1
|
Ahsan R, Khan MM, Mishra A, Noor G, Ahmad U. Plumbagin as a potential therapeutic agent for scopolamine-induced Alzheimer's disease: Mechanistic insights into GSK-3β inhibition. Brain Res 2025:149650. [PMID: 40250748 DOI: 10.1016/j.brainres.2025.149650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The study aimed to evaluate Plumbagin's neuroprotective potential against scopolamine-induced Alzheimer's disease, proposing that its effects may involve GSK-3β inhibition, a key factor in tau hyperphosphorylation, to promote neuroprotection in Wistar rats. METHODS Alzheimer's was induced in male Wistar rats. After acclimatization, the rats were subjected to daily intraperitoneal treatment with scopolamine (0.7 mg/kg) and oral administration of Plumbagin (10 mg/kg) for 13 days. The cognitive function of treated rats was evaluated using the Morris water maze test, along with assessments of locomotor activity, acetylcholinesterase activity (AChE), protein levels, antioxidant parameters, cytokines and Brain-Derived Neurotrophic Factor (BDNF) and brain histopathology (hippocampus). RESULTS The Plumbagin (10 mg/kg, oral) as given orally significantly improved neurobehavioral alterations compared to Alzheimer's induced group. Scopolamine impaired cognitive function and increased locomotor activity (#P < 0.05). Treatments improved Morris water maze performance, reducing Escape latency time and increasing Time spent in the target quadrant (*P < 0.05). Biochemically, treatments significantly improved BDNF (*P < 0.05), decreased AChE activity, oxidative stress, reduced Interleukin-6 and Tumor Necrosis Factor Alpha (*P < 0.05) and reversed Scopolamine induced hippocampal neuronal loss (##P < 0.01). Plumbagin showed significant (*P < 0.05) neuroprotective effects, improving cognitive function, reducing AChE activity, Malondialdehyde, oxidative stress, and neuroinflammatory markers exceeding individual treatments in the scopolamine-induced Alzheimer's disease model. These improvements suggest a possible mechanism through the inhibition of GSK-3β, which may contribute to the observed neuroprotective effects. CONCLUSION This study suggests that Plumbagin's neuroprotective effects in scopolamine-induced Alzheimer's disease may involve GSK-3β inhibition. Plumbagin shows significant therapeutic potential for Alzheimer's treatment, warranting further investigation of its mechanism.
Collapse
Affiliation(s)
- Rabiya Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India.
| | - Anuradha Mishra
- Department of Pharmacology, Amity Institute of Pharmacy, Lucknow Campus, AmityUniversity, Uttar Pradesh, Sector 125, Noida 201313, India
| | - Gazala Noor
- Department of Pharmacology, Faculty of Pharmacy, Integral University, 226022 Lucknow, India
| | - Usama Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
2
|
Son BK, Nanao-Hamai M, Umeda-Kameyama Y, Lyu W, Tanaka T, Yoshizawa Y, Akishita M, Iijima K. Ikigai is associated with lower incidence of frailty during a 5-year follow-up in older women: The possible role of interleukin-6. Arch Gerontol Geriatr 2025; 131:105776. [PMID: 39913953 DOI: 10.1016/j.archger.2025.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Ikigai, a psychological concept in Japanese culture representing a life worth living, contributes to health outcomes. This study examined the association between Ikigai and the incidence of frailty and sought to investigate the underlying biological mechanism by exploring inflammatory cytokines. MATERIALS AND METHODS In the 2016 Kashiwa Cohort Study, 832 community-dwelling older adults without frailty were enrolled. Participants reported their Ikigai status at baseline. Frailty was defined as meeting three of Fried's five phenotypic criteria. Plasma concentrations of inflammatory cytokines, including interleukins (ILs) and tumor necrosis factor α, were measured at baseline using immunoassays. Cox regression was used to analyze the association between Ikigai and new-onset frailty stratified by sex after adjusting for relevant confounders. RESULTS Overall, 7.1 % of 832 participants (75.8 ± 4.7 years, women 47.0 %) developed new-onset frailty during the 5-year follow-up. Older adults with Ikigai (n = 749) had better vitality and mental health and fewer depressive symptoms than those without Ikigai. In women, Ikigai was associated with a lower risk of developing frailty (a fully-adjusted hazard ratio=0.24, 95 % confidence interval: 0.08-0.73, P = 0.012). Notably, a significantly lower prevalence of exhaustion was observed in women with Ikigai (P < 0.001). A higher concentration of IL-6 was observed in women with Ikigai at baseline than in those without Ikigai who developed frailty (P = 0.036). CONCLUSIONS This study demonstrated that Ikigai could prevent frailty in women, which might be attributed to mitigate exhaustion. Furthermore, the biological actions of Ikigai are associated with high IL-6 levels. Our findings suggest that sex-specific frailty prevention should be considered with Ikigai.
Collapse
Affiliation(s)
- Bo-Kyung Son
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan; Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan.
| | - Michiko Nanao-Hamai
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | - Yumi Umeda-Kameyama
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | - Weida Lyu
- Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | - Tomoki Tanaka
- Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | - Yasuyo Yoshizawa
- Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| | - Masahiro Akishita
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Japan
| | - Katsuya Iijima
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan; Institute of Gerontology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
Kabir E, Shila TT, Islam J, Beauty SA, Islam F, Hossain S, Nikkon F, Himeno S, Hossain K, Saud ZA. Concomitant Exposure to Lower Doses of Arsenic, Lead, and Manganese Induces Greater Synergistic Neurotoxicity Than Individual Metals in Mice. Biol Trace Elem Res 2025; 203:1571-1581. [PMID: 38898194 DOI: 10.1007/s12011-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
People in Bangladesh are often exposed to low to high levels of multiple metals due to contaminated groundwater with various heavy metals such as arsenic (As), lead (Pb), and manganese (Mn). However, the effects of concomitant exposure of these three metals on neurobehavioral changes are yet to be studied. Therefore, this study was intended to assess the neurotoxic effect of As, Pb, and Mn in a mouse model. Elevated plus maze (EPM) and Morris water maze (MWM) tests were conducted to evaluate anxiety, learning, and spatial memory impairment, respectively. The mice exposed to a combination of metals spent least time exploring the open arms and had longer latencies to find the hidden platform than the control and individual metal exposure groups in EPM and MWM tests. Moreover, concomitant multi-metal exposure remarkably decreased the activities of cholinergic and antioxidant enzymes, brain-derived neurotropic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels and significantly increased interleukin-6 (IL-6) level in the brain tissue compared to the control and individual metal-exposed mice. Among the mice treated with a single metal, the As-treated mice showed the highest toxic effects than Pb- or Mn-treated mice. Taken together, the present study demonstrated that exposure to a mixture of As, Pb, and Mn, even at lower doses than individual metals, significantly augmented anxiety-like behavior and impaired learning and spatial memory compared to exposure to individual metals, which was associated with the changes of BDNF, Nrf2, IL-6 levels, and related enzyme activities in the brain.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharmin Akter Beauty
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
4
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
5
|
Davydova TV, Vetrile LA, Zakharova IA. Antibodies to Glutamate Reduce the IL-6 Content in Cerebral Structures in Mice with Age-Related Memory Impairment. Bull Exp Biol Med 2024; 177:607-609. [PMID: 39342009 DOI: 10.1007/s10517-024-06233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 10/01/2024]
Abstract
Intranasal administration of antibodies to glutamate for 14 days improved passive avoidance conditioning and reduces the content of IL-6 within 7 days after their withdrawal in the prefrontal cortex and hippocampus of aging C57BL/6 mice.
Collapse
Affiliation(s)
- T V Davydova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - L A Vetrile
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I A Zakharova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
6
|
Zhao Z, Zhang J, Wu Y, Xie M, Tao S, Lv Q, Wang Q. Plasma IL-6 levels and their association with brain health and dementia risk: A population-based cohort study. Brain Behav Immun 2024; 120:430-438. [PMID: 38897328 DOI: 10.1016/j.bbi.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Recent studies have associated immune abnormalities with dementia. IL-6 is a crucial cytokine in inflammatory responses, and recent evidence has linked elevated IL-6 levels to changes in brain structure and cognitive decline. However, the connection between IL-6 levels, cognition, brain volumes, and dementia risk requires exploration in large prospective cohorts. METHODS This study utilized a longitudinal cohort from the UK Biobank to analyze the correlation between IL-6 expression levels, cognitive performance, and cortical and subcortical brain volumes through linear regression. Additionally, we assessed the association between IL-6 levels and long-term dementia risk using Cox regression analysis. We also used one-sample Mendelian randomization to analyze the impact of genetic predisposition of dementia on elevated IL-6 levels. RESULTS A total of 50,864 participants were included in this study, with 1,391 new cases of all-cause dementia identified. Higher plasma IL-6 levels are associated with cortical and subcortical atrophy in regions such as the fusiform, thalamus proper, hippocampus, and larger ventricle volumes. IL-6 levels are negatively associated with cognitive performance in pair matching, numeric memory, prospective memory, and reaction time tests. Furthermore, elevated IL-6 levels are linked to a 23-35 % increased risk of all-cause dementia over an average follow-up period of 13.2 years. The one-sample Mendelian randomization analysis did not show associations between the genetic predisposition of dementia and elevated IL-6 levels. CONCLUSIONS Increased IL-6 levels are associated with worse cognition, brain atrophy, and a heightened risk of all-cause dementia. Our study highlights the need to focus on the role of peripheral IL-6 levels in managing brain health and dementia risk.
Collapse
Affiliation(s)
- Zhengyang Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiashuo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yulu Wu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiwan Tao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiuyue Lv
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Rodríguez J, De Santis Arévalo J, Dennis VA, Rodríguez AM, Giambartolomei GH. Bystander activation of microglia by Brucella abortus-infected astrocytes induces neuronal death via IL-6 trans-signaling. Front Immunol 2024; 14:1343503. [PMID: 38322014 PMCID: PMC10844513 DOI: 10.3389/fimmu.2023.1343503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Inflammation plays a key role in the pathogenesis of neurobrucellosis where glial cell interactions are at the root of this pathological condition. In this study, we present evidence indicating that soluble factors secreted by Brucella abortus-infected astrocytes activate microglia to induce neuronal death. Culture supernatants (SN) from B. abortus-infected astrocytes induce the release of pro-inflammatory mediators and the increase of the microglial phagocytic capacity, which are two key features in the execution of live neurons by primary phagocytosis, a recently described mechanism whereby B. abortus-activated microglia kills neurons by phagocytosing them. IL-6 neutralization completely abrogates neuronal loss. IL-6 is solely involved in increasing the phagocytic capacity of activated microglia as induced by SN from B. abortus-infected astrocytes and does not participate in their inflammatory activation. Both autocrine microglia-derived and paracrine astrocyte-secreted IL-6 endow microglial cells with up-regulated phagocytic capacity that allows them to phagocytose neurons. Blocking of IL-6 signaling by soluble gp130 abrogates microglial phagocytosis and concomitant neuronal death, indicating that IL-6 activates microglia via trans-signaling. Altogether, these results demonstrate that soluble factors secreted by B. abortus-infected astrocytes activate microglia to induce, via IL-6 trans-signaling, the death of neurons. IL-6 signaling inhibition may thus be considered a strategy to control inflammation and CNS damage in neurobrucellosis.
Collapse
Affiliation(s)
- Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia De Santis Arévalo
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vida A Dennis
- Center for NanoBiotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Tsermpini EE, Goričar K, Kores Plesničar B, Plemenitaš Ilješ A, Dolžan V. The Disease Model of Addiction: The Impact of Genetic Variability in the Oxidative Stress and Inflammation Pathways on Alcohol Dependance and Comorbid Psychosymptomatology. Antioxidants (Basel) 2023; 13:20. [PMID: 38275640 PMCID: PMC10812813 DOI: 10.3390/antiox13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress and neuroinflammation are involved in the pathogenesis of alcohol addiction. However, little is known regarding the effect of genetic, behavioral, psychological, and environmental sources of origin on the inflammation and oxidative stress pathways of patients with alcohol addiction. Our study aimed to evaluate the impact of selected common functional single-nucleotide polymorphisms in inflammation and oxidative stress genes on alcohol addiction, and common comorbid psychosymptomatology. Our study included 89 hospitalized alcohol-addicted patients and 93 healthy individuals, all Slovenian males. Their DNA was isolated from peripheral blood and patients were genotyped for PON1 rs705379, rs705381, rs854560, and rs662, SOD2 rs4880, GPX1 rs1050450, IL1B rs1143623, rs16944, and rs1071676, IL6 rs1800795, IL6R rs2228145, and miR146a rs2910164. Kruskal-Wallis and Mann-Whitney tests were used for the additive and dominant genetic models, respectively. Our findings suggested the involvement of IL6 rs1800795 in alcohol addiction. Moreover, our data indicated that the genetic variability of SOD2 and PON1, as well as IL1B and IL6R, may be related to comorbid psychosymptomatology, revealing a potential indirect means of association of both the oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| | - Blanka Kores Plesničar
- University Psychiatric Clinic, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Anja Plemenitaš Ilješ
- Department of Psychiatry, University Clinical Centre Maribor, 2000 Maribor, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.E.T.); (K.G.)
| |
Collapse
|
10
|
Pourroostaei Ardakani P, Abkhiz S, Sheykhi K, Adhami Mojarad K, Rahimi B, Panahi M, Hooshmand M. Molecular Investigation of the Association Among Common Interleukin-6 Polymorphism and Human Papillomavirus Genotypes with Cervical Cancer Among Iranian Women. Monoclon Antib Immunodiagn Immunother 2023; 42:125-131. [PMID: 37624608 DOI: 10.1089/mab.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Cervical cancer is the fourth most commonly identified cancer and the third important reason for cancer-related death among women in less developed nations. Aside from the human papillomavirus (HPV), the host genetic factors, especially some polymorphisms in the interleukin 6 (IL-6) gene, might relate to the risk of cervical cancer. This study aims to investigate the molecular investigation of HPV infection and its association with the common polymorphism of IL-6 in cervical carcinoma in Iran. This case-control study collected 62 precancerous and cancerous lesions and 62 healthy samples from cancer-free women, subsequent negative colposcopy, and cervical cytology. The frequency of HPV genotypes and the genotyping of IL-6 rs1800795 and rs1800796 were done by different PCR techniques. Results were analyzed using the Epi Info version 7, 2012, with the χ2 test. Compared with cervical intraepithelial neoplasia grade 1 (CINI), the HPV positivity rate is saliently higher in CINII/III and squamous cell carcinoma (SCC) (56.25%, 66.66%, and 73.63%, respectively, p < 0.001). The HPV positivity rate is also higher in SCC in comparison with CINII/III (p < 0.01). Furthermore, the most detected HPV genotypes were HPV16 and 33 in CINI; HPV16, 31, and 35 in CINII/III; and HPV16 and 18 in SCC groups. HPV16 was the most commonly detected genotype in CINI, CINII/III, and SCC, accounting for 44.44%, 50%, and 71.42%, respectively. In addition, the frequency of GG, CG, and CC genotypes from rs1800795 polymorphism was 0.58, 0.32, and 0.10, respectively (p = 0.033), but in the control group, it was 0.70, 0.27, and 0.03, respectively. The findings suggest that HPV16 plays an important role in the emergence of cervical lesions in Iranian patients. As a result, rs1800795 CC genotype and HPV might increase cervical cancer risk in Iranian women.
Collapse
Affiliation(s)
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Kazhaal Sheykhi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kamand Adhami Mojarad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Hooshmand
- Medical Genetic Department, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Sovrani V, Bobermin LD, Sesterheim P, Rezena E, Cioccari MS, Netto CA, Gonçalves CA, Leipnitz G, Quincozes-Santos A. Glioprotective effects of resveratrol in hypothalamic astrocyte cultures obtained from interferon receptor knockout (IFNα/βR -/-) mice. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00777-z. [PMID: 37353697 DOI: 10.1007/s11626-023-00777-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/β-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/βR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Sinhorelli Cioccari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
12
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
13
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
14
|
Lu D, Wang M, Yang T, Wang J, Lin B, Liu G, Liang Q. Association of Interleukin-6 Polymorphisms with Schizophrenia and Depression: A Case-Control Study. Lab Med 2022; 54:250-255. [PMID: 36239635 DOI: 10.1093/labmed/lmac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Objective
Growing evidence suggests a crossover in genetic susceptibility to schizophrenia and depression. We aimed to investigate the association of the rs1800795 and rs1800796 polymorphisms of the IL-6 gene with schizophrenia and depression in the Han Chinese population, combined with IL-6 serum levels.
Methods
Gene sequencing and enzyme-linked immunosorbent assay were performed on 113 subjects with schizophrenia, 114 subjects with depression, and 110 healthy controls.
Results
Our findings showed that IL-6 concentrations in schizophrenia and depression groups were significantly higher than in the control group. The rs1800796 CC genotype and C allele were significantly associated with depression (P = .012 and P < .05, respectively). The rs1800796 CC and CG genotype was significantly associated with chronic schizophrenia (P = .020 and P = .009, respectively). Regarding the rs1800795 polymorphism, only one case of CG genotype was detected. The remainder were of the GG genotype.
Conclusion
The IL-6 rs1800796 might serve as a protective factor for depression and schizophrenia in the Han Chinese population.
Collapse
Affiliation(s)
- Danyu Lu
- Department of Clinical Laboratory, Fifth People’s Hospital of Nanning , Nanning , China
| | - Minli Wang
- Department of Psychology, Fifth People’s Hospital of Nanning , Nanning , China
| | - Tongfei Yang
- Department of Gynecology, Fifth People’s Hospital of Nanning , Nanning , China
| | - Jianyou Wang
- Department of Psychiatry, Fifth People’s Hospital of Nanning , Nanning , China
| | - Baiquan Lin
- Department of Clinical Laboratory, Fifth People’s Hospital of Nanning , Nanning , China
| | - Guoyan Liu
- Department of Clinical Laboratory, Fifth People’s Hospital of Nanning , Nanning , China
| | - Qiaoyan Liang
- Department of Clinical Laboratory, Fifth People’s Hospital of Nanning , Nanning , China
| |
Collapse
|
15
|
García-Juárez M, Camacho-Morales A. Defining the role of anti- and pro-inflammatory outcomes of Interleukin-6 in mental health. Neuroscience 2022; 492:32-46. [DOI: 10.1016/j.neuroscience.2022.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
|
16
|
Pottoo FH, Salahuddin M, Khan FA, AL Dhamen MA, Alsaeed WJ, Gomaa MS, Vatte C, Alomary MN. Combinatorial Regimen of Carbamazepine and Imipramine Exhibits Synergism against Grandmal Epilepsy in Rats: Inhibition of Pro-Inflammatory Cytokines and PI3K/Akt/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:1204. [PMID: 34832986 PMCID: PMC8624327 DOI: 10.3390/ph14111204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a neurodegenerative disorder that causes recurring seizures. Thirty-five percent of patients remain refractory, with a higher prevalence of depression. We investigated the anticonvulsant efficacy of carbamazepine (CBZ; 20 and 50 mg/kg), imipramine (IMI; 10 and 20 mg/kg) alone, and as a low dose combination. This preclinical investigation included dosing of rats for 14 days followed by elicitation of electroshock on the last day of treatment. Along with behavioral monitoring, the rat hippocampus was processed for quantification of mTOR, IL-1β, IL-6 and TNF-α levels. The histopathological analysis of rat hippocampus was performed to ascertain neuroprotection. In vitro studies and in silico studies were also conducted. We found that the low dose combinatorial therapy of CBZ (20 mg/kg) + IMI (10 mg/kg) exhibits synergism (p < 0.001) in abrogation of maximal electroshock (MES) induced convulsions/tonic hind limb extension (THLE), by reducing levels of pro-inflammatory cytokines, and weakening of the PI3K/Akt/mTOR signal. The combination also exhibits cooperative binding at the Akt. As far as neuroprotection is concerned, the said combination increased cell viability by 166.37% compared to Pentylenetetrazol (PTZ) treated HEK-293 cells. Thus, the combination of CBZ (20 mg/kg) + IMI (10 mg/kg) is a fruitful combination therapy to elevate seizure threshold and provide neuroprotection.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem cell Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Walaa Jafar Alsaeed
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
17
|
de Oliveira J, Farias HR, Streck EL. Experimental evidence of tyrosine neurotoxicity: focus on mitochondrial dysfunction. Metab Brain Dis 2021; 36:1673-1685. [PMID: 34212298 DOI: 10.1007/s11011-021-00781-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Tissue exposure to high levels of tyrosine, which is characteristic of an inborn error of metabolism named Tyrosinemia, is related to severe symptoms, including neurological alterations. The clinical manifestations and pathogenesis of tyrosine neurotoxicity can be recapitulated in experimental models in vivo and in vitro. A widely used experimental model to study brain tyrosine damage is the chronic and acute administration of this amino acid in infant rats. Other research groups and we have extensively studied the pathogenic events in the brain structures of rats exposed to high tyrosine levels. Rats administered acutely and chronically with tyrosine presented decreased and inhibition of the essential metabolism enzymes, e.g., Krebs cycle enzymes and mitochondrial respiratory complexes in the brain structures. These alterations induced by tyrosine toxicity were associated with brain oxidative stress, astrocytes, and, ultimately, cognitive impairments. Notably, in vivo data were corroborated by in vitro studies using cerebral regions homogenates incubated with tyrosine excess. Considering metabolism's importance to brain functioning, we hypothesized that mitochondrial and metabolic dysfunctions are closely related to neurological alterations induced by tyrosine neurotoxicity. Herein, we reviewed the main mechanisms associated with tyrosine neurotoxicity in experimental models, emphasizing the role of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jade de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-000, Brazil
| | - Hémelin Resende Farias
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-000, Brazil
| | - Emilio Luiz Streck
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, 88806-000, Brazil.
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| |
Collapse
|
18
|
Miller BJ, Herzig KH, Jokelainen J, Karhu T, Keinänen-Kiukaanniemi S, Järvelin MR, Veijola J, Viinamäki H, Päivikki Tanskanen, Jääskeläinen E, Isohanni M, Timonen M. Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966. Eur Arch Psychiatry Clin Neurosci 2021; 271:609-622. [PMID: 32382794 DOI: 10.1007/s00406-020-01134-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Increased blood interleukin-6 (IL-6) levels are a replicated abnormality in schizophrenia, and may be associated with smaller hippocampal volumes and greater cognitive impairment. These findings have not been investigated in a population-based birth cohort. The general population Northern Finland Birth Cohort 1966 was followed until age 43. Subjects with schizophrenia were identified through the national Finnish Care Register. Blood IL-6 levels were measured in n = 82 subjects with schizophrenia and n = 5373 controls at age 31. Additionally, 31 patients with schizophrenia and 63 healthy controls underwent brain structural MRI at age 34, and cognitive testing at ages 34 and 43. Patients with schizophrenia had significantly higher median (interquartile range) blood IL-6 levels than controls (5.31, 0.85-17.20, versus 2.42, 0.54-9.36, p = 0.02) after controlling for potential confounding factors. In both schizophrenia and controls, higher blood IL-6 levels were predictors of smaller hippocampal volumes, but not cognitive performance at age 34. We found evidence for increased IL-6 levels in patients with midlife schizophrenia from a population-based birth cohort, and replicated associations between IL-6 levels and hippocampal volumes. Our results complement and extend the previous findings, providing additional evidence that IL-6 may play a role in the pathophysiology of schizophrenia and associated brain alterations.
Collapse
Affiliation(s)
- Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, 997 Saint Sebastian Way, Augusta, GA, 30912, USA.
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Jari Jokelainen
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Toni Karhu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Juha Veijola
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Heimo Viinamäki
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Psychiatry, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Erika Jääskeläinen
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Markku Timonen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| |
Collapse
|
19
|
Trovato M, Sciacchitano S, Facciolà A, Valenti A, Visalli G, Di Pietro A. Interleukin‑6 signalling as a valuable cornerstone for molecular medicine (Review). Int J Mol Med 2021; 47:107. [PMID: 33907833 PMCID: PMC8057292 DOI: 10.3892/ijmm.2021.4940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The biological abilities of interleukin-6 (IL-6) have been under investigation for nearly 40 years. IL-6 works through an interaction with the complex peptide IL-6 receptor (IL-6R). IL-6 is built with four α-chain nanostructures, while two different chains, IL-6Rα (gp80) and gp130/IL6β (gp130), are included in IL-6R. The three-dimensional shapes of the six chains composing the IL-6/IL-6R complex are the basis for the nanomolecular roles of IL-6 signalling. Genes, pseudogenes and competitive endogenous RNAs of IL-6 have been identified. In the present review, the roles played by miRNA in the post-transcriptional regulation of IL-6 expression are evaluated. mRNAs are absorbed via the 'sponge' effect to dynamically balance mRNA levels and this has been assessed with regard to IL-6 transcription efficiency. According to current knowledge on molecular and nanomolecular structures involved in active IL-6 signalling, two different IL-6 models have been proposed. IL-6 mainly has functions in inflammatory processes, as well as in cognitive activities. Furthermore, the abnormal production of IL-6 has been found in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also known as COVID-19). In the present review, both inflammatory and cognitive IL-6 models were analysed by evaluating the cytological and histological locations of IL-6 signalling. The goal of this review was to illustrate the roles of the classic and trans-signalling IL-6 pathways in endocrine glands such as the thyroid and in the central nervous system. Specifically, autoimmune thyroid diseases, disorders of cognitive processes and SARS-CoV-2 virus infection have been examined to determine the contribution of IL-6 to these disease states.
Collapse
Affiliation(s)
- Maria Trovato
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | | | - Alessio Facciolà
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University Hospital, I‑98125 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, I‑98125 Messina, Italy
| |
Collapse
|
20
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
21
|
Strenn N, Pålsson E, Liberg B, Landén M, Ekman A. Influence of genetic variations in IL1B on brain region volumes in bipolar patients and controls. Psychiatry Res 2021; 296:113606. [PMID: 33348197 DOI: 10.1016/j.psychres.2020.113606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Involvement of the immune system has been implicated in the etiology and pathophysiology of mood disorders, including bipolar disorder. Neuroimaging studies have reported structural brain pathology in bipolar disorder patients, and both levels of and genetic variants in cytokines have been associated with altered volumes of brain regions. The aim of this study was to investigate associations between single nucleotide polymorphisms in the gene coding for the pro-inflammatory cytokine interleukin-1 beta (IL1B) and whole brain grey matter volume, as well as volumes of several brain regions shown to be of importance in mood disorders. Structural magnetic resonance imaging and vertex-based morphometry were used to obtain volume of different brain regions in subjects with bipolar disorder (n=188) and healthy controls (n=54). Four IL1B polymorphisms were genotyped: rs1143623, rs1143627, and rs16944 in the promoter region together with the synonymous variant rs1143634 in the IL1B gene. The genotype distribution did not differ between bipolar subjects and controls. The T allele at rs16944 and the C allele at rs1143627 were associated with increased volumes of the putamen of the left hemisphere in patients and controls, which lends support to the role of this immune system mediator for brain structure.
Collapse
Affiliation(s)
- Nina Strenn
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Division of Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Ekman
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Bokor J, Sutori S, Torok D, Gal Z, Eszlari N, Gyorik D, Baksa D, Petschner P, Serafini G, Pompili M, Anderson IM, Deakin B, Bagdy G, Juhasz G, Gonda X. Inflamed Mind: Multiple Genetic Variants of IL6 Influence Suicide Risk Phenotypes in Interaction With Early and Recent Adversities in a Linkage Disequilibrium-Based Clumping Analysis. Front Psychiatry 2021; 12:746206. [PMID: 34777050 PMCID: PMC8585756 DOI: 10.3389/fpsyt.2021.746206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Understanding and predicting suicide remains a challenge, and a recent paradigm shift regarding the complex relationship between the immune system and the brain brought attention to the involvement of inflammation in neuropsychiatric conditions including suicide. Among cytokines, IL-6 has been most frequently implicated in suicide, yet only a few candidate gene studies and without considering the effect of stress investigated the role of IL6 in suicidal behaviour. Our study aimed to investigate the association of IL6 variation with a linkage disequilibrium-based clumping method in interaction with childhood adversities and recent stress on manifestations along the suicide spectrum. Methods: One thousand seven hundred and sixty-two participants provided information on previous suicide attempts, current suicidal ideation, thoughts of death, and hopelessness, and were genotyped for 186 variants in IL6. Early childhood adversities were recorded with an instrument adapted from the Childhood Trauma Questionnaire, recent life events were registered using the List of Threatening Life Events. Following a 3-step quality control, logistic and linear regression models were run to explore the effect of genotype and gene-environment interactions on suicide phenotypes. All regression models were followed by a clumping process based on empirical estimates of linkage disequilibrium between clumps of intercorrelated SNPs. Interaction effects of distinct types of recent life events were also analysed. Results: No clumps with significant main effects emerged, but we identified several clumps significantly interacting with childhood adversities on lifetime suicide attempts, current suicidal ideation, and current thoughts of death. We also identified clumps significantly interacting with recent negative life events on current suicidal ideation. We reported no clumps with significant effect on hopelessness either as a main effect or in interaction with childhood adversities or recent stress. Conclusion: We identified variant clumps in IL6 influencing suicidal behaviour, but only in interaction with childhood or recent adversities. Our results may bring us a step further in understanding the role of neuroinflammation and specifically of IL-6 in suicide, towards identifying novel biological markers of suicidal behaviour especially in those exposed to stressful experiences, and to fostering the adaptation of a new paradigm and identifying novel approaches and targets in the treatment of suicidal behaviour.
Collapse
Affiliation(s)
- Janos Bokor
- Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Sara Sutori
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Torok
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zsofia Gal
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Dorka Gyorik
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Daniel Baksa
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Pompili
- Department of Neurosciences Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, University of Rome, Rome, Italy
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical, and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical, and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.,SE-NAP-2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Sawkulycz X, Bradburn S, Robinson A, Payton A, Pendleton N, Murgatroyd C. Regulation of interleukin 6 by a polymorphic CpG within the frontal cortex in Alzheimer's disease. Neurobiol Aging 2020; 92:75-81. [PMID: 32408055 DOI: 10.1016/j.neurobiolaging.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
The cytokine interleukin 6 (IL-6) has been linked to the pathogenesis of Alzheimer's disease (AD). This is the first study to investigate the genetic and epigenetic interactions in the control of IL-6 in human brain and its relation to AD neuropathology in prefrontal cortex tissues from AD and controls genotyped for the SNP -174 C/G rs1800795, a polymorphic CpG in which the G allele creates a CpG site. Within CC homozygotes there were significantly higher brain levels of IL-6 protein compared to G allele carriers. The C allele that resulted in an absence of methylation at a CpG was also associated with significant changes in methylation at neighboring CpGs. Furthermore, there were significant differences in methylation between CC and CG/GG at CpG sites in the AD and control groups. That DNA methylation was altered in the brains by the presence of rs1800795, which further correlated with protein levels suggests the presence of a polymorphic CpG and genetic-epigenetic interactions in the regulation of IL-6 in the prefrontal cortex within AD brains.
Collapse
Affiliation(s)
- Xenia Sawkulycz
- Department of Life Sciences, Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- Department of Life Sciences, Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Andrew Robinson
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Chris Murgatroyd
- Department of Life Sciences, Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
24
|
Interleukin-6 Treatment Results in GLUT4 Translocation and AMPK Phosphorylation in Neuronal SH-SY5Y Cells. Cells 2020; 9:cells9051114. [PMID: 32365859 PMCID: PMC7290332 DOI: 10.3390/cells9051114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that can be released from the brain during prolonged exercise. In peripheral tissues, exercise induced IL-6 can result in GLUT4 translocation and increased glucose uptake through AMPK activation. GLUT4 is expressed in the brain and can be recruited to axonal plasma membranes with neuronal activity through AMPK activation. The aim of this study is to examine if IL-6 treatment: (1) results in AMPK activation in neuronal cells, (2) increases the activation of proteins involved in GLUT4 translocation, and (3) increases neuronal glucose uptake. Retinoic acid was used to differentiate SH-SY5Y neuronal cells. Treatment with 100 nM of insulin increased the phosphorylation of Akt and AS160 (p < 0.05). Treatment with 20 ng/mL of IL-6 resulted in the phosphorylation of STAT3 at Tyr705 (p ≤ 0.05) as well as AS160 (p < 0.05). Fluorescent Glut4GFP imaging revealed treatment with 20ng/mL of IL-6 resulted in a significant mobilization towards the plasma membrane after 5 min until 30 min. There was no difference in GLUT4 mobilization between the insulin and IL-6 treated groups. Importantly, IL-6 treatment increased glucose uptake. Our findings demonstrate that IL-6 and insulin can phosphorylate AS160 via different signaling pathways (AMPK and PI3K/Akt, respectively) and promote GLUT4 translocation towards the neuronal plasma membrane, resulting in increased neuronal glucose uptake in SH-SY5Y cells.
Collapse
|
25
|
Antonini R, Scaini G, Michels M, Matias MBD, Schuck PF, Ferreira GC, de Oliveira J, Dal-Pizzol F, Streck EL. Effects of omega-3 fatty acids supplementation on inflammatory parameters after chronic administration of L-tyrosine. Metab Brain Dis 2020; 35:295-303. [PMID: 31828693 DOI: 10.1007/s11011-019-00525-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Tyrosinemia type II is an autosomal recessive inborn error of metabolism caused by hepatic cytosolic tyrosine aminotransferase deficiency. Importantly, this disease is associated with neurological and developmental abnormalities in many patients. Considering that the mechanisms underlying neurological dysfunction in hypertyrosinemic patients are poorly understood, in the present work we investigated the levels of cytokines - tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10 - in cerebellum, hippocampus, striatum of young rats exposed to chronic administration of L-tyrosine. In addition, we also investigated the impact of the supplementation with Omega-3 fatty acids (n-3 PUFA) on the rodent model of Tyrosinemia. Notably, previous study demonstrated an association between L-tyrosine toxicity and n-3 PUFA deficiency. Our results showed a significant increase in the levels of pro- and anti-inflammatory cytokines in brain structures when animals were administered with L-tyrosine. Cerebral cortex and striatum seem to be more susceptible to the inflammation induced by tyrosine toxicity. Importantly, n-3 PUFA supplementation attenuated the alterations on cytokines levels induced by tyrosine exposure in brain regions of infant rats. In conclusion, the brain inflammation is also an important process related to tyrosine neurotoxicity observed in the experimental model of Tyrosinemia. Finally, n-3 PUFA supplementation could be considered as a potential neuroprotective adjunctive therapy for Tyrosinemias, especially type II.
Collapse
Affiliation(s)
- Rafaela Antonini
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil
| | - Giselli Scaini
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil
| | - Monique Michels
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariane B D Matias
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Patrícia F Schuck
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jade de Oliveira
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Dal-Pizzol
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Porto Alegre, RS, Brazil.
- Center of Excellence in Applied Neuroscience of Santa Catarina (NENASC), Criciúma, Brazil.
| |
Collapse
|
26
|
Shivakumar V, Sreeraj VS, Subbanna M, Kalmady SV, Amaresha AC, Narayanaswamy JC, Debnath M, Venkatasubramanian G. Differential impact of interleukin-6 promoter gene polymorphism on hippocampal volume in antipsychotic-naïve schizophrenia patients. Indian J Psychiatry 2020; 62:36-42. [PMID: 32001929 PMCID: PMC6964441 DOI: 10.4103/psychiatry.indianjpsychiatry_486_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Differential susceptibility model hypothesizes that a genotype need not be unfavorable all the time as postulated in stress-diathesis model but can be beneficial in a supportive context. Single-nucleotide polymorphism (SNP) (rs18000795) within the promoter region of interleukin-6 (IL-6) gene was earlier noted to have a differential susceptibility on hippocampal volume in schizophrenia (SCZ). MATERIALS AND METHODS We examined antipsychotic-naïve/free SCZ patients (n = 35) in comparison with healthy controls (n = 68). Hippocampus volumes were assessed in 3 Tesla magnetic resonance imaging using voxel-based morphometry. Region of interest analysis was done using hippocampus mask. IL-6 SNP (rs1800795) was genotyped using TaqMan allelic discrimination assay. RESULTS A significantly deficient right (T = 3.03; K E= 392; P SVC-FWE= 0.04) and left (T = 3.03; K E= 47; P uncorr= 0.03) hippocampal gray matter volumes were noted in SCZ patients after controlling for the potential confounding effects of age, sex, and total brain volume. There was a significant diagnosis x rs1800795 genotype interaction involving both left (T = 2.17, K E= 95, P uncorr= 0.02) and right (T = 1.82, K E= 29, P uncorr= 0.04) hippocampal volumes. Patients with GG (left: F =5.78; P = 0.02; right: F =6.21; P = 0.01) but not GC/CC genotype (left: F =0.89; P = 0.34; right: F <0.01; P = 0.95) had volume depletion. CONCLUSION A paradoxical smaller hippocampal volume with GG genotype was noted in SCZ. Further elucidation of its mechanistic basis might have translational implications.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| | - Vanteemar S Sreeraj
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| | - Manjula Subbanna
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India.,Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sunil V Kalmady
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| | - Anekal C Amaresha
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| | - Monojit Debnath
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India.,Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Lab, Neurobiology Research Center, Bengaluru, Karnataka, India.,InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, Bengaluru, Karnataka, India
| |
Collapse
|
27
|
Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, Stubbs B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci Biobehav Rev 2019; 107:525-539. [PMID: 31586447 DOI: 10.1016/j.neubiorev.2019.09.040] [Citation(s) in RCA: 597] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022]
Abstract
Physical activity can treat and prevent depressive symptoms, but its antidepressant mechanisms are yet to be established. In this review, we comprehensively assess key biological and psychosocial mechanisms through which physical activity exerts antidepressant effects, with a particular focus on exercise. Exercise, a subset of physical activity, influences a range of biological and psychosocial processes also implicated in the pathophysiology of depression. We focus on the capacity for exercise to elicit changes in neuroplasticity, inflammation, oxidative stress, the endocrine system, self-esteem, social support and self-efficacy. We also discuss how a better understanding of these mechanisms can inform the way we design and implement exercise-based interventions to maximise their antidepressant effects on an individual basis. We conclude by presenting a conceptual framework of the key biological and psychosocial mechanisms underlying the relationship between physical activity and depressive symptoms, and the moderators and confounders that may influence it.
Collapse
Affiliation(s)
- Aaron Kandola
- Division of Psychiatry, University College London, London, UK.
| | - Garcia Ashdown-Franks
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Department of Exercise Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Joshua Hendrikse
- Brain, Mind and Society Research Hub, School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | | | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Physiotherapy Department, South London and Maudsley National Health Services Foundation Trust, London, UK
| |
Collapse
|
28
|
Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Asmoniene V, Liutkeviciene R. Does CETP rs5882, rs708272, SIRT1 rs12778366, FGFR2 rs2981582, STAT3 rs744166, VEGFA rs833068, IL6 rs1800795 polymorphisms play a role in optic neuritis development? Ophthalmic Genet 2019; 40:219-226. [DOI: 10.1080/13816810.2019.1622022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Greta Gedvilaite
- Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Virginija Asmoniene
- Department of genetics and molecular medicine, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Kaunas, Lithuania
| |
Collapse
|
29
|
Ma X, Liu J, Liu T, Ma L, Wang W, Shi S, Wang Y, Gong Q, Wang M. Altered Resting-State Functional Activity in Medication-Naive Patients With First-Episode Major Depression Disorder vs. Healthy Control: A Quantitative Meta-Analysis. Front Behav Neurosci 2019; 13:89. [PMID: 31133831 PMCID: PMC6524692 DOI: 10.3389/fnbeh.2019.00089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
Background: There is an urgent need for a meta-analysis that characterizes the brain states of major depression disorder (MDD) patients and potentially provides reliable biomarkers, because heterogeneity in the results of resting-state functional neuroimaging has been observed between studies, with some patients not showing the consistent changes, or even opposite patterns. Thus, we evaluated consistent regional brain activity alterations in medication-naive patients with first-episode unipolar MDD and compared the results with those in healthy controls (HCs). Methods: A systematic database search was conducted (in PubMed, Ovid, and Web of Knowledge) between January 1984 and July 2016 to select resting-state functional activity studies with a voxel-wise analysis in MDD. We used anisotropic effect size-signed differential mapping to perform a whole-brain meta-analysis, comparing functional alterations between first-episode medication-naive unipolar MDD patients and HCs by integrating the studies. In addition, subgroup meta-analysis was conducted to control for the MRI analysis method. Moreover, the meta-regression analyses were performed to examine the potential effects of mean age, education duration, illness duration, and severity of depressive symptoms. Results: A total of 12 studies were included, comparing 313 MDD patients with 283 HCs. The pooled and subgroup meta-analysis found that the MDD patients showed hyperactivity in the left parahippocampal gyrus, left supplementary motor area, left amygdala, left hippocampus, and left middle frontal gyrus (MFG; orbital part), and hypoactivity in the left lingual gyrus, left middle occipital gyrus, right cuneus cortex, right MFG (orbital part), and left cerebellum. In the meta-regression analyses, the mean illness duration was positively associated with hyper-activation in the left parahippocampal gyrus and hypoactivation in the hemispheric lobule IV/V of the left cerebellum. Conclusions: This meta-analysis indicated that MDD patients had significant and robust resting-state brain activity alteration in amygdala, left hippocampus and other regions, which implicated this finding in the pathophysiology of cognitive and emotional impairment in MDD patients.
Collapse
Affiliation(s)
- Xiaoyue Ma
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Jia Liu
- Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taiyuan Liu
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Lun Ma
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Wenhui Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Shaojie Shi
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China
| | - Yan Wang
- Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Medical School, Henan University, Zhengzhou, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Huaxi MR Research Center (HMRRC), Chengdu, China
| | - Meiyun Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Henan Key Laboratory of Neurological Imaging, Zhengzhou, China.,Medical School, Henan University, Zhengzhou, China.,Henan Provincial Clinical Big Data Analysis and Service Engineering Research Center, Zhengzhou, China
| |
Collapse
|
30
|
Eftekharian MM, Noroozi R, Omrani MD, Sharifi Z, Komaki A, Taheri M, Ghafouri-Fard S. Single-Nucleotide Polymorphisms in Interleukin 6 (IL-6) Gene Are Associated with Suicide Behavior in an Iranian Population. J Mol Neurosci 2018; 66:414-419. [DOI: 10.1007/s12031-018-1190-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
|
31
|
Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci Rep 2018; 8:13690. [PMID: 30209300 PMCID: PMC6135864 DOI: 10.1038/s41598-018-32106-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bilirubin neurotoxicity has been studied for decades and has been shown to affect various mechanisms via significant modulation of gene expression. This suggests that vital regulatory mechanisms of gene expression, such as epigenetic mechanisms, could play a role in bilirubin neurotoxicity. Histone acetylation has recently received attention in the CNS due to its role in gene modulation for numerous biological processes, such as synaptic plasticity, learning, memory, development and differentiation. Aberrant epigenetic regulation of gene expression in psychiatric and neurodegenerative disorders has also been described. In this work, we followed the levels of histone 3 lysine 14 acetylation (H3K14Ac) in the cerebellum (Cll) of the developing (2, 9, 17 days after the birth) and adult Gunn rat, the natural model for neonatal hyperbilirubinemia and kernicterus. We observed an age-specific alteration of the H3K14Ac in the hyperbilirubinemic animals. The GeneOntology analysis of the H3K14Ac linked chromatin revealed that almost 45% of H3K14Ac ChiP-Seq TSS-promoter genes were involved in CNS development including maturation and differentiation, morphogenesis, dendritogenesis, and migration. These data suggest that the hallmark Cll hypoplasia in the Gunn rat occurs also via epigenetically controlled mechanisms during the maturation of this brain structure, unraveling a novel aspect of the bilirubin-induced neurotoxicity.
Collapse
|
32
|
Savitz J, Harrison NA. Interoception and Inflammation in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:514-524. [PMID: 29884282 PMCID: PMC5995132 DOI: 10.1016/j.bpsc.2017.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Despite a historical focus on neurally mediated interoceptive signaling mechanisms, humoral (and even cellular) signals also play an important role in communicating bodily physiological state to the brain. These signaling pathways can perturb neuronal structure, chemistry, and function, leading to discrete changes in behavior. They are also increasingly implicated in the pathophysiology of psychiatric disorders. The importance of these humoral signaling pathways is perhaps most powerfully illustrated in the context of infection and inflammation. Here we provide an overview of how interaction of immune activation of neural and humoral interoceptive mechanisms mediates discrete changes in brain and behavior and highlight how activation of these pathways at specific points in neural development may predispose to psychiatric disorder. As our mechanistic understanding of these interoceptive pathways continues to emerge, it is revealing novel therapeutic targets, potentially heralding an exciting new era of immunotherapies in psychiatry.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, the University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, the University of Tulsa, Tulsa, Oklahoma
| | - Neil A Harrison
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom.
| |
Collapse
|
33
|
Corlier F, Hafzalla G, Faskowitz J, Kuller LH, Becker JT, Lopez OL, Thompson PM, Braskie MN. Systemic inflammation as a predictor of brain aging: Contributions of physical activity, metabolic risk, and genetic risk. Neuroimage 2018; 172:118-129. [PMID: 29357308 PMCID: PMC5954991 DOI: 10.1016/j.neuroimage.2017.12.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory processes may contribute to risk for Alzheimer's disease (AD) and age-related brain degeneration. Metabolic and genetic risk factors, and physical activity may, in turn, influence these inflammatory processes. Some of these risk factors are modifiable, and interact with each other. Understanding how these processes together relate to brain aging will help to inform future interventions to treat or prevent cognitive decline. We used brain magnetic resonance imaging (MRI) to scan 335 older adult humans (mean age 77.3 ± 3.4 years) who remained non-demented for the duration of the 9-year longitudinal study. We used structural equation modeling (SEM) in a subset of 226 adults to evaluate whether measures of baseline peripheral inflammation (serum C-reactive protein levels; CRP), mediated the baseline contributions of genetic and metabolic risk, and physical activity, to regional cortical thickness in AD-relevant brain regions at study year 9. We found that both baseline metabolic risk and AD risk variant apolipoprotein E ε4 (APOE4), modulated baseline serum CRP. Higher baseline CRP levels, in turn, predicted thinner regional cortex at year 9, and mediated an effect between higher metabolic risk and thinner cortex in those regions. A higher polygenic risk score composed of variants in immune-associated AD risk genes (other than APOE) was associated with thinner regional cortex. However, CRP levels did not mediate this effect, suggesting that other mechanisms may be responsible for the elevated AD risk. We found interactions between genetic and environmental factors and structural brain health. Our findings support the role of metabolic risk and peripheral inflammation in age-related brain decline.
Collapse
Affiliation(s)
- Fabian Corlier
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - George Hafzalla
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Joshua Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Lewis H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Becker
- Departments of Neurology, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, PA 15139, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA; Depts. of Neurology, Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA.
| |
Collapse
|
34
|
Culmsee C, Michels S, Scheu S, Arolt V, Dannlowski U, Alferink J. Mitochondria, Microglia, and the Immune System-How Are They Linked in Affective Disorders? Front Psychiatry 2018; 9:739. [PMID: 30687139 PMCID: PMC6333629 DOI: 10.3389/fpsyt.2018.00739] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a severe mood disorder and frequently associated with alterations of the immune system characterized by enhanced levels of circulating pro-inflammatory cytokines and microglia activation in the brain. Increasing evidence suggests that dysfunction of mitochondria may play a key role in the pathogenesis of MDD. Mitochondria are regulators of numerous cellular functions including energy metabolism, maintenance of redox and calcium homeostasis, and cell death and therefore modulate many facets of the innate immune response. In depression-like behavior of rodents, mitochondrial perturbation and release of mitochondrial components have been shown to boost cytokine production and neuroinflammation. On the other hand, pro-inflammatory cytokines may influence mitochondrial functions such as oxidative phosphorylation, production of adenosine triphosphate, and reactive oxygen species, thereby aggravating inflammation. There is strong interest in a better understanding of immunometabolic pathways in MDD that may serve as diagnostic markers and therapeutic targets. Here, we review the interaction between mitochondrial metabolism and innate immunity in the pathophysiology of MDD. We specifically focus on immunometabolic processes that govern microglial and peripheral myeloid cell functions, both cellular components involved in neuroinflammation in depression-like behavior. We finally discuss microglial polarization and associated metabolic states in depression-associated behavior and in MDD.
Collapse
Affiliation(s)
- Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior - CMBB, Marburg, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Volker Arolt
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| |
Collapse
|
35
|
Allam G, Nasr A, Talaat IM, Abuelsaad ASA, Bakheit AM, Nemenqani D, Alsulaimani AA. Association between cytokine genes polymorphisms and type 1 diabetes: a case-control study on Saudi population. Immunol Invest 2017; 47:229-240. [DOI: 10.1080/08820139.2017.1416398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gamal Allam
- Department of Microbiology and Immunology, College of Medicine, Taif University , Taif, Saudi Arabia
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Amre Nasr
- Department of Basic Medical Sciences, College of Medicine, KSAU-HS , Riyadh, Saudi Arabia
- Department of Microbiology, Faculty of Science and Technology, Al-Neelain University , Khartoum, Sudan
| | - Iman M. Talaat
- Department of Pediatrics, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | - Abdelaziz S. A. Abuelsaad
- Department of Microbiology and Immunology, College of Medicine, Taif University , Taif, Saudi Arabia
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University , Beni-Suef, Egypt
| | - Ali M. Bakheit
- Department of Community Medicine, College of Medicine, Taif University , Taif, Saudi Arabia
| | - Dalal Nemenqani
- Department of Pathology, College of Medicine, Taif University , Taif, Saudi Arabia
| | - Adnan A. Alsulaimani
- Department of Pediatrics, College of Medicine, Taif University , Taif, Saudi Arabia
- Diabetic Center , Department of Pediatrics, Prince Mansour Military Community Hospital, Taif, Saudi Arabia
| |
Collapse
|
36
|
Ryan J, Pilkington L, Neuhaus K, Ritchie K, Ancelin ML, Saffery R. Investigating the epigenetic profile of the inflammatory gene IL-6 in late-life depression. BMC Psychiatry 2017; 17:354. [PMID: 29070016 PMCID: PMC5657056 DOI: 10.1186/s12888-017-1515-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It is well established that there is a link between inflammation and depression, with several studies reporting increased circulating levels of the pro-inflammatory cytokine, interleukin-6 (IL6), in depressed individuals. Peripheral epigenetic marks, including DNA methylation, hold promise as biomarkers for a range of complex conditions, with potential to inform diagnosis and tailor interventions. The aim of this study was to determine whether individuals with depression display differential methylation of the IL6 gene promoter compared to individuals without depression. METHODS The ESPRIT study of later life neuropsychiatric disorders used a random sampling framework to select non-institutionalised participants aged ≥65 years and over living in the Montpellier region of France. Major depressive disorder (MDD) was assessed using the Mini International Neuropsychiatric Interview (MINI) according to DSM-IV criteria. High levels of depressive symptoms were defined as a score of ≥16 on the Centre for Epidemiologic Studies Depression Scale (CES-D). IL6 promoter DNA methylation was measured on a sub-sample of 380 participants who provided buccal samples. RESULTS Individuals with depression (current MDD or high depressive symptoms) had lower IL6 methylation levels at one of the four sites investigated, however the effect size was small (∆ 2.4%, SE 0.009, p = 0.006). Interestingly, antidepressant use was independently associated with higher IL-6 methylation at the same site (∆ 4.6%, SE 0.019, p = 0.015). In multivariate linear regression analyses adjusting for covariates, including sex and smoking status, these associations remained. There was no effect modification when considering IL6 genotype. CONCLUSION This study presents evidence that IL6 methylation may be a marker of depression status in older individuals, however further work is now needed to replicate these findings and to assess the association with inflammatory status of individuals.
Collapse
Affiliation(s)
- Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia. .,Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children's Hospital & Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia. .,INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France.
| | - Lauren Pilkington
- 0000 0001 2179 088Xgrid.1008.9Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children’s Hospital & Department of Paediatrics, University of Melbourne, Parkville, VIC 3052 Australia
| | - Katharina Neuhaus
- 0000 0001 2179 088Xgrid.1008.9Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children’s Hospital & Department of Paediatrics, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karen Ritchie
- 0000 0001 2097 0141grid.121334.6INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Marie-Laure Ancelin
- 0000 0001 2097 0141grid.121334.6INSERM, Univ Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Richard Saffery
- 0000 0001 2179 088Xgrid.1008.9Cancer & Disease Epigenetics, Murdoch Childrens Research Institute, Royal Children’s Hospital & Department of Paediatrics, University of Melbourne, Parkville, VIC 3052 Australia
| |
Collapse
|
37
|
Dohm K, Redlich R, Zwitserlood P, Dannlowski U. Trajectories of major depression disorders: A systematic review of longitudinal neuroimaging findings. Aust N Z J Psychiatry 2017; 51:441-454. [PMID: 27539592 DOI: 10.1177/0004867416661426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Structural and functional brain alterations in major depression disorder (MDD) are well studied in cross-sectional designs, but little is known about the causality between onset and course of depression on the one hand, and neurobiological changes over time on the other. To explore the direction of causality, longitudinal studies with a long time window (preferably years) are needed, but only few have been undertaken so far. This article reviews all prospective neuroimaging studies in MDD patients currently available and provides a critical discussion of methodological challenges involved in the investigation of the causal relationship between brain alterations and the course of MDD. METHOD We conducted a systematic review of studies published before September 2015, to identify structural magnetic resonance imaging (MRI) studies that assess the relation between neuronal alterations and MDD in longitudinal (⩾1 year) designs. RESULTS Only 15 studies meeting minimal standards were identified. An analysis of these longitudinal data showed a large heterogeneity between studies regarding design, samples, imaging methods, spatial restrictions and, consequently, results. There was a strong relationship between brain-volume outcomes and the current mood state, whereas longitudinal studies failed to clarify the influence of pre-existing brain changes on depressive outcome. CONCLUSION So far, available longitudinal studies cannot resolve the causality between the course of depression and neurobiological changes over time. Future studies should combine high methodological standards with large sample sizes. Cooperation in multi-center studies is indispensable to attain sufficient sample sizes, and should allow careful assessment of possible confounders.
Collapse
Affiliation(s)
- Katharina Dohm
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- 1 Department of Psychiatry, University of Münster, Münster, Germany.,3 Department of Psychiatry, University of Marburg, Marburg, Germany
| |
Collapse
|
38
|
Mardini V, Rohde LA, Ceresér KMM, Gubert CDM, da Silva EG, Xavier F, Parcianello R, Röhsig LM, Pechansky F, Pianca TG, Szobot CM. IL-6 and IL-10 levels in the umbilical cord blood of newborns with a history of crack/cocaine exposure in utero: a comparative study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2017; 38:40-9. [PMID: 27074340 DOI: 10.1590/2237-6089-2015-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Prenatal cocaine exposure (PCE) is associated with neurobehavioral problems during childhood and adolescence. Early activation of the inflammatory response may contribute to such changes. Our aim was to compare inflammatory markers (IL-6 and IL-10) both in umbilical cord blood and in maternal peripheral blood at delivery between newborns with history of crack/cocaine exposure in utero and non-exposed newborns. METHODS In this cross-sectional study, 57 newborns with a history of crack/cocaine exposure in utero (EN) and 99 non-exposed newborns (NEN) were compared for IL-6 and IL-10 levels. Sociodemographic and perinatal data, maternal psychopathology, consumption of nicotine and other substances were systematically collected in cases and controls. RESULTS After adjusting for potential confounders, mean IL-6 was significantly higher in EN than in NEN (10,208.54, 95% confidence interval [95%CI] 1,328.54-19,088.55 vs. 2,323.03, 95%CI 1,484.64-3,161.21; p = 0.007; generalized linear model [GLM]). Mean IL-10 was also significantly higher in EN than in NEN (432.22, 95%CI 51.44-812.88 vs. 75.52, 95%CI 5.64-145.39, p = 0.014; GLM). Adjusted postpartum measures of IL-6 were significantly higher in mothers with a history of crack/cocaine use (25,160.05, 95%CI 10,958.15-39,361.99 vs. 8,902.14, 95%CI 5,774.97-12,029.32; p = 0.007; GLM), with no significant differences for IL-10. There was no correlation between maternal and neonatal cytokine levels (Spearman test, p ≥ 0.28 for all measures). CONCLUSIONS IL-6 and IL-10 might be early biomarkers of PCE in newborns. These findings could help to elucidate neurobiological pathways underlying neurodevelopmental changes and broaden the range of possibilities for early intervention.
Collapse
Affiliation(s)
- Victor Mardini
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | - Emily Galvão da Silva
- Instituto Nacional de Ciência e Tecnologia - Medicina Translacional, Porto Alegre, RS, Brazil
| | | | | | | | - Flávio Pechansky
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
39
|
A Functional Interleukin-18 Haplotype Predicts Depression and Anxiety through Increased Threat-Related Amygdala Reactivity in Women but Not Men. Neuropsychopharmacology 2017; 42:419-426. [PMID: 27430614 PMCID: PMC5399226 DOI: 10.1038/npp.2016.129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 01/14/2023]
Abstract
Common functional polymorphisms in the gene encoding interleukin-18 (IL18), a cytokine belonging to the IL-1 superfamily that can induce synthesis of several other cytokines, have been associated with major depressive episodes following the experience of stressful life events. The neural mechanisms underlying these associations remain unexamined. Here we use an imaging genetics strategy to examine the effects of risk-related IL18 haplotypes comprising rs187238 and rs1946518 on threat-related amygdala reactivity and, through an indirect effect, stress-related symptoms of depression and anxiety in 448 non-Hispanic Caucasian university students. Analyses indicated that women but not men possessing an IL18 haplotype comprising both risk-related alleles evidenced increased threat-related left centromedial amygdala reactivity relative to other haplotype groups. Moreover, in women only, increased threat-related left centromedial amygdala reactivity predicted increased symptoms of depression and anxiety in individuals also reporting higher levels of life stress. Path analyses revealed a significant indirect effect of IL18 risk haplotype on symptoms of depression and anxiety through increased threat-related amygdala reactivity. These results suggest that a common functional IL18 haplotype associated with heightened proinflammatory responses confers susceptibility to stress-related depression and anxiety through effects on threat-related amygdala function, a risk pathway specific to women. If replicated, these patterns can inform the search for personalized interventions targeting neurobiological pathways of risk associated with inflammation.
Collapse
|
40
|
Song H, Lu Y, Qu Z, Mossine VV, Martin MB, Hou J, Cui J, Peculis BA, Mawhinney TP, Cheng J, Greenlief CM, Fritsche K, Schmidt FJ, Walter RB, Lubahn DB, Sun GY, Gu Z. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. Sci Rep 2016; 6:35323. [PMID: 27734935 PMCID: PMC5062119 DOI: 10.1038/srep35323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells.
Collapse
Affiliation(s)
- Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Yuan Lu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Zhe Qu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Matthew B. Martin
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Jie Hou
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| | - Brenda A. Peculis
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Jianlin Cheng
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - C. Michael Greenlief
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kevin Fritsche
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Divison of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Francis J. Schmidt
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Ronald B. Walter
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Dennis B. Lubahn
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Grace Y. Sun
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Center for Botanical Interaction Studies, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Opel N, Dohm K, Zaremba D, Grögler A, Schwieren J, Suslow T, Ohrmann P, Bauer J, Krug A, Kircher T, Jansen A, Domschke K, Hohoff C, Zwitserlood P, Heinrichs M, Arolt V, Heindel W, Baune BT. Disadvantage of Social Sensitivity: Interaction of Oxytocin Receptor Genotype and Child Maltreatment on Brain Structure. Biol Psychiatry 2016; 80:398-405. [PMID: 26858213 DOI: 10.1016/j.biopsych.2015.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Oxytocin has received much attention as a prosocial and anxiolytic neuropeptide. In human studies, the G-allele of a common variant (rs53576) in the oxytocin receptor gene (OXTR) has been associated with protective properties such as reduced stress response and higher receptiveness for social support. In contrast, recent studies suggest a detrimental role of the rs53576 G-allele in the context of childhood maltreatment. To further elucidate the role of OXTR, gene by maltreatment interactions on brain structure and function were investigated. METHODS Three hundred nine healthy participants genotyped for OXTR rs53576 underwent structural as well as functional magnetic resonance imaging during a common emotional face-matching task. Childhood maltreatment was assessed with the Childhood Trauma Questionnaire (CTQ). Gray matter volumes were investigated by means of voxel-based morphometry across the entire brain. RESULTS Structural magnetic resonance imaging data revealed a strong interaction of rs53576 genotype and CTQ scores, mapping specifically to the bilateral ventral striatum. GG homozygotes but not A-allele carriers showed strong gray matter reduction with increasing CTQ scores. In turn, lower ventral striatum gray matter volumes were associated with lower reward dependence, a prosocial trait. Furthermore, the G-allele was associated with increased amygdala responsiveness to emotional facial expressions. CONCLUSIONS The findings suggest that the G-allele constitutes a vulnerability factor for specific alterations of limbic brain structure in individuals with adverse childhood experiences, complemented by increased limbic responsiveness to emotional interpersonal stimuli. While oxytocinergic signaling facilitates attachment and bonding in supportive social environments, this attunement for social cues may turn disadvantageous under early adverse conditions.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster; Department of Psychiatry, University of Marburg, Marburg.
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster
| | - Anne Grögler
- Department of Psychiatry, University of Münster, Münster
| | | | - Thomas Suslow
- Department of Psychosomatics and Psychotherapy, University of Leipzig, Leipzig
| | | | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg
| | | | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster
| | | | - Markus Heinrichs
- Department of Psychology, University Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
42
|
Garn H, Bahn S, Baune BT, Binder EB, Bisgaard H, Chatila TA, Chavakis T, Culmsee C, Dannlowski U, Gay S, Gern J, Haahtela T, Kircher T, Müller-Ladner U, Neurath MF, Preissner KT, Reinhardt C, Rook G, Russell S, Schmeck B, Stappenbeck T, Steinhoff U, van Os J, Weiss S, Zemlin M, Renz H. Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol 2016; 138:47-56. [DOI: 10.1016/j.jaci.2016.02.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
|
43
|
Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm (Vienna) 2016; 123:541-8. [PMID: 26821321 PMCID: PMC4846685 DOI: 10.1007/s00702-016-1506-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) has emerged as a potent biomarker for depression as its elevated plasma levels in patients with clinical depression have been confirmed by meta-analyses. Increased plasma IL-6 concentration was associated with various psychological stress factors and physical disorders accompanied by pain. Another modulator of the IL-6 level is rs1800795, a promoter polymorphism in the IL-6 gene which is able to influence its expression rate. Therefore, we examined in a Hungarian population sample of 1053 volunteers with European origins if rs1800795 polymorphism can affect depression symptoms measured by Zung Self-rating Depression Scale (ZSDS), and Brief Symptom Inventory (BSI). We also investigated the interactions of the polymorphism with reported painful physical conditions and Recent Negative Life Events (RLE) measured by the List of Life Threatening Experiences. Rs1800795 significantly interacted with both RLE and painful condition on depressive symptoms measured by ZSDS and BSI using different heritability models, while no main effects of the polymorphism were identified. After correction for multiple testing only the rs1800795 × RLE interaction effect (recessive model) remained significant on the BSI score, while both RLE and painful conditions significantly interacted on the ZSDS. In conclusion, the functional IL-6 rs1800795 polymorphism in interaction with various stress factors increases the risk of depression and has a greater impact on symptoms measured by the ZSDS. Thus, IL-6 and other cytokines may be more relevant in the development of somatic symptoms compared to affective signs of depression, delineating a specific genotype–phenotype relationship in this heterogeneous disorder.
Collapse
|
44
|
Redlich R, Stacey D, Opel N, Grotegerd D, Dohm K, Kugel H, Heindel W, Arolt V, Baune BT, Dannlowski U. Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli. Psychoneuroendocrinology 2015; 62:166-73. [PMID: 26313134 DOI: 10.1016/j.psyneuen.2015.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Since numerous studies have found that exposure to early life stress leads to increased peripheral inflammation and psychiatric disease, it is thought that peripheral immune activation precedes and possibly mediates the onset of stress-associated psychiatric disease. Despite early studies, IFNγ has received little attention relative to other inflammatory cytokines in the context of the pathophysiology of affective disorders. Neuroimaging endophenotypes have emerged recently as a promising means of elucidating these types of complex relationships including the modeling of the interaction between environmental factors and genetic predisposition. Here we investigate the GxE relationship between early-life stress and genetic variants of IFNγ on emotion processing. METHODS To investigate the impact of the relationship between genetic variants of IFNγ (rs1861494, rs2069718, rs2430561) and early life stress on emotion processing, a sample of healthy adults (n=409) undergoing an emotional faces paradigm in an fMRI study were genotyped and analysed. Information on early life stress was obtained via Childhood Trauma Questionnaire (CTQ). RESULTS A positive association between early life stress and amygdala reactivity was found. Specifically, the main effect of genotype of rs1861494 on amygdala reactivity indicates a higher neural response in C allele carriers compared to T homozygotes, while we did not find main effects of rs2069718 and rs2430561. Importantly, interaction analyses revealed a specific interaction between IFNγ genotype (rs1861494) and early life stress affecting amygdala reactivity to emotional faces, resulting from a positive association between CTQ scores and amygdala reactivity in C allele carriers while this association was absent in T homozygotes. CONCLUSIONS Our findings indicate that firstly the genetic variant of IFNγ (rs1861494) is involved with the regulation of amygdala reactivity to emotional stimuli and secondly, that this genetic variant moderates effects of early life stress on emotion processing. These findings reiterate the importance that inflammatory genes play in the interaction with early life stress and the regulation of emotion processing.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Germany.
| | - David Stacey
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia
| | - Nils Opel
- Department of Psychiatry, University of Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Germany; Department of Psychiatry, University of Marburg, Germany
| |
Collapse
|
45
|
Zhang H, Sachdev PS, Wen W, Crawford JD, Brodaty H, Baune BT, Kochan NA, Slavin MJ, Reppermund S, Kang K, Trollor JN. The relationship between inflammatory markers and voxel-based gray matter volumes in nondemented older adults. Neurobiol Aging 2015; 37:138-146. [PMID: 26559883 DOI: 10.1016/j.neurobiolaging.2015.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/26/2022]
Abstract
Ageing is characterized by chronically elevated inflammatory markers (IMs). Peripheral IM levels have been found in negative correlations with brain structural measures including global and lobar volumes and the hippocampus. This study investigated the relationship between 10 peripheral IMs and voxel-based gray matter (GM) volumes in nondemented older adults (n = 463). Two proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-1β) and 2 vascular IMs (vascular cellular adhesion molecule-1 and plasminogen activator inhibitor-1) were negatively correlated with regional GM volumes. TNF-α and interleukin-1β were both significantly correlated with GM volumes in the left occipitotemporal area, left superior occipital gyrus, and left inferior parietal lobule; TNF-α was also significantly correlated with the bilateral medial prefrontal cortices and approached significance for the correlations with the bilateral hippocampi. Significant GM correlations with vascular cellular adhesion molecule-1 were located in the bilateral anterior cingulate cortices, and with plasminogen activator inhibitor-1 in the cerebellum and right hippocampus. The neuroanatomical correlation patterns of 2 proinflammatory cytokines and 2 vascular IMs might be reflective of the effects of neurodegenerative and vascular pathological processes in the ageing brain.
Collapse
Affiliation(s)
- Haobo Zhang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - John D Crawford
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Academic Department for Old Age Psychiatry, Prince of Wales Hospital, Randwick, New South Wales, Australia; Dementia Collaborative Research Centre, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Bernard T Baune
- Department of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Melissa J Slavin
- Dementia Collaborative Research Centre, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Kristan Kang
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
46
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Suchy J, Opel N, Suslow T, Konrad C, Ohrmann P, Bauer J, Kircher T, Krug A, Jansen A, Baune BT, Heindel W, Domschke K, Forstner AJ, Nöthen MM, Treutlein J, Arolt V, Hohoff C, Rietschel M, Witt SH. NCAN Cross-Disorder Risk Variant Is Associated With Limbic Gray Matter Deficits in Healthy Subjects and Major Depression. Neuropsychopharmacology 2015; 40:2510-6. [PMID: 25801500 PMCID: PMC4569958 DOI: 10.1038/npp.2015.86] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Marburg, Marburg, Germany,Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany, Tel: +49 251 8357218, Fax: +49 251 8356612, E-mail:
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Janina Suchy
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine, University of Leipzig, Leipzig, Germany
| | - Carsten Konrad
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Patricia Ohrmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
47
|
Metti AL, Aizenstein H, Yaffe K, Boudreau RM, Newman A, Launer L, Gianaros PJ, Lopez OL, Saxton J, Ives DG, Kritchevsky S, Vallejo AN, Rosano C. Trajectories of peripheral interleukin-6, structure of the hippocampus, and cognitive impairment over 14 years in older adults. Neurobiol Aging 2015; 36:3038-3044. [PMID: 26279115 DOI: 10.1016/j.neurobiolaging.2015.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 01/21/2023]
Abstract
We aimed to investigate if trajectory components (baseline level, slope, and variability) of peripheral interleukin-6 (IL-6) over time were related to cognitive impairment and smaller hippocampal volume and if hippocampal volume explained the associations between IL-6 and cognitive impairment. Multivariable regression models were used to test the association between IL-6 trajectory components with change in neuroimaging measures of the hippocampus and with cognitive impairment among 135 older adults (70-79 years at baseline) from the Healthy Brain Project over 14 years. IL-6 variability was positively associated with cognitive impairment (odds ratio [OR] = 5.86, 95% confidence interval [CI]: 1.24, 27.61) and with greater decrease per year of gray matter volume of the hippocampus (β = -0.008, standard error = 0.004, p = 0.03). After adjustment for hippocampal volume, the OR of cognitive impairment decreased for each unit of IL-6 variability and CIs widened (OR = 4.36, 95% CI: 0.67, 28.29). Neither baseline levels nor slopes of IL-6 were related to cognitive impairment or hippocampal volume. We believe this has potential clinical and public health implications by suggesting adults with stable levels of peripheral IL-6 may be better targets for intervention studies for slowing or preventing cognitive decline.
Collapse
Affiliation(s)
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristine Yaffe
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Robert M Boudreau
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lenore Launer
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith Saxton
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diane G Ives
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Kritchevsky
- Department of Internal Medicine, Wake Forest University, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Abbe N Vallejo
- Division of Pediatric Rheumatology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Jiang J, Wen W, Brown DA, Crawford J, Thalamuthu A, Smith E, Breit SN, Liu T, Zhu W, Brodaty H, Baune BT, Trollor JN, Sachdev PS. The relationship of serum macrophage inhibitory cytokine-1 levels with gray matter volumes in community-dwelling older individuals. PLoS One 2015; 10:e0123399. [PMID: 25867953 PMCID: PMC4395016 DOI: 10.1371/journal.pone.0123399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/18/2015] [Indexed: 12/29/2022] Open
Abstract
Using circulating inflammatory markers and magnetic resonance imaging (MRI), recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15) is a divergent transforming growth factor - beta (TGF-β) superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM) volumes, in a community-dwelling sample aged 70-90 years over two years (Wave 1: n = 506, Wave 2: n = 327), of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally.
Collapse
Affiliation(s)
- Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW, Australia
- * E-mail:
| | - David A. Brown
- Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | - John Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Evelyn Smith
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
| | - Samuel N. Breit
- Centre for Applied Medical Research, St. Vincent’s Hospital and University of New South Wales, Darlinghurst NSW, Australia
| | - Tao Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wanlin Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Aged Care Psychiatry, Prince of Wales Hospital, Randwick NSW, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney NSW, Australia
| | - Bernhard T. Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Julian N. Trollor
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Department of Development Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Randwick NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick NSW, Australia
| |
Collapse
|
49
|
Dannlowski U, Grabe HJ, Wittfeld K, Klaus J, Konrad C, Grotegerd D, Redlich R, Suslow T, Opel N, Ohrmann P, Bauer J, Zwanzger P, Laeger I, Hohoff C, Arolt V, Heindel W, Deppe M, Domschke K, Hegenscheid K, Völzke H, Stacey D, Meyer Zu Schwabedissen H, Kugel H, Baune BT. Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919)-specific effects on hippocampal gray matter structure. Mol Psychiatry 2015; 20:398-404. [PMID: 24776739 DOI: 10.1038/mp.2014.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/09/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
In two large genome-wide association studies, an intergenic single-nucleotide polymorphism (SNP; rs7294919) involved in TESC gene regulation has been associated with hippocampus volume. Further characterization of neurobiological effects of the TESC gene is warranted using multimodal brain-wide structural and functional imaging. Voxel-based morphometry (VBM8) was used in two large, well-characterized samples of healthy individuals of West-European ancestry (Münster sample, N=503; SHIP-TREND, N=721) to analyze associations between rs7294919 and local gray matter volume. In subsamples, white matter fiber structure was investigated using diffusion tensor imaging (DTI) and limbic responsiveness was measured by means of functional magnetic resonance imaging (fMRI) during facial emotion processing (N=220 and N=264, respectively). Furthermore, gene x environment (G × E) interaction and gene x gene interaction with SNPs from genes previously found to be associated with hippocampal size (FKBP5, Reelin, IL-6, TNF-α, BDNF and 5-HTTLPR/rs25531) were explored. We demonstrated highly significant effects of rs7294919 on hippocampal gray matter volumes in both samples. In whole-brain analyses, no other brain areas except the hippocampal formation and adjacent temporal structures were associated with rs7294919. There were no genotype effects on DTI and fMRI results, including functional connectivity measures. No G × E interaction with childhood maltreatment was found in both samples. However, an interaction between rs7294919 and rs2299403 in the Reelin gene was found that withstood correction for multiple comparisons. We conclude that rs7294919 exerts highly robust and regionally specific effects on hippocampal gray matter structures, but not on other neuropsychiatrically relevant imaging markers. The biological interaction between TESC and RELN pointing to a neurodevelopmental origin of the observed findings warrants further mechanistic investigations.
Collapse
Affiliation(s)
- U Dannlowski
- 1] Department of Psychiatry, University of Münster, Münster, Germany [2] Department of Psychiatry, University of Marburg, Marburg, Germany
| | - H J Grabe
- 1] Department of Psychiatry, University Medicine Greifswald, HELIOS-Hospital Stralsund, Stralsund, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - K Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - J Klaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - C Konrad
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - T Suslow
- 1] Department of Psychiatry, University of Münster, Münster, Germany [2] Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - P Ohrmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - J Bauer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - P Zwanzger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - I Laeger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - C Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - M Deppe
- Department of Neurology, University of Münster, Münster, Germany
| | - K Domschke
- Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - K Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - D Stacey
- Discipline of Psychiatry, School of Medicine, University of Adelaide: North Terrace, Adelaide, SA, Australia
| | | | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide: North Terrace, Adelaide, SA, Australia
| |
Collapse
|
50
|
Opel N, Redlich R, Grotegerd D, Dohm K, Heindel W, Kugel H, Arolt V, Dannlowski U. Obesity and major depression: Body-mass index (BMI) is associated with a severe course of disease and specific neurostructural alterations. Psychoneuroendocrinology 2015; 51:219-26. [PMID: 25462895 DOI: 10.1016/j.psyneuen.2014.10.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 11/30/2022]
Abstract
Obesity is one of the most prevalent somatic comorbidities of major depressive disorder (MDD). Both disorders rank among the leading challenges in public health and have been independently characterized by gray matter alterations in partly overlapping brain structures. Hence, it appears crucial to investigate the possibility of a shared neurostructural correlate of this frequent comorbidity as well as its clinical implications. One hundred and fourty-four patients suffering from acute MDD and 141 healthy control subjects underwent structural MRI. Imaging data were analyzed using voxel-based morphometry (VBM). Body-mass-index (BMI) as well as state and course of disease were assessed. Higher BMI was associated with a highly comparable pattern of gray matter reductions in the medial prefrontal cortex, the orbitofrontal cortex, the caudate nucleus and the thalamus in MDD patients and healthy controls alike. In MDD-patients, BMI was associated with a more chronic course of disease and both BMI and chronicity of disorder were related to similar morphometric anomalies in medial prefrontal areas. In MDD, obese subjects might be characterized by a more chronic course of disease. Moreover, obesity and chronicity of disorder seem to share overlapping neurostructural anomalies in prefrontal areas involved in emotion regulation and impulse control. Hence, our data provide evidence for specific morphological alterations underlying this prevalent comorbidity. It further underlines the clinical importance of preventive measures against obesity accompanying MDD treatment.
Collapse
Affiliation(s)
- Nils Opel
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany
| | - Dominik Grotegerd
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster Germany; Department of Psychiatry, University of Marburg, Germany.
| |
Collapse
|