1
|
Mahillon M, Debonneville C, Groux R, Roquis D, Brodard J, Faoro F, Foissac X, Schumpp O, Dittmer J. From insect endosymbiont to phloem colonizer: comparative genomics unveils the lifestyle transition of phytopathogenic Arsenophonus strains. mSystems 2025; 10:e0149624. [PMID: 40202301 PMCID: PMC12090721 DOI: 10.1128/msystems.01496-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Bacteria infecting the plant phloem represent a growing threat worldwide. While these organisms often resist in vitro culture, they multiply both in plant sieve elements and hemipteran vectors. Such cross-kingdom parasitic lifestyle has emerged in diverse taxa via distinct ecological routes. In the genus Arsenophonus, the phloem pathogens "Candidatus Arsenophonus phytopathogenicus" (Ap) and "Ca. Phlomobacter fragariae" (Pf) have evolved from insect endosymbionts, but the genetic mechanisms underlying this transition have not been explored. To fill this gap, we obtained the genomes of both strains from insect host metagenomes. The resulting assemblies are highly similar in size and functional repertoire, rich in viral sequences, and closely resemble the genomes of several facultative endosymbiotic Arsenophonus strains of sap-sucking hemipterans. However, a phylogenomic analysis demonstrated distinct origins, as Ap belongs to the "Triatominarum" clade, whereas Pf represents a distant species. We identified a set of orthologs encoded only by Ap and Pf in the genus, including hydrolytic enzymes likely targeting plant substrates. In particular, both bacteria encode putative plant cell wall-degrading enzymes and cysteine peptidases related to xylellain, a papain-like peptidase from Xylella fastidiosa, for which close homologs are found in diverse Pseudomonadota infecting the plant vasculature. In silico predictions and gene expression analyses further support a role during phloem colonization for several of the shared orthologs. We conclude that the double emergence of phytopathogenicity in Arsenophonus may have been mediated by a few horizontal gene transfer events, involving genes acquired from other Pseudomonadota, including phytopathogens. IMPORTANCE We investigate the genetic mechanisms of a transition in bacterial lifestyle. We focus on two phloem pathogens belonging to the genus Arsenophonus: "Candidatus Arsenophonus phytopathogenicus" and "Ca. Phlomobacter fragariae." Both bacteria cause economically significant pathologies, and they have likely emerged among facultative insect endosymbionts. Our genomic analyses show that both strains are highly similar to other strains of the genus associated with sap-sucking hemipterans, suggesting a recent lifestyle shift. Importantly, although the phytopathogenic Arsenophonus strains belong to distant clades, they share a small set of orthologs unique in the genus pangenome. We provide evidence that several of these genes produce hydrolytic enzymes that are secreted and may target plant substrates. The acquisition and exchange of these genes may thus have played a pivotal role in the lifestyle transition of the phytopathogenic Arsenophonus strains.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | | | - Raphaël Groux
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - David Roquis
- Haute école du paysage, d'ingénierie et d'architecture de Genève, Geneva, Switzerland
| | - Justine Brodard
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Franco Faoro
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
| | - Xavier Foissac
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Bordeaux, France
| | - Olivier Schumpp
- Research group Virology, Bacteriology and Phytoplasmology, Agroscope, Nyon, Switzerland
| | - Jessica Dittmer
- Dipartimento di Scienze agrarie e ambientali, Università degli Studi di Milano, Milano, Italy
- UMR 1345, Université d’Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
2
|
Muhigwa M, Gouba N, Bilgo E, Soma A, Michodigni F, Sanou YS, Diabate A, Ouedraogo AS. Epidemiology of Intracellular Bacterial Pathogens Rickettsia Spp., Borrelia Spp., Coxiella Spp., and Bartonella Spp. in West Africa from 2000 to 2023: A Systematic Review. Vector Borne Zoonotic Dis 2025. [PMID: 40336454 DOI: 10.1089/vbz.2025.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Background: Intracellular bacteria such as Rickettsia spp., Borrelia spp., Coxiella spp., and Bartonella spp. cause febrile illnesses similar to malaria and arboviruses, leading to under-reporting in sub-Saharan Africa. Methods: Following Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines, we included studies on these bacteria in humans, animals, and vectors in West Africa (2000-2023). Case reports, editorials, studies on other pathogens, and coinfections were excluded. Data was retrieved from African Journals Online, Google Scholar, and PubMed (last search: December 31, 2023). The risk of bias was assessed using an adapted Cochrane RoB 2.0 tool. Data were analyzed using Excel 2016 and QGIS. A random-effects model estimated prevalence, with subgroup analysis based on country, detection method, period, and host type. Heterogeneity was measured via the I2 index (>50% indicating moderate heterogeneity). Publication bias was assessed by stratifying studies by risk of bias. Results: Out of 27 articles included, 10 covered studies on Rickettsia spp., 5 Borrelia spp., 6 Coxiella spp., 3 Bartonella spp., and 3 both Rickettsia spp. and Coxiella spp. Among them, 10 studies focused on vectors, 5 on animals, 5 on humans, and 7 on One Health. The prevalence of Rickettsia spp. was the highest in humans, 19.46%, 95% confidence interval: [19.42-19.50]. Bartonella spp. had the highest prevalence in animals, 82.57%, 95% CI: [82.46-82.69], and vectors 37.62%, 95% CI: [37.53-37.71]. Prevalence increased significantly post 2010 (81.4%). PCR-based detection showed a higher prevalence (63%). In the risk-of-bias analysis, the quality of the studies, which were included, did not affect the results and overall validity of findings. Conclusion: Intracellular bacteria spread widely among humans, animals, and vectors. One Health approach is essential for managing zoonotic bacterial diseases in Africa. Variation in prevalence underlines the need for methodological standardization and future research should focus on harmonizing methods by integrating molecular methods.
Collapse
Affiliation(s)
- Merci Muhigwa
- Laboratoire des Pathogènes Emergents et Réémergents, Ecole doctorale Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Nina Gouba
- Laboratoire des Pathogènes Emergents et Réémergents, Ecole doctorale Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Unité de formation et de recherche en sciences de la vie et de la terre, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso, Burkina Faso
| | - Aboubakar Soma
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), CNRST, Bobo-Dioulasso, Burkina Faso
| | - Fernand Michodigni
- Laboratoire des Pathogènes Emergents et Réémergents, Ecole doctorale Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Yaya Sozanga Sanou
- Laboratoire des Pathogènes Emergents et Réémergents, Ecole doctorale Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso
| | - Abdoul-Salam Ouedraogo
- Laboratoire des Pathogènes Emergents et Réémergents, Ecole doctorale Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Centre MURAZ, Institut National de Santé Publique (INSP), Bobo-Dioulasso, Burkina Faso
- Bacteriology-Virology Laboratory, Souro Sanou University Hospital, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
3
|
Karounos M, Korla PK, Wilson J, Clarke S, Little S, Qurollo B. Isolation, culture, and genome analysis of Rickettsia oklahomensis sp. nov. (Rickettsiales: Rickettsiaceae) from Amblyomma americanum (Acari: Ixodidae). Ticks Tick Borne Dis 2025; 16:102482. [PMID: 40252332 DOI: 10.1016/j.ttbdis.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/11/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
An uncharacterized Rickettsia species was previously identified by molecular detection in Amblyomma americanum ticks from Oklahoma, a state reported to have high Rickettsia seroprevalence. Amblyomma americanum ticks are aggressive feeders capable of transmitting viral, protozoal and bacterial species that cause diseases in humans and animals. Discovering and characterizing novel microorganisms in this tick species is crucial for identifying potential new pathogens. Using A. americanum ticks collected from Oklahoma, we isolated, cultured and sequenced the entire genome of a previously detected, but uncharacterized, novel Rickettsia species. Triturated A. americanum ticks were used as inoculum to culture the novel Rickettsia species in Vero E6 cells, and qPCR testing confirmed the presence of the new Rickettsia species while ruling out the presence of other tick-borne organisms. The total genome size was 1.17 Mbp consisting of a complete chromosome with a 30.7 % G+C content (GenBank accession CP157197). We predicted 1037 genes, 997 coding gene open reading frames, along with 33 tRNAs, 4 ncRNAs and 3 rRNAs. This genome was most similar to Rickettsia canadensis strain CA410 at 91.1 % identity, based on average nucleotide identity analysis. A maximum-likelihood phylogeny tree, constructed using 636 concatenated core proteins, placed the novel Rickettsia species in a clade with Rickettsia canadensis. We propose the name Rickettsia oklahomensis sp. nov., strain Oklahoma 10, which is available from the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (WDCM 1093), Atlanta, GA, USA (CRIRC accession number ROK001).
Collapse
Affiliation(s)
- Michael Karounos
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Praveen Kumar Korla
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - James Wilson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sarah Clarke
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Susan Little
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Barbara Qurollo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
5
|
Morinaga G, Balcazar D, Badolo A, Iyaloo D, Tantely L, Mouillaud T, Sharakhova M, Geib SM, Paupy C, Ayala D, Powell JR, Gloria-Soria A, Soghigian J. From macro to micro: De novo genomes of Aedes mosquitoes enable comparative genomics among close and distant relatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632753. [PMID: 39868221 PMCID: PMC11760778 DOI: 10.1101/2025.01.13.632753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The yellow fever mosquito (Aedes aegypti) is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5). However, this reference genome was sourced from a highly inbred laboratory strain with unknown geographic origin. Thus, the reference is not representative of a wild mosquito, let alone one from its native range in sub-Saharan Africa. To better understand the genetic architecture of Ae. aegypti and their sister species, we developed two de novo chromosome-scale genomes with sequences sourced from single individuals: one of Ae. aegypti formosus (Aaf) from Burkina Faso and one of Ae. mascarensis (Am) from Mauritius. Both genomes exhibit high contiguity and gene completeness, comparable to AaegL5. While Aaf exhibits high degree of synteny to AaegL5, it also exhibits several large inversions. We further conducted comparative genomic analyses using our genomes and other publicly available culicid reference genomes to find extensive chromosomal rearrangements between major lineages. Overrepresentation analysis of expanded genes in Aaf, AaegL5, and Am revealed that while the overarching category of genes that have expanded are similar, the specific genes that have expanded differ. Our findings elucidate novel insights into chromosome evolution at both microevolutionary and macroevolutionary scales. The genomic resources we present are additions to the arsenal of biologists in understanding mosquito biology and genome evolution.
Collapse
Affiliation(s)
- Gen Morinaga
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Darío Balcazar
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Diana Iyaloo
- Vector Biology & Control Division, Ministry of Health & Quality of Life, Curepipe, Mauritius
| | - Luciano Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Theo Mouillaud
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Maria Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA, USA
| | - Scott M Geib
- USDA-ARS Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, HI, USA
| | - Christophe Paupy
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Diego Ayala
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- L'Institut de recherche pour le développment, UMR MIVEGEC, Montpellier, France
| | - Jeffrey R Powell
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
| | - Andrea Gloria-Soria
- Department of Ecology & Evolution, Yale University, New Haven, CT, USA
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John Soghigian
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Wang Y, Li R, Yin T, He Z, Lu Z, Shao Z, Long Y. Prevalence of Tick Infection with Bartonella in China: A Review and Meta-analysis. Acta Parasitol 2024; 69:2083-2095. [PMID: 39240447 PMCID: PMC11649704 DOI: 10.1007/s11686-024-00893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE Bartonellosis is a global vector-borne zoonosis caused by Bartonella, a genus of intracellular Gram-negative bacteria. It is one of 14 emerging infectious diseases that have recently been identified in China, and the prevalence varies by region. A more in-depth understanding is needed regarding the role and influencing factors of ticks in the transmission of Bartonella, including the infection rate of ticks with Bartonella in different regions. This study explored the prevalence of Bartonella in ticks and the factors that influence it. METHODS Databases (PubMed, Embase, Elsevier ScienceDirect, Cochrane Library, Web of Science, CNKI, VIP, CBM, and WanFang) were searched to review the preliminary research on Bartonella-carrying ticks in China. RESULTS We identified and included 22 articles. Bartonella infection rates in ticks varied from 0 to 22.79% examined by the included studies. Our meta-analysis revealed that the prevalence of Bartonella in ticks was 3.15% (95% CI: 1.22 - 5.82%); the prevalence was higher in parasitic ticks (4.90%; 95% CI: 1.39 -10.14%) than ticks seeking hosts (1.42%; 95% CI: 0.62 - 2.50%) (P = 0.047). CONCLUSION The prevalence of Bartonella in the southern region of China (6.45%) was higher than that in the northern region (1.28%) (P = 0.030). Knowledge of ticks' vectors and reservoir competence is crucial to reduce the disease burden.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ruishan Li
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ting Yin
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhen He
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhenhua Lu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Chevillon C, de Thoisy B, Rakestraw AW, Fast KM, Pechal JL, Picq S, Epelboin L, Le Turnier P, Dogbe M, Jordan HR, Sandel MW, Benbow ME, Guégan JF. Ecological and evolutionary perspectives advance understanding of mycobacterial diseases. THE LANCET. MICROBE 2024; 5:100906. [PMID: 39116907 DOI: 10.1016/s2666-5247(24)00138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Predicting the outbreak of infectious diseases and designing appropriate preventive health actions require interdisciplinary research into the processes that drive exposure to and transmission of disease agents. In the case of mycobacterial diseases, the epidemiological understanding of the scientific community hitherto was based on the clinical studies of infections in vertebrates. To evaluate the information gained by comprehensively accounting for the ecological and evolutionary constraints, we conducted literature searches assessing the role of mycobacteria interactions with non-vertebrate species in the origin of their pathogenicity and variations in disease risk. The reviewed literature challenges the current theory of person-to-person transmission for several mycobacterial infections. Furthermore, the findings suggest that diverse non-vertebrate organisms influence virulence, mediate transmission, and contribute to pathogen abundance in relation to vertebrate exposure. We advocate that an ecological and evolutionary framework provides novel insights to support a more comprehensive understanding of the prevention and management of diseases in vertebrates.
Collapse
Affiliation(s)
- Christine Chevillon
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France.
| | - Benoît de Thoisy
- Laboratoire des Interactions Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - Alex W Rakestraw
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Kayla M Fast
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Loïc Epelboin
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Paul Le Turnier
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, MS, USA
| | - Michael W Sandel
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA; Forest and Wildlife Research Center, Mississippi State University, MS, USA
| | - Mark Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA; Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA; Agbioresearch, Michigan State University, East Lansing, MI, USA
| | - Jean-François Guégan
- MIVEGEC, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut National de Recherches pour l'Agriculture, l'Alimentation et l'Environnement, Montpellier, France; Epidémiologie des maladies animales et zoonotiques, Université Clermont Auvergne, INRAE, VetAgro Sup, Saint-Genès-Champanelle, France; Epidémiologie des maladies animales et zoonotiques, Université de Lyon, INRAE, VetAgro Sup, Marcy l'Etoile, France
| |
Collapse
|
8
|
Kang T, Choi YJ, Kim J, Park HJ, Jang WJ. Whole genome sequence and comparative genomic analysis of novel Rickettsia koreansis strain CNH17-7 isolated from human. Eur J Clin Microbiol Infect Dis 2024; 43:1909-1918. [PMID: 39031268 DOI: 10.1007/s10096-024-04876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE To determine the genomic feature of novel spotted fever-causing Rickettsia koreansis strain CNH17-7, which is different from R. japonica that is a causative agent for Japanese spotted fever (JSF), and to perform its comparative genomic analysis. METHODS Whole genome sequencing (WGS) was performed on R. koreansis strain CNH17-7 by using the Illumina Miseq system. After WGS, assembly and annotation were done by SPAdes. Then, its genomic features were compared with 19 different Rickettsia species. Based on the average nucleotide identity (ANI) value, an unweighted pair group method with an arithmetic mean (UPGMA) dendrogram was generated. Following the dendrogram analysis, pan-and core-genome analysis was performed. Then additional comparative analyses with two genetically closest Rickettsia species were conducted based on gene repertoire. RESULTS R. koreansis strain CNH17-7 has a chromosome consisting of 1,392,633 bp with GC content of 32.4%. The ANI-derived UPGMA showed that R. koreansis strain CNH17-7 is genetically close to R. japonica YH and R. heilongjiangensis 054 but is distinctively differentiated. The ANI value of R. koreansis strain CNH17-7 to R. japonica YH and R. heilongjiangensis 054 are 98.14% and 98.04% respectively, indicating R. koreansis strain CNH17-7 is sufficient to be classified as a new species. Other than ANI, R. koreansis strain CNH17-7 also contains novel CDS and its COG functional category proportion which is distinct compared to R. japonica YH and R. heilongjiangensis 054. CONCLUSION We have revealed genomic features of the novel R. koreansis strain CNH17-7. Hence, we propose R. koreansis strain CNH17-7 as new Rickettsia species.
Collapse
Affiliation(s)
- Taeuk Kang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeon-Joo Choi
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jeoungyeon Kim
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hye-Jin Park
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Jong Jang
- Department of Microbiology, Konkuk University School of Medicine, College of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- Research Institute of Medical Science, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
9
|
Siehl R, Vyhnal K, Goffredi SK. Friendly fungi: Tropical insect families form partnerships with intracellular fungi related to pathogens. iScience 2024; 27:110674. [PMID: 39252957 PMCID: PMC11381767 DOI: 10.1016/j.isci.2024.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Sap-sucking insects fail to obtain vitamins, amino acids, and sterols from their plant diet. To compensate, obligate intracellular bacterial symbionts (usually Sulcia and Vidania) provide these missing nutrients. Notably, some planthoppers within the Fulgoromorpha (suborder Auchenorrhyncha) associate with intracellular fungi, which either accompany or replace the anciently associated bacterial partners. Planthopper-symbiont surveys, however, have only been conducted in limited temperate regions, thus necessitating examination of these relationships in the tropics, where insect and fungal diversity is high. Here, five tropical planthopper families host yeast-like endosymbionts related to the parasitic genus Ophiocordyceps. Fungal endosymbiont identity generally corresponded to host family, suggesting possible coevolution. Vertical transmission to offspring was supported by the occurrence of fungal cells in developing eggs. This serves as the most comprehensive tropical planthopper-symbiont survey to date, doubling the roster of known Fulgoromorpha species that host intracellular fungi and further elucidating the remarkable success of this diverse insect group.
Collapse
Affiliation(s)
- Ruby Siehl
- Occidental College, Los Angeles, CA, USA
| | | | | |
Collapse
|
10
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Amoros J, Fattar N, Buysse M, Louni M, Bertaux J, Bouchon D, Duron O. Reassessment of the genetic basis of natural rifampin resistance in the genus Rickettsia. Microbiologyopen 2024; 13:e1431. [PMID: 39082505 PMCID: PMC11289727 DOI: 10.1002/mbo3.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024] Open
Abstract
Rickettsia, a genus of obligate intracellular bacteria, includes species that cause significant human diseases. This study challenges previous claims that the Leucine-973 residue in the RNA polymerase beta subunit is the primary determinant of rifampin resistance in Rickettsia. We investigated a previously untested Rickettsia species, R. lusitaniae, from the Transitional group and found it susceptible to rifampin, despite possessing the Leu-973 residue. Interestingly, we observed the conservation of this residue in several rifampin-susceptible species across most Rickettsia phylogenetic groups. Comparative genomics revealed potential alternative resistance mechanisms, including additional amino acid variants that could hinder rifampin binding and genes that could facilitate rifampin detoxification through efflux pumps. Importantly, the evolutionary history of Rickettsia genomes indicates that the emergence of natural rifampin resistance is phylogenetically constrained within the genus, originating from ancient genetic features shared among a unique set of closely related Rickettsia species. Phylogenetic patterns appear to be the most reliable predictors of natural rifampin resistance, which is confined to a distinct monophyletic subclade known as Massiliae. The distinctive features of the RNA polymerase beta subunit in certain untested Rickettsia species suggest that R. raoultii, R. amblyommatis, R. gravesii, and R. kotlanii may also be naturally rifampin-resistant species.
Collapse
Affiliation(s)
- Julien Amoros
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Noor Fattar
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - Marie Buysse
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | | | | | | | - Olivier Duron
- MIVEGEC, CNRS, IRDUniversity of MontpellierMontpellierFrance
| |
Collapse
|
12
|
Fernandes NNU, Jorge FR, Costa VMD, Rodrigues AKPP, Magalhães MML, Junior RSL, Braz GF, Cavalcante FRA, de Azevedo Serpa MC, Martins TF, Muñoz-Leal S, Labruna MB, Teixeira BM. Evaluating the circulation of Ehrlichia canis and Rickettsia spp. in domestic dogs from a semiarid region in Brazil. Vet Parasitol Reg Stud Reports 2024; 52:101041. [PMID: 38880564 DOI: 10.1016/j.vprsr.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Tick-borne diseases are important for animal and human health, because they can cause death if not diagnosed and treated early. Canine monocytic ehrlichiosis (CME) can cause high morbidity in dog populations. Rocky Mountain Spotted Fever (RMSF) is among the most virulent infectious in humans; dogs are also susceptible to infection. The aims of this study were to evaluate the presence of Ehrlichia canis and Rickettsia spp. infections in domestic dogs, and to identify tick species parasitizing dogs among urban areas of two municipalities (Sobral and Alcântaras) in the Ceará State, Northeastern Brazil. A total of 208 domiciled dogs was sampled. After clinical evaluation, blood samples and ticks were collected and submitted to Real-Time Polymerase Chain Reaction (RT-PCR) targeting E. canis DNA. Serum samples were screened by Indirect Immunofluorescence Assays (IFA) for antibodies against different strains of Rickettsia spp. previously recognized in Brazil. The results of this study indicate the molecular detection of E. canis in the state of Ceará, Brazil, where the proportion of canine infection in Sobral (9.9%) was higher than in Alcântaras (5.6%). Rhipicephalus sanguineus sensu lato was the prevalent tick species infesting the dogs in both municipalities (43.5 and 53.3%, respectively). Our serological results indicate that dogs of the study area were at low risk of exposure to these tick-borne Rickettsia spp. of the spotted fever group. Our study offers epidemiological data of these diseases to better understanding Rickettsiales epidemic and enzootic cycles in the Brazilian semiarid region, improving prevention and control measures.
Collapse
Affiliation(s)
- Naiani Nara Uchôa Fernandes
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Felipe Rodrigues Jorge
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Viviane Maria Dias Costa
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Ana Kétylla Ponte Prado Rodrigues
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Meylling Mayara Linhares Magalhães
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Romilson Silva Lopes Junior
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Gissandra Farias Braz
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Francisco Roger Aguiar Cavalcante
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil
| | - Maria Carolina de Azevedo Serpa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP: 05508-270, Brazil
| | - Thiago Fernandes Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP: 05508-270, Brazil
| | - Sebastian Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, Casilla 537, Chillán, Ñuble, Chile
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, CEP: 05508-270, Brazil
| | - Bruno Marques Teixeira
- Núcleo de Estudo e Pesquisa em Animais Silvestres - NEPAS, Mestrado em Biotecnologia - Centro Universitário INTA - UNINTA, Rua José Lopes Ponte, 359 - Dom Expedito, Sobral, Ceará, CEP: 60.050-100, Brazil.
| |
Collapse
|
13
|
Liu BQ, Bao XY, Yan JY, Zhang D, Sun X, Li CQ, Chen ZB, Luan JB. Rickettsia symbionts spread via mixed mode transmission, increasing female fecundity and sex ratio shift by host hormone modulating. Proc Natl Acad Sci U S A 2024; 121:e2406788121. [PMID: 38865267 PMCID: PMC11194588 DOI: 10.1073/pnas.2406788121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Heritable symbionts are common among animals in nature, but the molecular mechanisms underpinning symbiont invasions of host populations have been elusive. In this study, we demonstrate the spread of Rickettsia in an invasive agricultural pest, the whitefly Bemisia tabaci Mediterranean (MED), across northeastern China from 2018 to 2023. Here, we show that the beneficial symbiont Rickettsia spreads by manipulating host hormone signals. Our analyses suggest that Rickettsia have been horizontally acquired by B. tabaci MED from another invasive whitefly B. tabaci Middle East-Asia Minor 1 during periods of coexistence. Rickettsia is transmitted maternally and horizontally from female B. tabaci MED individuals. Rickettsia infection enhances fecundity and results in female bias among whiteflies. Our findings reveal that Rickettsia infection stimulates juvenile hormone (JH) synthesis, in turn enhancing fecundity, copulation events, and the female ratio of the offspring. Consequently, Rickettsia infection results in increased whitefly fecundity and female bias by modulating the JH pathway. More female progeny facilitates the transmission of Rickettsia. This study illustrates that the spread of Rickettsia among invasive whiteflies in northeastern China is propelled by host hormone regulation. Such symbiont invasions lead to rapid physiological and molecular evolution in the host, influencing the biology and ecology of an invasive species.
Collapse
Affiliation(s)
- Bing-Qi Liu
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Xi-Yu Bao
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Jin-Yang Yan
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Dan Zhang
- Liaoning Agricultural Development Service Center, Shenyang110034, China
| | - Xiang Sun
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Chu-Qiao Li
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Zhan-Bo Chen
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| | - Jun-Bo Luan
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
14
|
Lanzoni O, Szokoli F, Schrallhammer M, Sabaneyeva E, Krenek S, Doak TG, Verni F, Berendonk TU, Castelli M, Petroni G. "Candidatus Intestinibacterium parameciiphilum"-member of the "Candidatus Paracaedibacteraceae" family (Alphaproteobacteria, Holosporales) inhabiting the ciliated protist Paramecium. Int Microbiol 2024; 27:659-671. [PMID: 37615902 PMCID: PMC11144129 DOI: 10.1007/s10123-023-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.
Collapse
Affiliation(s)
| | - Franziska Szokoli
- Department of Biology, University of Pisa, Pisa, Italy
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | | | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | - Thomas U Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
15
|
Mbiri P, Matomola OC, Muleya W, Mhuulu L, Diegaardt A, Noden BH, Changula K, Chimwamurombe P, Matos C, Weiss S, Nepolo E, Chitanga S. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks from Selected Regions of Namibia. Microorganisms 2024; 12:912. [PMID: 38792739 PMCID: PMC11124484 DOI: 10.3390/microorganisms12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Rickettsial pathogens are among the emerging and re-emerging vector-borne zoonoses of public health importance. Reports indicate human exposure to Rickettsial pathogens in Namibia through serological surveys, but there is a lack of data on infection rates in tick vectors, hindering the assessment of the relative risk to humans. Our study sought to screen Ixodid ticks collected from livestock for the presence of Rickettsia species in order to determine infection rates in ticks and to determine the Rickettsia species circulating in the country. We collected and pooled Hyalomma and Rhipicephalus ticks from two adjacent regions of Namibia (Khomas and Otjozondjupa) and observed an overall minimum Rickettsia infection rate of 8.6% (26/304), with an estimated overall pooled prevalence of 9.94% (95% CI: 6.5-14.3). There were no statistically significant differences in the estimated pooled prevalence between the two regions or tick genera. Based on the nucleotide sequence similarity and phylogenetic analysis of the outer membrane protein A (n = 9) and citrate synthase (n = 12) genes, BLAST analysis revealed similarity between Rickettsia africae (n = 2) and Rickettsia aeschlimannii (n = 11), with sequence identities ranging from 98.46 to 100%. Our initial study in Namibia indicates that both zoonotic R. africae and R. aeschlimannii are in circulation in the country, with R. aeschlimannii being the predominant species.
Collapse
Affiliation(s)
- Pricilla Mbiri
- Department of Production Animal Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Ophelia Chuma Matomola
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Walter Muleya
- Department of Preclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Lusia Mhuulu
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Azaria Diegaardt
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Bruce Howard Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Percy Chimwamurombe
- Department of Natural and Applied Sciences, Namibia University of Science & Technology, Windhoek 10005, Namibia;
| | - Carolina Matos
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Sabrina Weiss
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Emmanuel Nepolo
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Simbarashe Chitanga
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O. Box 50110, Lusaka 10101, Zambia
| |
Collapse
|
16
|
De Jesus CE, Harman MEA, Sutton A, Bredin S, Romagosa CM, Wisely SM. Spatially limited pathogen pollution in an invasive tick and host system. Biol Invasions 2024; 26:2037-2047. [PMID: 38947421 PMCID: PMC11213802 DOI: 10.1007/s10530-024-03291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2024] [Indexed: 07/02/2024]
Abstract
Expansion of global commerce has facilitated pathogen pollution via the transportation and translocation of invasive species and their associated parasites and pathogens. In Florida, imported cane toads (Rhinella horribilis) were accidentally and intentionally released on multiple occasions. Early populations were found to be infested with the invasive tick, Amblyomma rotundatum, yet it is unknown if these ticks dispersed with their hosts as cane toads spread throughout much of the state. The objectives of our investigation were to (1) determine if there are fewer tick infestations on toads at the periphery than at the core of their distribution as predicted by founder effect events, and (2) identify if ticks were infected with exotic pathogens. We captured toads from 10 populations across Florida. We collected ticks, vent tissue, and tick attachment site tissue from each toad, then tested samples for bacteria in the genus, Rickettsia. We found that 3/10 populations had toads that were infested with A. rotundatum, and infested individuals were in the earliest introduced populations at the core of their distribution. Pathogen testing confirmed Rickettisa bellii in ticks, but not in toad tissues. Haplotype networks could not clearly distinguish if R. bellii in Florida was more closely related to North or South American strains, but host-tick associations suggest that the pathogen was exotic to Florida. Our investigation demonstrated that an invasive species facilitated the introduction of parasites and pathogens into Florida, yet the invasive tick species encountered limitations to dispersal on this host species. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03291-9.
Collapse
Affiliation(s)
- Carrie E. De Jesus
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Madison E. A. Harman
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Amber Sutton
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Stephen Bredin
- Biology Department, George Mason University, Fairfax, VA USA
| | - Christina M. Romagosa
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA
| |
Collapse
|
17
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
18
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
19
|
Paludo RLDR, Paula WVDF, Neves LC, de Paula LGF, de Lima NJ, da Silva BBF, Pereira BG, Pádua GT, Dantas-Torres F, Labruna MB, Martins TF, Sponchiado J, de Sousa-Paula LC, Hannibal W, Krawczak FDS. Rickettsial Infection in Ticks from a National Park in the Cerrado Biome, Midwestern Brazil. Pathogens 2023; 13:13. [PMID: 38251322 PMCID: PMC10818336 DOI: 10.3390/pathogens13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
This study was carried out from February 2020 to September 2021 in Parque Nacional das Emas (PNE), a national park located in the Cerrado biome, midwestern Brazil, as well as in surrounding rural properties. Serum and tick samples were collected from dogs, terrestrial small mammals, and humans. Ticks were also collected from the environment. Dogs were infested with Rhipicephalus linnaei adults, whereas small mammals were infested by immature stages of Amblyomma spp., Amblyomma triste, Amblyomma dubitatum, and Amblyomma coelebs. Ticks collected from vegetation belonged to several species of the genus Amblyomma, including A. coelebs, A. dubitatum, Amblyomma naponense, Amblyomma sculptum, and A. triste. Two Rickettsia species were molecularly detected in ticks: Rickettsia parkeri in A. triste from the vegetation and a Rickettsia sp. (designated Rickettsia sp. strain PNE) in A. sculptum and A. triste collected from lowland tapirs (Tapirus terrestris). Based on short gltA gene fragments, this rickettsial organism showed 99.7-100% to Rickettsia tillamookensis. Seroreactivity to Rickettsia antigens was detected in 21.9% of dogs, 15.4% of small mammals, and 23.5% of humans. The present study reveals the richness of ticks and demonstrates the circulation of rickettsial agents in one of the largest conservation units in the Cerrado biome in Brazil. To our knowledge, this is the first report of a rickettsial phylogenetically related to R. tillamookensis in Brazil.
Collapse
Affiliation(s)
- Raquel Loren dos Reis Paludo
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
- Centro Universitário de Mineiros—UNIFIMES, Mineiros 75833-130, Brazil
| | - Warley Vieira de Freitas Paula
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Lucianne Cardoso Neves
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Luiza Gabriella Ferreira de Paula
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Nicolas Jalowitzki de Lima
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Bianca Barbara Fonseca da Silva
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Brenda Gomes Pereira
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Gracielle Teles Pádua
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| | - Filipe Dantas-Torres
- Departamento de Imunologia, Instituto Ageu Magalhães—IAM, Fundação Oswaldo Cruz (Fiocruz), Recife 50740-465, Brazil;
| | - Marcelo B. Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo—USP, São Paulo 05508-270, Brazil; (M.B.L.); (T.F.M.)
| | - Thiago Fernandes Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo—USP, São Paulo 05508-270, Brazil; (M.B.L.); (T.F.M.)
- Instituto Pasteur, Área Técnica de Doenças Vinculadas a Vetores e Hospedeiros Intermediários, Secretaria de Estado da Saúde de São Paulo, São Paulo 01027-000, Brazil
| | - Jonas Sponchiado
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Campus Alegrete, Alegrete 97541-000, Brazil;
| | - Lucas Christian de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA;
| | - Wellington Hannibal
- Laboratório de Ecologia e Biogeografia de Mamíferos, Universidade Estadual de Goiás—UEG, Quirinópolis 75860-000, Brazil;
| | - Felipe da Silva Krawczak
- Setor de Medicina Veterinária Preventiva, Departamento de Medicina Veterinária, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás—UFG, Goiânia 74690-900, Brazil; (R.L.d.R.P.); (W.V.d.F.P.); (L.C.N.); (L.G.F.d.P.); (N.J.d.L.); (B.B.F.d.S.); (B.G.P.); (G.T.P.)
| |
Collapse
|
20
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Weaver RJ, McDonald AE. Mitochondrial alternative oxidase across the tree of life: Presence, absence, and putative cases of lateral gene transfer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149003. [PMID: 37557975 DOI: 10.1016/j.bbabio.2023.149003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The alternative oxidase (AOX) is a terminal oxidase in the electron transport system that plays a role in mitochondrial bioenergetics. The past 20 years of research shows AOX has a wide yet patchy distribution across the tree of life. AOX has been suggested to have a role in stress tolerance, growth, and development in plants, but less is known about its function in other groups, including animals. In this study, we analyzed the taxonomic distribution of AOX across >2800 species representatives from prokaryotes and eukaryotes and developed a standardized workflow for finding and verifying the authenticity of AOX sequences. We found that AOX is limited to proteobacteria among prokaryotes, but is widely distributed in eukaryotes, with the highest prevalence in plants, fungi, and protists. AOX is present in many invertebrates, but is absent in others including most arthropods, and is absent from vertebrates. We found aberrant AOX sequences associated with some animal groups. Some of these aberrant AOXs were contaminants, but we also found putative cases of lateral gene transfer of AOX from fungi and protists to nematodes, springtails, fungus gnats, and rotifers. Our findings provide a robust and detailed analysis of the distribution of AOX and a method for identifying and verifying putative AOX sequences, which will be useful as more sequence data becomes available on public repositories.
Collapse
Affiliation(s)
- Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
22
|
Prati AC, Maia MO, Martins TF, Morgado TO, Corrêa SHR, Mendes EJF, Ferraz RHDS, Mudrek JR, Strüssmann C, Ramos DGDS, Semedo TBF, Minetto MK, Aguiar DMD, Pacheco RC, Melo ALT. Diversity of rickettsiae in ticks (Acari: Ixodidae) collected from wild vertebrates in part of the Amazon, Cerrado, and Pantanal biomes in Brazil. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e008023. [PMID: 37851794 DOI: 10.1590/s1984-29612023059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
Ticks parasitizing 102 wild animals in the states of Mato Grosso and Goiás, Brazil were collected between 2015 and 2018. A total of 2338 ticks (865 males, 541 females, 823 nymphs, and 109 larvae) belonging to four genera (Amblyomma, Dermacentor, Haemaphysalis, and Rhipicephalus) and at least 21 species were identified. DNA extraction and a molecular survey for rickettsial agents were performed on 650 ticks. The results revealed parasitism by the following species: Rickettsia amblyommatis in Amblyomma cajennense s.s., A. cajennense s.l., Amblyomma coelebs, Amblyomma humerale, Amblyomma longirostre, Amblyomma nodosum, Amblyomma scalpturatum, Amblyomma sculptum, and Amblyomma romitii; Rickettsia parkeri in Amblyomma nodosum, Amblyomma ovale, Amblyomma scalpturatum, and Amblyomma triste; Rickettsia rhipicephali in Haemaphysalis juxtakochi; Rickettsia sp. in A. cajennense s.s., A. nodosum, and A. sculptum, and lastly, 'Candidatus Rickettsia andeanae' in Amblyomma parvum and Rhipicephalus microplus. This study expands the body of knowledge about tick parasitism among wild animals, including new data concerning tick-host associations, and provides information about the epidemiology of tick-borne pathogens in the Center-West region of Brazil.
Collapse
Affiliation(s)
- Anny Carolina Prati
- Programa de Pós-graduação em Biociência Animal, Universidade de Cuiabá - UNIC, Cuiabá, MT, Brasil
| | - Maerle Oliveira Maia
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Thiago Fernandes Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo - USP, São Paulo, SP, Brasil
- Instituto Pasteur, Secretaria de Estado da Saúde de São Paulo, São Paulo, SP, Brasil
| | - Thaís Oliveira Morgado
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Sandra Helena Ramiro Corrêa
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Edson Junior Figueiredo Mendes
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Rosa Helena Dos Santos Ferraz
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Jessica Rhaiza Mudrek
- Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Christine Strüssmann
- Programa de Pós-graduação em Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Dirceu Guilherme de Souza Ramos
- Laboratório de Parasitologia e Análises Clínicas Veterinária, Programa de Pós-graduação em Biociência Animal, Unidade Acadêmica de Ciências Veterinárias, Universidade Federal de Jataí - UFJ, Jataí, GO, Brasil
| | - Thiago Borges Fernandes Semedo
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- InBIO Laboratório Associado, Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
- Programa BIOPOLIS em Genómica, Biodiversidade e Ordenamento do Território, CIBIO, de Vairão, Vairão, Portugal
| | - Make Kawatake Minetto
- Instituto de Defesa Agropecuária do Estado de Mato Grosso - INDEA-MT, Cuiabá, MT, Brasil
| | - Daniel Moura de Aguiar
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Richard Campos Pacheco
- Programa de Pós-graduação em Ciências Veterinárias - PPGVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
- Laboratório de Parasitologia Veterinária e Doenças Parasitárias dos Animais Domésticos e Silvestres, Hospital Veterinário - HOVET, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT, Cuiabá, MT, Brasil
| | - Andréia Lima Tomé Melo
- Programa de Pós-graduação em Biociência Animal, Universidade de Cuiabá - UNIC, Cuiabá, MT, Brasil
| |
Collapse
|
23
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Giordano R, Weber EP, Mitacek R, Flores A, Ledesma A, De AK, Herman TK, Soto-Adames FN, Nguyen MQ, Hill CB, Hartman GL. Patterns of asexual reproduction of the soybean aphid, Aphis glycines (Matsumura), with and without the secondary symbionts Wolbachia and Arsenophonus, on susceptible and resistant soybean genotypes. Front Microbiol 2023; 14:1209595. [PMID: 37720159 PMCID: PMC10501154 DOI: 10.3389/fmicb.2023.1209595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Plant breeding is used to develop crops with host resistance to aphids, however, virulent biotypes often develop that overcome host resistance genes. We tested whether the symbionts, Arsenophonus (A) and Wolbachia (W), affect virulence and fecundity in soybean aphid biotypes Bt1 and Bt3 cultured on whole plants and detached leaves of three resistant, Rag1, Rag2 and Rag1 + 2, and one susceptible, W82, soybean genotypes. Whole plants and individual aphid experiments of A. glycines with and without Arsenophonus and Wolbachia did not show differences in overall fecundity. Differences were observed in peak fecundity, first day of deposition, and day of maximum nymph deposition of individual aphids on detached leaves. Bt3 had higher fecundity than Bt1 on detached leaves of all plant genotypes regardless of bacterial profile. Symbionts did not affect peak fecundity of Bt1 but increased it in Bt3 (A+W+) and all Bt3 strains began to deposit nymphs earlier than the Bt1 (A+W-). Arsenophonus in Bt1 delayed the first day of nymph deposition in comparison to aposymbiotic Bt1 except when reared on Rag1 + 2. For the Bt1 and Bt3 strains, symbionts did not result in a significant difference in the day they deposited the maximum number of nymphs nor was there a difference in survival or variability in number of nymphs deposited. Variability of number of aphids deposited was higher in aphids feeding on resistant plant genotypes. The impact of Arsenophonus on soybean aphid patterns of fecundity was dependent on the aphid biotype and plant genotype. Wolbachia alone had no detectable impact but may have contributed to the increased fecundity of Bt3 (A+W+). An individual based model, using data from the detached leaves experiment and with intraspecific competition removed, found patterns similar to those observed in the greenhouse and growth chamber experiments including a significant interaction between soybean genotype and aphid strain. Combining individual data with the individual based model of population growth isolated the impact of fecundity and host resistance from intraspecific competition and host health. Changes to patterns of fecundity, influenced by the composition and concentration of symbionts, may contribute to competitive interactions among aphid genotypes and influence selection on virulent aphid populations.
Collapse
Affiliation(s)
- Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, United States
- Puerto Rico Science Technology and Research Trust, San Juan, Puerto Rico
| | - Everett P. Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, United States
| | - Ryan Mitacek
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alejandra Flores
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alonso Ledesma
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Arun K. De
- Animal Sciences Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | | | - Felipe N. Soto-Adames
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States
| | - Minh Q. Nguyen
- Neochromosome, Inc., Long Island City, NY, United States
| | - Curtis B. Hill
- Neochromosome, Inc., Long Island City, NY, United States
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
25
|
Babu NN, Jayaram A, Auti AM, Bhandari Y, Shetty U, Arunkumar G. Rickettsia africae and other unclassified Rickettsia species of the spotted fever group in ticks of the Western Ghats, India. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 90:429-440. [PMID: 37347433 PMCID: PMC10406665 DOI: 10.1007/s10493-023-00814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The spotted fever group (SFG) of Rickettsia are zoonotic disease-causing pathogens, commonly transmitted by hard ticks to a wide range of hosts, including humans. Rickettsia conorii is the common SFG recognised in India, whereas most of the infections due to other group species go undifferentiated at the species level. Hence, this study was conducted to screen host-seeking ticks in the Western Ghats region, India, for the DNA of SFG Rickettsia. The ticks were collected from Kerala, Goa, and Maharashtra states of India during a survey conducted between November 2017 and January 2018. In total, 288 tick pools were screened for Rickettsia spp. DNA using pan-Rickettsia real-time PCR, and conventional PCR targeting the gltA, OmpA and 17-kDa protein-coding genes. Nucleotide sequences were subjected to phylogenetic analysis using the NCBI BLAST tool to identify submitted sequences with higher homology. Neighbour-joining trees were constructed using the reference sequences of the GenBank database. Overall, Rickettsia spp. DNA was detected in 27.2% (62/228 pools) of host-seeking ticks across the Western Ghats region, with an estimated minimum infection rate of 0.057. Upon phylogenetic analysis, it was identified that the detected sequences were highly similar (> 99% sequence homology) to R. africae, Candidatus R. laoensis and an un-categorised Rickettsia species, and they were widely carried by Haemaphysalis ticks. The current study is the first report of R. africae and Candidatus R. laoensis in ticks in India. Although the pathogenicity of these species is not well documented, they may pose a potential threat to both animal and the human population in this geographical region.
Collapse
Affiliation(s)
- N Naren Babu
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institution of Eminence Deemed to be University), Manipal, India.
| | - Anup Jayaram
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institution of Eminence Deemed to be University), Manipal, India
| | - Amogh Milind Auti
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institution of Eminence Deemed to be University), Manipal, India
- Department of Precision Medicine, University of Campania 'Luigi vanvitelli', Naples, Italy
| | - Yuvraj Bhandari
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institution of Eminence Deemed to be University), Manipal, India
| | - Ujwal Shetty
- Manipal Institute of Virology, Manipal Academy of Higher Education (Institution of Eminence Deemed to be University), Manipal, India
| | | |
Collapse
|
26
|
Figueroa-Cuilan WM, Irazoki O, Feeley M, Smith E, Nguyen T, Cava F, Goley ED. Quantitative analysis of morphogenesis and growth dynamics in an obligate intracellular bacterium. Mol Biol Cell 2023; 34:ar69. [PMID: 37017481 PMCID: PMC10295487 DOI: 10.1091/mbc.e23-01-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Obligate intracellular bacteria of the order Rickettsiales include important human pathogens. However, our understanding of the biology of Rickettsia species is limited by challenges imposed by their obligate intracellular lifestyle. To overcome this roadblock, we developed methods to assess cell wall composition, growth, and morphology of Rickettsia parkeri, a human pathogen in the spotted fever group of the Rickettsia genus. Analysis of the cell wall of R. parkeri revealed unique features that distinguish it from free-living alphaproteobacteria. Using a novel fluorescence microscopy approach, we quantified R. parkeri morphology in live host cells and found that the fraction of the population undergoing cell division decreased over the course of infection. We further demonstrated the feasibility of localizing fluorescence fusions, for example, to the cell division protein ZapA, in live R. parkeri for the first time. To evaluate population growth kinetics, we developed an imaging-based assay that improves on the throughput and resolution of other methods. Finally, we applied these tools to quantitatively demonstrate that the actin homologue MreB is required for R. parkeri growth and rod shape. Collectively, a toolkit was developed of high-throughput, quantitative tools to understand growth and morphogenesis of R. parkeri that is translatable to other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Wanda M. Figueroa-Cuilan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Oihane Irazoki
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Marissa Feeley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Trung Nguyen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
27
|
Cooper WR, Walker WB, Angelella GM, Swisher Grimm KD, Foutz JJ, Harper SJ, Nottingham LB, Northfield TD, Wohleb CH, Strausbaugh CA. Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas. ENVIRONMENTAL ENTOMOLOGY 2023; 52:243-253. [PMID: 36869841 DOI: 10.1093/ee/nvad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 06/18/2023]
Abstract
Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.
Collapse
Affiliation(s)
- William Rodney Cooper
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - William B Walker
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Gina M Angelella
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Kylie D Swisher Grimm
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Jillian J Foutz
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA 99164, USA
| | - Scott J Harper
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Education Center, Prosser, WA 99350, USA
| | - Louis B Nottingham
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Tobin D Northfield
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Carrie H Wohleb
- Washington State University Extension, 1525 E. Wheeler Road, Moses Lake, WA 98837, USA
| | - Carl A Strausbaugh
- USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| |
Collapse
|
28
|
Xu J, Tan JB, Li YD, Xu YH, Tang A, Zhou HK, Shi PQ. Diversity and dynamics of endosymbionts in a single population of sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae): a preliminary study. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:13. [PMID: 37052365 PMCID: PMC10099751 DOI: 10.1093/jisesa/iead021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Endosymbionts live symbiotically with insect hosts and play important roles in the evolution, growth, development, reproduction, and environmental fitness of hosts. Weevils are one of the most abundant insect groups that can be infected by various endosymbionts, such as Sodalis, Nardonella, and Wolbachia. The sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae), is a notorious pest in sweet potato (Ipomoea batatas L.) cultivation. Currently, little is known about the presence of endosymbionts in C. formicarius. Herein, we assessed the endosymbiont load of a single geographic population of C. formicarius. The results showed that Nardonella and Rickettsia could infect C. formicarius at different rates, which also varied according to the developmental stages of C. formicarius. The relative titer of Nardonella was significantly related to C. formicarius developmental stages. The Nardonella-infecting sweet potato weevils were most closely related to the Nardonella in Sphenophorus levis (Coleoptera, Curculionidae). The Rickettsia be identified in bellii group. These results preliminarily revealed the endosymbionts in C. formicarius and helped to explore the diversity of endosymbionts in weevils and uncover the physiological roles of endosymbionts in weevils.
Collapse
Affiliation(s)
- Jin Xu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jian-Bin Tan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yi-Dan Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan-Hao Xu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - An Tang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hong-Kai Zhou
- Department of agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | | |
Collapse
|
29
|
Minahan NT, Wu WJ, Tsai KH. Rickettsia felis is an emerging human pathogen associated with cat fleas: A review of findings in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:10-19. [PMID: 36585292 DOI: 10.1016/j.jmii.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Rickettsia felis is an emerging rickettsial agent principally associated with cat fleas (Ctenocephalides felis), formerly discovered in 1990. Since then, clinical cases of R. felis infection have been identified globally by specific DNA sequences in patients with undifferentiated febrile illness, including in Taiwan, but such evidence is limited. R. felis rickettsiosis is self-limiting and easily treated with doxycycline, but its diagnosis remains a challenge. Environmental risk factors for R. felis rickettsiosis have yet to be clearly demonstrated, and its transmission biology is incompletely understood. Cat fleas are naturally infected with R. felis at varying rates, and vector competence in the transmission of R. felis has been demonstrated in animal models, including dogs, which may serve as reservoir hosts. In northern Taiwan, despite ∼20% of cat fleas infesting companion animals consistently found to be infected with R. felis, only a few cases of potential R. felis infection have been identified through a retrospective serological investigation, though without molecular confirmation. Ecological studies have identified divergent R. felis-like organisms in different arthropod hosts, but these strains appear to serve as nonpathogenic endosymbionts. Although its association with disease is limited, we believe cat flea-borne R. felis warrants increased recognition in an aging population due to immunosenescence and the proximity of companion animals to the elderly. Adopting a One Health approach involving collaboration and communication between clinicians, veterinarians, public health practitioners, and environmental scientists will improve our knowledge about this neglected pathogen and promote the prevention and control of vector-borne diseases.
Collapse
Affiliation(s)
- Nicholas T Minahan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
30
|
Mancini E, Sabatelli S, Hu Y, Frasca S, Di Giulio A, Audisio P, Brown CD, Russell JA, Trizzino M. Uncovering Active Bacterial Symbionts in Three Species of Pollen-feeding Beetles (Nitidulidae: Meligethinae). MICROBIAL ECOLOGY 2023; 85:335-339. [PMID: 35059821 DOI: 10.1007/s00248-022-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one-plant tissue consumed by such herbivores. While rich in lipids and proteins, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e., 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsialles genera-Lariskella, Rickettsia, and Wolbachia-within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.
Collapse
Affiliation(s)
- Emiliano Mancini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy.
| | - Simone Sabatelli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sara Frasca
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146, Rome, Italy
| | - Paolo Audisio
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Viale dell'Università 32, 00185, Rome, Italy
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, 538B 415, Curie Blvd, Philadelphia, PA, 19103, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S 10TH street, Philadelphia, PA, 19107, USA
| |
Collapse
|
31
|
Fan ZY, Liu Y, He ZQ, Wen Q, Chen XY, Khan MM, Osman M, Mandour NS, Qiu BL. Rickettsia Infection Benefits Its Whitefly Hosts by Manipulating Their Nutrition and Defense. INSECTS 2022; 13:1161. [PMID: 36555070 PMCID: PMC9785894 DOI: 10.3390/insects13121161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Endosymbionts play an essential role in the biology, physiology and immunity of insects. Many insects, including the whitefly Bemisia tabaci, are infected with the facultative endosymbiont Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This study investigated the biological and physiological benefits of Rickettsia infection to B. tabaci. Results revealed that infection of Rickettsia increased the fertility, the survival rate from nymph to adult and the number of female whiteflies. In addition, this facilitation caused a significant reduction in nymphal developmental duration but did not affect percentage rate of egg hatching. Rickettsia infected B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents than Rickettsia negative B. tabaci individuals. Rickettsia also improved the immunity of its whitefly hosts. Rickettsia infested B. tabaci had lower mortality rates and higher semi-lethal concentrations (LC50) when exposed to the fungus Akanthomyces attenuatus and the insecticides imidacloprid and spirotetramat. The percentage of parasitism by Encarsia formosa was also reduced by Rickettsia infection. Overall, Rickettsia infection benefits B. tabaci by improving the nutritional composition of its host, and also protects B. tabaci by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungi (A. attenuatus) and its main parasitoid (E. formosa); all of which could significantly impact on current management strategies.
Collapse
Affiliation(s)
- Ze-Yun Fan
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| | - Yuan Liu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zi-Qi He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xin-Yi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Muhammad Musa Khan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mohamed Osman
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Nasser Said Mandour
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
32
|
Liu L, Sonenshine DE, Sultana H, Neelakanta G. Identification of a rickettsial endosymbiont in a soft tick Ornithodoros turicata americanus. PLoS One 2022; 17:e0278582. [PMID: 36473013 PMCID: PMC9725135 DOI: 10.1371/journal.pone.0278582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial endosymbionts are abundantly found in both hard and soft ticks. Occidentia massiliensis, a rickettsial endosymbiont, was first identified in the soft tick Ornithodoros sonrai collected from Senegal and later was identified in a hard tick Africaniella transversale. In this study, we noted the presence of Occidentia species, designated as Occidentia-like species, in a soft tick O. turicata americanus. Sequencing and phylogenetic analyses of the two genetic markers, 16S rRNA and groEL confirmed the presence of Occidentia-like species in O. turicata americanus ticks. The Occidentia-like species was noted to be present in all developmental stages of O. turicata americanus and in different tick tissues including ovaries, synganglion, guts and salivary gland. The levels of Occidentia-like species 16S rRNA transcripts were noted to be significantly higher in ovaries than in a gut tissue. In addition, Occidentia-like species groEL expression was noted to be significantly higher in tick synganglion than in ovaries and gut tissues. Furthermore, levels of Occidentia-like species 16S rRNA transcripts increased significantly upon O. turicata americanus blood feeding. Taken together, our study not only shows that Occidentia-like species is present in O. turicata americanus but also suggests that this bacterium may play a role in tick-bacteria interactions.
Collapse
Affiliation(s)
- Lichao Liu
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
33
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Pan YS, Cui XM, Du LF, Xia LY, Du CH, Bell-Sakyi L, Zhang MZ, Zhu DY, Dong Y, Wei W, Zhao L, Sun Y, Lv QY, Ye RZ, He ZH, Wang Q, Li LJ, Yao MG, Xiong T, Jiang JF, Cao WC, Jia N. Coinfection of Two Rickettsia Species in a Single Tick Species Provides New Insight into Rickettsia- Rickettsia and Rickettsia-Vector Interactions. Microbiol Spectr 2022; 10:e0232322. [PMID: 36173317 PMCID: PMC9603609 DOI: 10.1128/spectrum.02323-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/04/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses. There is an ongoing debate as to whether established infections by one Rickettsia species preclude the maintenance of the second species in ticks. Here, we identified two Rickettsia species in inoculum from Haemaphysalis montgomeryi ticks and subsequently obtained pure isolates of each species by plaque selection. The two isolates were classified as a transitional group and spotted fever group rickettsiae and named Rickettsia hoogstraalii str CS and Rickettsia rhipicephalii str EH, respectively. The coinfection of these two Rickettsia species was detected in 25.6% of individual field-collected H. montgomeryi. In cell culture infection models, R. hoogstraalii str CS overwhelmed R. rhipicephalii str EH with more obvious cytopathic effects, faster plaque formation, and increased cellular growth when cocultured, and R. hoogstraalii str CS seemed to polymerize actin tails differently from R. rhipicephalii str EH in vitro. This work provides a model to investigate the mechanisms of both Rickettsia-Rickettsia and Rickettsia-vector interactions. IMPORTANCE The rickettsiae are a group of obligate intracellular Gram-negative bacteria that include human pathogens causing an array of clinical symptoms and even death. There is an important question in the field, that is whether one infection can block the superinfection of other rickettsiae. This work demonstrated the coinfection of two Rickettsia species in individual ticks and further highlighted that testing the rickettsial competitive exclusion hypothesis will undoubtedly be a promising area as methods for bioengineering and pathogen biocontrol become amenable for rickettsiae.
Collapse
Affiliation(s)
- Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Li-Feng Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chun-Hong Du
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yi Dong
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Qing-Yu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhi-Hai He
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ming-Guo Yao
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Ouarti B, Fonkou DMM, Houhamdi L, Mediannikov O, Parola P. Lice and lice-borne diseases in humans in Africa: a narrative review. Acta Trop 2022; 237:106709. [PMID: 36198330 DOI: 10.1016/j.actatropica.2022.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/18/2023]
Abstract
Lice are host-specific insects. Human lice include Pediculus humanus humanus (body lice) which are known to be vectors of serious human bacterial infectious diseases including epidemic typhus, relapsing fever, trench fever and plague; Pediculus humanus capitis (head lice) that frequently affect children; and Pthirus pubis, commonly known as crab lice. In Africa, human infections transmitted by lice remained poorly known and therefore, underestimated, perhaps due to the lack of diagnostic tools and professional knowledge. In this paper we review current knowledge of the microorganisms identified in human lice in the continent of Africa, in order to alert health professionals to the importance of recognising the risk of lice-related diseases.
Collapse
Affiliation(s)
- Basma Ouarti
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | | | - Linda Houhamdi
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France; IRD, AP-HM, MEPHI, Aix Marseille University, Marseille, France.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
36
|
Pollio AR, Jiang J, Lee SS, Gandhi JS, Knott BD, Chunashvili T, Conte MA, Walls SD, Hulseberg CE, Farris CM, Reinbold-Wasson DD, Hang J. Discovery of Rickettsia spp. in mosquitoes collected in Georgia by metagenomics analysis and molecular characterization. Front Microbiol 2022; 13:961090. [PMID: 36160204 PMCID: PMC9493313 DOI: 10.3389/fmicb.2022.961090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Arthropods have a broad and expanding worldwide presence and can transmit a variety of viral, bacterial, and parasite pathogens. A number of Rickettsia and Orientia species associated with ticks, fleas, lice, and mites have been detected in, or isolated from, patients with febrile illness and/or animal reservoirs throughout the world. Mosquitoes are not currently considered vectors for Rickettsia spp. pathogens to humans or to animals. In this study, we conducted a random metagenome next-generation sequencing (NGS) of 475 pools of Aedes, Culex, and Culiseta species of mosquitoes collected in Georgia from 2018 to 2019, identifying rickettsial gene sequences in 33 pools of mosquitoes. We further confirmed the findings of the Rickettsia by genus-specific quantitative PCR (qPCR) and multi-locus sequence typing (MLST). The NGS and MLST results indicate that Rickettsia spp. are closely related to Rickettsia bellii, which is not known to be pathogenic in humans. The results, together with other reports of Rickettsia spp. in mosquitoes and the susceptibility and transmissibility experiments, suggest that mosquitoes may play a role in the transmission cycle of Rickettsia spp.
Collapse
Affiliation(s)
- Adam R. Pollio
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ju Jiang
- Naval Medical Research Center, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Sam S. Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jaykumar S. Gandhi
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brian D. Knott
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Tamar Chunashvili
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Matthew A. Conte
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shannon D. Walls
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Christine E. Hulseberg
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | | | - Drew D. Reinbold-Wasson
- U.S. Army Medical Research Directorate - Georgia (USAMRD-G), Walter Reed Army Institute of Research, Tbilisi, Georgia
| | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
37
|
Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan. Sci Rep 2022; 12:14872. [PMID: 36050456 PMCID: PMC9437098 DOI: 10.1038/s41598-022-19145-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Records on the distribution of Rickettsia spp. in their natural hosts in Central Asia are incomplete. Rodents and small mammals are potential natural reservoirs for Rickettsiae in their natural lifecycle. Studies about the maintenance of Rickettsia in wild animals are available for Western nations, but—to our knowledge—no studies and data are available in the Republic of Kazakhstan so far. The first case description of Rickettsioses in Kazakhstan was made in the 1950ies in the Almaty region and now Kyzylorda, East Kazakhstan, Pavlodar and North Kazakhstan are endemic areas. The existence of murine and endemic typhus was proven in arthropod vectors in the regions Kyzylorda and Almaty. Here we show for the first time investigations on tick-borne Rickettsia species detected by a pan-rickettsial citrate synthase gene (gltA) real-time PCR in ear lobes of small mammals (n = 624) in Kazakhstan. From all analysed small mammals 2.72% were positive for Rickettsia raoultii, R. slovaca or R. conorii. Sequencing of the rickettsial gene OmpAIV and the 23S–5S interspacer region revealed a similar heritage of identified Rickettsia species that was observed in ticks in previous studies from the region. In summary, this study proves that rodents in Kazakhstan serve as a natural reservoir of Rickettsia spp.
Collapse
|
38
|
Lin B, Ta Y, Hao L. High prevalence of spotted fever group rickettsiae in ticks collected from yaks (Bos grunniens) in Shiqu county, eastern Tibetan Plateau, China. Front Microbiol 2022; 13:968793. [PMID: 35966652 PMCID: PMC9366146 DOI: 10.3389/fmicb.2022.968793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Tick-borne diseases have become a global health concern in recent decades. Spotted fever group (SFG) rickettsiae have been recognized as important pathogens of human tick-borne diseases worldwide. In this study, Dermacentor everestianus (n = 646) and Haemaphysalis qinghaiensis (n = 172) ticks were collected from yaks (Bos grunniens) in Shiqu county, eastern Tibetan Plateau, China. SFG rickettsiae were identified and characterized in these ticks. A total of 49.9% (408/818) ticks were infected by Rickettsia spp. with infection rates of 58.1% (100/172) and 46.7% (308/646) detected in H. qinghaiensis and D. everestianus ticks, respectively. Furthermore, 95% of Rickettsia spp. were Rickettsia raoultii-like bacteria, and 5% were related to Candidatus Rickettsia longicornii. To the best of our knowledge, this is the first time that SFG rickettsiae infections were firstly reported in Shiqu county for these tick species. Our results indicated that H. qinghaiensis and D. everestianus ticks from Shiqu county became highly infected with a R. raoultii-like bacteria during their feeding process. This observation is alarming because of the zoonotic potentiality of these species. Overall, the present study detected a widespread of R. raoultii-like bacteria in ticks that are considered a serious threat to domestic animals and humans in Shiqu county. The prevalence of R. raoultii-like bacteria in human and wildlife hosts should be further investigated in the future.
Collapse
Affiliation(s)
- Baoshan Lin
- College of Animal Husbandry and Veterinary Medicine, Southwest University for Nationalities, Chengdu, China
- Animal Disease Prevention and Control Center of Aba Tibetan and Qiang Autonomous Prefecture, Markang, China
| | - Yin Ta
- College of Animal Husbandry and Veterinary Medicine, Southwest University for Nationalities, Chengdu, China
| | - Lili Hao
- College of Animal Husbandry and Veterinary Medicine, Southwest University for Nationalities, Chengdu, China
- *Correspondence: Lili Hao,
| |
Collapse
|
39
|
Wirta HK, Bahram M, Miller K, Roslin T, Vesterinen E. Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee. PLoS One 2022; 17:e0268250. [PMID: 35830374 PMCID: PMC9278776 DOI: 10.1371/journal.pone.0268250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
To assess a species’ impact on its environment–and the environment’s impact upon a species–we need to pinpoint its links to surrounding taxa. The honeybee (Apis mellifera) provides a promising model system for such an exercise. While pollination is an important ecosystem service, recent studies suggest that honeybees can also provide disservices. Developing a comprehensive understanding of the full suite of services and disservices that honeybees provide is a key priority for such a ubiquitous species. In this perspective paper, we propose that the DNA contents of honey can be used to establish the honeybee’s functional niche, as reflected by ecosystem services and disservices. Drawing upon previously published genomic data, we analysed the DNA found within 43 honey samples from Northern Europe. Based on metagenomic analysis, we find that the taxonomic composition of DNA is dominated by a low pathogenicity bee virus with 40.2% of the reads, followed by bacteria (16.7%), plants (9.4%) and only 1.1% from fungi. In terms of ecological roles of taxa associated with the bees or taxa in their environment, bee gut microbes dominate the honey DNA, with plants as the second most abundant group. A range of pathogens associated with plants, bees and other animals occur frequently, but with lower relative read abundance, across the samples. The associations found here reflect a versatile the honeybee’s role in the North-European ecosystem. Feeding on nectar and pollen, the honeybee interacts with plants–in particular with cultivated crops. In doing so, the honeybee appears to disperse common pathogens of plants, pollinators and other animals, but also microbes potentially protective of these pathogens. Thus, honey-borne DNA helps us define the honeybee’s functional niche, offering directions to expound the benefits and drawbacks of the associations to the honeybee itself and its interacting organisms.
Collapse
Affiliation(s)
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kirsten Miller
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
40
|
Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes. Microorganisms 2022; 10:microorganisms10071393. [PMID: 35889112 PMCID: PMC9323704 DOI: 10.3390/microorganisms10071393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.
Collapse
|
41
|
Lemenze A, Mittal N, Perryman AL, Daher SS, Ekins S, Occi J, Ahn YM, Wang X, Russo R, Patel JS, Daugherty RM, Wood DO, Connell N, Freundlich JS. Rickettsia Aglow: A Fluorescence Assay and Machine Learning Model to Identify Inhibitors of Intracellular Infection. ACS Infect Dis 2022; 8:1280-1290. [PMID: 35748568 PMCID: PMC9912140 DOI: 10.1021/acsinfecdis.2c00014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Alexander Lemenze
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Nisha Mittal
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Alexander L Perryman
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Samer S Daher
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States
| | - James Occi
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Xin Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Riccardo Russo
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Jimmy S Patel
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Robin M Daugherty
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - David O Wood
- Department of Microbiology and Immunology, University of South Alabama, 5851 USA Drive North, Mobile, Alabama 36688, United States
| | - Nancy Connell
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Joel S Freundlich
- Department of Medicine, and the Ruy V. Lourenco Center for the Study of Emerging and Reemerging Pathogens, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Medical Sciences Building, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| |
Collapse
|
42
|
Kuo CC, Lee PL, Wang HC. Molecular identification of Rickettsia spp. in chigger mites in Taiwan. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:223-229. [PMID: 34846757 DOI: 10.1111/mve.12560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The genus Rickettsia is the causative agent of several rickettsial diseases that are primarily transmitted by hard ticks. The occurrence of Rickettsia in chigger mites, which are vectors of scrub typhus in the western Pacific region, has been infrequently investigated. We identified Rickettsia spp. in chiggers collected from small mammals in six counties of Taiwan. Moreover, by capitalising on parallel Rickettsia detections on small mammals and their infested ticks and fleas, we were able to identify Rickettsia spp. that suggested more intimate associations with chigger mites. Rickettsia detection rates in 318 pools of chiggers were 21.7% and 22.3% when based on the ompB and gltA gene, respectively. Overall, we identified six (based on the ompB gene) and eight (gltA gene) Rickettsia species. Approximately half of the sequenced species were most similar to Rickettsia sp. clone MB74-1 (ompB gene) and Rickettsia sp. TwKM02 (gltA gene). Furthermore, both species were either infrequently or never identified in small mammals, ticks and fleas, which suggests that chigger mites might be the primary host of both rickettsiae. Whether both species are pathogenic to humans remains to be studied. They may also be microbial endosymbionts of chigger mites, with their potential effects on the pathogenicity of the aetiologic agent of scrub typhus deserving further investigations.
Collapse
Affiliation(s)
- Chi-Chien Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Lung Lee
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsi-Chieh Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
43
|
Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S, Hunter-Barnett S, Campbell PM, Blow F, Darby AC, Hurst GDD, Siozios S. Genomic diversity across the Rickettsia and 'Candidatus Megaira' genera and proposal of genus status for the Torix group. Nat Commun 2022; 13:2630. [PMID: 35551207 PMCID: PMC9098888 DOI: 10.1038/s41467-022-30385-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the bacterial genus Rickettsia were originally identified as causative agents of vector-borne diseases in mammals. However, many Rickettsia species are arthropod symbionts and close relatives of 'Candidatus Megaira', which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes of Rickettsia species from understudied groups, including the Torix group, and two genomes of 'Ca. Megaira' from various insects and microeukaryotes. Our analyses of the new genomes, in comparison with previously described ones, indicate that the accessory genome diversity and broad host range of Torix Rickettsia are comparable to those of all other Rickettsia combined. Therefore, the Torix clade may play unrecognized roles in invertebrate biology and physiology. We argue this clade should be given its own genus status, for which we propose the name 'Candidatus Tisiphia'.
Collapse
Affiliation(s)
- Helen R Davison
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jack Pilgrim
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91125, USA
| | | | - Simon Hunter-Barnett
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Paul M Campbell
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- School of Health and Life Sciences, Faculty of Biology Medicine and Health, the University of Manchester, Manchester, UK
| | - Frances Blow
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
44
|
Rickettsia spp. in ticks from a tropical dry forest reserve on Mexico's Pacific Coast. Ticks Tick Borne Dis 2022; 13:101911. [DOI: 10.1016/j.ttbdis.2022.101911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
45
|
Genomic evolution and adaptation of arthropod-associated Rickettsia. Sci Rep 2022; 12:3807. [PMID: 35264613 PMCID: PMC8907221 DOI: 10.1038/s41598-022-07725-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rickettsia species are endosymbionts hosted by arthropods and are known to cause mild to fatal diseases in humans. Here, we analyse the evolution and diversity of 34 Rickettsia species using a pangenomic meta-analysis (80 genomes/41 plasmids). Phylogenomic trees showed that Rickettsia spp. diverged into two Spotted Fever groups, a Typhus group, a Canadensis group and a Bellii group, and may have inherited their plasmids from an ancestral plasmid that persisted in some strains or may have been lost by others. The results suggested that the ancestors of Rickettsia spp. might have infected Acari and/or Insecta and probably diverged by persisting inside and/or switching hosts. Pangenomic analysis revealed that the Rickettsia genus evolved through a strong interplay between genome degradation/reduction and/or expansion leading to possible distinct adaptive trajectories. The genus mainly shared evolutionary relationships with α-proteobacteria, and also with γ/β/δ-proteobacteria, cytophagia, actinobacteria, cyanobacteria, chlamydiia and viruses, suggesting lateral exchanges of several critical genes. These evolutionary processes have probably been orchestrated by an abundance of mobile genetic elements, especially in the Spotted Fever and Bellii groups. In this study, we provided a global evolutionary genomic view of the intracellular Rickettsia that may help our understanding of their diversity, adaptation and fitness.
Collapse
|
46
|
First report of Rickettsia asembonensis in small ruminants. Vet Res Commun 2022; 46:979-983. [PMID: 35190932 DOI: 10.1007/s11259-022-09904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Rickettsioses is a group of emerging infectious diseases in Southeast Asia caused by Gram-negative obligate intracellular bacteria in the Rickettsiae tribe. However, there is limited information regarding the vertebrate hosts of Rickettsia spp. in this region. This study aims to detect and identify Rickettsia agents present in wildlife and domesticated animals in Malaysia using Polymerase Chain Reaction (PCR) and sequencing of citrate synthase gene (gltA), followed by genotyping and phylogenetic analysis. Rickettsia sp. was detected in 2 (0.67%) of 300 wildlife and domesticated animal blood samples. The positive samples were derived from a goat (5.56% of 18) and a sheep (2.22% of 45). Both sequences demonstrated 99.64% sequence similarity to Rickettsia asembonensis, a species that is known to infect humans and macaques. This study reported for the first time the detection of R. asembonensis in sheep and goats in Malaysian farms, suggesting this species may be adapting to a wider range of animals, specifically farm animals. Therefore, this bacterium may pose a zoonotic threat to the local community particularly to the farmworkers or animal handlers. The low infection rate of this pathogen across different animals highlighted the need of continuous surveillance of emerging and reemerging pathogens among animal populations.
Collapse
|
47
|
Cooper WR, Horton DR, Swisher-Grimm K, Krey K, Wildung MR. Bacterial Endosymbionts of Bactericera maculipennis and Three Mitochondrial Haplotypes of B. cockerelli (Hemiptera: Psylloidea: Triozidae). ENVIRONMENTAL ENTOMOLOGY 2022; 51:94-107. [PMID: 34864906 DOI: 10.1093/ee/nvab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Insects harbor bacterial endosymbionts that provide their hosts with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, or abiotic stresses. We used directed sequencing of 16S rDNA to identify and compare endosymbionts of Bactericera maculipennis (Crawford) and the western, central, and northwestern haplotypes of B. cockerelli (Šulc) (Hemiptera: Psylloidea: Triozidae). Both species are native to North America, are known to harbor the plant pathogen 'Candidatus Liberibacter solanacearum' and develop on shared host plants within the Convolvulaceae. The Old-World species Heterotrioza chenopodii (Reuter) (Psylloidea: Triozidae), now found in North America, was included as an outgroup. 16S sequencing confirmed that both Bactericera species harbor 'Candidatus Liberibacter solanacearum' and revealed that both species harbor unique strains of Wolbachia and Sodalis. However, the presence of Wolbachia and Sodalis varied among haplotypes of B. cockerelli. The central and western haplotypes harbored the same strains of Wolbachia, which was confirmed by Sanger sequencing of the wsp and ftsZ genes. Wolbachia was also detected in very low abundance from the northwestern haplotype by high-throughput sequencing of 16S but was not detected from this haplotype by PCR screening. The northwestern and central haplotypes also harbored Sodalis, which was not detected in the western haplotype. Heterotrioza chenopodii harbored an entirely different community of potential endosymbionts compared with the Bactericera spp. that included Rickettsia and an unidentified bacterium in the Enterobacteriaceae. Results of this study provide a foundation for further research on the interactions between psyllids and their bacterial endosymbionts.
Collapse
Affiliation(s)
- W Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - David R Horton
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Kylie Swisher-Grimm
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Prosser, WA 99350, USA
| | - Karol Krey
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Mark R Wildung
- Laboratory for Bioinformatics and Bioanalysis, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
48
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
49
|
Li F, Tian J, Wang L, Yang Z, Lu M, Qin X, Zhao H, Chen J, Li K. High Prevalence of Rickettsia bellii in Mosquitoes From Eastern China. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:390-393. [PMID: 34665223 DOI: 10.1093/jme/tjab177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Mosquitoes are the most important vectors carrying significant numbers of human pathogens. Recent studies implicated that mosquitoes play an important role in circulation and transmission of multiple Rickettsia species. In this study, Rickettsia bellii was identified in four mosquito species (Culex pipiens, C. tritaeniorhynchus, Aedes albopictus, and Anopheles sinensis) collected from three Eastern China provinces during 2019-2020. Rickettsia bellii was detected in 37.50 and 26.32% of the C. pipiens pools from Beijing and Jiangsu province, respectively. In C. tritaeniorhynchus and An. sinensis from Shandong, the infection rate is 20.00 and 6.25%, respectively. Additionally, three Ae. albopictus pools (3/42, 7.14%) from Beijing were also detected positive for R. bellii. Genetic and phylogenetic analysis on 16S, gltA, and groEL genes indicates that sequences from all these strains are highly homologous and closely related to other R. bellii strains. This is the first report that Ae. albopictus and C. tritaeniorhynchus harbor R. bellii. The wide host range and high infection rate in certain areas may dramatically increase the exposure of R. bellii to human and other vertebrates. The role of mosquitoes in transmission of rickettsiosis and its potential risk to public health should be further considered.
Collapse
Affiliation(s)
- Feng Li
- Yancheng Center for Disease Control and Prevention, Yancheng City, Jiangsu Province 224000, China
| | - Junhua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan City, Hubei Province 430024, China
| | - Lin Wang
- Laoshan No. 3 Middle School, Qingdao City, Shandong Province 266061, China
| | - Zhengpei Yang
- Liping Center for Disease Control and Prevention, Southeast Guizhou Miao-Dong Autonomous Prefecture, Guizhou Province 557300, China
| | - Miao Lu
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing City 102206, China
| | - Xincheng Qin
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing City 102206, China
| | - Hongqing Zhao
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing City 102206, China
| | - Jintao Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan City, Hubei Province 430071, China
| | - Kun Li
- Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing City 102206, China
| |
Collapse
|
50
|
Spernovasilis N, Markaki I, Papadakis M, Mazonakis N, Ierodiakonou D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop Med Infect Dis 2021; 6:172. [PMID: 34698275 PMCID: PMC8544691 DOI: 10.3390/tropicalmed6040172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar ("tache noire"). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.
Collapse
Affiliation(s)
- Nikolaos Spernovasilis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Ioulia Markaki
- “Trifyllio” General Hospital of Kythira, 80200 Kythira, Greece;
| | - Michail Papadakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Nikolaos Mazonakis
- School of Medicine, University of Crete, 71003 Heraklion, Greece; (N.S.); (M.P.); (N.M.)
| | - Despo Ierodiakonou
- Department of Social Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2417, Cyprus
| |
Collapse
|