1
|
Bauer AK, Romo D, Friday F, Cho K, Velmurugan K, Upham BL. Non-Genotoxic and Environmentally Relevant Lower Molecular Weight Polycyclic Aromatic Hydrocarbons Significantly Increase Tumorigenicity of Benzo[ a]pyrene in a Lung Two-Stage Mouse Model. TOXICS 2024; 12:882. [PMID: 39771097 PMCID: PMC11679119 DOI: 10.3390/toxics12120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[a]pyrene (B[a]P), a legacy PAH. We specifically determined the effects of an LMW PAH mixture containing 1-methylanthracene (1MeA), fluoranthene (Flthn), and phenanthrene (Phe) combined with B[a]P on lung tumor promotion. To test this hypothesis, we used a two-stage, initiation/promotion BALB/ByJ female lung tumor mouse model. The mice were initiated with 3-methylcholanthrene followed by exposures to B[a]P, the LMW PAH mixture, and the combination of the LMW PAH mixture plus B[a]P, all at 10 mg/kg. The LMW PAHs combined with B[a]P significantly increased the promotion and incidence of lung tumors over that of B[a]P alone. The LMW PAHs in the absence of B[a]P did not significantly promote tumors, indicating strong co-promotional activities. We further assessed the effects of these PAHs on other hallmarks of cancer, namely, bronchoalveolar lavage fluid inflammatory infiltrates, pro-inflammatory transcripts, KC protein content, and mRNA expression of the gap junction (Gja1) and epiregulin (Ereg) genes. The LMW PAHs increased the biomarkers of inflammation, decreased Gja1 expression, and increased Ereg expression, all consistent with tumor promotion. This study indicates that non-genotoxic LMW PAHs can contribute to the cancer process and warrants further studies to assess the carcinogenic risks of other LMW PAHs.
Collapse
Affiliation(s)
- Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Deedee Romo
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Finnegan Friday
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kaila Cho
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.R.); (F.F.); (K.C.); (K.V.)
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
2
|
Im H, Kim E, Kwon HJ, Kim H, Ko J, Sung Y, Kim SH, Lee EJ, Kwon WS, Ryoo ZY, Yi J, Park SJ, Kim MO. Silibinin Mitigates Vanadium-induced Lung Injury via the TLR4/MAPK/NF-κB Pathway in Mice. In Vivo 2024; 38:2179-2189. [PMID: 39187362 PMCID: PMC11363785 DOI: 10.21873/invivo.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM Silibinin, has been investigated for its potential benefits and mechanisms in addressing vanadium pentoxide (V2O5)-induced pulmonary inflammation. This study explored the anti-inflammatory activity of silibinin and elucidate the mechanisms by which it operates in a mouse model of vanadium-induced lung injury. MATERIALS AND METHODS Eight-week-old male BALB/c mice were exposed to V2O5 to induce lung injury. Mice were pretreated with silibinin at doses of 50 mg/kg and 100 mg/kg. Histological analyses were performed to assess cell viability and infiltration of inflammatory cells. The expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and activation of the MAPK and NF-[Formula: see text]B signaling pathways, as well as the NLRP3 inflammasome, were evaluated using real-time PCR, western blot analysis, and immunohistochemistry. Whole blood analysis was conducted to measure white blood cell counts. RESULTS Silibinin treatment significantly improved cell viability, reduced inflammatory cell infiltration, and decreased the expression of pro-inflammatory cytokines in V2O5-induced lung injury. It also notably suppressed the activation of the MAPK and NF-[Formula: see text]B signaling pathways, along with a marked reduction in NLRP3 inflammasome expression levels in lung tissues. Additionally, silibinin-treated groups exhibited a significant decrease in white blood cell counts, including neutrophils, lymphocytes, and eosinophils. CONCLUSION These findings underscore the potent anti-inflammatory effects of silibinin in mice with V2O5-induced lung inflammation, highlighting its therapeutic potential. The study not only confirms the efficacy of silibinin in mitigating inflammatory responses but also provides a foundational understanding of its role in modulating key inflammatory pathways, paving the way for future therapeutic strategies against pulmonary inflammation induced by environmental pollutants.
Collapse
Affiliation(s)
- Hobin Im
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea
| | - Hong Ju Kwon
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang, Republic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea
| | - Jiwon Ko
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yonghun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Daegu, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Republic of Korea
| | - Eun Jung Lee
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, Republic of Korea
| | - Si Jun Park
- East Sea Environment Research Center, Korea Institute of Ocean Science and Technology, Uljin, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Republic of Korea;
| |
Collapse
|
3
|
He X, Smith MR, Jarrell ZR, Thi Ly V, Liang Y, Lee CM, Orr M, Go YM, Jones DP. Metabolic alterations and mitochondrial dysfunction in human airway BEAS-2B cells exposed to vanadium pentoxide. Toxicology 2024; 504:153772. [PMID: 38479551 PMCID: PMC11060939 DOI: 10.1016/j.tox.2024.153772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 μM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Porter DW, Orandle MS, Hubbs A, Staska LM, Lowry D, Kashon M, Wolfarth MG, McKinney W, Sargent LM. Potent lung tumor promotion by inhaled MWCNT. Nanotoxicology 2024; 18:69-86. [PMID: 38420937 PMCID: PMC11057902 DOI: 10.1080/17435390.2024.2314473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 μg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.
Collapse
Affiliation(s)
- Dale W Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene S Orandle
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ann Hubbs
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - David Lowry
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Bioanalytics Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael G Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Linda M Sargent
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
5
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
6
|
He X, Jarrell ZR, Smith MR, Ly VT, Liang Y, Orr M, Go YM, Jones DP. Metabolomics of V 2O 5 nanoparticles and V 2O 5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol Appl Pharmacol 2023; 459:116327. [PMID: 36460058 PMCID: PMC9986994 DOI: 10.1016/j.taap.2022.116327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Vanadium is a toxic metal listed by the IARC as possibly carcinogenic to humans. Manufactured nanosize vanadium pentoxide (V2O5) materials are used in a wide range of industrial sectors and recently have been developed as nanomedicine for cancer therapeutics, yet limited information is available to evaluate relevant nanotoxicity. In this study we used high-resolution metabolomics to assess effects of two V2O5 nanomaterials, nanoparticles and nanofibers, at exposure levels (0.01, 0.1, and 1 ppm) that did not cause cell death (i.e., non-cytotoxic) in a human airway epithelial cell line, BEAS-2B. As prepared, V2O5 nanofiber exhibited a fibrous morphology, with a width approximately 63 ± 12 nm and length in average 420 ± 70 nm; whereas, V2O5 nanoparticles showed a typical particle morphology with a size 36 ± 2 nm. Both V2O5 nanoparticles and nanofibers had dose-response effects on aminosugar, amino acid, fatty acid, carnitine, niacin and nucleotide metabolism. Differential effects of the particles and fibers included dibasic acid, glycosphingolipid and glycerophospholipid pathway associations with V2O5 nanoparticles, and cholesterol and sialic acid metabolism associations with V2O5 nanofibers. Examination by transmission electron microscopy provided evidence for mitochondrial stress and increased lysosome fusion by both nanomaterials, and these data were supported by effects on mitochondrial membrane potential and lysosomal activity. The results showed that non-cytotoxic exposures to V2O5 nanomaterials impact major metabolic pathways previously associated with human lung diseases and suggest that toxico-metabolomics may be useful to evaluate health risks from V2O5 nanomaterials.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA; Atlanta Department of Veterans Affairs Healthcare System, Decatur, GA, USA
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
He X, Jarrell ZR, Liang Y, Ryan Smith M, Orr ML, Marts L, Go YM, Jones DP. Vanadium pentoxide induced oxidative stress and cellular senescence in human lung fibroblasts. Redox Biol 2022; 55:102409. [PMID: 35870339 PMCID: PMC9307685 DOI: 10.1016/j.redox.2022.102409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Both environmental exposure to vanadium pentoxide (V2O5, V+5 for its ionic counterparts) and fibroblast senescence are associated with pulmonary fibrosis, but whether V+5 causes fibroblast senescence remains unknown. We found in a dose-response study that 2-40 μM V+5 caused human lung fibroblasts (HLF) senescence with increased senescence-associated β-galactosidase activity and p16 expression, while cell death occurred at higher concentration (LC50, 82 μM V+5). Notably, measures of reactive oxygen species (ROS) production with fluorescence probes showed no association of ROS with V+5-dependent senescence. Preloading catalase (polyethylene-conjugated), a H2O2 scavenger, did not alleviate the cellular senescence induced by V+5. Analyses of the cellular glutathione (GSH) system showed that V+5 oxidized GSH, increased GSH biosynthesis, stimulated cellular GSH efflux and increased protein S-glutathionylation, and addition of N-acetyl cysteine inhibited V+5-elevated p16 expression, suggesting that thiol oxidation mediates V+5-caused senescence. Moreover, strong correlations between GSSG/GSH redox potential (Eh), protein S-glutathionylation, and cellular senescence (R2 > 0.99, p < 0.05) were present in V+5-treated cells. Studies with cell-free and enzyme-free solutions showed that V+5 directly oxidized GSH with formation of V+4 and GSSG in the absence of O2. Analyses of V+5 and V+4 in HLF and culture media showed that V+5 was reduced to V+4 in cells and that a stable V+4/V+5 ratio was rapidly achieved in extracellular media, indicating ongoing release of V+4 and reoxidation to V+5. Together, the results show that V+5-dependent fibroblast senescence is associated with a cellular/extracellular redox cycling mechanism involving the GSH system and occurring under conditions that do not cause cell death. These results establish a mechanism by which environmental vanadium from food, dietary supplements or drinking water, can cause or contribute to lung fibrosis in the absence of high-level occupational exposures and cytotoxic cell death.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yongliang Liang
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Michael L Orr
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Lucian Marts
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Zhang J, Wang G, Huang A, Cao K, Tan W, Geng H, Lin X, Zhan F, Wu K, Zheng S, Liu C. Association between Serum Level of Multiple Trace Elements and Esophageal Squamous Cell Carcinoma Risk: A Case-Control Study in China. Cancers (Basel) 2022; 14:4239. [PMID: 36077776 PMCID: PMC9455051 DOI: 10.3390/cancers14174239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023] Open
Abstract
We investigated the associations between multiple serum trace element levels and risk for esophageal squamous cell carcinoma (ESCC). A total of 185 ESCC patients and 191 healthy individuals were recruited in our study. The concentration of 13 trace elements (Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd and Pb) in serum was determined with inductively coupled plasma mass spectrometry (ICP-MS). Logistic regression and the Probit extension of Bayesian Kernel Machine Regression (BKMR) models was established to explore the associations and the cumulative and mixed effects of multiple trace elements on ESCC. Three elements (Zn, Se and Sr) displayed a negative trend with risk for ESCC, and a significant overall effect of the mixture of Al, V, Mn, Ni, Zn, Se and Sr on ESCC was found, with the effects of V, Ni and Sr being nonlinear. Bivariate exposure-response interactions among these trace elements indicated a synergistic effect between Zn and Se, and an impactful difference of V combined with Ni, Sr or Zn. Our results indicate that Ni, V, Al, Mn, Zn, Se and Sr are associated with ESCC risk, providing additional evidence of the complex effects of trace elements disorder during the etiology of EC development.
Collapse
Affiliation(s)
- Jingbing Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Anyan Huang
- Mental Health Center, Shantou University Medical College, Shantou 515065, China
| | - Kexin Cao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Hui Geng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaosheng Lin
- Health Management Center, The People’s Hospital of Jieyang, Jieyang 522000, China
| | - Fulan Zhan
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
9
|
Zhao D, Wang C, Ding Y, Ding M, Cao Y, Chen Z. Will Vanadium-Based Electrode Materials Become the Future Choice for Metal-Ion Batteries? CHEMSUSCHEM 2022; 15:e202200479. [PMID: 35384327 DOI: 10.1002/cssc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Metal-ion batteries have emerged as promising candidates for energy storage system due to their unlimited resources and competitive price/performance ratio. Vanadium-based compounds have diverse oxidation states rendering various open-frameworks for ions storage. To date, some vanadium-based polyanionic compounds have shown great potential as high-performance electrode materials. However, there has been a growing concern regarding the cost and environmental risk of vanadium. In this Review, all links in the industry chain of vanadium-based electrodes were comprehensively summarized, starting with an analysis of the resources, applications, and price fluctuation of vanadium. The manufacturing processes of the vanadium extraction and recovery technologies were discussed. Moreover, the commercial potentials of some typical electrode materials were critically appraised. Finally, the environmental impact and sustainability of the industry chain were evaluated. This critical Review will provide a clear vision of the prospects and challenges of developing vanadium-based electrode materials.
Collapse
Affiliation(s)
- Dong Zhao
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Chunlei Wang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Yan Ding
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Mingyue Ding
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuliang Cao
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhongxue Chen
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
10
|
Liu J, Huang Y, Li H, Duan H. Recent advances in removal techniques of vanadium from water: A comprehensive review. CHEMOSPHERE 2022; 287:132021. [PMID: 34454227 DOI: 10.1016/j.chemosphere.2021.132021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
In recent years, with the development of economy and industry, water contaminated with heavy metal has become a global environmental problem. Vanadium (V) is an emerging contaminant reported in wastewater along with the increasing mining, smelting and recovering of vanadium ores and application in many fields as a significant national strategy resource. The increasing attention has been paid to the separations of V from water due to its potential toxic to animals and human beings. In the present study, the most common V removal techniques including adsorption, microbiological treatment, chemical precipitation, solvent extraction, electrokinetic remediation, photocatalysis, coagulation and membrane filtration are presented with discussion of their advantages, limitations and the recent achievements. Several major influencing factors and mechanisms of various processes have been briefly analyzed. Some research perspectives are proposed for improving the capacities to remove V from water. The core objective of this review is to provide comprehensive information or database for the superior approach for V removal.
Collapse
Affiliation(s)
- Jianing Liu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yi Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, China.
| | - Hanyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Haoran Duan
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| |
Collapse
|
11
|
Li C, Wu C, Zhang J, Li Y, Zhang B, Zhou A, Liu W, Chen Z, Li R, Cao Z, Xia W, Xu S. Associations of prenatal exposure to vanadium with early-childhood growth: A prospective prenatal cohort study. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125102. [PMID: 33461012 DOI: 10.1016/j.jhazmat.2021.125102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Prenatal vanadium exposure is reported to be associated with restricted fetal growth and adverse birth outcomes. However, trimester-specific vanadium exposure in relation to early-childhood growth still remains unclear. A total of 1873 Chinese mother-infant pairs from whom a complete series of maternal urinary samples were collected over three stages of pregnancy were included from 2014 to 2016. The urinary concentrations of vanadium were analyzed. Children's anthropometric parameters were measured at birth, 6, 12 and 24 months. In boys, each doubling increase in vanadium concentrations at middle pregnancy was inversely associated with weight-for-length [- 9.07% (-17.21%, -0.93%)] and BMI z-score [- 9.66% (-18.05%, -1.28%)] at 24 months. Moreover, vanadium exposure at late pregnancy was negatively associated with weight [- 9.85% (-16.42%, -3.28%)], weight-for-length [- 11.00% (-18.40%, -3.60%)], and BMI z-scores [- 11.05% (-18.67%, -3.42%)] at 24 months in boys. However, the negative associations were not observed in girls, and we found evidence for sex difference (FDR p for interaction=0.01, 0.01 and 0.03 for weight, weight-for-length and BMI z-scores, respectively). Prenatal vanadium exposure may have an adverse effect on early-childhood growth, and the middle and late pregnancy could be windows of vulnerability for the adverse effects of vanadium exposure on growth development.
Collapse
Affiliation(s)
- Chunhui Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chuansha Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Zhang
- Wuhan Children's Hospital, Wuhan, Hubei, People's Republic of China
| | - Aifen Zhou
- Wuhan Children's Hospital, Wuhan, Hubei, People's Republic of China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center and Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong Chen
- Wuhan Children's Hospital, Wuhan, Hubei, People's Republic of China
| | - Ruizhen Li
- Wuhan Children's Hospital, Wuhan, Hubei, People's Republic of China
| | - Zhongqiang Cao
- Wuhan Children's Hospital, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Hvidtfeldt UA, Chen J, Andersen ZJ, Atkinson R, Bauwelinck M, Bellander T, Brandt J, Brunekreef B, Cesaroni G, Concin H, Fecht D, Forastiere F, van Gils CH, Gulliver J, Hertel O, Hoek G, Hoffmann B, de Hoogh K, Janssen N, Jørgensen JT, Katsouyanni K, Jöckel KH, Ketzel M, Klompmaker JO, Lang A, Leander K, Liu S, Ljungman PLS, Magnusson PKE, Mehta AJ, Nagel G, Oftedal B, Pershagen G, Peter RS, Peters A, Renzi M, Rizzuto D, Rodopoulou S, Samoli E, Schwarze PE, Severi G, Sigsgaard T, Stafoggia M, Strak M, Vienneau D, Weinmayr G, Wolf K, Raaschou-Nielsen O. Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort. ENVIRONMENTAL RESEARCH 2021; 193:110568. [PMID: 33278469 DOI: 10.1016/j.envres.2020.110568] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
Collapse
Affiliation(s)
| | - Jie Chen
- Institute of Risk Assessment Sciences, University of Utrecht, P.O. Box 80177, Utrecht, NL 3508 TD, the Netherlands.
| | - Zorana Jovanovic Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, Copenhagen, 1014, Denmark.
| | - Richard Atkinson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK.
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium.
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Solnavägen 4, Plan 10, Stockholm, SE-113 65, Sweden.
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, Roskilde, 4000, Denmark; IClimate - Aarhus University Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, P.O.Box 358, Roskilde, 4000, Denmark.
| | - Bert Brunekreef
- Institute of Risk Assessment Sciences, University of Utrecht, P.O. Box 80177, Utrecht, NL 3508 TD, the Netherlands.
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Via Cristoforo Colombo 112, Rome, 00147, Italy.
| | - Hans Concin
- Agency for Preventive and Social Medicine, Rheinstraße 61, Bregenz, 6900, Austria.
| | - Daniela Fecht
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, W2 1PG, UK.
| | - Francesco Forastiere
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, 90146, Italy; Environmental Research Group, Imperial College, London, W12 0BZ, UK.
| | - Carla H van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, GA, Utrecht, 3508, the Netherlands.
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK.
| | - Ole Hertel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, Roskilde, 4000, Denmark.
| | - Gerard Hoek
- Institute of Risk Assessment Sciences, University of Utrecht, P.O. Box 80177, Utrecht, NL 3508 TD, the Netherlands.
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Medical Faculty, Heinrich Heine University, Gurlittstraße 55, Dusseldorf, 40223, Germany.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4051, Switzerland; University of Basel, Petersplatz 1, Postfach, Basel, 4001, Switzerland.
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Jeanette Therming Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, Copenhagen, 1014, Denmark.
| | - Klea Katsouyanni
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School 75, Mikras Asias Street, Athens, 115 27, Greece; NIHR HPRU Health Impact of Environmental Hazards, School of Public Health, Imperial College, London, UK.
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany.
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, Roskilde, 4000, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom.
| | - Jochem O Klompmaker
- Institute of Risk Assessment Sciences, University of Utrecht, P.O. Box 80177, Utrecht, NL 3508 TD, the Netherlands; Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany.
| | - Alois Lang
- Cancer Registry Vorarlberg, Agency for Preventive and Social Medicine, Rheinstraße 61, Bregenz, 6900, Austria.
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden.
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, Copenhagen, 1014, Denmark.
| | - Petter L S Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden.
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, SE-171 77 Stockholm, Sweden.
| | - Amar Jayant Mehta
- Statistics Denmark, Sejrøgade 11, 2100, Copenhagen, Denmark; Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark.
| | - Gabriele Nagel
- Agency for Preventive and Social Medicine, Rheinstraße 61, Bregenz, 6900, Austria; Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany.
| | - Bente Oftedal
- Section of Air Pollution and Noise, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden; Center for Occupational and Environmental Medicine, Region Stockholm, Solnavägen 4, Plan 10, Stockholm, SE-113 65, Sweden.
| | - Raphael Simon Peter
- Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany.
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany.
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Via Cristoforo Colombo 112, Rome, 00147, Italy.
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, 17165, Sweden; Stockholm Gerontology Research Center, Stockholm, 11346, Sweden.
| | - Sophia Rodopoulou
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School 75, Mikras Asias Street, Athens, 115 27, Greece.
| | - Evangelia Samoli
- Dept. of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School 75, Mikras Asias Street, Athens, 115 27, Greece.
| | - Per Everhard Schwarze
- Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Gianluca Severi
- CESP, UMR 1018, Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Italy.
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Bartholins Allé 2, 8000, Aarhus, Denmark.
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm, SE-171 77, Sweden; Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Via Cristoforo Colombo 112, Rome, 00147, Italy.
| | - Maciej Strak
- Institute of Risk Assessment Sciences, University of Utrecht, P.O. Box 80177, Utrecht, NL 3508 TD, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Danielle Vienneau
- University of Basel, Petersplatz 1, Postfach, Basel, 4001, Switzerland; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Helmholtzstr. 22, 89081, Ulm, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, 2100, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, P.O.Box 358, Roskilde, 4000, Denmark.
| |
Collapse
|
13
|
Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicol In Vitro 2020; 70:105036. [PMID: 33164849 DOI: 10.1016/j.tiv.2020.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Vanadium is considered as "possibly carcinogenic to humans" (V2O5, IARC Group 2B), yet uncertainties persist related to the toxicity mechanisms of the multiple forms of vanadium. Exposure to vanadium often co-occurs with other metals or with organic compounds that can be transformed by cytochrome p450 (CYP) enzymes into DNA-reactive carcinogens. Therefore, effects of a soluble form of vanadium (sodium metavanadate, NaVO3) and aflatoxin-B1 (AFB1) were tested separately and together, for induction of CYP activities, DNA damage (γH2AX and DNA alkaline unwinding assays), and DNA methylation changes (global genome and DNA repeats) in HepaRG or HepG2 liver cell lines. NaVO3 (≥ 2.3 μM) reduced CYP1A1 and CYP3A4 activities and induced DNA damage, butcaused important cell proliferation only in HepaRG cells. As a binary mixture, NaVO3 did not modify the effects of AFB1. There was no reproducible effect of NaVO3 (<21 μM) on DNA methylation in AluYb8, satellite-α, satellite-2, and by the luminometric methylation assay, but DNA methylation flow-cytometry signals in HepG2 cells (25-50 μM) increased at the G1 and G2 cell cycle phases. In conclusion, cell lines responded differently to NaVO3 supporting the importance of investigating more than one cell line, and a carcinogenic role of NaVO3 might reside at low concentrations by stimulating the proliferation of tumorigenic cells.
Collapse
|
14
|
Two-stage 3-methylcholanthrene and butylated hydroxytoluene-induced lung carcinogenesis in mice. Methods Cell Biol 2020; 163:153-173. [PMID: 33785163 DOI: 10.1016/bs.mcb.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is one of the deadliest types of cancer and as such requires disease models that are useful for identification of novel pathways for biomarkers as well as to test therapeutic agents. Adenocarcinoma (ADC), the most prevalent type of lung cancer, is a subtype of non-small cell lung carcinoma (NSCLC) and a disease driven mainly by smoking. However, it is also the most common subtype of lung cancer found in non-smokers with environmental exposures. Chemically driven models of lung cancer, also called primary models of lung cancer, are important because they do not overexpress or delete oncogenes or tumor suppressor genes, respectively, to increase oncogenesis. Instead these models test tumor development without forcing a specific pathway (i.e., Kras). The primary focus of this chapter is to discuss a well-established 2-stage mouse model of lung adenocarcinomas. The initiator (3-methylcholanthrene, MCA) does not elicit many, if any, tumors if not followed by exposure to the tumor promoter (butylated hydroxytoluene, BHT). In sensitive strains, such as A/J, FVB, and BALB, significantly greater numbers of tumors develop following the MCA/BHT protocol compared to MCA alone. BHT does not elicit tumors on its own; it is a non-genotoxic carcinogen and promoter. In these sensitive strains, promotion is also associated with inflammation characterized by infiltrating macrophages, lymphocytes, and neutrophils, and other inflammatory cell types in addition to increases in total protein content reflective of lung hyperpermeability. This 2-stage model is a useful tool to identify unique promotion specific events to then test in future intervention studies.
Collapse
|
15
|
MacGregor JA, White DJ, Williams AL. The limitations of using the NTP chronic bioassay on vanadium pentoxide in risk assessments. Regul Toxicol Pharmacol 2020; 113:104650. [PMID: 32246946 DOI: 10.1016/j.yrtph.2020.104650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Regulatory interest in assessing the health effects of vanadium compounds is hindered by the limited chronic toxicity data available. The National Toxicology Program (NTP) conducted a robust chronic inhalation bioassay of crystalline vanadium pentoxide (V2O5), but this study has noteworthy limitations. Multiple dose range-finding studies were conducted at two separate laboratories that showed cross-laboratory differences in lung pathology (inflammation) in both species and likely complicated dose-selection. In mice, the only tissue pathology (inflammation and tumors) was at the site of entry, the respiratory system. Although significantly different from control, because lung tumor incidences were at a maximal level across all concentrations tested, the ability to extrapolate risks to the public is problematic. In rats, lung inflammation and vanadium lung burdens were comparable to those of mice, but lung tumorigenicity was not substantiated, further raising questions about appropriate species extrapolation. Open questions also exist regarding test material chemical characterization, as the laboratory relied on vanadium measurement in test chambers as a surrogate for V2O5. In sum, the NTP V2O5 study does not provide an appropriate dataset for purposes of classification and risk assessment. Additional repeat exposure studies of vanadium compounds are needed and recommendations for future studies are provided.
Collapse
Affiliation(s)
| | - David J White
- David White Chemical and Metallurgical Consulting, Apex, NC, USA
| | | |
Collapse
|
16
|
Zwolak I. Protective Effects of Dietary Antioxidants against Vanadium-Induced Toxicity: A Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1490316. [PMID: 31998432 PMCID: PMC6973198 DOI: 10.1155/2020/1490316] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
Abstract
Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.
Collapse
Affiliation(s)
- Iwona Zwolak
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1 J, 20-708 Lublin, Poland
| |
Collapse
|
17
|
Egashira M, Hirota Y, Shimizu-Hirota R, Saito-Fujita T, Haraguchi H, Matsumoto L, Matsuo M, Hiraoka T, Tanaka T, Akaeda S, Takehisa C, Saito-Kanatani M, Maeda KI, Fujii T, Osuga Y. F4/80+ Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus. Endocrinology 2017; 158:2344-2353. [PMID: 28525591 DOI: 10.1210/en.2016-1886] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Cellular senescence, defined as an irreversible cell cycle arrest, exacerbates the tissue microenvironment. Our previous study demonstrated that mouse uterine senescent cells were physiologically increased according to gestational days and that their abnormal accumulation was linked to the onset of preterm delivery. We hypothesized that there is a mechanism for removal of senescent cells after parturition to maintain uterine function. In the current study, we noted abundant uterine senescent cells and their gradual disappearance in wild-type postpartum mice. F4/80+ macrophages were present specifically around the area rich in senescent cells. Depletion of macrophages in the postpartum mice using anti-F4/80 antibody enlarged the area of senescent cells in the uterus. We also found excessive uterine senescent cells and decreased second pregnancy success rate in a preterm birth model using uterine p53-deleted mice. Furthermore, a decrease in F4/80+ cells and an increase in CD11b+ cells with a senescence-associated inflammatory microenvironment were observed in the p53-deleted uterus, suggesting that uterine p53 deficiency affects distribution of the macrophage subpopulation, interferes with senescence clearance, and promotes senescence-induced inflammation. These findings indicate that the macrophage is a key player in the clearance of uterine senescent cells to maintain postpartum uterine function.
Collapse
Affiliation(s)
- Mahiro Egashira
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center of Preventive Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chiaki Takehisa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuko Saito-Kanatani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
18
|
Yuan TH, Chio CP, Shie RH, Pien WH, Chan CC. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:270-6. [PMID: 25690586 DOI: 10.1038/jes.2015.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 05/13/2023]
Abstract
Biological monitoring of vanadium (V) and arsenic (As) for residents living near a big petrochemical complex has not been previously studied. This study aims to investigate distance-to-source trends in urinary levels and dispersion-estimated concentrations of V and As in areas surrounding a petrochemical complex in central Taiwan. Our study subjects were 1424 residents living in the townships up to ~40 km from the petrochemical complex, and categorized as near (Zone A), further (Zone B) and furthest (Zone C) from the complex. Urinary and ambient V and As levels were analyzed by inductively coupled plasma mass spectrometry. Two-stage dispersion model was used to estimate V and As concentrations at each study subject's address. Multiple linear regression models were used to study the effects of distance-to-source and estimated air concentrations of V and As on the urinary V and As levels of study subjects. Area-wide levels of both V and As showed a high-to-low trend in urinary levels (μg/g-creatinine) from Zone A (V with 2.86±2.30 and As with 104.6±147.9) to Zone C (V with 0.73±0.72 and As with 73.8±90.8). For study subjects, urinary V and As levels were decreased by 0.09 and 1.17 μg/g-creatinine, respectively, with 1 km away from the emission source of the petrochemical complex, and urinary V levels were significantly elevated by 0.38 μg/g-creatinine with a 1 ng/m(3) increase in estimated ambient V concentrations at their addresses. Our study concludes a distance-to-source gradient in V and As exposures exists for residents living near a petrochemical complex with oil refineries and coal-fired power plants and two-stage dispersion model can predict such a trend for V when inhalation is the major exposure route, but not for As that exposure may be from multiple sources and exposure routes.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Pin Chio
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruei-Hao Shie
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wei-Hsu Pien
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Alexander CM, Xiong KN, Velmurugan K, Xiong J, Osgood RS, Bauer AK. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion. Exp Lung Res 2016; 42:154-73. [PMID: 27093379 PMCID: PMC5506691 DOI: 10.3109/01902148.2016.1164263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ka-Na Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Kalpana Velmurugan
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Julie Xiong
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| | - Ross S Osgood
- b Department of Pharmaceutical Sciences , School of Pharmacy , University of Colorado Denver , Aurora , Colorado , USA
| | - Alison K Bauer
- a Department of Environmental and Occupational Health , Colorado School of Public Health , University of Colorado at Denver-Anschutz Medical Campus , Aurora , Colorado , USA
| |
Collapse
|
20
|
Bauer AK, Velmurugan K, Xiong KN, Alexander CM, Xiong J, Brooks R. Epiregulin is required for lung tumor promotion in a murine two-stage carcinogenesis model. Mol Carcinog 2016; 56:94-105. [PMID: 26894620 DOI: 10.1002/mc.22475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
Adenocarcinoma accounts for ∼40% of lung cancer, equating to ∼88 500 new patients in 2015, most of who will succumb to this disease, thus, the public health burden is evident. Unfortunately, few early biomarkers as well as effective therapies exist, hence the need for novel targets in lung cancer treatment. We previously identified epiregulin (Ereg), an EGF-like ligand, as a biomarker in several mouse lung cancer models. In the present investigation we used a primary two-stage initiation/promotion model to test our hypothesis that Ereg deficiency would reduce lung tumor promotion in mice. We used 3-methylcholanthrene (initiator) or oil vehicle followed by multiple weekly exposures to butylated hydroxytoluene (BHT; promoter) in mice lacking Ereg (Ereg-/- ) and wildtype controls (BALB/ByJ; Ereg+/+ ) and examined multiple time points and endpoints (bronchoalveolar lavage analysis, tumor analysis, mRNA expression, ELISA, wound assay) during tumor promotion. At the early time points (4 and 12 wk), we observed significantly reduced amounts of inflammation (macrophages, PMNs) in the Ereg-/- mice compared to controls (Ereg+/+ ). At 20 wk, tumor multiplicity was also significantly decreased in the Ereg-/- mice versus controls (Ereg+/+ ). IL10 expression, an anti-inflammatory mediator, and downstream signaling events (Stat3) were significantly increased in the Ereg-/- mice in response to BHT, supporting both reduced inflammation and tumorigenesis. Lastly, wound healing was significantly increased with recombinant Ereg in both human and mouse lung epithelial cell lines. These results indicate that Ereg has proliferative potential and may be utilized as an early cancer biomarker as well as a novel potential therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Ka-Na Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Julie Xiong
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| | - Rana Brooks
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
21
|
Wu F, Jordan A, Kluz T, Shen S, Sun H, Cartularo LA, Costa M. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells. Toxicol Appl Pharmacol 2016; 293:30-6. [PMID: 26780400 DOI: 10.1016/j.taap.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/25/2022]
Abstract
The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation.
Collapse
Affiliation(s)
- Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Steven Shen
- Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Laura A Cartularo
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA.
| |
Collapse
|
22
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
23
|
Manjanatha MG, Shelton SD, Haber L, Gollapudi B, MacGregor JA, Rajendran N, Moore MM. Evaluation of cII mutations in lung of male Big Blue mice exposed by inhalation to vanadium pentoxide for up to 8 weeks. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:46-52. [DOI: 10.1016/j.mrgentox.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
24
|
Black MB, Dodd DE, McMullen PD, Pendse S, MacGregor JA, Gollapudi BB, Andersen ME. Using gene expression profiling to evaluate cellular responses in mouse lungs exposed to V2O5 and a group of other mouse lung tumorigens and non-tumorigens. Regul Toxicol Pharmacol 2015. [PMID: 26210822 DOI: 10.1016/j.yrtph.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many compounds test positive for lung tumors in two-year NTP carcinogenicity bioassays in B6C3F1 mice. V2O5 was identified as a lung carcinogen in this assay, leading to its IARC (International Agency for Research on Cancer) classification as group 2b or a "possible" human carcinogen. To assess potential tumorigenic mode of action of V2O5, we compared gene expression and gene ontology enrichment in lung tissue of female B6C3F1 mice exposed for 13 weeks to a V2O5 particulate aerosol at a tumorigenic level (2.0 mg/m(3)). Relative to 12 other compounds also tested for carcinogenicity in 2-year bioassays in mice, there were 1026 differentially expressed genes with V2O5, of which 483 were unique to V2O5. Ontology analysis of the 1026 V2O5 differentially expressed genes showed enrichment for hyaluronan and sphingolipid metabolism, adenylate cyclase functions, c-AMP signaling and PKA activation/signaling. Enrichment of lipids/lipoprotein metabolism and inflammatory pathways were consistent with previously reported clinical findings. Enrichment of c-AMP and PKA signaling pathways may arise due to inhibition of phosphatases, a known biological action of vanadate. We saw no enrichment for DNA-damage, oxidative stress, cell cycle, or apoptosis pathway signaling in mouse lungs exposed to V2O5 which is in contrast with past studies evaluating in vivo gene expression in target tissues of other carcinogens (arsenic, formaldehyde, naphthalene and chloroprene).
Collapse
Affiliation(s)
- Michael B Black
- The Hamner Institutes for Health Sciences, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| | - Darol E Dodd
- The Hamner Institutes for Health Sciences, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| | - Patrick D McMullen
- The Hamner Institutes for Health Sciences, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| | - Salil Pendse
- The Hamner Institutes for Health Sciences, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| | - Judith A MacGregor
- Toxicology Consulting Services, 26881 Wedgewood Dr., Bonita Springs, FL 34134, USA.
| | | | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Six Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
25
|
Pardo M, Shafer MM, Rudich A, Schauer JJ, Rudich Y. Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8777-8785. [PMID: 26121492 DOI: 10.1021/acs.est.5b01449] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inhalation of traffic-associated atmospheric particulate matter (PM2.5) is recognized as a significant health risk. In this study, we focused on a single ("subclinical response") exposure to water-soluble extracts from PM collected at a roadside site in a major European city to elucidate potential components that drive pulmonary inflammatory, oxidative, and defense mechanisms and their systemic impacts. Intratracheal instillation (IT) of the aqueous extracts induced a 24 h inflammatory response characterized by increased broncho-alveolar lavage fluid (BALF) cells and cytokines (IL-6 and TNF-α), increased reactive oxygen species production, but insignificant lipids and proteins oxidation adducts in mouse lungs. This local response was largely self-resolved by 48 h, suggesting that it could represent a subclinical response to everyday-level exposure. Removal of soluble metals by chelation markedly diminished the pulmonary PM-mediated response. An artificial metal solution (MS) recapitulated the PM extract response. The self-resolving nature of the response is associated with activating defense mechanisms (increased levels of catalase and glutathione peroxidase expression), observed with both PM extract and MS. In conclusion, metals present in PM collected near roadways are largely responsible for the observed transient local pulmonary inflammation and oxidative stress. Simultaneous activation of the antioxidant defense response may protect against oxidative damage.
Collapse
Affiliation(s)
- Michal Pardo
- †Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Martin M Shafer
- ‡Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Assaf Rudich
- §Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - James J Schauer
- ‡Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Yinon Rudich
- †Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Piotrowska K, Chlubek D. Cyclooxygenase-1 as the main source of proinflammatory factors after sodium orthovanadate treatment. Biol Trace Elem Res 2015; 163:103-11. [PMID: 25398544 PMCID: PMC4297299 DOI: 10.1007/s12011-014-0176-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/03/2022]
Abstract
Vanadium is a metal present in air pollution. Its compounds may have both anticancer and carcinogenic properties. Vanadium compounds are tested in treatment of diabetes and cancer. An important research direction aimed at better understanding of the mechanisms of action of the vanadium compounds is a more detailed insight into their impact on inflammatory reactions. The aim of this study was to examine the effect of micromolar concentrations of sodium orthovanadate, Na3VO4, on the activity and expression of cyclooxygenases: COX-1 and COX-2. PMA-activated THP-1 macrophages were incubated in vitro for 48 h with micromolar concentrations of sodium orthovanadate. As shown by an ELISA assay, sodium orthovanadate increases the quantity of prostaglandin E2 being released into the medium in a dose-dependent manner as well as impacts the quantity of the stable metabolite of thromboxane A2: thromboxane B2. The use of a COX-2 inhibitor, NS-398, revealed that this effect was independent of changes in the activity of COX-2. Western blotting analysis showed that sodium orthovanadate increased the expression of COX-2 when used with NS-398. Quantitative real-time PCR measurements of mRNA levels of genes PTGS1 and PTGS2 revealed no effect of the tested vanadium compound on the levels of analyzed transcripts.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland,
| | | | | | | | | |
Collapse
|
27
|
Colín-Barenque L, Pedraza-Chaverri J, Medina-Campos O, Jimenez-Martínez R, Bizarro-Nevares P, González-Villalva A, Rojas-Lemus M, Fortoul TI. Functional and morphological olfactory bulb modifications in mice after vanadium inhalation. Toxicol Pathol 2014; 43:282-91. [PMID: 25492423 DOI: 10.1177/0192623314548668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, have olfaction impairment. These pathologies have also been linked to environmental pollutants. Vanadium is a pollutant, and its toxic mechanisms are related to the production of oxidative stress. In this study, we evaluated the effects of inhaled vanadium on olfaction, the olfactory bulb antioxidant, through histological and ultrastructural changes in granule cells. Mice in control group were made to inhale saline; the experimental group inhaled 0.02-M vanadium pentoxide (V2O5) for 1 hr twice a week for 4 weeks. Animals were sacrificed at 1, 2, 3, and 4 weeks after inhalation. Olfactory function was evaluated by the odorant test. The activity of glutathione peroxidase (GPx) and glutathione reductase (GR) was assayed in olfactory bulbs and processed for rapid Golgi method and ultrastructural analysis. Results show that olfactory function decreased at 4-week vanadium exposure; granule cells showed a decrease in dendritic spine density and increased lipofuscin, Golgi apparatus vacuolation, apoptosis, and necrosis. The activity of GPx and GR in the olfactory bulb was increased compared to that of the controls. Our results demonstrate that vanadium inhalation disturbs olfaction, histology, and the ultrastructure of the granule cells that might be associated with oxidative stress, a risk factor in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jose Pedraza-Chaverri
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Omar Medina-Campos
- Department of Biology, Facultad de Química, Ciudad Universitaria México, D.F., Mexico. UNAM
| | - Ruben Jimenez-Martínez
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | | | | | - Marcela Rojas-Lemus
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| | - Teresa I Fortoul
- Departament of Cellular and Tissular Biology, School of Medicine, México D.F., Mexico. UNAM
| |
Collapse
|
28
|
Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 2014; 5:5301. [DOI: 10.1038/ncomms6301] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
|
29
|
Kulkarni A, Kumar GS, Kaur J, Tikoo K. A comparative study of the toxicological aspects of vanadium pentoxide and vanadium oxide nanoparticles. Inhal Toxicol 2014; 26:772-88. [PMID: 25296879 DOI: 10.3109/08958378.2014.960106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Indiscriminate use of vanadium oxide nanoparticles (NPs) in steel industries and their release during combustion of fossil fuels makes it essential to study their toxic potential. Herein, we assessed the toxicological effects of two types of in-house synthesized vanadium oxide NPs in Wistar rats exposed to NPs through inhalation route. V2O5 and VO2 NPs exhibited rod and spherical symmetry, respectively with a mean diameter of 50±20 and 30±10 nm. Assessment of bronchoalveolar lavage fluid parameters demonstrated that VO2 NP-exposed animals had higher levels of lactate dehydrogenase, gamma-glutamyl transpeptidase and alkaline phosphatase as compared to V2O5 NP-exposed animals. The levels of oxidative stress markers malondialdehyde and reduced glutathione also indicated higher toxic potential of VO2 NPs. Moreover, after 7-day recovery, the levels of the above parameters were closer to normal levels only in V2O5-exposed animals. Interestingly, histopathological and immune-histopathology analysis (TNF-α) of lung tissue showed higher damage and inflammatory response in VO2 NP-exposed animals, which persisted even after 7 days of recovery period. Surprisingly, the carcinogenic potential of vanadium oxide NPs came into light which was indicated by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay as well as the decreased levels of p53 and Bax, in lung tissue of NP-exposed animals. Notably, the physiochemical characterization of NPs, especially the shape and the size, play a central role in shaping the toxicity of these NPs and thus should be extensively evaluated for outlining the regulatory guidelines.
Collapse
Affiliation(s)
- Apoorva Kulkarni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) , S.A.S. Nagar, Punjab , India
| | | | | | | |
Collapse
|
30
|
Fortoul T, Rodriguez-Lara V, González-Villalva A, Rojas-Lemus M, Cano-Gutiérrez G, Ustarroz-Cano M, Colín-Barenque L, Bizarro-Nevares P, García-Pealez I, Montaño L, Jimenez-Martinez R, Lopez-Valdez N, Ruiz-Guerrero M, Meléndez-García N, García-Ibarra F, Martínez-Baez V, Alfaro DZ, Muñiz-Rivera-Cambas A, López-Zepeda L, Quezada-Maldonado E, Cervantes-Yépez S. Inhalation of vanadium pentoxide and its toxic effects in a mouse model. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
The role of neutrophil myeloperoxidase in models of lung tumor development. Cancers (Basel) 2014; 6:1111-27. [PMID: 24821130 PMCID: PMC4074819 DOI: 10.3390/cancers6021111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.
Collapse
|
32
|
Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 2014; 11:3. [PMID: 24405760 PMCID: PMC3895742 DOI: 10.1186/1743-8977-11-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/06/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Engineered carbon nanotubes are currently used in many consumer and industrial products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures likely. Many of the potential health hazards have not been investigated, including their potential for carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the initiator methylcholanthrene(MCA, 10 μg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. RESULTS Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas. The average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively. By contrast, 90.5% of the mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed. Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease. Three mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with evidence of metastasis (5.5%). Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas mice administered MWCNT or air alone did not develop similar neoplasms. CONCLUSIONS These data demonstrate that some MWCNT exposures promote the growth and neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung burden of 31.2 μg/mouse approximates feasible human occupational exposures. Therefore, the results of this study indicate that caution should be used to limit human exposures to MWCNT.
Collapse
Affiliation(s)
- Linda M Sargent
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Dale W Porter
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - Ann F Hubbs
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - David T Lowry
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Katelyn J Siegrist
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Michael L Kashon
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Robert R Mercer
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - Bean T Chen
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | - David Frazer
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Michael Andrew
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | | | | | - Kara L Fluharty
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Vince Castranova
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| | - Steven H Reynolds
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Mailstop L-3014, Morgantown, WV 26505, USA
| |
Collapse
|
33
|
Zwolak I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review ofin vitrostudies. Toxicol Mech Methods 2013; 24:1-12. [DOI: 10.3109/15376516.2013.843110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Passantino L, Muñoz AB, Costa M. Sodium metavanadate exhibits carcinogenic tendencies in vitro in immortalized human bronchial epithelial cells. Metallomics 2013; 5:1357-67. [PMID: 23963610 PMCID: PMC3982314 DOI: 10.1039/c3mt00149k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pentavalent vanadium compounds induce intracellular changes in vitro that are consistent with those of other carcinogenic substances. While there is no clear evidence that vanadium compounds cause cancer in humans, vanadium pentoxide causes lung cancer in rodents after long-term inhalation exposures and in turn IARC has categorized it as a group 2B possible human carcinogen. The goal of this study was to investigate the carcinogenicity of NaVO3 in the human immortalized bronchial epithelial cell line, Beas-2B. Cells were treated with 10 μM NaVO3 for 5 weeks, with or without recovery time, followed by gene expression microarray analysis. In a separate experiment, cells were exposed to 1-10 μM NaVO3 for 4 weeks and then grown in soft agar to test for anchorage-independent growth. A dose-dependent increase in the number of colonies was observed. In scratch tests, NaVO3-transformed clones could repair a wound faster than controls. In a gene expression microarray analysis of soft agar clones there were 2010 differentially expressed genes (DEG) (adjusted p-value ≤ 0.05) in NaVO3-transformed clones relative to control clones. DEG from this experiment were compared with the DEG of 5 week NaVO3 exposure with or without recovery, all with adjusted p-values < 0.05, and 469 genes were altered in the same direction for transformed clones, 5 week NaVO3-treated cells, and the recovered cells. The data from this study imply that chronic exposure to NaVO3 causes changes that are consistent with cellular transformation including anchorage-independent growth, enhanced migration ability, and gene expression changes that were likely epigenetically inherited.
Collapse
Affiliation(s)
- Lisa Passantino
- New York University, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, New York, USA.
| | | | | |
Collapse
|
35
|
Zeidler-Erdely PC, Meighan TG, Erdely A, Battelli LA, Kashon ML, Keane M, Antonini JM. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part Fibre Toxicol 2013; 10:45. [PMID: 24107379 PMCID: PMC3774220 DOI: 10.1186/1743-8977-10-45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road MS L2015, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. PLoS One 2013; 8:e65150. [PMID: 23755184 PMCID: PMC3670909 DOI: 10.1371/journal.pone.0065150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.
Collapse
|
37
|
Abstract
Chronic obstructive pulmonary disease represents a major cause of morbidity and mortality in industrialized and nonindustrialized countries. Although tobacco use remains the main factor associated with development of the disease, occupational risk factors represent an important and preventable cause. The most common occupationally related factors include exposure to organic dusts, metallic fumes, and a variety of other mineral gases and/or vapors. This article summarizes the literature on the subject and provides an update of the most recent advances in the field.
Collapse
|
38
|
Petanidis S, Kioseoglou E, Hadzopoulou-Cladaras M, Salifoglou A. Novel ternary vanadium-betaine-peroxido species suppresses H-ras and matrix metalloproteinase-2 expression by increasing reactive oxygen species-mediated apoptosis in cancer cells. Cancer Lett 2013; 335:387-96. [PMID: 23474496 DOI: 10.1016/j.canlet.2013.02.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 11/17/2022]
Abstract
Vanadium is known for its antitumorigenicity. Poised to investigate the impact of well-defined forms of vanadium on processes and specific biomolecules (oncogenes-proteins) involved in cancer cell physiology, a novel ternary V(V)-peroxido-betaine compound was employed in experiments targeting cell viability, apoptosis, reactive oxygen species (ROS) production, H-ras signaling, and matrix metalloproteinase-2 (MMP-2) expression in human breast cancer epithelial and lung adenocarcinoma cells. The results reveal that vanadium imparts a significant decrease in cancer cell viability, reducing H-ras and MMP-2 expression by increasing ROS-mediated apoptosis, distinctly emphasizing the nature, structure and properties of ternary ligands on vanadium anti-tumor activity and its future potential as a metallodrug.
Collapse
Affiliation(s)
- Savvas Petanidis
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
39
|
Abstract
In the early treatment of diabetes with vanadium, inorganic vanadium compounds have been the focus of attention; organic vanadium compounds are nowadays increasingly attracting attention. A key compound is bis(maltolato)oxidovanadium, which became introduced into clinical tests Phase IIa. Organic ligands help modulate the bioavailability, transport and targeting mechanism of a vanadium compound. Commonly, however, the active onsite species is vanadyl (VO(2+)) or vanadate (H(2)VO(4) (-)), generated by biospeciation. The mode of operation can be ascribed to interaction of vanadate with phosphatases and kinases, and to modulation of the level of reactive oxygen species interfering with phosphatases and/or DNA. This operating mode has also been inferred for most cancerostatic vanadium compounds, although some, for example vanadocenes, may directly intercalate with DNA. Novel medicinal potentiality of vanadium compounds is geared towards endemic diseases in tropical countries, in particular leishmaniasis, Chagas' disease and amoebiasis, and viral infections such as Dengue fever, SARS and HIV.
Collapse
|
40
|
Hill T, Osgood RS, Velmurugan K, Alexander CM, Upham BL, Bauer AK. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. ACTA ACUST UNITED AC 2013; 5. [PMID: 25035812 PMCID: PMC4098145 DOI: 10.4172/2155-9929.1000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALBLps-d) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALBLps-d over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALBLps-d BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALBLps-d BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Ross S Osgood
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, Lansing, USA
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
41
|
Kammertoens T, Qin Z, Briesemeister D, Bendelac A, Blankenstein T. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-α, perforin). Int J Cancer 2012; 131:1499-508. [PMID: 22212899 DOI: 10.1002/ijc.27411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 12/02/2011] [Indexed: 12/11/2022]
Abstract
Mice deficient either in subtypes of immune cells, cytokines or lytic pathways have been subjected to chemical carcinogenesis by methylcholanthrene to evaluate whether these components of the immune system affect tumor development. Inbred mice of the same genotype but from different sources differed in tumor development in magnitude comparable to that previously attributed to differences in immunocompetence. This suggested that genetic drift between separate inbred colonies of mice and/or environmental factors (e.g., transport of the animals) influenced carcinogenesis. Therefore, littermates were used as control in subsequent experiments. Although deficiency of T-cells, NKT-cells, perforin, Fas-ligand, TNF-α-receptor failed to reveal significant differences in tumor development, the presence of B-cells and IL-4 enhanced tumor development under similar experimental conditions.
Collapse
Affiliation(s)
- Thomas Kammertoens
- Institut für Immunologie, Charité, Campus Benjamin-Franklin, Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Ferraro SA, Yakisich JS, Gallo FT, Tasat DR. Simvastatin pretreatment prevents ambient particle-induced lung injury in mice. Inhal Toxicol 2011; 23:889-96. [DOI: 10.3109/08958378.2011.623195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Vikis HG, Gelman AE, Franklin A, Stein L, Rymaszewski A, Zhu J, Liu P, Tichelaar JW, Krupnick AS, You M. Neutrophils are required for 3-methylcholanthrene-initiated, butylated hydroxytoluene-promoted lung carcinogenesis. Mol Carcinog 2011; 51:993-1002. [PMID: 22006501 DOI: 10.1002/mc.20870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/06/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Multiple studies have shown a link between chronic inflammation and lung tumorigenesis. Inbred mouse strains vary in their susceptibility to methylcholanthrene (MCA)-initiated butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated whether neutrophils play a role in strain dependent differences in susceptibility to lung tumor promotion. We observed a significant elevation in homeostatic levels of neutrophils in the lungs of tumor-susceptible BALB/cByJ (BALB) mice compared to tumor-resistant C57BL/6J (B6) mice. Additionally, BHT treatment further elevated neutrophil numbers as well as neutrophil chemoattractant keratinocyte-derived cytokine (KC)/chemokine (C-X-C motif) ligand 1 (Cxcl1) levels in BALB lung airways. Lung CD11c+ cells were a major source of KC expression and depletion of neutrophils in BALB mice resulted in a 71% decrease in tumor multiplicity. However, tumor multiplicity did not depend on the presence of T cells, despite the accumulation of T cells following BHT treatment. These data demonstrate that neutrophils are essential to promote tumor growth in the MCA/BHT two-step lung carcinogenesis model.
Collapse
Affiliation(s)
- Haris G Vikis
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schuler D, Chevalier HJ, Merker M, Morgenthal K, Ravanat JL, Sagelsdorff P, Walter M, Weber K, McGregor D. First Steps Towards an Understanding of a Mode ofCarcinogenic Action for Vanadium Pentoxide. J Toxicol Pathol 2011; 24:149-62. [PMID: 22272055 PMCID: PMC3234591 DOI: 10.1293/tox.24.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/01/2011] [Indexed: 01/22/2023] Open
Abstract
Inhalation of vanadium pentoxide clearly increases the incidence of
alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all
concentrations tested (1, 2 or 4 mg/m3), whereas responses in F344/N
rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in
vitro and possibly in vivo in mice, this does not
explain the species or site specificity of the neoplastic response. A nose-only
inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and
4 mg/m3, 6 h/day for 16 days) to explore histopathological,
biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet
assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment
related histopathology was observed at 0.25 mg/m3. At 1 and
4 mg/m3, exposure-dependent increases were observed in lung
weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic
infiltration and a generally time-dependent increased cell proliferation rate of
histiocytes. Glutathione was slightly increased, whereas there were no
consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence
for DNA strand breakage in lung or BAL cells, but there was an increase in
8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction
of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier
reports of histopathological changes in the lungs after inhalation of vanadium
pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode
of action. Evidence is weak for oxidative stress playing any role in lung
carcinogenesis at the lowest effective concentrations of vanadium pentoxide.
Collapse
|
45
|
|
46
|
Bauer AK, Rondini EA, Hummel KA, Degraff LM, Walker C, Jedlicka AE, Kleeberger SR. Identification of candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-shock protein 70. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1091-7. [PMID: 21543283 PMCID: PMC3237361 DOI: 10.1289/ehp.1003326] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/04/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown. OBJECTIVES The aims of our study were to determine the mechanism through which TLR4 modulates O3-induced pulmonary responses and to use transcriptomics to determine potential TLR4 effector molecules. METHODS C3H/HeJ (HeJ; Tlr4 mutant) and C3H/HeOuJ (OuJ; Tlr4 normal) mice were exposed continuously to 0.3 ppm O3 or filtered air for 6, 24, 48, or 72 hr. We assessed inflammation using bronchoalveolar lavage and molecular analysis by mRNA microarray, quantitative RT-PCR (real-time polymerase chain reaction), immunoblots, immunostaining, and ELISAs (enzyme-linked immunosorbent assays). B6-Hspa1a/Hspa1btm1Dix/NIEHS (Hsp70-/-) and C57BL/6 (B6; Hsp70+/+ wild-type control) mice were used for candidate gene validation studies. RESULTS O3-induced TLR4 signaling occurred through myeloid differentiation protein 88 (MyD88)-dependent and -independent pathways in OuJ mice and involved multiple downstream pathways. Genomewide transcript analyses of lungs from air- and O3-exposed HeJ and OuJ mice identified a cluster of genes that were significantly up-regulated in O3-exposed OuJ mice compared with O3-exposed HeJ mice or air-exposed controls of both strains; this cluster included genes for heat-shock proteins (e.g., Hspa1b, Hsp70). Moreover, O3-induced inflammation, MyD88 up-regulation, extracellular-signal-related kinase-1/2 (ERK1/2) and activator protein-1 (AP-1) activation, and kerotinocyte-derived chemokine (KC) protein content were significantly reduced in Hspa1a/Hspa1btm1Dix (Hsp70-/-) compared with Hsp70+/+ mice (p < 0.05). CONCLUSIONS These studies suggest that HSP70 is an effector molecule downstream of TLR4 and is involved in the regulation of O3-induced lung inflammation by triggering similar pathways to TLR4. These novel findings may have therapeutic and preventive implications for inflammatory diseases resulting from environmental exposures.
Collapse
Affiliation(s)
- Alison K Bauer
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zeidler-Erdely PC, Battelli LA, Salmen-Muniz R, Li Z, Erdely A, Kashon ML, Simeonova PP, Antonini JM. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:728-736. [PMID: 21480047 DOI: 10.1080/15287394.2011.556063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.
Collapse
Affiliation(s)
- Patti C Zeidler-Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road (M/S L2015), Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Martin S, Fernandez-Alanis E, Delfosse V, Evelson P, Yakisich JS, Saldiva PH, Tasat DR. Low doses of urban air particles from Buenos Aires promote oxidative stress and apoptosis in mice lungs. Inhal Toxicol 2010; 22:1064-71. [DOI: 10.3109/08958378.2010.523030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|