1
|
Momoh EO, Ghag SK, White J, Mudeppa DG, Rathod PK. Multiplex Assays for Analysis of Antibody Responses to South Asian Plasmodium falciparum and Plasmodium vivax Malaria Infections. Vaccines (Basel) 2023; 12:1. [PMID: 38276660 PMCID: PMC10818873 DOI: 10.3390/vaccines12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Malaria remains a major global health challenge, causing over 0.6 million yearly deaths. To understand naturally acquired immunity in adult human populations in malaria-prevalent regions, improved serological tools are needed, particularly where multiple malaria parasite species co-exist. Slide-based and bead-based multiplex approaches can help characterize antibodies in malaria patients from endemic regions, but these require pure, well-defined antigens. To efficiently bypass purification steps, codon-optimized malaria antigen genes with N-terminal FLAG-tag and C-terminal Ctag sequences were expressed in a wheat germ cell-free system and adsorbed on functionalized BioPlex beads. In a pilot study, 15 P. falciparum antigens, 8 P. vivax antigens, and a negative control (GFP) were adsorbed individually on functionalized bead types through their Ctag. To validate the multiplexing powers of this platform, 10 P. falciparum-infected patient sera from a US NIH MESA-ICEMR study site in Goa, India, were tested against all 23 parasite antigens. Serial dilution of patient sera revealed variations in potency and breadth of antibodies to various parasite antigens. Individual patients revealed informative variations in immunity to P. falciparum versus P. vivax. This multiplex approach to malaria serology captures varying immunity to different human malaria parasite species and different parasite antigens. This approach can be scaled to track the dynamics of antibody production during one or more human malaria infections.
Collapse
Affiliation(s)
| | | | | | - Devaraja G. Mudeppa
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| | - Pradipsinh K. Rathod
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; (E.O.M.); (S.K.G.); (J.W.)
| |
Collapse
|
2
|
Ramírez ADR, de Jesus MCS, Menezes RAO, Santos-Filho MC, Gomes MSM, Pimenta TS, Barbosa VS, Rossit J, Reis NF, Brito SCP, Sampaio MP, Cassiano GC, Storti-Melo LM, Baptista ARS, Machado RLD. Polymorphisms in Toll-Like receptors genes and their associations with immunological parameters in Plasmodium vivax malaria in the Brazil-French Guiana Border. Cytokine 2023; 169:156278. [PMID: 37356261 DOI: 10.1016/j.cyto.2023.156278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.
Collapse
Affiliation(s)
- Aina D R Ramírez
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Myrela C S de Jesus
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Rubens A O Menezes
- Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil; Postgraduate Program in Health Sciences, Federal University of Amapá (UNIFAP), Macapá 68903-419, Amapá, Brazil
| | - Marcelo C Santos-Filho
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Margarete S M Gomes
- Superintendence of Health Surveillance of the State of Amapá, Macapá 68902-865, Amapá, Brazil
| | - Tamirys S Pimenta
- Instituto Evandro Chagas / Secretaria de Vigilância em Saude / Ministério da Saude, Ananindeua 67030-000, Pará, Brazil
| | - Vanessa S Barbosa
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil
| | - Julia Rossit
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil
| | - Nathalia F Reis
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Simone Cristina Pereira Brito
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Marrara Pereira Sampaio
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | | | - Luciane M Storti-Melo
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Andrea R S Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil
| | - Ricardo L D Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24020-141 Rio de Janeiro, Brazil; Postgraduate Program in Applied Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, 24210-130 Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Núñez A, Ntumngia FB, Guerra Y, Adams JH, Sáenz FE. Genetic diversity and natural selection of Plasmodium vivax reticulocyte invasion genes in Ecuador. Malar J 2023; 22:225. [PMID: 37537581 PMCID: PMC10398936 DOI: 10.1186/s12936-023-04640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Knowledge of the diversity of invasion ligands in malaria parasites in endemic regions is essential to understand how natural selection influences genetic diversity of these ligands and their feasibility as possible targets for future vaccine development. In this study the diversity of four genes for merozoite invasion ligands was studied in Ecuadorian isolates of Plasmodium vivax. METHODS Eighty-eight samples from P. vivax infected individuals from the Coast and Amazon region of Ecuador were obtained between 2012 and 2015. The merozoite invasion genes pvmsp-1-19, pvdbpII, pvrbp1a-2 and pvama1 were amplified, sequenced, and compared to the Sal-1 strain. Polymorphisms were mapped and genetic relationships between haplotypes were determined. RESULTS Only one nonsynonymous polymorphism was detected in pvmsp-1-19, while 44 nonsynonymous polymorphisms were detected in pvdbpII, 56 in pvrbp1a-2 and 33 in pvama1. While haplotypes appeared to be more related within each area of study and there was less relationship between parasites of the coastal and Amazon regions of the country, diversification processes were observed in the two Amazon regions. The highest haplotypic diversity for most genes occurred in the East Amazon of the country. The high diversity observed in Ecuadorian samples is closer to Brazilian and Venezuelan isolates, but lower than reported in other endemic regions. In addition, departure from neutrality was observed in Ecuadorian pvama1. Polymorphisms for pvdbpII and pvama1 were associated to B-cell epitopes. CONCLUSIONS pvdbpII and pvama1 genetic diversity found in Ecuadorian P. vivax was very similar to that encountered in other malaria endemic countries with varying transmission levels and segregated by geographic region. The highest diversity of P. vivax invasion genes in Ecuador was found in the Amazonian region. Although selection appeared to have small effect on pvdbpII and pvrbp1a-2, pvama1 was influenced by significant balancing selection.
Collapse
Affiliation(s)
- Andrés Núñez
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Francis B Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Yasel Guerra
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
4
|
Huang F, Cui Y, Huang Z, Wang S, Li S, Guo X, Guo X, Xia ZG. Serological surveillance on potential Plasmodium vivax exposure risk in a post-elimination setting. Front Cell Infect Microbiol 2023; 13:1132917. [PMID: 36968112 PMCID: PMC10034364 DOI: 10.3389/fcimb.2023.1132917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
China was declared malaria free in June of 2021. In the post-elimination setting, vigilant surveillance is essential to sustain malaria free status. Serological surveillance has been recognized as an efficient tool for assessing the immunity levels and exposure risk in a population. In this study, a cross-sectional serological survey was conducted in Yingjiang County, China, in August–September, 2021. The study sites were villages along the borders with Myanmar, which have no local transmission since the last indigenous case registered in 2016. A total of 923 participants from six villages were enrolled. The majority was aged > 36 years (56.12%) and 12.46% (115/923) participants had experienced malaria infection at least once. A magnetic- bead-based assay was used to test antibodies against Plasmodium vivax antigen PvMSP-119 to evaluate the prevalence of antibody positive subjects. A reversible catalytic model was used to assess the risk of exposure. The prevalence of anti-PvMSP-119 IgG was 12.84% [95% confidence interval (CI): 9.22%–16.47%], 13.93% (95% CI: 10.11%–17.74%), and 3.57% (95% CI: 1.40%–5.75%) in three different line-of-defense areas, which differed significantly (P < 0.0001). The prevalence of anti-PvMSP-119 IgG increased with age and no statistically significant difference was detected between the sexes. The reversible catalytic model indicated that the seropositive conversion rate and seronegative reversion rate were 0.0042, 0.0034, 0.0032 and 0.0024, 0.0004, 0.0065 in the first-, second-line-of-defense area and total areas, respectively, and the fitted value did not differ significantly from the observed value (P > 0.1). Although this study found the prevalence of antibody-positive subjects and the seroconversion rate in this post-elimination setting were lower than that in transmission setting, the population still had an exposure risk. Serological surveillance should be considered in post-elimination settings to provide valuable information with which to evaluate the risk of malaria re-establishment.
Collapse
Affiliation(s)
- Fang Huang
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yanwen Cui
- Division of Tuberculosis Control and Prevention, Shanghai Pudong Center for Disease Control and Prevention, Shanghai, China
| | - Zhuoying Huang
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Department of Malaria, Chinese Center for Tropical Diseases Research, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shigang Li
- Division of Endemic Disease Control and Prevention, Yingjiang County Center for Disease Control and Prevention, Yingjiang, China
| | - Xiangrui Guo
- Division of Endemic Disease Control and Prevention, Yingjiang County Center for Disease Control and Prevention, Yingjiang, China
| | - Xiang Guo
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- *Correspondence: Xiang Guo, ; Zhi-Gui Xia,
| | - Zhi-Gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Department of Malaria, Chinese Center for Tropical Diseases Research, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- *Correspondence: Xiang Guo, ; Zhi-Gui Xia,
| |
Collapse
|
5
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
6
|
de Figueiredo AM, Glória JC, Chaves YO, Neves WLL, Mariúba LAM. Diagnostic applications of microsphere-based flow cytometry: A review. Exp Biol Med (Maywood) 2022; 247:1852-1861. [PMID: 35974694 PMCID: PMC9679357 DOI: 10.1177/15353702221113856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microsphere-based flow cytometry is a highly sensitive emerging technology for specific detection and clinical analysis of antigens, antibodies, and nucleic acids of interest. In this review, studies that focused on the application of flow cytometry as a viable alternative for the investigation of infectious diseases were analyzed. Many of the studies involve research aimed at epidemiological surveillance, vaccine candidates and early diagnosis, non-infectious diseases, specifically cancer, and emphasize the simultaneous detection of biomarkers for early diagnosis, with accurate results in a non-invasive approach. The possibility of carrying out multiplexed assays affords this technique high versatility and performance, which is evidenced in a series of clinical studies that have verified the ability to detect several molecules in low concentrations and with minimal sample volume. As such, we demonstrate that microsphere-based flow cytometry presents itself as a promising technique that can be adopted as a fundamental element in the development of new diagnostic methods for a number of diseases.
Collapse
Affiliation(s)
| | - Juliane Corrêa Glória
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-graduação em biologia parasitária, Instituto Oswaldo Cruz – FIOCRUZ, Manaus 21040-360, Brazil
| | - Walter Luiz Lima Neves
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, Brazil,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus 69057-070, Brazil,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus 69067-00, Brazil,Luis André Morais Mariúba.
| |
Collapse
|
7
|
Tayipto Y, Rosado J, Gamboa D, White MT, Kiniboro B, Healer J, Opi DH, Beeson JG, Takashima E, Tsuboi T, Harbers M, Robinson L, Mueller I, Longley RJ. Assessment of IgG3 as a serological exposure marker for Plasmodium vivax in areas with moderate-high malaria transmission intensity. Front Cell Infect Microbiol 2022; 12:950909. [PMID: 36017364 PMCID: PMC9395743 DOI: 10.3389/fcimb.2022.950909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
A more sensitive surveillance tool is needed to identify Plasmodium vivax infections for treatment and to accelerate malaria elimination efforts. To address this challenge, our laboratory has developed an eight-antigen panel that detects total IgG as serological markers of P. vivax exposure within the prior 9 months. The value of these markers has been established for use in areas with low transmission. In moderate-high transmission areas, there is evidence that total IgG is more long-lived than in areas with low transmission, resulting in poorer performance of these markers in these settings. Antibodies that are shorter-lived may be better markers of recent infection for use in moderate-high transmission areas. Using a multiplex assay, the antibody temporal kinetics of total IgG, IgG1, IgG3, and IgM against 29 P. vivax antigens were measured over 36 weeks following asymptomatic P. vivax infection in Papua New Guinean children (n = 31), from an area with moderate-high transmission intensity. IgG3 declined faster to background than total IgG, IgG1, and IgM. Based on these kinetics, IgG3 performance was then assessed for classifying recent exposure in a cohort of Peruvian individuals (n = 590; age 3-85 years) from an area of moderate transmission intensity. Using antibody responses against individual antigens, the highest performance of IgG3 in classifying recent P. vivax infections in the prior 9 months was to one of the Pv-fam-a proteins assessed (PVX_125728) (AUC = 0.764). Surprisingly, total IgG was overall a better marker of recent P. vivax infection, with the highest individual classification performance to RBP2b1986-2653 (PVX_094255) (AUC = 0.838). To understand the acquisition of IgG3 in this Peruvian cohort, relevant epidemiological factors were explored using a regression model. IgG3 levels were positively associated with increasing age, living in an area with (relatively) higher transmission intensity, and having three or more PCR-detected blood-stage P. vivax infections within the prior 13 months. Overall, we found that IgG3 did not have high accuracy for detecting recent exposure to P. vivax in the Peruvian cohort, with our data suggesting that this is due to the high levels of prior exposure required to acquire high IgG3 antibody levels.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason Rosado
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Dionicia Gamboa
- Laboratorio International Centers of Excellence for Malaria Research (ICEMR)-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T. White
- Unité Malaria: Parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Benson Kiniboro
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Julie Healer
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - D. Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Leanne Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Aparici-Herraiz I, Gualdrón-López M, Castro-Cavadía CJ, Carmona-Fonseca J, Yasnot MF, Fernandez-Becerra C, del Portillo HA. Antigen Discovery in Circulating Extracellular Vesicles From Plasmodium vivax Patients. Front Cell Infect Microbiol 2022; 11:811390. [PMID: 35141172 PMCID: PMC8819181 DOI: 10.3389/fcimb.2021.811390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite with 7 million annual clinical cases and 2.5 billion people living under risk of infection. There is an urgent need to discover new antigens for vaccination as only two vaccine candidates are currently in clinical trials. Extracellular vesicles (EVs) are small membrane-bound vesicles involved in intercellular communication and initially described in reticulocytes, the host cell of P. vivax, as a selective disposal mechanism of the transferrin receptor (CD71) in the maturation of reticulocytes to erythrocytes. We have recently reported the proteomics identification of P. vivax proteins associated to circulating EVs in P. vivax patients using size exclusion chromatography followed by mass spectrometry (MS). Parasite proteins were detected in only two out of ten patients. To increase the MS signal, we have implemented the direct immuno-affinity capture (DIC) technique to enrich in EVs derived from CD71-expressing cells. Remarkably, we identified parasite proteins in all patients totaling 48 proteins and including several previously identified P. vivax vaccine candidate antigens (MSP1, MSP3, MSP7, MSP9, Serine-repeat antigen 1, and HSP70) as well as membrane, cytosolic and exported proteins. Notably, a member of the Plasmodium helical interspersed sub-telomeric (PHIST-c) family and a member of the Plasmodium exported proteins, were detected in five out of six analyzed patients. Humoral immune response analysis using sera from vivax patients confirmed the antigenicity of the PHIST-c protein. Collectively, we showed that enrichment of EVs by CD71-DIC from plasma of patients, allows a robust identification of P. vivax immunogenic proteins. This study represents a significant advance in identifying new antigens for vaccination against this human malaria parasite.
Collapse
Affiliation(s)
| | | | | | - Jaime Carmona-Fonseca
- Grupo de Salud y Comunidad Cesar Uribe Piedrahíta, Universidad de Antioquia, Medellín, Colombia
| | - María Fernanda Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Monteria, Colombia
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| | - Hernando A. del Portillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Carmen Fernandez-Becerra, ; Hernando A. del Portillo,
| |
Collapse
|
9
|
O'Flaherty K, Roe M, Fowkes FJ. The role of naturally acquired antimalarial antibodies in subclinical
Plasmodium
spp. infection. J Leukoc Biol 2022; 111:1097-1105. [PMID: 35060185 PMCID: PMC9303632 DOI: 10.1002/jlb.5mr1021-537r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Katherine O'Flaherty
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
| | - Merryn Roe
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
| | - Freya J.I. Fowkes
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
- Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health, The University of Melbourne Melbourne Australia
- Department of Infectious Disease Monash University Melbourne Australia
| |
Collapse
|
10
|
Monteiro EF, Fernandez-Becerra C, Curado I, Wunderlich G, Hiyane MI, Kirchgatter K. Antibody Profile Comparison against MSP1 Antigens of Multiple Plasmodium Species in Human Serum Samples from Two Different Brazilian Populations Using a Multiplex Serological Assay. Pathogens 2021; 10:1138. [PMID: 34578170 PMCID: PMC8470980 DOI: 10.3390/pathogens10091138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium malariae has a wide geographic distribution, but mainly at very low parasitemias and in co-infections, leading to an underestimated prevalence of this species. Studies for the detection of antibodies against Plasmodium recombinant proteins are increasingly used to map geographical distributions, seroprevalence and transmission intensities of malaria infection. However, no seroepidemiological survey using recombinant P. malariae proteins has been conducted in Brazil. This work evaluated the antibody response in serum samples of individuals from endemic regions of Brazil (the Amazon region and Atlantic Forest) against five recombinant proteins of P. malariae merozoite surface protein 1 (MSP1), and the MSP1 C-terminal portions of P. vivax and P. falciparum, in a multiplex assay. The positivity was 69.5% of samples recognizing at least one MSP1 recombinant protein. The mean of the Reactivity Index for the C-terminal portion of the P. falciparum was significantly higher compared to the other recombinant proteins, followed by the C-terminal of P. vivax and the N-terminal of P. malariae. Among the recombinant P. malariae proteins, the N-terminal of P. malariae showed the highest Reactivity Index alone. This study validates the use of the multiplex assay to measure naturally acquired IgG antibodies against Plasmodium MSP1 proteins and demonstrate that these proteins are important tools for seroepidemiological surveys and could be used in malaria surveillance.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Izilda Curado
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo 01027-000, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil;
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (E.F.M.); (I.C.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo 01027-000, Brazil
| |
Collapse
|
11
|
Kale S, Pande V, Singh OP, Carlton JM, Mallick PK. Genetic diversity in two leading Plasmodium vivax malaria vaccine candidates AMA1 and MSP119 at three sites in India. PLoS Negl Trop Dis 2021; 15:e0009652. [PMID: 34370745 PMCID: PMC8376102 DOI: 10.1371/journal.pntd.0009652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/19/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax, a major contributor to the malaria burden in India, has the broadest geographic distribution and shows higher genetic diversity than P. falciparum. Here, we investigated the genetic diversity of two leading P. vivax vaccine candidate antigens, at three geographically diverse malaria-endemic regions in India. Pvama1 and Pvmsp119 partial coding sequences were generated from one hundred P. vivax isolates in India (Chennai n = 28, Nadiad n = 50 and Rourkela n = 22) and ~1100 published sequences from Asia, South America, North America, and Oceania regions included. These data were used to assess the genetic diversity and potential for vaccine candidacy of both antigens on a global scale. A total of 44 single nucleotide polymorphism (SNPs) were identified among 100 Indian Pvama1 sequences, including 10 synonymous and 34 nonsynonymous mutations. Nucleotide diversity was higher in Rourkela and Nadiad as compared to Chennai. Nucleotide diversity measures showed a strong balancing selection in Indian and global population for domain I of Pvama1, which suggests that it is a dominant target of the protective immune response. In contrast, the Pvmsp119 region showed highly conserved sequences in India and across the Oceania, South America, North America and Asia, demonstrating low genetic diversity in the global population when compared to Pvama1. Results suggest the possibility of including Pvmsp119 in a multivalent vaccine formulation against P. vivax infections. However, the high genetic diversity seen in Pvama1 would be more challenging for vaccine development.
Collapse
Affiliation(s)
- Sonal Kale
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Om P Singh
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York city, New York, United States of America.,Department of Epidemiology, School of Global Public Health, New York University, New York city, New York, United States of America
| | - Prashant K Mallick
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
12
|
Punnath K, Dayanand KK, Midya V, Chandrashekar VN, Achur RN, Kakkilaya SB, Ghosh SK, Kumari SN, Gowda DC. Acquired antibody responses against merozoite surface protein-1 19 antigen during Plasmodium falciparum and P.vivax infections in South Indian city of Mangaluru. J Parasit Dis 2021; 45:176-190. [PMID: 33100734 PMCID: PMC7576553 DOI: 10.1007/s12639-020-01288-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/05/2020] [Indexed: 01/13/2023] Open
Abstract
Merozoite surface protein-1 (MSP-1) of malaria parasites has been extensively studied as a malaria vaccine candidate and the antibody response to this protein is an important indicator of protective immunity to malaria. Mangaluru city and its surrounding areas in southwestern India are endemic to malaria with Plasmodium vivax being the most widespread and prevalent species although P. falciparum also frequently infects. However, no information is available on the level of protective immunity in this population. In this regard, a prospective hospital-based study was performed in malarial patients to assess antibody responses against the 19-kDa C-terminal portion of P. vivax and P. falciparum MSP-1 (MSP-119). Serum samples from 51 healthy endemic controls and 267 infected individuals were collected and anti-MSP-119 antibody levels were analyzed by ELISA. The possible association between the antibody responses and morbidity parameters such as malarial anemia and thrombocytopenia was investigated. Among the 267 infected cases, 144 had P. vivax and 123 had P. falciparum infections. Significant levels of anti-MSP-119 antibody were observed both in P. vivax (123/144; 85.4%) and P. falciparum (108/123; 87.9%) infected individuals. In both type of infections, the major antibody isotypes were IgG1 and IgG3. The IgG levels were found to be increased in patients with severe anemia and thrombocytopenia. The antibody levels were also higher in infected individuals who had several previous infections, although antibodies produced during previous infections were short lived. The predominance of cytophilic anti-MSP-119 IgG1 and IgG3 antibodies suggests the possibility of a dual role of Pv MSP-119 and Pf MSP-119 during malarial immunity and pathogenesis.
Collapse
Affiliation(s)
- Kishore Punnath
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Kiran K. Dayanand
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Vishal Midya
- Department of Biostatistics and Bioinformatics, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA USA
| | - Valleesha N. Chandrashekar
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - Rajeshwara N. Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Shivamogga District, Karnataka India
| | | | - Susanta K. Ghosh
- Department of Molecular Parasitology, ICMR-National Institute of Malaria Research, Poojanahalli, Bangalore, India
| | - Suchetha N. Kumari
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangaluru, India
| | - D. Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA USA
| |
Collapse
|
13
|
Rosado J, White MT, Longley RJ, Lacerda M, Monteiro W, Brewster J, Sattabongkot J, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Gamboa D, Mueller I. Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLoS Negl Trop Dis 2021; 15:e0009165. [PMID: 33591976 PMCID: PMC7909627 DOI: 10.1371/journal.pntd.0009165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. METHODOLOGY We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. PRINCIPAL FINDINGS Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. CONCLUSIONS In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.
Collapse
Affiliation(s)
- Jason Rosado
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Sorbonne Université, ED 393, Paris, France
| | - Michael T. White
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
| | - Rhea J. Longley
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Marcus Lacerda
- Instituto Leônidas & Maria Deane (Fiocruz), Manaus, Brazil
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Wuelton Monteiro
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Jessica Brewster
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jetsumon Sattabongkot
- Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ivo Mueller
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| |
Collapse
|
14
|
Ssewanyana I, Rek J, Rodriguez I, Wu L, Arinaitwe E, Nankabirwa JI, Beeson JG, Mayanja-Kizza H, Rosenthal PJ, Dorsey G, Kamya MR, Drakeley C, Greenhouse B, Tetteh KKA. Impact of a Rapid Decline in Malaria Transmission on Antimalarial IgG Subclasses and Avidity. Front Immunol 2021; 11:576663. [PMID: 33584643 PMCID: PMC7873448 DOI: 10.3389/fimmu.2020.576663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding how immunity to malaria is affected by declining transmission is important to aid vaccine design and understand disease resurgence. Both IgG subclasses and avidity of antigen-specific responses are important components of an effective immune response. Using a multiplex bead array assay, we measured the total IgG, IgG subclasses, and avidity profiles of responses to 18 P. falciparum blood stage antigens in samples from 160 Ugandans collected at two time points during high malaria transmission and two time points following a dramatic reduction in transmission. Results demonstrated that, for the antigens tested, (i) the rate of decay of total IgG following infection declined with age and was driven consistently by the decrease in IgG3 and occasionally the decrease in IgG1; (ii) the proportion of IgG3 relative to IgG1 in the absence of infection increased with age; (iii) the increase in avidity index (the strength of association between the antibody and antigen) following infection was largely due to a rapid loss of non-avid compared to avid total IgG; and (iv) both avid and non-avid total IgG in the absence of infection increased with age. Further studies are required to understand the functional differences between IgG1 and IgG3 in order to determine their contribution to the longevity of protective immunity to malaria. Measuring changes in antibody avidity may be a better approach of detecting affinity maturation compared to avidity index due to the differential expansion and contraction of high and low avidity total IgG.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Costa EMF, Amador ECC, Silva ES, Alvarenga CO, Pereira PE, Póvoa MM, Cunha MG. Malaria transmission and individual variability of the naturally acquired IgG antibody against the Plasmodium vivax blood-stage antigen in an endemic area in Brazil. Acta Trop 2020; 209:105537. [PMID: 32454033 DOI: 10.1016/j.actatropica.2020.105537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax remains an important cause of malaria in South America and Asia, and analyses of the antibody immune response are being used to identify biomarker of parasite exposure. The IgG antibody naturally acquired predominantly occurs against targets on blood-stage parasites, including C-terminal of the merozoite surface protein 1 (MSP1-19). Epidemiological and immunological evidence has been showed that antibodies to malaria parasite antigens are lost in the absence of ongoing exposure. We describe the IgG antibody response in individuals living in an unstable malaria transmission area in Pará state, Amazon region, Brazil, where an epidemic of P. vivax malaria was recorded and monitored over time. As indicated by epidemiological data, the number of P. vivax-caused malaria cases decreased by approximately 90% after three years and the prevalence of IgG positive to PvMSP1-19 decreased significantly over time, in 2010 (93.4%), 2012 (78.3%), and 2013 (85.1%). Acquisition and decay of the IgG antibody against P. vivax MSP1-19 showed variability among individuals living in areas with recent circulating parasites, where the malaria epidemic was being monitored until transmission had been completely controlled. We also found that previous malaria episodes were associated with an increased in the IgG positivity . Our results showed epidemiological, spatial, temporal and individual variability. The understanding on dynamics of antibodies may have implications for the design of serosurveillance tools for monitoring parasite circulation, especially in a context with spatial and temporal changes in P. vivax malaria transmission.
Collapse
Affiliation(s)
- Edna Maria F Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | | | - Eliane S Silva
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Cassiana O Alvarenga
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | - Pedro Elias Pereira
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Instituto Evandro Chagas, CEP: 66087-082, Ananindeua, Pará, Brazil
| | - Maristela G Cunha
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
16
|
Monteiro EF, Fernandez-Becerra C, Araujo MDS, Messias MR, Ozaki LS, Duarte AMRDC, Bueno MG, Catao-Dias JL, Chagas CRF, Mathias BDS, dos Santos MG, Santos SV, Holcman MM, de Souza JC, Kirchgatter K. Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 2020; 9:pathogens9070525. [PMID: 32610598 PMCID: PMC7399928 DOI: 10.3390/pathogens9070525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHPs) have been shown to be infected by parasites of the genus Plasmodium, the etiological agent of malaria in humans, creating potential risks of zoonotic transmission. Plasmodium brasilianum, a parasite species similar to P. malariae of humans, have been described in NHPs from Central and South America, including Brazil. The merozoite surface protein 1 (MSP1), besides being a malaria vaccine candidate, is highly immunogenic. Due to such properties, we tested this protein for the diagnosis of parasite infection. We used recombinant proteins of P. malariae MSP1, as well as of P. falciparum and P. vivax, for the detection of antibodies anti-MSP1 of these parasite species, in the sera of NHPs collected in different regions of Brazil. About 40% of the NHP sera were confirmed as reactive to the proteins of one or more parasite species. A relatively higher number of reactive sera was found in animals from the Atlantic Forest than those from the Amazon region, possibly reflecting the former more intense parasite circulation among NHPs due to their proximity to humans at a higher populational density. The presence of Plasmodium positive NHPs in the surveyed areas, being therefore potential parasite reservoirs, needs to be considered in any malaria surveillance program.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Maisa da Silva Araujo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil;
| | | | - Luiz Shozo Ozaki
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Marina Galvão Bueno
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rio de Janeiro, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Jose Luiz Catao-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP 05508-270, Brazil;
| | - Carolina Romeiro Fernandes Chagas
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP 04301-905, Brazil;
- Institute of Ecology, Nature Research Centre, Vilnius 08412, Lithuania
| | - Bruno da Silva Mathias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Mayra Gomes dos Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
| | - Stéfanie Vanessa Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
- Departamento de Anatomia Patológica, AC Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Marcia Moreira Holcman
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Julio Cesar de Souza
- Departamento de Medicina Veterinária, Fundação Universidade Regional de Blumenau, Blumenau, SC 89012-900, Brazil;
- Projeto Bugio, Centro de Pesquisas Biológicas, Indaial, SC 89130-000, Brazil
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
- Correspondence:
| |
Collapse
|
17
|
Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A 2020; 117:13056-13065. [PMID: 32439708 PMCID: PMC7293605 DOI: 10.1073/pnas.1920596117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of low peripheral blood parasitemia, vivax malaria causes severe disease. This conundrum finds an explanation from reports suggesting that the spleen is a place for parasite sequestration. We performed a global transcriptional analysis of parasites that grew in the presence or absence of the spleen in a nonhuman primate model. We identified 67 spleen-dependent genes, including multigene variant families, and functionally demonstrated specific adherence to human spleen fibroblasts by a member of such families. Moreover, we further demonstrated that spleen-dependent Plasmodium vivax genes code for immunogenic proteins during natural infections. Our results indicate that this organ plays an important function in P. vivax malaria and call for deeper studies of the role of spleen in P. vivax infections. Plasmodium vivax, the most widely distributed human malaria parasite, causes severe clinical syndromes despite low peripheral blood parasitemia. This conundrum is further complicated as cytoadherence in the microvasculature is still a matter of investigations. Previous reports in Plasmodium knowlesi, another parasite species shown to infect humans, demonstrated that variant genes involved in cytoadherence were dependent on the spleen for their expression. Hence, using a global transcriptional analysis of parasites obtained from spleen-intact and splenectomized monkeys, we identified 67 P. vivax genes whose expression was spleen dependent. To determine their role in cytoadherence, two Plasmodium falciparum transgenic lines expressing two variant proteins pertaining to VIR and Pv-FAM-D multigene families were used. Cytoadherence assays demonstrated specific binding to human spleen but not lung fibroblasts of the transgenic line expressing the VIR14 protein. To gain more insights, we expressed five P. vivax spleen-dependent genes as recombinant proteins, including members of three different multigene families (VIR, Pv-FAM-A, Pv-FAM-D), one membrane transporter (SECY), and one hypothetical protein (HYP1), and determined their immunogenicity and association with clinical protection in a prospective study of 383 children in Papua New Guinea. Results demonstrated that spleen-dependent antigens are immunogenic in natural infections and that antibodies to HYP1 are associated with clinical protection. These results suggest that the spleen plays a major role in expression of parasite proteins involved in cytoadherence and can reveal antigens associated with clinical protection, thus prompting a paradigm shift in P. vivax biology toward deeper studies of the spleen during infections.
Collapse
|
18
|
van den Hoogen LL, Présumé J, Romilus I, Mondélus G, Elismé T, Sepúlveda N, Stresman G, Druetz T, Ashton RA, Joseph V, Eisele TP, Hamre KES, Chang MA, Lemoine JF, Tetteh KKA, Boncy J, Existe A, Drakeley C, Rogier E. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti. Sci Rep 2020; 10:1135. [PMID: 31980693 PMCID: PMC6981173 DOI: 10.1038/s41598-020-57876-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | - Gina Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Tamara Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications, University of Lisbon, Lisbon, Portugal
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Canada
| | - Ruth A Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Karen E S Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- CDC Foundation, Atlanta, Georgia, USA
| | - Michelle A Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jean F Lemoine
- Ministère de la santé publique et de la population, Port-au-Prince, Haiti
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Damelang T, Rogerson SJ, Kent SJ, Chung AW. Role of IgG3 in Infectious Diseases. Trends Immunol 2019; 40:197-211. [PMID: 30745265 DOI: 10.1016/j.it.2019.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Chu R, Zhang X, Xu S, Chen L, Tang J, Li Y, Chen J, Xuan Y, Zhu G, Cao J, Cheng Y. Limited genetic diversity of N-terminal of merozoite surface protein-1 (MSP-1) in Plasmodium ovale curtisi and P. ovale wallikeri imported from Africa to China. Parasit Vectors 2018; 11:596. [PMID: 30446012 PMCID: PMC6240192 DOI: 10.1186/s13071-018-3174-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/25/2018] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium merozoite surface protein-1 (MSP-1) is released into the bloodstream during merozoite invasion, and thus represents a crucial malarial vaccine target. Although substantial research effort has been devoted to uncovering the genetic diversity of MSP-1 for P. falciparum and P. vivax, there is minimal information available regarding the genetic profiles and structure of P. ovale. Therefore, the aim of the present study was to determine the extent of genetic variation among two subspecies of P. ovale by characterizing the MSP-1 N-terminal sequence at the nucleotide and protein levels. Methods N-terminal of MSP-1 gene were amplified from 126 clinical samples collected from imported cases of malaria in migrant workers returning to Jiangsu Province from Africa using a conventional polymerase chain reaction (PCR) assay. The PCR products were then sequenced and analyzed using the GeneDoc, MegAlign, MEGA7 and DnaSP v.6 programs. Results The average pairwise nucleotide diversities (π) of P. ovale curtisi and P. ovale wallikeri MSP-1 genes (pomsp1) were 0.01043 and 0.01974, respectively, and the haplotype diversity (Hd) were 0.746 and 0.598, respectively. Most of the nucleotide substitutions detected were non-synonymous, indicating that the genetic variations of pomsp1 were maintained by positive diversifying selection, thereby suggesting their role as a potential target of a protective immune response. Amino acid substitutions of P. ovale curtisi and P. ovale wallikeri MSP-1 could be categorized into five and three unique amino acid variants, respectively. Conclusions Low mutational diversity was observed in pomsp1 from the Jiangsu Province imported malaria cases; further studies will be developed such as immunogenicity and functional analysis. Electronic supplementary material The online version of this article (10.1186/s13071-018-3174-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xinxin Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Sui Xu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Limei Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Yuhong Li
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Chen
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Yinghua Xuan
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China
| | - Jun Cao
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China. .,Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasite Diseases, Wuxi, 214064, Jiangsu, People's Republic of China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Thái TL, Jun H, Lee J, Kang JM, Lê HG, Lin K, Thant KZ, Sohn WM, Kim TS, Na BK. Genetic diversity of merozoite surface protein-1 C-terminal 42 kDa of Plasmodium falciparum (PfMSP-1 42) may be greater than previously known in global isolates. Parasit Vectors 2018; 11:455. [PMID: 30081943 PMCID: PMC6080494 DOI: 10.1186/s13071-018-3027-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Background The C-terminal 42 kDa region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-142) is the target of an immune response. It has been recognised as one of the promising candidate antigens for a blood-stage malaria vaccine. Genetic structure of PfMSP-142 has been considered to be largely conserved in the P. falciparum population. However, only limited information is currently available. This study aimed to analyse genetic diversity and the effect of natural selection on PfMSP-142 among the Myanmar P. falciparum population and compare them with publicly available PfMSP-142 from global P. falciparum populations. Methods A total of 69 P. falciparum clinical isolates collected from Myanmar malaria patients in Upper Myanmar in 2015 were used. The PfMSP-142 region was amplified by polymerase chain reaction, cloned and sequenced. Genetic structure and natural selection of this region were analysed using MEGA4 and DnaSP programs. Polymorphic nature and natural selection in global PfMSP-142 were also investigated. Results All three allele types (MAD20, K1, and RO33) of PfMSP-142 were identified in Myanmar isolates of P. falciparum. Myanmar PfMSP-142 displayed genetic diversity. Most polymorphisms were scattered in blocks 16 and 17. Polymorphisms observed in Myanmar PfMSP-142 showed a similar pattern to those of global PfMSP-142; however, they were not identical to each other. Genetic diversity of Myanmar PfMSP-142 was relatively lower than that of PfMSP-142 from different geographical regions. Evidence of natural selection and recombination were found. Comparative analysis of genetic polymorphism and natural selection in the global PfMSP-142 population suggested that this region was not tightly conserved in global PfMSP-142 as previously thought and is under the complicated influence of natural selection and recombination. Conclusions Global PfMSP-142 revealed limited, but non-negligible, genetic diversity by allele types and geographical origins. Complicated natural selection and potential recombination might have occurred in global PfMSP-142. Comprehensive monitoring of genetic diversity for global PfMSP-142 would be needed to better understand the polymorphic nature and evolutionary aspect of PfMSP-142 in the global P. falciparum population. More thought would be necessary for designing a vaccine based on PfMSP-142. Electronic supplementary material The online version of this article (10.1186/s13071-018-3027-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jinyoung Lee
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
22
|
Longley RJ, White MT, Takashima E, Morita M, Kanoi BN, Li Wai Suen CSN, Betuela I, Kuehn A, Sripoorote P, Franca CT, Siba P, Robinson LJ, Lacerda M, Sattabongkot J, Tsuboi T, Mueller I. Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. PLoS Negl Trop Dis 2017; 11:e0005888. [PMID: 28892517 PMCID: PMC5614652 DOI: 10.1371/journal.pntd.0005888] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/26/2017] [Accepted: 08/21/2017] [Indexed: 01/22/2023] Open
Abstract
Plasmodium vivax remains an important cause of malaria in South America and the Asia-Pacific. Naturally acquired antibody responses against multiple P. vivax proteins have been described in numerous countries, however, direct comparison of these responses has been difficult with different methodologies employed. We measured antibody responses against 307 P. vivax proteins at the time of P. vivax infection, and at 2–3 later time-points in three countries. We observed that seropositivity rates at the time of infection were highest in Thailand, followed by Brazil then PNG, reflecting the level of antigenic input. The majority of sero-reactive antigens in all sites induced short-lived antibody responses with estimated half-lives of less than 6 months, although there was a trend towards longer-lived responses in PNG children. Despite these differences, IgG seropositivity rates, magnitude and longevity were highly and significantly rank-correlated between the different regions, suggesting such features are reflective of the individual protein. In the pursuit of eliminating all species of malaria, Plasmodium vivax presents one of the most substantial challenges, particularly in countries in Asia, the Western-Pacific and South America. This is primarily due to the ability of P. vivax to cause relapse infections months to years after the initial infectious bite. In areas with low levels of malaria transmission, serology has become an increasingly useful tool for surveillance, as anti-Plasmodium antibodies can be detected in individuals long after blood-stage parasites have cleared. In this study, we provide a detailed characterisation of the antibody response generated following P. vivax infection by measuring antibodies to over 300 P. vivax antigens in three different populations in Thailand, Brazil and Papua New Guinea. The individuals in these populations were followed for up to nine months allowing us to estimate the rate at which antibodies decay over time. This improved understanding of the magnitude and dynamics of the antibody response, validated in multiple populations, will contribute to the development of serological surveillance tools needed for enhanced control and elimination of P. vivax.
Collapse
Affiliation(s)
- Rhea J. Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael T. White
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N. Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Connie S. N. Li Wai Suen
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Inoni Betuela
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Andrea Kuehn
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
| | - Piyarat Sripoorote
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Camila T. Franca
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Peter Siba
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Manaus, Amazonas, Brazil
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Malaria: Parasites & Hosts Unit, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
24
|
Muh F, Han JH, Nyunt MH, Lee SK, Jeon HY, Ha KS, Park WS, Hong SH, Ahmed MA, Na S, Takashima E, Tsuboi T, Han ET. Identification of a novel merozoite surface antigen of Plasmodium vivax, PvMSA180. Malar J 2017; 16:133. [PMID: 28351409 PMCID: PMC5369000 DOI: 10.1186/s12936-017-1760-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Although a number of Plasmodium vivax proteins have been identified, few have been investigated as potential vaccine candidates. This study characterized the Plasmodium vivax merozoite surface antigen 180 (PvMSA180, PVX_094920), a novel P. vivax antigenic protein. Methods The target gene was amplified as four overlapping domains (D1, D2, D3 and D4) to enable expression of the recombinant protein using cell-free and bacterial expression systems. The recombinant PvMSA180 proteins were used in protein microarrays to evaluate the humoral immune response of 72 vivax-infected patients and 24 vivax-naïve individuals. Antibodies produced in mice against the PvMSA180-D1 and -D4 domains were used to assess the subcellular localization of schizont-stage parasites with immunofluorescence assays. A total of 51 pvmsa180 sequences from 12 countries (41 sequences from PlasmoDB and 6 generated in this study) were used to determine the genetic diversity and genealogical relationships with DNAsp and NETWORK software packages, respectively. Results PvMSA180 consists of 1603 amino acids with a predicted molecular mass of 182 kDa, and has a signal peptide at the amino-terminus. A total of 70.8% of patients (51/72) showed a specific antibody response to at least one of the PvMSA180 domains, and 20.8% (15/72) exhibited a robust antibody response to at least three of the domains. These findings suggest that PvMSA180 is targeted by the humoral immune response during natural infection with P. vivax. Immunofluorescence analysis demonstrated that PvMSA180 is localized on the merozoite surface of schizont-stage parasites, and pvmsa180 sequences originating from various geographic regions worldwide showed low genetic diversity. Twenty-two haplotypes were found, and haplotype 6 (Hap_6, 77%) of pvmsa180 was detected in isolates from six countries. Conclusions A novel P. vivax surface protein, PvMSA180, was characterized in this study. Most of P. vivax-infected patients had specific antibodies against particular antigenic domains, indicating that this protein is immunogenic in naturally exposed populations. Genetic analysis of worldwide isolates showed that pvmsa180 is less polymorphic than other well-known candidates and that some haplotypes are common to several countries. However, additional studies with a larger sample size are necessary to evaluate the antibody responses in geographically separated populations, and to identify the function of PvMSA180 during parasite invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Medical Research, Yangon, Republic of the Union of Myanmar
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hye-Yoon Jeon
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
25
|
Requena P, Arévalo-Herrera M, Menegon M, Martínez-Espinosa FE, Padilla N, Bôtto-Menezes C, Malheiro A, Hans D, Castellanos ME, Robinson L, Samol P, Kochar S, Kochar SK, Kochar DK, Desai M, Sanz S, Quintó L, Mayor A, Rogerson S, Mueller I, Severini C, Del Portillo HA, Bardají A, Chitnis CC, Menéndez C, Dobaño C. Naturally Acquired Binding-Inhibitory Antibodies to Plasmodium vivax Duffy Binding Protein in Pregnant Women Are Associated with Higher Birth Weight in a Multicenter Study. Front Immunol 2017; 8:163. [PMID: 28261219 PMCID: PMC5313505 DOI: 10.3389/fimmu.2017.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
A vaccine to eliminate malaria would need a multi-stage and multi-species composition to achieve robust protection, but the lack of knowledge about antigen targets and mechanisms of protection precludes the development of fully efficacious malaria vaccines, especially for Plasmodium vivax (Pv). Pregnant women constitute a risk population who would greatly benefit from a vaccine preventing the adverse events of Plasmodium infection during gestation. We hypothesized that functional immune responses against putative targets of naturally acquired immunity to malaria and vaccine candidates will be associated with protection against malaria infection and/or poor outcomes during pregnancy. We measured (i) IgG responses to a large panel of Pv and Plasmodium falciparum (Pf) antigens, (ii) the capacity of anti-Pv ligand Duffy binding protein (PvDBP) antibodies to inhibit binding to Duffy antigen, and (iii) cellular immune responses to two Pv antigens, in a subset of 1,056 pregnant women from Brazil, Colombia, Guatemala, India, and Papua New Guinea (PNG). There were significant intraspecies and interspecies correlations for most antibody responses (e.g., PfMSP119 versus PfAMA1, Spearman’s rho = 0.81). Women from PNG and Colombia had the highest levels of IgG overall. Submicroscopic infections seemed sufficient to boost antibody responses in Guatemala but not antigen-specific cellular responses in PNG. Brazil had the highest percentage of Duffy binding inhibition (p-values versus Colombia: 0.040; Guatemala: 0.047; India: 0.003, and PNG: 0.153) despite having low anti-PvDBP IgG levels. Almost all antibodies had a positive association with present infection, and coinfection with the other species increased this association. Anti-PvDBP, anti-PfMSP1, and anti-PfAMA1 IgG levels at recruitment were positively associated with infection at delivery (p-values: 0.010, 0.003, and 0.023, respectively), suggesting that they are markers of malaria exposure. Peripheral blood mononuclear cells from Pv-infected women presented fewer CD8+IFN-γ+ T cells and secreted more G-CSF and IL-4 independently of the stimulus used in vitro. Functional anti-PvDBP levels at recruitment had a positive association with birth weight (difference per doubling antibody levels: 45 g, p-value: 0.046). Thus, naturally acquired binding-inhibitory antibodies to PvDBP might confer protection against poor outcomes of Pv malaria in pregnancy.
Collapse
Affiliation(s)
- Pilar Requena
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | | | | | - Flor E Martínez-Espinosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Amazonia, Brazil
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala , Guatemala City , Guatemala
| | - Camila Bôtto-Menezes
- Instituto Leônidas e Maria Deane (ILMD/Fiocruz Amazonia), Amazonia, Brazil; Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas , Manaus , Brazil
| | - Dhiraj Hans
- International Center for Genetic Engineering and Biotechnology , Delhi , India
| | | | - Leanne Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; Macfarlane Burnet Institute of Medical Research, Melbourne, VIC, Australia; Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Paula Samol
- Papua New Guinea Institute of Medical Research , Madang , Papua New Guinea
| | - Swati Kochar
- Medical College Bikaner , Bikaner, Rajasthan , India
| | | | | | - Meghna Desai
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Malaria Branch , Atlanta, GA , USA
| | - Sergi Sanz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Llorenç Quintó
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | | | - Ivo Mueller
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | | | - Hernando A Del Portillo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain; ICREA, Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Chetan C Chitnis
- International Center for Genetic Engineering and Biotechnology , Delhi , India
| | - Clara Menéndez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| | - Carlota Dobaño
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona , Barcelona, Catalonia , Spain
| |
Collapse
|
26
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
27
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Kerkhof K, Sluydts V, Willen L, Kim S, Canier L, Heng S, Tsuboi T, Sochantha T, Sovannaroth S, Ménard D, Coosemans M, Durnez L. Serological markers to measure recent changes in malaria at population level in Cambodia. Malar J 2016; 15:529. [PMID: 27809852 PMCID: PMC5096337 DOI: 10.1186/s12936-016-1576-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Serological markers for exposure to different Plasmodium species have recently been used in multiplex immunoassays based on the Luminex technology. However, interpretation of the assay results requires consideration of the half-life of specific antibodies against these markers. Therefore, the aim of the present study was to document the half-life of malaria specific serological makers, as well as assessing the sensitivity of these markers to pick up recent changes in malaria exposure. Methods A recently developed multiplex immunoassay was used to measure the intensity of antibody (Ab) responses against 19 different Plasmodium specific antigens, covering different human malaria parasites and two vector saliva antigens. Therefore, 8439 blood samples from five cross-sectional surveys in Ratanakiri, Cambodia, were analysed. These involve a random selection from two selected surveys, and an additional set of blood samples of individuals that were randomly re-sampled three, four or five times. A generalized estimating equation model and linear regression models were fitted on log transformed antibody intensity data. Results Results showed that most (17/21) Ab-responses are higher in PCR positive than PCR negative individuals. Furthermore, these antibody-responses follow the same upward trend within each age group. Estimation of the half-lives showed differences between serological markers that reflect short- (seasonal) and long-term (year round) transmission trends. Ab levels declined significantly together with a decrease of PCR prevalence in a group of malaria endemic villages. Conclusion For Plasmodium falciparum, antibodies against LSA3.RE, GLURP and Pf.GLURP.R2 are most likely to be a reflexion of recent (range from 6 to 8 months) exposure in the Mekong Subregion. PvEBP is the only Plasmodium vivax Ag responding reasonably well, in spite of an estimated Ab half-life of more than 1 year. The use of Ab intensity data rather dichotomizing the continuous Ab-titre data (positive vs negative) will lead to an improved approach for serological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1576-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen Kerkhof
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Vincent Sluydts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Laura Willen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Saorin Kim
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lydie Canier
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Somony Heng
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tho Sochantha
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Siv Sovannaroth
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Didier Ménard
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marc Coosemans
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
29
|
Yao MX, Sun XD, Gao YH, Cheng ZB, Deng WW, Zhang JJ, Wang H. Multi-epitope chimeric antigen used as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area of China-Myanmar. Infect Dis Poverty 2016; 5:98. [PMID: 27604628 PMCID: PMC5015264 DOI: 10.1186/s40249-016-0194-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/02/2016] [Indexed: 11/28/2022] Open
Abstract
Background Following the decline of malaria transmission in many countries and regions, serological parameters have become particularly useful for estimating malaria transmission in low-intensity areas. This study evaluated a novel serological marker, Malaria Random Constructed Antigen-1 (M.RCAg-1), which contains 11 epitopes from eight Plasmodium falciparum antigens, as a tool for assessing malaria transmission intensity along the border area of China-Myanmar. Method Serum from Plasmodium falciparum and P. vivax patients was used to detect the properties of M.RCAg-1 and antibody responses. Cross-sectional surveys were conducted at the China-Myanmar border and in Hainan province in 2012 and 2013 using cluster sampling. Filter blood spot papers were collected from all participants. Antibodies against M.RCAg-1 were detected using indirect ELISA. The Mann–Whitney test and Spearman’s rank correlation test were performed to analyze antibody data. P. falciparum malaria transmission intensity was estimated using a catalytic conversion model based on the maximum likelihood of generating a community seroconversion rate (SCR). Results M.RCAg-1 was well-recognized by the naturally acquired anti-malaria antibodies in P. falciparum patients and had very limited cross-reactivity with P. vivax infection. The total amount of IgG antibodies was decreased with the decrease in parasitemia after taking medication and lasted several weeks. In a population survey, the antibody levels were higher in residents living close to the China-Myanmar border than those living in non-epidemic areas (P < 0.0001), but no significant difference was observed between residents from Hainan and non-epidemic areas. The calculated SCR was 0.0128 for Jieyangka, 0.004 for Susuzhai, 0.0047 for Qiushan, and 0.043 for Kayahe. The estimated exposure rate obtained from the anti-M.RCAg-1 antibody level correlated with traditional measures of transmission intensity derived from altitude. Conclusion Our study demonstrates that M.RCAg-1 is potentially useful as a serological indicator of exposure to P. falciparum malaria, especially for malaria surveillance in low transmission areas. Electronic supplementary material The online version of this article (doi:10.1186/s40249-016-0194-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei-Xue Yao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiao-Dong Sun
- Yunnan Institute of Parasitic Diseases, Puer, Yunnan, China
| | - Yu-Hui Gao
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhi-Bin Cheng
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei-Wei Deng
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jia-Jia Zhang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
30
|
Cassiano GC, Furini AAC, Capobianco MP, Storti-Melo LM, Almeida ME, Barbosa DRL, Póvoa MM, Nogueira PA, Machado RLD. Immunogenetic markers associated with a naturally acquired humoral immune response against an N-terminal antigen of Plasmodium vivax merozoite surface protein 1 (PvMSP-1). Malar J 2016; 15:306. [PMID: 27255376 PMCID: PMC4891883 DOI: 10.1186/s12936-016-1350-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 01/13/2023] Open
Abstract
Background Humoral immune responses against proteins of asexual blood-stage malaria parasites have been associated with clinical immunity. However, variations in the antibody-driven responses may be associated with a genetic component of the human host. The objective of the present study was to evaluate the influence of co-stimulatory molecule gene polymorphisms of the immune system on the magnitude of the humoral immune response against a Plasmodium vivax vaccine candidate antigen. Methods Polymorphisms in the CD28, CTLA4, ICOS, CD40, CD86 and BLYS genes of 178 subjects infected with P. vivax in an endemic area of the Brazilian Amazon were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The levels of IgM, total IgG and IgG subclasses specific for ICB2-5, i.e., the N-terminal portion of P. vivax merozoite surface protein 1 (PvMSP-1), were determined by enzyme-linked immuno assay. The associations between the polymorphisms and the antibody response were assessed by means of logistic regression models. Results After correcting for multiple testing, the IgG1 levels were significantly higher in individuals recessive for the single nucleotide polymorphism rs3116496 in CD28 (p = 0.00004). Furthermore, the interaction between CD28 rs35593994 and BLYS rs9514828 had an influence on the IgM levels (p = 0.0009). Conclusions The results of the present study support the hypothesis that polymorphisms in the genes of co-stimulatory components of the immune system can contribute to a natural antibody-driven response against P. vivax antigens. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1350-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Capatti Cassiano
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil. .,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.
| | - Adriana A C Furini
- Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Marcela P Capobianco
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Luciane M Storti-Melo
- Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Maria E Almeida
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Danielle R L Barbosa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Paulo A Nogueira
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Ricardo L D Machado
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.,Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| |
Collapse
|
31
|
Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, Yang Z, Wang Y, Yan G, Shang H, Cao Y, Fan Q, Cui L. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 2016; 11:e0151900. [PMID: 26999435 PMCID: PMC4801383 DOI: 10.1371/journal.pone.0151900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a marker of recent exposure to P. vivax in epidemiological studies.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/immunology
- Antibody Formation/immunology
- Asia, Southeastern/epidemiology
- Child
- Child, Preschool
- Demography
- Follow-Up Studies
- Humans
- Immunoglobulin G/immunology
- Infant
- Logistic Models
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Merozoite Surface Protein 1/chemistry
- Merozoite Surface Protein 1/immunology
- Molecular Weight
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protein Structure, Tertiary
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Min Zhu
- School of Humanities and Social Science, China Medical University, Shenyang, Liaoning, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Ying Wang
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, United States of America
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, United States of America
- * E-mail: (YC); (QF); (LC)
| |
Collapse
|
32
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Rodrigues-da-Silva RN, Martins da Silva JH, Singh B, Jiang J, Meyer EVS, Santos F, Banic DM, Moreno A, Galinski MR, Oliveira-Ferreira J, Lima-Junior JDC. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9. PLoS One 2016; 11:e0146951. [PMID: 26788998 PMCID: PMC4720479 DOI: 10.1371/journal.pone.0146951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.
Collapse
Affiliation(s)
| | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Esmeralda V. S. Meyer
- Environmental Health and Safety Office, Emory University, Atlanta, GA, United States of America
| | - Fátima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory of Simulids and Onchocerciasis "Malaria and Onchocerciasis Research", Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| |
Collapse
|
34
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
35
|
Sánchez-Arcila JC, de França MM, Pereira VA, Vasconcelos MPA, Têva A, Perce-da-Silva DDS, Neto JR, Aprígio CJL, Lima-Junior JDC, Rodrigues MM, Soares IS, Banic DM, Oliveira-Ferreira J. The influence of intestinal parasites on Plasmodium vivax-specific antibody responses to MSP-119 and AMA-1 in rural populations of the Brazilian Amazon. Malar J 2015; 14:442. [PMID: 26546161 PMCID: PMC4636833 DOI: 10.1186/s12936-015-0978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. METHODS A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. RESULTS The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. CONCLUSIONS The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA-1 and MSP-119. However, IgG response to both AMA1 and MSP1 were lower in individuals with intestinal parasites.
Collapse
Affiliation(s)
- Juan Camilo Sánchez-Arcila
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Marcelle Marcolino de França
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Virginia Araujo Pereira
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | | | - Antonio Têva
- Laboratório de Imunodiagnóstico, Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública/Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | - Josue da Costa Lima-Junior
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Mauricio Martins Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.
| | - Irene Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdadede Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| | - Dalma Maria Banic
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Joseli Oliveira-Ferreira
- Laboratorio de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Kerkhof K, Canier L, Kim S, Heng S, Sochantha T, Sovannaroth S, Vigan-Womas I, Coosemans M, Sluydts V, Ménard D, Durnez L. Implementation and application of a multiplex assay to detect malaria-specific antibodies: a promising tool for assessing malaria transmission in Southeast Asian pre-elimination areas. Malar J 2015; 14:338. [PMID: 26337785 PMCID: PMC4558921 DOI: 10.1186/s12936-015-0868-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiological surveillance is a key activity in malaria control and elimination in low-transmission and pre-elimination settings. Hence, sensitive tools for estimating malaria force of infection are crucial. Serological markers might provide additional information in estimating force of infection in low-endemic areas along with classical parasite detection methods. Serological markers can be used to estimate recent, past or present malaria exposure, depending on the used markers and their half-life. Methods An assay based on 14 Plasmodium-specific peptides, one peptide specific for Anopheles gambiae saliva protein and five Plasmodium-specific recombinant proteins was developed for the MAGPIX system, assessed for its performance, and applied on blood spots from 2000 individuals collected in the Ratanakiri Province, Cambodia. Results A significant correlation for the use of 1000 and 2000 beads/antigen/well as well as for the monoplex versus multiplex assay was observed for all antigens (p < 0.05). For the majority of antigens, antigen-coupled beads were stable for at least 2 months. The assay was very reproducible with limited intercoupling, interplate and intraplate variability (mean RSD <15 %). Estimating seroconversion and seroreversion per antigen using reversible catalytic models and models allowing two seroconversion rates showed higher seroconversion rates in adults. Conclusion The multiplex bead-based immunoassay was successfully implemented and analysis of field blood samples shows that changes detected in force of malaria infection vary according to the serological markers used. Multivariate analysis of the antibody responses and insights into the half-life of antibodies are crucial for improving the interpretation of these results and for identifying the most useful serological markers of past and recent malaria infection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0868-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen Kerkhof
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Lydie Canier
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Saorin Kim
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Somony Heng
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Tho Sochantha
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Siv Sovannaroth
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Inès Vigan-Womas
- Infectious Diseases Immunology, Institut Pasteur de Madagascar, Antananarivo, Madagascar.
| | - Marc Coosemans
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Vincent Sluydts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biology, University of Antwerp, Antwerp, Belgium.
| | - Didier Ménard
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
37
|
Perraut R, Richard V, Varela ML, Trape JF, Guillotte M, Tall A, Toure A, Sokhna C, Vigan-Womas I, Mercereau-Puijalon O. Comparative analysis of IgG responses to Plasmodium falciparum MSP1p19 and PF13-DBL1α1 using ELISA and a magnetic bead-based duplex assay (MAGPIX®-Luminex) in a Senegalese meso-endemic community. Malar J 2014; 13:410. [PMID: 25326042 PMCID: PMC4221706 DOI: 10.1186/1475-2875-13-410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Background Numerous Plasmodium falciparum antigens elicit humoral responses in humans living in endemic areas. Use of multiplex assays is a convenient approach to monitor the antibody response against multiple antigens, but to integrate multiplex assay-derived data with datasets, generated previously using ELISA, comparative studies are needed. This work compares antibody responses to two P. falciparum antigens monitored using both technologies. Methods The IgG response against the merozoite surface protein-1 PfMSP1p19 and the PF13-DBL1α1 domain of the P. falciparum Erythrocyte Membrane Protein1, expressed by the rosette-forming parasite 3D7/PF13 (PF13), was investigated using ELISA and a MAGPIX®-Luminex duplex assay. Archived plasma samples collected before the rainy season from 217 villagers living in Ndiop, a Senegalese meso-endemic setting, were studied. ROC analysis was used to define the optimal antibody measure readout. Association of antibody levels with protection against clinical malaria was analysed using Poisson regression in a retrospective study from active case detection records performed during the 5.5-month transmission season that followed blood sampling. Results There was a strong positive correlation (P <10-3) between ELISA and MAGPIX®-Luminex-MFI (median fluorescence intensity) values for antibody to PfMSP1p19 (rho = 0.78) and PF13-DBL1α1 (rho = 0.89), with a similar degree of concordance in all age groups. Antibody levels to both antigens were high but displayed a different age-associated pattern. Independent age-adjusted Poisson regression analysis showed a significant association with protection only for IgG responses to MSP1p19 (P <0.01 RR = 0.71 [0.53-0.93]) measured by ELISA. Conclusion The individual ELISA and duplex-MAGPIX assays provide a concordant evaluation of age-associated antibody responses to MSP1p19 and PF13-DBL1α1, irrespective of the formulation of antibody levels (values, ratios or ROC-adjusted figures) but do diverge with regard to the association of antibody levels with clinical protection in age-adjusted models. This may reflect incomplete overlap of the epitopes presented in the two formats. Further development for multiplex assessment of antibody responses to a larger panel of antigens with the robust and cost effective MAGPIX®-Luminex technology is warranted. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-410) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Perraut
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cutts JC, Powell R, Agius PA, Beeson JG, Simpson JA, Fowkes FJI. Immunological markers of Plasmodium vivax exposure and immunity: a systematic review and meta-analysis. BMC Med 2014; 12:150. [PMID: 25199532 PMCID: PMC4172944 DOI: 10.1186/s12916-014-0150-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Identifying Plasmodium vivax antigen-specific antibodies associated with P. vivax infection and protective immunity is key to the development of serosurveillance tools and vaccines for malaria. Antibody targets of P. vivax can be identified by seroepidemiological studies of individuals living in P. vivax-endemic areas, and is an important strategy given the limited ability to culture P. vivax in vitro. There have been numerous studies investigating the association between P. vivax antibody responses and P. vivax infection, but there has been no standardization of results to enable comparisons across populations. METHODS We performed a systematic review with meta-analysis of population-based, cross-sectional, case-control, and cohort studies of individuals living in P. vivax-endemic areas. We searched 6 databases and identified 18 studies that met predefined inclusion and quality criteria, and examined the association between antibody responses to P. vivax antigens and P. vivax malaria. RESULTS The majority of studies were published in South America (all from Brazil) and the rest from geographically diverse areas in the Asia-Pacific region. Considerable heterogeneity in estimates was observed, but IgG responses to PvCSP, PvMSP-119, PvMSP-9RIRII, and PvAMA1 were associated with increased odds of P. vivax infection in geographically diverse populations. Potential sources of heterogeneity included study design, different transmission intensities and transmigrant populations. Protective associations were observed for antibodies to PvMSP-119, PvMSP-1NT, PvMSP-3α and PvMSP-9NT antigens, but only in single geographical locations. CONCLUSIONS This systematic review revealed several antigen-specific antibodies that were associated with active infection and protective immunity, which may be useful biomarkers. However, more studies are needed on additional antigens, particularly cohort studies to increase the body of evidence for protective immunity. More studies representing diverse geographical regions encompassing varying P. vivax endemicities are needed to validate the generalizability of the findings and to provide a solid evidence base for the use of P. vivax antigens in vaccines and serosurveillance tools.
Collapse
|
39
|
Decision-making on intra-household allocation of bed nets in Uganda: do households prioritize the most vulnerable members? Malar J 2014; 13:183. [PMID: 24885653 PMCID: PMC4030011 DOI: 10.1186/1475-2875-13-183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
Background Access to insecticide-treated bed nets has increased substantially in recent years, but ownership and use remain well below 100% in many malaria endemic areas. Understanding decision-making around net allocation in households with too few nets is essential to ensuring protection of the most vulnerable. This study explores household net allocation preferences and practices across four districts in Uganda. Methods Data collection consisted of eight focus group discussions, twelve in-depth interviews, and a structured questionnaire to inventory 107 sleeping spaces in 28 households. Results In focus group discussions and in-depth interviews, participants almost unanimously stated that pregnant women, infants, and young children should be prioritized when allocating nets. However, sleeping space surveys reveal that heads of household sometimes receive priority over children less than five years of age when households have too few nets to cover all members. Conclusions When asked directly, most net owners highlight the importance of allocating nets to the most biologically vulnerable household members. This is consistent with malaria behaviour change and health education messages. In actual allocation, however, factors other than biological vulnerability may influence who does and does not receive a net.
Collapse
|
40
|
Cheng Y, Shin EH, Lu F, Wang B, Choe J, Tsuboi T, Han ET. Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development. Microbes Infect 2014; 16:419-28. [PMID: 24560875 DOI: 10.1016/j.micinf.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
Abstract
The newly identified GPI-anchored Plasmodium vivax merozoite surface protein 1 paralog (MSP1P) has a highly antigenic C-terminus that binds erythrocytes. To characterize the antigenicity and immunogenicity of two regions (PvMSP1P-19 and -33) of the highly conserved C-terminus of MSP1P relative to PvMSP1-19, 30 P. vivax malaria-infected patients and two groups of mice (immunized with PvMSP1P-19 or -33) were tested for IgG subclass antibodies against PvMSP1P-19 and -33 antigens. In the patients infected with P. vivax, IgG1 and IgG3 levels were significantly higher than those levels in healthy individuals, and were the predominant response to the two C-terminal fragments of PvMSP1P (p < 0.05). In mice immunized with PvMSP1P-19, IgG1 levels were the highest while IgG2b levels were similar to IgG1 levels. The levels of Th1 cytokines in mice immunized with PvMSP1P-19 or -33 were significantly higher than those in mice immunized with PvMSP1-19 (p < 0.05). Our results indicate that: (i) IgG1 and IgG3 (IgG2b in mice) are predominant IgG subclasses in both patients infected with P. vivax and mice immunized with PvMSP1P-19 or -33; (ii) the C-terminus of MSP1P induces a Th1-cytokine response. This immune profiling study provides evidence that MSP1P may be a potential candidate for vivax vaccine.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea.
| |
Collapse
|
41
|
DuVall AS, Fairley JK, Sutherland L, Bustinduy AL, Mungai PL, Muchiri EM, Malhotra I, Kitron U, King CH. Development of a specimen-sparing multichannel bead assay to detect antiparasite IgG4 for the diagnosis of Schistosoma and Wuchereria infections on the coast of Kenya. Am J Trop Med Hyg 2014; 90:638-45. [PMID: 24515945 DOI: 10.4269/ajtmh.13-0292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
To better delineate the impact of parasitic coinfection in coastal Kenya, we developed a novel specimen-sparing bead assay using multiplex flow immunoassay (MFI) technology to simultaneously measure serum or plasma immunoglobulin G4 (IgG4) against Brugia malayi antigen (BMA) and Schistosoma haematobium soluble worm antigen (SWAP). Properties of the bead assay were estimated by latent class analysis using data from S. haematobium egg counts/filarial rapid diagnostic cards (RDTs), parasite-specific enzyme-linked immunosorbent assays (ELISAs), and the multichannel IgG4 assay. For schistosomiasis, the bead assay had an estimated sensitivity of 81% and a specificity of 45%, and it was more sensitive than ELISA or urine egg counts for diagnosing infection. For filariasis, it had a sensitivity of 86% and a specificity of 39%, and it was more sensitive than ELISA or RDT. Measuring antibody by MFI is feasible and may provide more accurate epidemiological information than current parasitological tests, especially in the setting of low-intensity infections.
Collapse
Affiliation(s)
- Adam S DuVall
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Division of Vector Borne and Neglected Tropical Diseases, Ministry of Public Health and Sanitation, Nairobi, Kenya; Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Han ET. Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev Mol Diagn 2014; 13:205-18. [DOI: 10.1586/erm.12.144] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
N-terminal Plasmodium vivax merozoite surface protein-1, a potential subunit for malaria vivax vaccine. Clin Dev Immunol 2013; 2013:965841. [PMID: 24187566 PMCID: PMC3804292 DOI: 10.1155/2013/965841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1), which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.
Collapse
|
44
|
Versiani FG, Almeida MEM, Melo GC, Versiani FOL, Orlandi PP, Mariúba LAM, Soares LA, Souza LP, da Silva Balieiro AA, Monteiro WM, Costa FTM, del Portillo HA, Lacerda MVG, Nogueira PA. High levels of IgG3 anti ICB2-5 in Plasmodium vivax-infected individuals who did not develop symptoms. Malar J 2013; 12:294. [PMID: 23977965 PMCID: PMC3844576 DOI: 10.1186/1475-2875-12-294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium vivax has the potential to infect 2.85 billion individuals worldwide. Nevertheless, the limited number of studies investigating the immune status of individuals living in malaria-endemic areas, as well as the lack of reports investigating serological markers associated with clinical protection, has hampered development of vaccines for P. vivax. It was previously demonstrated that naturally total IgG against the N-terminus of P. vivax merozoite surface protein 1 (Pv-MSP1) was associated with reduced risk of malarial infection. Methods Immune response against Pv-MSP1 (N-terminus) of 313 residents of the Rio Pardo rural settlement (Amazonas State, Brazil) was evaluated in a cross-sectional and longitudinal follow up over two months (on site) wherein gold standard diagnosis by thick blood smear and rRNA gene-based nested real-time PCR were used to discriminate symptomless Plasmodium vivax-infected individuals who did not develop clinical symptoms during a 2-months from those uninfected ones or who have had acute malaria. The acquisition of antibodies against Pv-MSP1 was also evaluated as survival analysis by prospective study over a year collecting information of new malaria infections in surveillance database. Results The majority of P. vivax-infected individuals (52-67%) showed immune recognition of the N-terminus of Pv-MSP1. Interesting data on infected individuals who have not developed symptoms, total IgG levels against the N-terminus Pv-MSP1 were age-dependent and the IgG3 levels were significantly higher than levels of subjects had acute malaria or those uninfected ones. The total IgG anti ICB2-5 was detected to be an important factor of protection against new malaria vivax attacks in survival analysis in a prospective survey (p = 0.029). Conclusions The study findings illustrate the importance of IgG3 associated to 2-months of symptomless in P. vivax infected individuals and open perspectives for the rationale of malaria vaccine designs capable to sustain high levels of IgG3 against polymorphic malaria antigens.
Collapse
Affiliation(s)
- Fernanda G Versiani
- Instituto Leônidas e Maria Deane - Fiocruz, Rua Teresina 476, 69057-070 Manaus, AM, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81:1585-95. [PMID: 23460511 DOI: 10.1128/iai.01117-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P. vivax merozoite surface protein 1 paralog (PvMSP1P; PlasmoDB PVX_099975), was recently identified and predicted as a GPI-AP. The similarities in genetic structural characteristics between PvMSP1 and PvMSP1P (e.g., size of open reading frames, two epidermal growth factor-like domains, and GPI anchor motif in the C terminus) led us to study this protein. In the present study, different regions of the PvMSP1P protein, demarcated based on the processed forms of PvMSP1, were expressed successfully as recombinant proteins [i.e., 83 (A, B, and C), 30, 38, 42, 33, and 19 fragments]. We studied the naturally acquired immune response against each fragment of recombinant PvMSP1P and the potential ability of each fragment to bind erythrocytes. The N-terminal fragment (83A) and two C-terminal fragments (33 and 19) reacted strongly with sera from P. vivax-infected patients, with 50 to 68% sensitivity and 95 to 96% specificity, respectively. Due to colocalization of PvMSP1P with PvMSP1, we supposed that PvMSP1P plays a similar role as PvMSP1 during erythrocyte invasion. An in vitro cytoadherence assay showed that PvMSP1P, especially the 19-kDa C-terminal region, could bind to erythrocytes. We also found that human sera from populations naturally exposed to vivax malaria and antisera obtained by immunization using the recombinant molecule PvMSP1P-19 inhibited in vitro binding of human erythrocytes to PvMSP1P-19. These results provide further evidence that the PvMSP1P might be an essential parasite adhesion molecule in the P. vivax merozoite and is a potential vaccine candidate against P. vivax.
Collapse
|
46
|
Ondigo BN, Park GS, Gose SO, Ho BM, Ochola LA, Ayodo GO, Ofulla AV, John CC. Standardization and validation of a cytometric bead assay to assess antibodies to multiple Plasmodium falciparum recombinant antigens. Malar J 2012; 11:427. [PMID: 23259607 PMCID: PMC3546950 DOI: 10.1186/1475-2875-11-427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/20/2012] [Indexed: 11/30/2022] Open
Abstract
Background Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Methods Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Results Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. Conclusion With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA.
Collapse
Affiliation(s)
- Bartholomew N Ondigo
- Department of Biomedical Science and Technology, Maseno University, Maseno, Kenya.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Jepsen MPG, Röser D, Christiansen M, Olesen Larsen S, Cavanagh DR, Dhanasarnsombut K, Bygbjerg I, Dodoo D, Remarque EJ, Dziegiel M, Jepsen S, Mordmüller B, Theisen M. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure. J Immunol Methods 2012; 384:62-70. [PMID: 22835432 DOI: 10.1016/j.jim.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Transfusion transmitted malaria (TTM) in non-endemic countries is reduced by questioning blood donors and screening of donated blood. Conventional screening is performed by Indirect Fluorescence Antibody Test (IFAT). This method is manual and difficult to standardize. Here we study the diagnostic performance of a multiplex assay for detection of antibodies against Plasmodium falciparum in donor blood using IFAT as a comparator. A multiplex assay (MPA) containing the antigens GLURP-R0, GLURP-R2, MSP3, MSP1 hybrid and AMA1 was constructed using xMAP® technology. A discrimination index for exposure to P. falciparum malaria was calculated by comparing travelers with clinical malaria (n=52) and non-exposed blood donors (n=119). The index was evaluated on blood donors with suspected malaria exposure (n=249) and compared to the diagnostic performance of IFAT. At a specificity of 95.8 %, the MPA discrimination index exhibited a diagnostic sensitivity of 90.4 % in travelers hospitalized with malaria. Percent agreement with IFAT was 92.3 %. Screening plasma from blood donors with suspected malaria exposure, we found 4.8 % to be positive by IFAT and 5.2 % by MPA with an agreement of 93.2 %. The calculated index from the MPA exhibits similar diagnostic performance as IFAT for detection of P. falciparum malaria. Combining the antibody response against multiple antigens in a discrimination index increased the sensitivity of the MPA and reduced the readout to a single value.
Collapse
|
48
|
Sarr JB, Samb B, Sagna AB, Fortin S, Doucoure S, Sow C, Senghor S, Gaayeb L, Guindo S, Schacht AM, Rogerie F, Hermann E, Dia I, Konate L, Riveau G, Remoue F. Differential acquisition of human antibody responses to Plasmodium falciparum according to intensity of exposure to Anopheles bites. Trans R Soc Trop Med Hyg 2012; 106:460-7. [PMID: 22721883 DOI: 10.1016/j.trstmh.2012.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 11/16/2022] Open
Abstract
Malaria immunity is modulated by many environmental and epidemiological factors. This study evaluates the influence of a hitherto unstudied environmental-epidemiological factor, namely the impact of human exposure to Anopheles bites on the isotype profile of acquired antibody responses to Plasmodium falciparum. In two Senegalese villages where the intensity of exposure to Anopheles bites was markedly different (high and low exposure), specific IgG1 and IgG3 responses to P. falciparum whole schizont extract (WSE) and circumsporozoite protein (CSP) were evaluated at the peak of Anopheles exposure (September) and later (December) in a cohort of 120 children aged 3-8 years. Multivariate analysis showed a significantly lower IgG1 response against P. falciparum WSE and CSP in children highly exposed to Anopheles bites (Gankette) compared to those who were weakly exposed (Mboula). In contrast, in both villages, parasitemia and increasing age were strongly associated with higher IgG1 and IgG3 levels. We hypothesize that high exposure to Anopheles bites could inhibit IgG1-dependent responsiveness to P. falciparum known to induce protective immune responses against malaria. The impact of mosquito saliva on the regulation of specific protective immunity may need to be taken into account in epidemiological studies and trials for malaria vaccines.
Collapse
Affiliation(s)
- Jean Biram Sarr
- Unité de recherche mixte MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mourão LC, Morais CG, Bueno LL, Jimenez MC, Soares IS, Fontes CJ, Guimarães Lacerda MV, Xavier MS, Barnwell JW, Galinski MR, Braga EM. Naturally acquired antibodies to Plasmodium vivax blood-stage vaccine candidates (PvMSP-1₁₉ and PvMSP-3α₃₅₉₋₇₉₈ and their relationship with hematological features in malaria patients from the Brazilian Amazon. Microbes Infect 2012; 14:730-9. [PMID: 22445906 DOI: 10.1016/j.micinf.2012.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/22/2023]
Abstract
An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-1₁₉ and PvMSP-3α₃₅₉₋₇₉₈. Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-1₁₉ was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3α₃₅₉₋₇₉₈. Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3α), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3α₃₅₉₋₇₉₈ during natural infection.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yildiz Zeyrek F, Palacpac N, Yuksel F, Yagi M, Honjo K, Fujita Y, Arisue N, Takeo S, Tanabe K, Horii T, Tsuboi T, Ishii KJ, Coban C. Serologic markers in relation to parasite exposure history help to estimate transmission dynamics of Plasmodium vivax. PLoS One 2011; 6:e28126. [PMID: 22140521 PMCID: PMC3226671 DOI: 10.1371/journal.pone.0028126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax infection has been gaining attention because of its re-emergence in several parts of the world. Southeastern Turkey is one of the places in which persistent focal malaria caused exclusively by P. vivax parasites occurs. Although control and elimination studies have been underway for many years, no detailed study has been conducted to understand the mechanisms underlying the ineffective control of malaria in this region. Here, for the first time, using serologic markers we try to extract as much information as possible in this region to get a glimpse of P. vivax transmission. We conducted a sero-immunological study, evaluating antibody responses of individuals living in Sanliurfa to four different P. vivax antigens; three blood-stage antigens (PvMSP1₁₉, PvAMA1-ecto, and PvSERA4) and one pre-erythrocytic stage antigen (PvCSP). The results suggest that a prior history of malaria infection and age can be determining factors for the levels and sustainability of naturally acquired antibodies. Significantly higher antibody responses to all the studied antigens were observed in blood smear-negative individuals with a prior history of malaria infection. Moreover, these individuals were significantly older than blood smear-negative individuals with no prior history of infection. These data from an area of sole P. vivax-endemic region may have important implications for the global malaria control/elimination programs and vaccine design.
Collapse
Affiliation(s)
- Fadile Yildiz Zeyrek
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Microbiology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Nirianne Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Fehmi Yuksel
- Department of Microbiology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Masanori Yagi
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Honjo
- Global Collaboration Center, Osaka University, Osaka, Japan
| | - Yukiko Fujita
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nobuko Arisue
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satoru Takeo
- Cell-Free Science and Technology Research Center, Ehime University, Ehime, Japan
| | - Kazuyuki Tanabe
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takafumi Tsuboi
- Cell-Free Science and Technology Research Center, Ehime University, Ehime, Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Cevayir Coban
- Laboratory of Malaria Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|