of the bacteriocinogenic Enterococcus faecalis 14 in the control of induced necrotic enteritis in broilers. Microbes Infect 2025; 27:105477. [PMID: 39894202 DOI: 10.1016/j.micinf.2025.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE To demonstrate the efficacy of the bacteriocinogenic Enterococcus faecalis 14 (E. faecalis 14) in the control of induced necrotic enteritis (NE) in broilers. METHODS Six groups of 504 broilers consisting of an infected untreated control (IUC) group, an infected and amoxicillin treated control (ITC) group, and groups receiving prophylactically (2 groups) or therapeutically (2 groups) E. faecalis 14 or its Δbac mutant were used. All groups were challenged with Clostridium perfringens 56 to induce NE. To predispose the boilers to develop subclinical NE, a high protein grower diet containing 15 % fishmeal and a coccidial inoculum were administered. RESULTS NE lesions were observed on D26 in all groups except ITC and those receiving prophylactically and therapeutically E. faecalis 14. On D27, only ITC and the group prophylactically treated with E. faecalis 14 (T03) were without lesions. Average body weight and daily weight gain remained lower in the treated groups compared to the ITC group, but there was a clear improvement in the period between D21 to D27, especially in the group prophylactically treated with E. faecalis 14. Specifically, the daily weight gain (DWG) in this period for group T03, was second highest after the group ITC. Metataxonomic analyses showed a positive effect of E. faecalis 14 in maintaining the diversity and richness of the intestinal microbiota, in contrast to ITC group and other conditions. CONCLUSIONS The results of this in vivo study demonstrated the efficacy of the prophylactic administration of the bacteriocinogenic E. faecalis 14 in preventing of the NE lesions caused by C. perfringens.
Collapse
Affiliation(s)
- Rabia Ladjouzi
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, F-59000, Lille, France.
| | - Bernard Taminiau
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, F-59000, Lille, France; UMR Transfrontalière BioEcoAgro INRAe 1158, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Georges Daube
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, F-59000, Lille, France; UMR Transfrontalière BioEcoAgro INRAe 1158, Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Sciences, Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Anca Lucau-Danila
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, F-59000, Lille, France
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro INRAe 1158, Université de Lille, F-59000, Lille, France.
| |
Collapse
|
7
|
Esquivel-López A, Rocha-Mendoza D, Serrano-Maldonado CE, Escobar-Zepeda A, Quirasco M. Heterologous Expression of Bacteriocins from the Metagenome Mining of Cotija Cheese. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10483-9. [PMID: 40011381 DOI: 10.1007/s12602-025-10483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Bacteriocins are a heterologous group of ribosomal peptides with antibacterial activity. They are of interest to the pharmaceutical and food industries due to their potential to fight antibiotic-resistant pathogens and improve microbial food safety, respectively. Metagenomic data mining for antibacterial activity is valuable for the information it provides from unstudied genomic sequences. Furthermore, the higher biosynthetic yield obtained by the heterologous expression of putative bacteriocins allows their subsequent purification and characterization. This work aimed to express antilisterial bacteriocins in Escherichia coli after obtaining their gene sequences by in silico mining the bacterial metagenome of Cotija cheese. This artisanal Mexican cheese is manufactured with unpasteurized milk and ripens for at least 3 months. Analyzing the Cotija cheese bacterial shotgun metagenome allowed us to select two sequences (QC1 and QC2) encoding novel Class IId bacteriocins belonging to the lactococcin family. These genes were expressed as (His)6-fusion proteins in E. coli BL21 (DE3) and showed high antimicrobial activity against Listeria monocytogenes, with a minimum inhibitory concentration of 78 µg/mL. QC1 and QC2 were tested against several pathogenic bacteria and showed activity exclusively against L. monocytogenes. QC2 has a novel sequence that showed no matches against the UniProt database. It was purified by Ni2+ affinity chromatography and retained its activity after heating at 70 °C for 30 min. As the sequences were obtained by genomic mining on a fermented food metagenome, QC1 and QC2 have potential applications as sanitizers in industrial food facilities where L. monocytogenes contamination is the most prevalent.
Collapse
Affiliation(s)
- Alfredo Esquivel-López
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | | | - Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Alejandra Escobar-Zepeda
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Maricarmen Quirasco
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Liang Q, Zhou W, Peng S, Liang Z, Liu Z, Zhu C, Mou H. Current status and potential of bacteriocin-producing lactic acid bacteria applied in the food industry. Curr Res Food Sci 2025; 10:100997. [PMID: 39995467 PMCID: PMC11849202 DOI: 10.1016/j.crfs.2025.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Lactic acid bacteria (LAB) have been widely applied in the food industry and have brought many beneficial effects on food products, and some of those benefits are related to their metabolic product. Bacteriocins produced by LAB have attracted the attentions for application in the food industry as natural food bio-preservatives because of their antimicrobial activity against the food spoilage and pathogenic bacteria. With the increasing demands of consumers for more healthier food and investigations on natural food preservatives, the bioactivity of bacteriocins allows them to give the application values to the bacteriocin-producing LAB. Accordingly, the capacity of LAB to produce bacteriocin in the aspects of classifications, mode of action, biosynthesis mechanisms are introduced, which leads to further consideration of the current status and potential values of bacteriocin-producing LAB applied in the food industry. The comparation of guidelines of LAB and bacteriocins for food application are also proposed for better understanding their practical application promising. This review will be helpful for current and future researches on the application of bacteriocin-producing LAB in the food industry.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Wei Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Siyuan Peng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| |
Collapse
|
9
|
Nakamura K, Takamatsu D, Harada M, Zendo T, Sekiya Y, Endo A. Nisin A Treatment to Protect Honey Bee Larvae from European Foulbrood Disease. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10450-4. [PMID: 39812909 DOI: 10.1007/s12602-025-10450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
European foulbrood (EFB) is a bee larvae-specific infectious disease and the causative pathogen is Melissococcus plutonius. Broad-spectrum antibiotics have classically been used in many countries to control the pathogens; however, their use in apiaries was discontinued in several countries due to concerns regarding the health of bees and humans. Therefore, the development of alternative treatments for use in apiaries that are safe for bees and humans is essential. The present study examined the effects of nisin A supplementation using artificially reared honey bee larvae infected by M. plutonius strains. The results obtained showed that a non-purified nisin A product was toxic to honey bee larvae, while semi-purified nisin A by removing low-molecular-weight (< 3,000) chemicals was not lethal to honey bee larvae. A larval diet supplemented with the semi-purified nisin A significantly increased the survival rate of larvae infected by M. plutonius. The levels of nisin A required for this rescue differed between the M. plutonius strains used for infection, and 12.5 and 100 µg/mL were required for strain DAT606 belonging to clonal complex 3 and strain DAT561 belonging to clonal complex 12, respectively. This beneficial effect was attributed to the antagonistic activity of nisin A against M. plutonius strains, and the levels of viable M. plutonius strains significantly decreased in the larval gut at the required concentrations. Due to the risks associated with the use of antibiotics in apiaries, food-grade nisin A is a promising alternative to control EFB.
Collapse
Affiliation(s)
- Keiko Nakamura
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Sagamihara, Kanagawa, 252-0132, Japan
| | - Daisuke Takamatsu
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Mariko Harada
- Research and Business Promotion Division, Research Institute for Animal Science in Biochemistry and Toxicology, Sagamihara, Kanagawa, 252-0132, Japan
| | - Takeshi Zendo
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Yuka Sekiya
- Tokyo Metropolitan Livestock Hygiene Service Center, Hinode, Tokyo, 190-0182, Japan
| | - Akihito Endo
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
10
|
Harat SG, Pourjafar H. Health Benefits and Safety of Postbiotics Derived from Different Probiotic Species. Curr Pharm Des 2025; 31:116-127. [PMID: 39297457 DOI: 10.2174/0113816128335414240828105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 02/18/2025]
Abstract
Nowadays, the usage of probiotics in the food industry has become common. It has been proven that probiotics have many health benefits, such as adjusting the intestinal microbiome, boosting the immune system, and enhancing anti-inflammatory and anti-cancer activities. However, in recent years, some concerns have arisen about the consumption of probiotics, especially in vulnerable populations such as elderly, infants, and people with underlying diseases. As a result, finding a new alternative to probiotics that has the same function as probiotics and is safer has been prioritized. In recent years, postbiotics have been introduced as a great replacement for probiotics. However, the safety of these compounds is not exactly confirmed due to the limited in vivo research. In this review, the definition, classification, activities, limitations, and some advantages of postbiotics over probiotics are discussed. Finally, the limited published data about the safety of postbiotics is summarized.
Collapse
Affiliation(s)
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
11
|
Fernandes N, Achemchem F, Gonzales-Barron U, Cadavez V. Biopreservation strategies using bacteriocins to control meat spoilage and foodborne outbreaks. Ital J Food Saf 2024; 13:12558. [PMID: 39749182 PMCID: PMC11694622 DOI: 10.4081/ijfs.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/09/2024] [Indexed: 01/04/2025] Open
Abstract
Fresh meat is highly perishable, presenting challenges in spoilage mitigation and waste reduction globally. Despite the efforts, foodborne outbreaks from meat consumption persist. Biopreservation offers a natural solution to extend shelf life by managing microbial communities. However, challenges include the effective diffusion of bacteriocins through the meat matrix and the potential inhibition of starter cultures by bacteriocins targeting closely related lactic acid bacteria (LAB). LAB, predominant in meat, produce bacteriocins - small, stable peptides with broad antimicrobial properties effective across varying pH and temperature conditions. This review highlights the recent advances in the optimization of bacteriocin use, considering its structure and mode of action. Moreover, the strengths and weaknesses of different techniques for bacteriocin screening, including novel bioengineering methods, are described. Finally, we discuss the advantages and limitations of the modes of application of bacteriocins toward the preservation of fresh, cured, and novel meat products.
Collapse
Affiliation(s)
- Nathália Fernandes
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Fouad Achemchem
- LASIME Laboratory, Agadir Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Ursula Gonzales-Barron
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| | - Vasco Cadavez
- Mountain Research Center, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
- Laboratory for Sustainability and Technology in Mountain Regions, Campus of Santa Apolónia, Polytechnic Institute of Bragança, Portugal
| |
Collapse
|
12
|
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, Rastegar H, Mohammadi SA, Azadmard-Damirchi S. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications. J Appl Microbiol 2024; 135:lxae274. [PMID: 39496524 DOI: 10.1093/jambio/lxae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
Bacteriocins, natural antimicrobial peptides produced by bacteria, present eco-friendly, non-toxic, and cost-effective alternatives to traditional chemical antimicrobial agents in the food industry. This review provides a comprehensive update on the classification of bacteriocins in food preservation. It highlights the significant industrial potential of pediocin-like and two-peptide bacteriocins, emphasizing chemical synthesis methods like Fmoc-SPPS to meet the demand for bioactive bacteriocins. The review details the mode of action, focusing on mechanisms such as transmembrane potential disruption and pH-dependent effects. Furthermore, it addresses the limitations of bacteriocins in food preservation and explores the potential of nanotechnology-based encapsulation to enhance their antimicrobial efficacy. The benefits of nanoencapsulation, including improved stability, extended antimicrobial spectrum, and enhanced functionality, are underscored. This understanding is crucial for advancing the application of bacteriocins to ensure food safety and quality.
Collapse
Affiliation(s)
- Sara Bahrami
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Pilevar
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Dadgarnejad
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Ali Mohammadi
- Faculty of Nursing and Midwifery, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Tedim AP, Almeida-Santos AC, Lanza VF, Novais C, Coque TM, Freitas AR, Peixe L, from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG). Bacteriocin distribution patterns in Enterococcus faecium and Enterococcus lactis: bioinformatic analysis using a tailored genomics framework. Appl Environ Microbiol 2024; 90:e0137624. [PMID: 39283104 PMCID: PMC11497781 DOI: 10.1128/aem.01376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Multidrug-resistant Enterococcus faecium strains represent a major concern due to their ability to thrive in diverse environments and cause life-threatening infections. While antimicrobial resistance and virulence mechanisms have been extensively studied, the contribution of bacteriocins to E. faecium's adaptability remains poorly explored. E. faecium, within the Bacillota phylum, is a prominent bacteriocin producer. Here, we developed a tailored database of 76 Bacillota bacteriocins (217 sequences, including 40 novel bacteriocins) and applied it to uncover bacteriocin distribution patterns in 997 quality-filtered E. faecium and Enterococcus lactis (former E. faecium clade B) genomes. Curated using computational pipelines and literature mining, our database demonstrates superior precision versus leading public tools in identifying diverse bacteriocins. Distinct bacteriocin profiles emerged between E. faecium and E. lactis, highlighting species-specific adaptations. E. faecium strains from hospitalized patients were significantly enriched in bacteriocins as enterocin A and bacteriocins 43 (or T8), AS5, and AS11. These bacteriocin genes were strongly associated with antibiotic resistance, particularly vancomycin and ampicillin, and Inc18 rep2_pRE25-derivative plasmids, classically associated with vancomycin resistance transposons. Such bacteriocin arsenal likely enhances the adaptability and competitive fitness of E. faecium in the nosocomial environment. By combining a novel tailored database, whole-genome sequencing, and epidemiological data, our work elucidates meaningful connections between bacteriocin determinants, antimicrobial resistance, mobile genetic elements, and ecological origins in E. faecium and provides a framework for elucidating bacteriocin landscapes in other organisms. Characterizing species- and strain-level differences in bacteriocin profiles may reveal determinants of ecological adaptation, and translating these discoveries could further inform strategies to exploit bacteriocins against high-risk clones. IMPORTANCE This work significantly expands the knowledge on the understudied bacteriocin diversity in opportunistic enterococci, revealing their contribution in the adaptation to different environments. It underscores the importance of placing increased emphasis on genetic platforms carrying bacteriocins as well as on cryptic plasmids that often exclusively harbor bacteriocins since bacteriocin production can significantly contribute to plasmid maintenance, potentially facilitating their stable transmission across generations. Further characterization of strain-level bacteriocin landscapes could inform strategies to combat high-risk clones. Overall, these insights provide a framework for unraveling the therapeutic and biotechnological potential of bacteriocins.
Collapse
Affiliation(s)
- Ana P. Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Ana C. Almeida-Santos
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Val F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Carla Novais
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Network Research Centre for Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana R. Freitas
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- One Health Toxicology Research Unit (1H-TOXRUN), University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Luísa Peixe
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG)
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Network Research Centre for Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- One Health Toxicology Research Unit (1H-TOXRUN), University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
14
|
Carneiro KO, Campos GZ, Scafuro Lima JM, Rocha RDS, Vaz-Velho M, Todorov SD. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024; 13:3170. [PMID: 39410205 PMCID: PMC11475535 DOI: 10.3390/foods13193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Lactic acid bacteria (LABs) are microorganisms of significant scientific and industrial importance and have great potential for application in meat and meat products. This comprehensive review addresses the main characteristics of LABs, their nutritional, functional, and technological benefits, and especially their importance not only as starter cultures. LABs produce several metabolites during their fermentation process, which include bioactive compounds, such as peptides with antimicrobial, antidiabetic, antihypertensive, and immunomodulatory properties. These metabolites present several benefits as health promoters but are also important from a technological point of view. For example, bacteriocins, organic acids, and other compounds are of great importance, whether from a sensory or product quality or a safety point of view. With the production of GABA, exopolysaccharides, antioxidants, and vitamins are beneficial metabolites that influence safety, technological processes, and even health-promoting consumer benefits. Despite the benefits, this review also highlights that some LABs may present virulence properties, requiring critical evaluation for using specific strains in food formulations. Overall, this review hopes to contribute to the scientific literature by increasing knowledge of the various benefits of LABs in meat and meat products.
Collapse
Affiliation(s)
- Kayque Ordonho Carneiro
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Gabriela Zampieri Campos
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - João Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
| | - Ramon da Silva Rocha
- Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Manuela Vaz-Velho
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (K.O.C.); (G.Z.C.); (J.M.S.L.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4960-320 Viana do Castelo, Portugal;
| |
Collapse
|
15
|
Zhao PH, Cai JW, Li Y, Li QH, Niu MM, Meng XC, Liu F. An insight into structure-activity relationships in subclass IIb bacteriocins: Plantaricin EvF. Int J Biol Macromol 2024; 278:134656. [PMID: 39134194 DOI: 10.1016/j.ijbiomac.2024.134656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study reports the structure-activity relationships of a unique subclass IIb bacteriocin, plantaricin EvF, which consists of two peptide chains and possesses potent antimicrobial activity. Because the plantaricin Ev peptide chain lacks an α-helix structure, plantaricin EvF is unable to exert its antimicrobial activity through helix-helix interactions like typical subclass IIb bacteriocins. We have shown by various structural evaluation methods that plantaricin Ev can be stabilized by hydrogen bonding at amino acid residues R3, V12, and R13 to the N-terminal region of plantaricin F. This binding gives plantaricin EvF a special spade-shaped structure that exerts antimicrobial activity. In addition, the root-mean-square deviations (RMSDs) of the amino acid residues Y6, F8, and R13 of plantaricin Ev pre- and post-binding were 1.512, 1.723, and 1.369, respectively, indicating that they underwent large structural changes. The alanine scanning experiments demonstrated the important role of the above key amino acids in maintaining the structural integrity of plantaricin EvF. This study not only reveals the unique structural features of plantaricin EvF, but also provides an insight into the structure-activity relationships of subclass IIb bacteriocins.
Collapse
Affiliation(s)
- Peng-Hao Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jun-Wu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
16
|
Li X, Schönberg PY, Wucherpfennig T, Hinze C, Sulaj F, Henle T, Mascher T. Development of a Golden Gate Assembly-Based Genetic Toolbox for Lactiplantibacillus plantarum and Its Application for Engineering Monoterpenoid Biosynthesis. ACS Synth Biol 2024; 13:2764-2779. [PMID: 39254046 DOI: 10.1021/acssynbio.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Lactiplantibacillus plantarum is a food-grade lactic acid bacterium widely used in the food and beverage industry. Recently, this probiotic organism has been applied as a biofactory for the production of pharmaceutical and food-related compounds, but existing promoters and expression vectors for the genetic engineering of L. plantarum rely on inefficient cloning strategies and are usually not well-characterized. We therefore developed a modular and standardized Golden Gate Assembly-based toolbox for the de novo assembly of shuttle vectors from Escherichia coli to L. plantarum. A collection of the most relevant genetic parts, e.g., different origins of replication and promoters, was incorporated in our toolbox and thoroughly characterized by flow cytometry and the fluorescence assay. Standardized fusion sites allow combining the genetic part freely into a plasmid in one step. This approach allows for the high-throughput assembly of numerous constructs in a standardized genetic context, thus improving the efficiency and predictability of metabolic engineering in L. plantarum. Using our toolbox, we were able to produce the aroma compounds linalool and geraniol in L. plantarum by extending its native mevalonate pathway with plant-derived monoterpenoid synthases.
Collapse
Affiliation(s)
- Xiangang Li
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Pascal Y Schönberg
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Tabea Wucherpfennig
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Christoph Hinze
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Flavia Sulaj
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Thomas Henle
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
17
|
Bisht V, Das B, Hussain A, Kumar V, Navani NK. Understanding of probiotic origin antimicrobial peptides: a sustainable approach ensuring food safety. NPJ Sci Food 2024; 8:67. [PMID: 39300165 DOI: 10.1038/s41538-024-00304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
The practice of preserving and adding value to food dates back to over 10,000 BCE, when unintentional microbial-driven chemical reactions imparted flavor and extended the shelf life of fermented foods. The process evolved, and with the urbanization of society, significant shifts in dietary habits emerged, accompanied by sporadic food poisoning incidents. The repercussions of the COVID-19 pandemic have intensified the search for antibiotic alternatives owing to the rise in antibiotic-resistant pathogens, emphasizing the exploration of probiotic-origin antimicrobial peptides to alleviate human microbiome collateral damage. Often termed 'molecular knives', these peptides outstand as potent antimicrobials due to their compatibility with innate microflora, amenability to bioengineering, target specificity, versatility and rapidity in molecular level mode of action. This review centres on bacteriocins sourced from lactic acid bacteria found in ethnic fermented foods, accentuating their desirable attributes, technological applications as nanobiotics and potential future applications in the modern context of ensuring food safety.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Biki Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Ajmal Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Vinod Kumar
- Visiting faculty, Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
18
|
Belguesmia Y, Guay LD, Teiar R, Rahman MRT, Dussert E, Biron E, Drider D. Synthesis, antimicrobial activity, and mechanistic studies of enterocin DD14, a leaderless two-peptide bacteriocin. Int J Biol Macromol 2024; 280:135716. [PMID: 39304058 DOI: 10.1016/j.ijbiomac.2024.135716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Bacteriocins are promising alternatives to antibiotics in the food, veterinary and medical sectors, but their study and use is often hampered by the low yields and high costs associated with their purification from naturally occurring bacteria. Chemical synthesis has emerged as a means to overcome this limitation and design more active variants. In this study, microwave-assisted solid-phase peptide synthesis was used to produce the leaderless two-peptide bacteriocin enterocin DD14 (EntDD14), composed of EntDD14A (44 amino acids) and EntDD14B (43 amino acids). The resulting synthetic peptides, syn-EntDD14A and syn-EntDD14B, were tested against Gram-positive bacteria including Listeria, Staphylococcus and Enterococcus strains. Both peptides were found to be necessary for optimal, but not synergistic, antibacterial activity and to act through a pore-forming mechanism. Both peptides exhibited moderate cytotoxicity against eukaryotic cells.
Collapse
Affiliation(s)
| | - Louis-David Guay
- Faculté de pharmacie, Université Laval et Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | - Radja Teiar
- UMRT BioEcoAgro 1158 INRAe Université de Lille, France
| | - Md Ramim Tanver Rahman
- Faculté de pharmacie, Université Laval et Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
| | | | - Eric Biron
- Faculté de pharmacie, Université Laval et Centre de recherche du CHU de Québec-Université Laval, Québec, Canada.
| | - Djamel Drider
- UMRT BioEcoAgro 1158 INRAe Université de Lille, France.
| |
Collapse
|
19
|
Artuyants A, Hong J, Dauros-Singorenko P, Phillips A, Simoes-Barbosa A. Lactobacillus gasseri and Gardnerella vaginalis produce extracellular vesicles that contribute to the function of the vaginal microbiome and modulate host-Trichomonas vaginalis interactions. Mol Microbiol 2024; 122:357-371. [PMID: 37485746 DOI: 10.1111/mmi.15130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.
Collapse
Affiliation(s)
| | - Jiwon Hong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Anthony Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
20
|
Chauhan K, Rao A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024; 10:e35815. [PMID: 39247286 PMCID: PMC11379619 DOI: 10.1016/j.heliyon.2024.e35815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Consumer demand for natural or 'clean-label' food ingredients has risen over the past 50 years and continues growing. Consumers have become more aware of their health and, therefore, insist on transparency in the list of ingredients. Preservatives are the most crucial food additives, ensuring food safety and security. Despite tremendous technological advancements, food preservation remains a significant challenge worldwide, primarily because most are synthetic and non-biodegradable. As a result, the food industry is placing more value on microbiota and other natural sources for bio-preservation, leading to the substitution of conventional processing and chemical preservatives with natural alternatives to ensure 'clean-label.' General Standard for Food Additives (GSFA) includes some of these 'clean-label' options in its list of additives. However, they are very rarely capable of replacing a synthetic preservative on a 'one-for-one' basis, putting pressure on researchers to decipher newer, cleaner, and more economical alternatives. Academic and scientific research has led to the discovery of several plant, animal, and microbial metabolites that may function as effective bio-preservatives. However, most have not yet been put in the market or are under trial. Hence, the present review aims to summarise such relevant and potential metabolites with bio-preservative properties comprehensively. This article will help readers comprehend recent innovations in the 'clean-label' era, provide informed choices to consumers, and improve the business of regulatory approvals.
Collapse
Affiliation(s)
- Kanika Chauhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
- Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India
| |
Collapse
|
21
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
22
|
Avci GA, Yilmaz Üİ, Avci E. Efficacy of probiotics, paraprobiotics, and postbiotics in colorectal cancer cell line and their role in immune response. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240226. [PMID: 39045970 PMCID: PMC11288267 DOI: 10.1590/1806-9282.20240226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE The aim of this study was to reveal certain features (anti-tumor/microbial activities) of postbiotics and heat-inactivated paraprobiotics obtained from two different bacteria with determined probiotic properties, which are thought to contribute to human health. METHODS In the study, Lactobacillus reuteri ENA31 and L. rhamnosus GAA6 strains were used. Supernatants of postbiotically active cultures were used. Paraprobiotics were obtained by exposing probiotic bacteria to high temperatures. The cytotoxic effects of probiotics, paraprobiotics, and postbiotics were evaluated by the MTT method. IL-1/-10/-12/-13, TNF-α, IFN-γ, and neopterin parameters were determined via the ELISA method in immunity studies. RESULTS It was detected that biotics had a cytotoxic effect on cancer cells with rising concentrations (paraprobiotic CONCLUSION Our study shows that biotics, which are widely used and beneficial to health, are also available for use in immunocompromised individuals. The resulting paraprobiotics and postbiotics will both increase the conscious use of probiotics and provide the opportunity for use in immunocompromised individuals.
Collapse
Affiliation(s)
- Gülçin Alp Avci
- University of Health Sciences, Faculty of Gulhane Dentistry, Department of Basic Medical Sciences – Ankara, Turkey
| | - Ülkü İrem Yilmaz
- University of Health Sciences, Gülhane Vocational School of Health, Department of Pathology – Ankara, Turkey
| | - Emre Avci
- University of Health Sciences, Faculty of Gulhane Pharmacy, Department of Biochemistry – Ankara, Turkey
| |
Collapse
|
23
|
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals (Basel) 2024; 17:761. [PMID: 38931428 PMCID: PMC11206572 DOI: 10.3390/ph17060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Ioanna Karaiskou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Christina Siaperopoulou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Irini Georgi
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| |
Collapse
|
24
|
Smaoui S, Echegaray N, Kumar M, Chaari M, D'Amore T, Shariati MA, Rebezov M, Lorenzo JM. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 2024; 196:3604-3635. [PMID: 37615854 DOI: 10.1007/s12010-023-04680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Moufida Chaari
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Teresa D'Amore
- Deparment of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121, Foggia, Italy
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave, Almaty, 050060, Republic of Kazakhstan.
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, 109316, Russian Federation
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, 32004, Spain
| |
Collapse
|
25
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
26
|
Koti K, Rodas-Gonzalez A, Nadon C, McAllister T, Yang X, Narváez-Bravo C. Evaluating disinfectant efficacy on mixed biofilms comprising Shiga toxigenic Escherichia coli, lactic acid bacteria, and spoilage microorganisms. Front Microbiol 2024; 15:1360645. [PMID: 38633705 PMCID: PMC11021663 DOI: 10.3389/fmicb.2024.1360645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024] Open
Abstract
This study aimed to investigate the impact of temperature and the presence of other microorganisms on the susceptibility of STEC to biocides. Mature biofilms were formed at both 10°C and 25°C. An inoculum of planktonic bacteria comprising 106 CFU/mL of spoilage bacteria and 103 CFU/mL of a single E. coli strain (O157, O111, O103, and O12) was used to form mixed biofilms. The following bacterial combinations were tested: T1: Carnobacterium piscicola + Lactobacillus bulgaricus + STEC, T2: Comamonas koreensis + Raoultella terrigena + STEC, and T3: Pseudomonas aeruginosa + C. koreensis + STEC. Tested biocides included quaternary ammonium compounds (Quats), sodium hypochlorite (Shypo), sodium hydroxide (SHyd), hydrogen peroxide (HyP), and BioDestroy®-organic peroxyacetic acid (PAA). Biocides were applied to 6-day-old biofilms. Minimum Bactericidal Concentrations (MBC) and Biofilm Eradication Concentrations (BEC) were determined. Planktonic cells and single-species biofilms exhibited greater susceptibility to sanitizers (p < 0.0001). Lactobacillus and Carnobacterium were more susceptible than the rest of the tested bacteria (p < 0.0001). Single species biofilms formed by E. coli O111, O121, O157, and O45 showed resistance (100%) to Shypo sanitizer (200 ppm) at 25°C. From the most effective to the least effective, sanitizer performance on single-species biofilms was PAA > Quats > HyP > SHyd > Shypo. In multi-species biofilms, spoilage bacteria within T1, T2, and T3 biofilms showed elevated resistance to SHyd (30%), followed by quats (23.25%), HyP (15.41%), SHypo (9.70%), and BioDestroy® (3.42%; p < 0.0001). Within T1, T2, and T3, the combined STEC strains exhibited superior survival to Quats (23.91%), followed by HyP (19.57%), SHypo (18.12%), SHyd (16.67%), and BioDestroy® (4.35%; p < 0.0001). O157:H7-R508 strains were less tolerant to Quats and Shypo when combined with T2 and T3 (p < 0.0001). O157:H7 and O103:H2 strains in mixed biofilms T1, T2, and T3 exhibited higher biocide resistance than the weak biofilm former, O145:H2 (p < 0.0001). The study shows that STEC within multi-species biofilms' are more tolerant to disinfectants.
Collapse
Affiliation(s)
- Kavitha Koti
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Tim McAllister
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Claudia Narváez-Bravo
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Landete JM, Montiel R, Rodríguez-Mínguez E, Arqués JL. Enterocins Produced by Enterococci Isolated from Breast-Fed Infants: Antilisterial Potential. CHILDREN (BASEL, SWITZERLAND) 2024; 11:261. [PMID: 38397373 PMCID: PMC10887673 DOI: 10.3390/children11020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Enterocins are bacteriocins synthesized by Enterococcus strains that show an interesting antimicrobial effectiveness against foodborne pathogens such as Listeria monocytogenes. The objectives of this study were to identify and analyze the expression of enterocin genes of Enterococcus isolated from breast-fed infants and evaluate their ability to inhibit three human isolates of virulent L. monocytogenes, as well as some probiotic bacteria. The susceptibility of the strains of L. monocytogenes to fifteen antibiotics was tested, detecting their resistance to cefoxitin (constitutively resistant), oxacillin, and clindamycin. The production of enterocins A, B, and P was observed in Enterococcus faecium isolates, while enterocin AS-48 was detected in an Enterococcus faecalis isolate. AS-48 showed antilisterial activity by itself, while the joint action of enterocins A and B or B and P was necessary for inhibiting L. monocytogenes, demonstrating the synergistic effect of those combinations. The presence of multiple enterocin genes does not assure the inhibition of L. monocytogenes strains. However, the expression of multiple enterocin genes showed a good correlation with the inhibition capacity of these strains. Furthermore, the potential beneficial strains of lactobacilli and bifidobacteria examined were not inhibited by any of the enterocins produced individually or in combination, with the exception of Bifidobacterium longum BB536, which was inhibited by enterocin AS-48 and the joint production of enterocins A and B or B and P. The enterocins studied here could be candidates for developing alternative treatments against antibiotic-resistant bacterial infections. Moreover, these selected enterocin-producing E. faecium strains isolated from breast-fed infants could be used as probiotic strains due to their antilisterial effect, as well as the absence of virulence factors.
Collapse
Affiliation(s)
| | | | | | - Juan L. Arqués
- Department of Food Technology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (J.M.L.); (R.M.); (E.R.-M.)
| |
Collapse
|
28
|
Akhter S, Miller JH. BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier. FRONTIERS IN BIOINFORMATICS 2024; 3:1284705. [PMID: 38268970 PMCID: PMC10807691 DOI: 10.3389/fbinf.2023.1284705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
The use of bacteriocins has emerged as a propitious strategy in the development of new drugs to combat antibiotic resistance, given their ability to kill bacteria with both broad and narrow natural spectra. Hence, a compelling requirement arises for a precise and efficient computational model that can accurately predict novel bacteriocins. Machine learning's ability to learn patterns and features from bacteriocin sequences that are difficult to capture using sequence matching-based methods makes it a potentially superior choice for accurate prediction. A web application for predicting bacteriocin was created in this study, utilizing a machine learning approach. The feature sets employed in the application were chosen using alternating decision tree (ADTree), genetic algorithm (GA), and linear support vector classifier (linear SVC)-based feature evaluation methods. Initially, potential features were extracted from the physicochemical, structural, and sequence-profile attributes of both bacteriocin and non-bacteriocin protein sequences. We assessed the candidate features first using the Pearson correlation coefficient, followed by separate evaluations with ADTree, GA, and linear SVC to eliminate unnecessary features. Finally, we constructed random forest (RF), support vector machine (SVM), decision tree (DT), logistic regression (LR), k-nearest neighbors (KNN), and Gaussian naïve Bayes (GNB) models using reduced feature sets. We obtained the overall top performing model using SVM with ADTree-reduced features, achieving an accuracy of 99.11% and an AUC value of 0.9984 on the testing dataset. We also assessed the predictive capabilities of our best-performing models for each reduced feature set relative to our previously developed software solution, a sequence alignment-based tool, and a deep-learning approach. A web application, titled BPAGS (Bacteriocin Prediction based on ADTree, GA, and linear SVC), was developed to incorporate the predictive models built using ADTree, GA, and linear SVC-based feature sets. Currently, the web-based tool provides classification results with associated probability values and has options to add new samples in the training data to improve the predictive efficacy. BPAGS is freely accessible at https://shiny.tricities.wsu.edu/bacteriocin-prediction/.
Collapse
Affiliation(s)
- Suraiya Akhter
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
- School of Engineering and Applied Sciences, Washington State University Tri-Cities, Richland, WA, United States
| | - John H. Miller
- School of Engineering and Applied Sciences, Washington State University Tri-Cities, Richland, WA, United States
| |
Collapse
|
29
|
McAnulty MJ, Guron GK, Oest AM, Miller AL, Renye JA. The quorum sensing peptide BlpC regulates the transcription of genes outside its associated gene cluster and impacts the growth of Streptococcus thermophilus. Front Microbiol 2024; 14:1304136. [PMID: 38293552 PMCID: PMC10826417 DOI: 10.3389/fmicb.2023.1304136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.
Collapse
Affiliation(s)
- Michael J. McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States
| | | | | | | | | |
Collapse
|
30
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
31
|
Daba GM, Elkhateeb WA. Ribosomally synthesized bacteriocins of lactic acid bacteria: Simplicity yet having wide potentials - A review. Int J Biol Macromol 2024; 256:128325. [PMID: 38007012 DOI: 10.1016/j.ijbiomac.2023.128325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
Bacteriocins are ribosomally made bacterial peptides that have outstanding contributions in the field of food industry, as biopreservatives, and promising potentials in the medical field for improving human and animal health. Bacteriocins have many advantages over antibiotics such as being primary metabolites with relatively simpler biosynthetic mechanisms, which made their bioengineering for activity or specificity improving purposes much easier. Also, bacteriocins are degraded by proteolytic enzymes and do not stay in environment, which reduce chances of developing resistance. Bacteriocins can improve activity of some antibiotics, and some bacteriocins show potency against multidrug-resistant bacteria. Moreover, some potent bacteriocins have antiviral, antifungal, and antiprotozoal (antileishmanial) activities. On the other hand, bacteriocins have been introduced into the treatment of some ulcers and types of cancer. These potentials make bacteriocins attract extra attention as promising biotechnological tool. Hence, the history, characteristics, and classification of bacteriocins are described in this review. Furthermore, the main difference between bacteriocins and other antimicrobial peptides is clarified. Also, bacteriocins biosynthesis and identified modes of action are elucidated. Additionally, current and potential applications of bacteriocins in food and medical fields are highlighted. Finally, future perspectives concerning studying bacteriocins and their applications are discussed.
Collapse
Affiliation(s)
- Ghoson Mosbah Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Institute, National Research Centre, El Buhouth St., Egypt.
| | - Waill Ahmed Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Institute, National Research Centre, El Buhouth St., Egypt
| |
Collapse
|
32
|
Van TP, Phan QK, Quang HP, Pham GB, Thi NHN, Thi HTT, Do AD. Multi-Strain Probiotics Enhance the Bioactivity of Cascara Kombucha during Microbial Composition-Controlled Fermentation. Prev Nutr Food Sci 2023; 28:502-513. [PMID: 38188087 PMCID: PMC10764222 DOI: 10.3746/pnf.2023.28.4.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024] Open
Abstract
Kombucha is a widely consumed fermented tea beverage with diverse health benefits. In a previous study, we demonstrated that the use of cascara as a substrate results in a special kombucha beverage with high bioactivity. Traditional kombucha fermentation using a symbiotic culture of bacteria and yeast (SCOBY) can lead to inconsistent product quality because of the lack of control over microbial composition. We successfully isolated and identified yeast and bacteria, including Saccharomyces cerevisiae, Komagataeibacter rhaeticus, and Lactobacillus brevis that are appropriate starter cultures for cascara kombucha fermentation. We also demonstrated that a supplementation with lactic acid bacteria (LAB) and a mixture of S. cerevisiae and K. rhaeticus resulted in higher total polyphenol and flavonoid content of cascara kombucha compared with the traditionally fermented product using SCOBY as the inoculum. The free radical scavenging activity, inhibitory effects on α-amylase, tyrosinase activity, and antibacterial properties of cascara kombucha were also enhanced as a result of LAB supplement. These findings provide valuable insights into the controlled microbiological composition required for the fermentation of cascara kombucha, thereby ensuring consistent quality and enhanced bioactivity of the product. Further, the use of cascara as a substrate for kombucha production not only offers various health benefits and biological effects, but also repurposes by-products from the coffee industry, which contributes to sustainable development and is eco-friendly.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Quang Khai Phan
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hoa Pham Quang
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Gia Bao Pham
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Han Ngo Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Hong Tham Truong Thi
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
33
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Parlindungan E, Jones OAH. Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry. Metabolomics 2023; 19:99. [PMID: 37999908 DOI: 10.1007/s11306-023-02062-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Lactic Acid Bacteria (LAB) are commonly used as starter cultures, probiotics, to produce lactic acid and other useful compounds, and even as natural preservatives. For use in any food product however, LAB need to survive the various stresses they encounter in the environment and during processing. Understanding these mechanisms may enable direction of LAB biochemistry with potential beneficial impact for the food industry. AIM OF REVIEW To give an overview of the use of LAB in the food industry and then generate a deeper biochemical understanding of LAB stress response mechanisms via metabolomics, and methods of screening for robust strains of LAB. KEY SCIENTIFIC CONCEPTS OF REVIEW Uses of LAB in food products were assessed and factors which contribute to survival and tolerance in LAB investigated. Changes in the metabolic profiles of LAB exposed to stress were found to be associated with carbohydrates, amino acids and fatty acid levels and these changes were proposed to be a result of the bacteria trying to maintain cellular homeostasis in response to external conditions and minimise cellular damage from reactive oxygen species. This correlates with morphological analysis which shows that LAB can undergo cell elongation and shortening, as well as thinning and thickening of cell membranes, when exposed to stress. It is proposed that these innate strategies can be utilised to minimise negative effects caused by stress through selection of intrinsically robust strains, genetic modification and/or prior exposure to sublethal stress. This work demonstrates the utility of metabolomics to the food industry.
Collapse
Affiliation(s)
- Elvina Parlindungan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, 31 Biopolis Way, Singapore, 138669, Singapore
| | - Oliver A H Jones
- School of Science, Australian Centre for Research On Separation Science (ACROSS), RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
35
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
36
|
Nguyen NHK, Giang BL, Truc TT. Isolation and Evaluation of the Probiotic Activity of Lactic Acid Bacteria Isolated from Pickled Brassica juncea (L.) Czern. et Coss. Foods 2023; 12:3810. [PMID: 37893703 PMCID: PMC10606517 DOI: 10.3390/foods12203810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The naturally occurring lactic acid bacteria can be isolated from various sources. Pickled Brassica juncea (L.) Czern. et Coss. was used to isolate lactic acid bacteria (LAB). This study was conducted to compare the probiotic properties of probiotics isolated from pickled Vietnamese cabbage with some commercial strains of probiotics available on the Vietnamese market. The results showed that two strains (Lactobacillus fermentum and Lactiplantibacillus plantarum) isolated from pickled Vietnamese cabbage and three commercial strains of probiotics (Bacillus subtilis, Bacillus clausii, Lactobacillus acidophilus) all showed probiotic properties. Probiotic properties were evaluated through the ability to survive in low pH, pepsin, pancreatin, and bile salt media, the hydrophobicity of the bacteria, the antibiotic resistance, and the resistance to pathogenic bacteria. The isolated strain Lactiplantibacillus plantarum had fewer probiotic properties than Bacillus subtilis but more than the two commercial strains Bacillus clausii and Lactobacillus acidophilus, and the isolated Lactobacillus fermentum showed the fewest probiotic properties of the five strains.
Collapse
Affiliation(s)
- Nguyen Hong Khoi Nguyen
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Bach Long Giang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Tran Thanh Truc
- Institute of Food and Biotechnology, Can Tho University, Can Tho 900000, Vietnam;
- School of Graduate, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
37
|
Park SY, Lee HJ, Kim HS, Kim DH, Lee SW, Yoon HY. Anti-Staphylococcal Activity of Ligilactobacillus animalis SWLA-1 and Its Supernatant against Multidrug-Resistant Staphylococcus pseudintermedius in Novel Rat Model of Acute Osteomyelitis. Antibiotics (Basel) 2023; 12:1444. [PMID: 37760740 PMCID: PMC10526016 DOI: 10.3390/antibiotics12091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Osteomyelitis caused by staphylococcal infection is a serious complication of orthopedic surgery. Staphylococcus pseudintermedius is the main causative agent of osteomyelitis in veterinary medicine. Methicillin-resistant S. pseudintermedius (MRSP) has been reported in companion animals, especially dogs. Multidrug-resistant S. pseudintermedius is an emerging pathogen and has acquired antibiotic resistance against various commercial antimicrobial agents. New antimicrobial compounds are urgently needed to address antibiotic resistance, and the development of novel agents has become an international research hotspot in recent decades. Antimicrobial compounds derived from probiotics, such as bacteriocins, are promising alternatives to classical antibiotics. In this study, the antibacterial activities of Ligilactobacillus animalis SWLA-1 and its concentrated cell-free supernatant (CCFS) were evaluated in vitro and in vivo. The CCFS of this bacterium showed no toxicity against osteoblast and myoblast cells in vitro, while significantly inhibiting the multidrug-resistant S. pseudintermedius KUVM1701GC strain in a newly established rat model. The CCFS significantly inhibited multidrug-resistant staphylococci both in vitro and in vivo. This suggests that CCFS derived from L. animalis SWLA-1 has potential as an alternative to classic antibiotics for staphylococcal infections in dogs.
Collapse
Affiliation(s)
- Sung-Yong Park
- Laboratory of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea;
| | - Hong-Jae Lee
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea; (H.-J.L.); (D.-H.K.); (S.-W.L.)
| | - Hyo-Sung Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea;
| | - Dong-Hwi Kim
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea; (H.-J.L.); (D.-H.K.); (S.-W.L.)
| | - Sang-Won Lee
- Laboratory of Infectious Diseases and Veterinary Microbiology, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea; (H.-J.L.); (D.-H.K.); (S.-W.L.)
| | - Hun-Young Yoon
- Laboratory of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Neungdong-ro 120, Seoul 05029, Republic of Korea;
| |
Collapse
|
38
|
Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 2023; 14:1227951. [PMID: 37744917 PMCID: PMC10516225 DOI: 10.3389/fmicb.2023.1227951] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, India
| | - N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - S. Brijesh Singh
- Department of Studies in Botany, University of Mysore, Mysuru, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysuru, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
39
|
Goel A, Halami PM. Structural and biosynthetic diversity of plantaricins from Lactiplantibacillus. Appl Microbiol Biotechnol 2023; 107:5635-5649. [PMID: 37493805 DOI: 10.1007/s00253-023-12692-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Lactiplantibacillus plantarum (L. plantarum) produces an antimicrobial peptide known as plantaricin. Plantaricin-producing L. plantarum is of interest for its gut-friendly nature, wide range of sugar utilization, palatability, and probiotic attributes, making it a better candidate for the food industry. Numerous strains of plantaricin-producing L. plantarum have been isolated from different ecological niches and found to follow different mechanisms for plantaricin production. The mechanism of plantaricin production is sensitive to environmental factors; therefore, any alteration in the optimum conditions can inhibit/halt bacteriocin production. To regain the lost or hidden plantaricin-producing character of the L. plantarum strains under ideal laboratory conditions, it is essential to understand the mechanism of plantaricin production. Previously, discrete information on various mechanisms of plantaricin production has been elaborated. However, based on the literature analysis, we observed that a systematic classification of plantaricins produced by L. plantarum is not explored. Hence, we aim to collect information about rapidly emerging plantaricins and distribute them among the different classes of bacteriocin, followed by classifying them based on different mechanisms of plantaricin production. This may help scaleup the bacteriocin production at industrial levels, which is otherwise challenging to achieve. This will also help the reader understand plantaricins and their mechanism of plantaricin production to a deeper extent and to characterize/reproduce the peptide where plantaricin production is a hidden character. KEY POINTS: • L. plantarum produces the antimicrobial compound plantaricin. • L. plantarum has different regulatory operons which control plantaricin production. • Based on the regulatory operon, the mechanism of plantaricin production is different.
Collapse
Affiliation(s)
- Aditi Goel
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Prakash Motiram Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India.
| |
Collapse
|
40
|
Koizumi J, Nakase K, Noguchi N, Nakaminami H. Avidumicin, a novel cyclic bacteriocin, produced by Cutibacterium avidum shows anti-Cutibacterium acnes activity. J Antibiot (Tokyo) 2023; 76:511-521. [PMID: 37264118 DOI: 10.1038/s41429-023-00635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
The prevalence of antimicrobial-resistant Cutibacterium acnes in acne patients has increased owing to inappropriate antimicrobial use. Commensal skin bacteria may play an important role in maintaining the balance of the skin microbiome by producing antimicrobial substances. Inhibition of Cu. acnes overgrowth can prevent the development and exacerbation of acne vulgaris. Here, we evaluated skin bacteria with anti-Cu. acnes activity. Growth inhibition activity against Cu. acnes was tested using 122 strains isolated from the skin of healthy volunteers and acne patients. Comparative genomic analysis of the bacterium with or without anti-Cu. acnes activity was conducted. The anti-Cu. acnes activity was confirmed by cloning an identified gene cluster and chemically synthesized peptides. Cu. avidum ATCC25577 and 89.7% of the Cu. avidum clinical isolates (26/29 strains) inhibited Cu. acnes growth. The growth inhibition activity was also found against other Cutibacterium, Lactiplantibacillus, and Corynebacterium species, but not against Staphylococcus species. The genome sequence of Cu. avidum showed a gene cluster encoding a novel bacteriocin named avidumicin. The precursor protein encoded by avdA undergoes post-translational modifications, supposedly becoming a circular bacteriocin. The anti-Cu. acnes activity of avidumicin was confirmed by Lactococcus lactis MG1363 carrying avdA. The C-terminal region of the avidumicin may be essential for anti-Cu. acnes activity. A commensal skin bacterium, Cu. avidum, producing avidumicin has anti-Cu. acnes activity. Therefore, avidumicin is a novel cyclic bacteriocin with a narrow antimicrobial spectrum. These findings suggest that Cu. avidum and avidumicin represent potential alternative agents in antimicrobial therapy for acne vulgaris.
Collapse
Affiliation(s)
- Juri Koizumi
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Keisuke Nakase
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norihisa Noguchi
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
41
|
Azimirad M, Javaheri-Ghezeldizaj F, Soleymani J, Ezzati Nazhad Dolatabadi J, Torbati M. Spectroscopic aspects on the interaction of nisin with serum albumin: thermodynamic and kinetic studies. BIOIMPACTS : BI 2023; 13:467-474. [PMID: 38022377 PMCID: PMC10676530 DOI: 10.34172/bi.2023.27754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 12/01/2023]
Abstract
Introduction Nisin is a bacteriocin produced by Streptococcus and Lactococcus species and has antimicrobial activity against other bacteria. Nisin omits the need to use chemical preservatives in food due to its biological preserving properties. Methods In the present in vitro study, we investigated nisin interaction with bovine serum albumin (BSA) using fluorescence spectroscopy and surface plasmon resonance (SPR) analysis to obtain information about the mechanisms of BSA complex formation with nisin. Results The BSA fluorescence intensity values gradually diminished with rising nisin concentration. The BSA fluorescence quenching analysis indicated that a combined quenching mechanism plays the main role. Finally, the Kb values were reduced with increasing temperature, which is demonstrative of nisin-BSA complex stability decrease at high temperatures. The negative values of ΔH° and ΔS° showed that hydrogen bonds and van der Waals forces are the foremost binding force between BSA and nisin. Meanwhile, the negative values of ΔG° demonstrated the exothermic and random nature of the reaction process. The results of the SPR verified the gained results through the fluorescence spectroscopy investigation, which denoted that the BSA affinity to nisin diminished upon increasing temperature. Conclusion Overall, fluorescence spectroscopy and SPR results showed that the BSA interaction with nisin decreased with rising temperatures.
Collapse
Affiliation(s)
- Maryam Azimirad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Javaheri-Ghezeldizaj
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
43
|
Haghshenas B, Kiani A, Mansoori S, Mohammadi-Noori E, Nami Y. Probiotic properties and antimicrobial evaluation of silymarin-enriched Lactobacillus bacteria isolated from traditional curd. Sci Rep 2023; 13:10916. [PMID: 37407617 DOI: 10.1038/s41598-023-37350-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Nowadays, the increasing use of medicinal plants in the treatment and prevention of diseases has attracted the attention of researchers. The aim of this work was to investigate the probiotic properties and antibacterial and antifungal activity of silymarin-enriched Lactobacillus bacteria against several important pathogenic bacteria and also Aspergillus flavus as one of the harmful molds in the food and health industries. For this purpose, 52 g-positive and catalase-negative bacteria were isolated from 60 traditional curd samples from Ilam province. Five of the 52 bacterial strains had more than 90% viability in high bile salt and acidic conditions and were selected for further investigation. The five strains with positive results showed good hydrophobicity (≥ 50.30%), auto-aggregation (≥ 53.70%), coaggregation (≥ 28.20%), and high cholesterol removal ability (from 09.20 to 67.20%) and therefore can be considered potential probiotics. The tested strains displayed acceptable antibacterial and antifungal activity against all 12 pathogenic bacteria and A. flavus. Also, the results of the simultaneous antifungal activity of probiotic strains and silymarin showed that the combination of silymarin and probiotics has a significantly better (P < 0.05) antifungal effect than the control group or the probiotic groups alone. Interestingly, in addition to the Limosilactobacillus fermentum C3 strain, the Limosilactobacillus fermentum C18 and Lactiplantibacillus pentosus C20 strains also had significant inhibitory effects against A. flavus when used with silymarin extract in methanol. Meanwhile, silymarin extract in DMSO and PEG increased the antagonistic activity of all five potential probiotic strains.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saeideh Mansoori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
44
|
Butler MEB, Jansen van Rensburg MJ, Karani A, Mvera B, Akech D, Akter A, Forrest C, van Tonder AJ, Quirk SJ, Haraldsson G, Bentley SD, Erlendsdóttir H, Haraldsson Á, Kristinsson KG, Scott JAG, Brueggemann AB. Nasopharyngeal competition dynamics are likely to be altered following vaccine introduction: bacteriocin prevalence and diversity among Icelandic and Kenyan pneumococci. Microb Genom 2023; 9:mgen001060. [PMID: 37436819 PMCID: PMC10438807 DOI: 10.1099/mgen.0.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria to inhibit other bacteria in the surrounding environment. Streptococcus pneumoniae is a leading cause of disease worldwide and colonises the healthy human nasopharynx, where it competes for space and nutrients. Pneumococcal conjugate vaccines have reduced the incidence of disease, but they also restructure the bacterial population, and this restructuring likely alters the nasopharyngeal competition dynamics. Here, the distribution of bacteriocins was examined in over 5000 carriage and disease-causing pneumococci from Iceland and Kenya, recovered before and after the introduction of pneumococcal vaccination. Overall, up to eleven different bacteriocin gene clusters were identified per pneumococcus. Significant differences in the prevalence of bacteriocins were observed before and after vaccine introduction, and among carriage and disease-causing pneumococci, which were largely explained by the bacterial population structure. Genetically similar pneumococci generally harboured the same bacteriocins although sometimes different repertoires of bacteriocins were observed, which suggested that horizontal transfer of bacteriocin clusters had occurred. These findings demonstrated that vaccine-mediated changes in the pneumococcal population altered the prevalence and distribution of bacteriocins. The consequences of this for pneumococcal colonisation and disease remain to be determined.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sigríður J. Quirk
- University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavík, Iceland
| | - Gunnsteinn Haraldsson
- University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavík, Iceland
| | | | - Helga Erlendsdóttir
- University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavík, Iceland
| | - Ásgeir Haraldsson
- University of Iceland and Children’s Hospital Iceland, Landspitali, Reykjavík, Iceland
| | - Karl G. Kristinsson
- University of Iceland and Landspitali - The National University Hospital of Iceland, Reykjavík, Iceland
| | - J. Anthony G. Scott
- KEMRI Wellcome Trust Programme, Kilifi, Kenya
- London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
45
|
Lorgen-Ritchie M, Uren Webster T, McMurtrie J, Bass D, Tyler CR, Rowley A, Martin SAM. Microbiomes in the context of developing sustainable intensified aquaculture. Front Microbiol 2023; 14:1200997. [PMID: 37426003 PMCID: PMC10327644 DOI: 10.3389/fmicb.2023.1200997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
Collapse
Affiliation(s)
| | - Tamsyn Uren Webster
- Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David Bass
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Charles R. Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
46
|
Raheel I, Mohammed AN, Mohamed AA. The Efficacy of Bacteriocins Against Biofilm-Producing Bacteria Causing Bovine Clinical Mastitis in Dairy Farms: A New Strategy. Curr Microbiol 2023; 80:229. [PMID: 37256384 DOI: 10.1007/s00284-023-03324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Using an alternative bio-product is one of the most promising ways to control bovine mastitis and avoid new intra-mammary infections. The aims of this study were to ascertain the prevalence of biofilm-forming bacteria responsible for causing clinical mastitis in dairy herds and to assess the effectiveness of bacteriocins, produced by Bacillus subtilis, in controlling the growth of these bacteria in the milk of animals. A total of 150 milk samples were collected from cows and buffalos suffering from mastitis and the etiological agents were isolated and identified by the VITEK-2-COMPACT-SYSTEM®. Additionally, the capability of the bacterial isolates to produce biofilms was determined. RT-PCR was used to detect enterotoxin-producing genes (sed and seb), resistance genes (mecA and blaZ), and biofilm-associated genes (icaA and fnbA) in the isolated bacteria. The susceptibility patterns of the bacterial isolates to bacteriocins were assessed using an agar well-diffusion assay. S. aureus was significantly more capable of producing biofilms than coagulase-negative Staphylococcus isolates. S. ubris was the strongest biofilm producer among the Streptococcus species. The sensitivity profiles of the Staphylococcus spp. (S. aureus and coagulase-negative Staphylococcus) and their biofilm producers to bacteriocins were significantly higher (100% and 90%, respectively) at the same concentration. Bacteriocins had a lethal effect on Staphylococci, Streptococci, and biofilm development at a dose of 250 µg/mL. In dairy farms, bacteriocins are a viable alternative treatment for the prevention and control of bovine clinical mastitis.
Collapse
Affiliation(s)
- Ismail Raheel
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa N Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Asmaa Abdrabo Mohamed
- Veterinarian at the Directorate of Veterinary Medicine, El-Fayoum Governorate, Egypt
| |
Collapse
|
47
|
Bodie AR, O'Bryan CA, Olson EG, Ricke SC. Natural Antimicrobials for Listeria monocytogenes in Ready-to-Eat Meats: Current Challenges and Future Prospects. Microorganisms 2023; 11:1301. [PMID: 37317275 DOI: 10.3390/microorganisms11051301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Listeria monocytogenes, an intra-cellular, Gram-positive, pathogenic bacterium, is one of the leading agents of foodborne illnesses. The morbidity of human listeriosis is low, but it has a high mortality rate of approximately 20% to 30%. L. monocytogenes is a psychotropic organism, making it a significant threat to ready-to-eat (RTE) meat product food safety. Listeria contamination is associated with the food processing environment or post-cooking cross-contamination events. The potential use of antimicrobials in packaging can reduce foodborne disease risk and spoilage. Novel antimicrobials can be advantageous for limiting Listeria and improving the shelf life of RTE meat. This review will discuss the Listeria occurrence in RTE meat products and potential natural antimicrobial additives for controlling Listeria.
Collapse
Affiliation(s)
- Aaron R Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Corliss A O'Bryan
- Food Science Department, University of Aransas-Fayetteville, Fayetteville, AR 72701, USA
| | - Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
48
|
Biotherapy Using Probiotics as Therapeutic Agents to Restore the Gut Microbiota to Relieve Gastrointestinal Tract Inflammation, IBD, IBS and Prevent Induction of Cancer. Int J Mol Sci 2023; 24:ijms24065748. [PMID: 36982816 PMCID: PMC10052502 DOI: 10.3390/ijms24065748] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The gut microbiota is composed of several microbial strains with diverse and variable compositions in both healthy and sick people. An undisturbed gut microbiota needs to be sustained in order to perform all physiological, metabolic, and immune functions in a normal way to prevent the development of diseases. This article has reviewed the published information on the issue of disruption of the balance of the gut microbiota. This disruption could be for many reasons, such as microbial infection in the gastrointestinal tract, food poisoning, diarrhoea, chemotherapy, malnutrition, lifestyle, and ageing. If this disruption is not restored to normal, it might cause dysbiosis. Eventually, a gut microbiota interrupted by dysbiosis might initiate several health issues, such as inflammation of the gastrointestinal tract, the induction of cancer, and the progression of a variety of diseases such as irritable bowel syndrome and inflammatory bowel disease. This review concluded that biotherapy is a natural way of using probiotic products, whether in form of food, beverages, or supplements, to restore the gut microbiota disrupted by dysbiosis. Metabolites secreted by the ingested probiotics help to relieve gastrointestinal tract inflammation and can avoid the induction of cancer.
Collapse
|
49
|
Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics (Basel) 2023; 12:antibiotics12030550. [PMID: 36978417 PMCID: PMC10044663 DOI: 10.3390/antibiotics12030550] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Antibiotic resistance (ABR) has direct and indirect repercussions on public health and threatens to decrease the therapeutic effect of antibiotic treatments and lead to more infection-related deaths. There are several mechanisms by which ABR can be transferred from one microorganism to another. The risk of transfer is often related to environmental factors. The food supply chain offers conditions where ABR gene transfer can occur by multiple pathways, which generates concerns regarding food safety. This work reviews mechanisms involved in ABR gene transfer, potential transmission routes in the food supply chain, the prevalence of antibiotic residues in food and ABR organisms in processing lines and final products, and implications for public health. Finally, the paper will elaborate on the application of antimicrobial peptides as new alternatives to antibiotics that might countermeasure ABR and is compatible with current food trends.
Collapse
|
50
|
Ibraheim HK, Madhi KS, Baqer GK, Gharban HAJ. Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. Vet World 2023; 16:491-499. [PMID: 37041833 PMCID: PMC10082751 DOI: 10.14202/vetworld.2023.491-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Probiotics are proven beneficial to health since they enhance immunity against dangerous pathogens and increase resistance to illness. Bacteriocin produced by lactic acid bacteria (LAB), demonstrates a broad inhibitory spectrum and therapeutic potential. This study aimed to isolate LAB-producing bacteriocin and investigate the effect of crude bacteriocin on biofilm from methicillin-resistant Staphylococcus aureus (MRSA). Materials and Methods This study used randomly collected 80 white soft local cheeses (40 each from cows and sheep) from different supermarkets in Basrah Province. The obtained samples were cultured and the bacterial suspension of S. aureus was prepared at 1.5 × 108 cells/mL. The crude bacteriocin extracted from LAB was obtained, and the tube was dried and inverted to detect the biofilm loss at the bottom. Results There were 67 (83.75%) LAB isolates. Among 40 milk samples collected directly and indirectly, there were 36 (83.33%). Staphylococcus aureus isolates based on conventional bacteriological analysis and biochemical tests. Molecular testing was conducted to identify LAB and MRSA. Depending on genotypic results, the effect of white soft local cheese (cows and sheep) and the amplification results of the 16S rRNA gene were detected in 46 LAB isolates from white soft local cheese from cows and sheep. Based on the molecular identification of the mecA, results on Staphylococcus determined that only 2 of 36 isolates of S. aureus carried the mecA. Moreover, there were 26 (86.66%) isolates (MRSA) from samples of raw milk from local markets and subclinical mastitis in cows. The ability of LAB isolates was tested. The effects of bacteriocin production on preventing biofilm growth and formation were investigated. Results demonstrated that bacteriocin has high activity. Microtiter plates applied to investigate the ability of S. aureus to produce biofilms revealed that all isolates were either weak or moderate biofilm producers, with neither non-biofilm nor strong biofilm producers found among the tested isolates. Conclusion Lactic acid bacteria demonstrate a high ability to produce bacteriocin. Crude bacteriocin from LAB has a restrictive effect on biofilms produced by MRSA; thus, it can be used to reduce the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Hanaa Khaleel Ibraheim
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
- Corresponding author: Hanaa Khaleel Ibraheim, e-mail: Co-authors: KSM: , GKB: , HAJG:
| | - Khadeeja S. Madhi
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Gaida K. Baqer
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Hasanain A. J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| |
Collapse
|