1
|
Sakalauskaite G, Weingartner M, Ebert S, Boot G, Bock T, Birk J, Tsachaki M, Gallon JW, Piscuoglio S, Odermatt A. A BioID-based approach uncovers the interactome of hexose-6-phosphate dehydrogenase in breast cancer cells and identifies anterior gradient protein 2 as an interacting partner. Cell Biosci 2025; 15:54. [PMID: 40281598 PMCID: PMC12032772 DOI: 10.1186/s13578-025-01388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Hexose-6-phosphate dehydrogenase (H6PD) catalyzes the first two steps of the pentose-phosphate-pathway (PPP) within the endoplasmic reticulum, generating NADPH. H6PD modulates essential physiological processes, including energy and redox metabolism. Its sole reported interacting partner is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), utilizing NADPH to reactivate glucocorticoids, linking energy status with hormonal response. Previous studies showed that loss of H6PD affects breast cancer cell properties, independent of 11β-HSD1. It remains unknown whether this is due to impaired concentrations of NADPH or PPP products downstream of H6PD. To gain insight into novel roles and pathways influenced by this enzyme, we aimed to assess the H6PD interactome. RESULTS We adapted the proximity-dependent Biotin Identification (BioID) method to identify novel H6PD interacting partners. First, we validated the method and confirmed the known interaction between H6PD and 11β-HSD1. Next, we constructed a triple-negative breast cancer MDA-MB-231 cell clone stably expressing a H6PD-biotin ligase fusion protein. Enriched biotinylated proteins were analyzed by mass-spectrometry and potential candidates assessed further by co-immunoprecipitation and functional assays. The resulting interactome revealed proteins of the calreticulin/calnexin cycle, unfolded-protein response (UPR) and chaperone activation pathways. Due to its known association with breast cancer, we examined the PDI Anterior gradient protein 2 (AGR2) as H6PD interacting partner. Gene set enrichment analysis revealed multiple overlapping pathways enriched in breast cancer tissues with relatively high H6PD and AGR2 expression. These included glycolysis, fatty acid metabolism, hypoxia, angiogenesis and epithelial to mesenchymal transition. Co-immunoprecipitation (Co-IP) from MCF7 cells confirmed a physical interaction between H6PD and AGR2. ARG2 knockdown in these cells increased H6PD protein levels but decreased activity. Coexpression with AGR2 in HEK-293 cells did not affect expression but enhanced H6PD activity. CONCLUSION BioID was successfully applied in the endoplasmic reticulum to identify AGR2 as H6PD interactor. This was confirmed using Co-IP from MCF7 cells endogenously expressing both proteins. The results indicate that AGR2 controls H6PD protein expression and enhances its activity. Whether higher H6PD activity due to increased AGR2 expression promotes a more aggressive cancer cell phenotype, for example by altering energy metabolism, Ca2+-related processes or UPR and chaperone activation pathways, warrants further investigations.
Collapse
Affiliation(s)
- Gabriele Sakalauskaite
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Sophie Ebert
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gina Boot
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - John W Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Roy D, He Y, Wang Y, Xu P, Jin B, Xiao H, Li D, Zhao B. Bispecific antibody simultaneously targeting AGR2 and PD1 mediates cytotoxic T-cell-induced antitumor response in AGR2-dependent manner and inhibits AGR2-induced PDL1 upregulation. Sci Rep 2025; 15:6015. [PMID: 39971962 PMCID: PMC11840037 DOI: 10.1038/s41598-025-88331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
AGR2 is a pro-oncogenic protein overexpressed in multiple cancer types, and it promotes tumor progression. Therefore, it is regarded as a promising therapeutic target for cancer. We reported the development and antitumor mechanism of AGR2-specific monoclonal antibody 18A4. To elicit AGR2-guided synergistic antitumor response by redirecting cytotoxic T-cells, we developed first T-cell-engaging bispecific antibody (BsAb) targeting AGR2 and PD1 simultaneously. This novel BsAb efficiently targets AGR2-rich solid tumors. In this study, we elucidated the antitumor mechanisms of AGR2xPD1 BsAb in vitro and in vivo. Higher attachment of T-cells and T-cell-mediated cytotoxicity were seen in cancer cells in BsAb-treated co-culture group. BsAb enhanced T-cell activation when co-cultured with target cells, and the BsAb recruited T-cells to the AGR2-overexpressing cancer cells and induced T-cells to highly express cytolytic proteins. AGR2xPD1 BsAb enhanced co-localization of AGR2 and PD1 in AGR2-overexpressing tumor sites and mediated higher attachment and infiltration of CD3 + CD8 + cytotoxic T-cells into tumor microenvironment in mice. Additionally, AGR2xPD1 BsAb inhibited AGR2-induced angiogenesis and tumor growth. Furthermore, we demonstrate that AGR2 induced PDL1 upregulation through EGFR signaling pathway and inhibited by AGR2xPD1 BsAb. Our study reveals AGR2xPD1 BsAb could be a potential therapeutic agent for targeting AGR2-overexpressing solid tumors.
Collapse
Affiliation(s)
- Debmalya Roy
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan He
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Xu
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Dawei Li
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Salu P, Tuvin D, Reindl KM. AGR2 knockdown induces ER stress and mitochondria fission to facilitate pancreatic cancer cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119854. [PMID: 39353469 DOI: 10.1016/j.bbamcr.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.
Collapse
Affiliation(s)
- Philip Salu
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America
| | - Daniel Tuvin
- Roger Maris Cancer Center, Sanford Health, Fargo, ND, United States of America
| | - Katie M Reindl
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America.
| |
Collapse
|
4
|
Robinson RM, Reyes L, Christopher BN, Duncan RM, Burge RA, Siegel J, Nasarre P, Wang P, O'Bryan JP, Hobbs GA, Klauber-DeMore N, Dolloff NG. A High-Affinity Monoclonal Antibody Against the Pancreatic Ductal Adenocarcinoma Target, Anterior Gradient-2 (AGR2/PDIA17). Antibodies (Basel) 2024; 13:101. [PMID: 39727484 DOI: 10.3390/antib13040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies. RESULTS We found that AGR2 was expressed in approximately 90% of PDAC but not normal pancreas biopsies, and the level of AGR2 expression correlated with increasing disease stage. AGR2 expression was inversely related to SMAD4 status in PDAC and colorectal cancer cell models and was secreted from cells into their media. In normal tissues, a high density of AGR2 was detected in the epithelium of cells in the digestive tract but was lacking in most other normal tissue systems. The addition of recombinant AGR2 to cell culture and genetic overexpression of AGR2 increased the adhesion, motility, and invasiveness of both human and mouse PDAC cells. Human phage display library screening led to the discovery of multiple AGR2-specific scFv clones that were affinity-matured to produce monoclonal antibody (MAb) clones with low picomolar binding affinity (S31R/A53F/Y). These high-affinity MAbs inhibited AGR2-mediated cell adhesion, migration, and binding to LYPD3, which is a putative cell surface binding partner of AGR2. CONCLUSIONS Our study provides novel, high-affinity, fully human, anti-AGR2 MAbs that neutralize the pro-tumor effects of extracellular AGR2 in PDAC.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ravyn M Duncan
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel A Burge
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julie Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - John P O'Bryan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Tolue Ghasaban F, Taghehchian N, Zangouei AS, Keivany MR, Moghbeli M. MicroRNA-135b mainly functions as an oncogene during tumor progression. Pathol Res Pract 2024; 262:155547. [PMID: 39151250 DOI: 10.1016/j.prp.2024.155547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Late diagnosis is considered one of the main reasons of high mortality rate among cancer patients that results in therapeutic failure and tumor relapse. Therefore, it is needed to evaluate the molecular mechanisms associated with tumor progression to introduce efficient markers for the early tumor detection among cancer patients. The remarkable stability of microRNAs (miRNAs) in body fluids makes them potential candidates to use as the non-invasive tumor biomarkers in cancer screening programs. MiR-135b has key roles in prognosis and survival of cancer patients by either stimulating or inhibiting cell proliferation, invasion, and angiogenesis. Therefore, in the present review we assessed the molecular biology of miR-135b during tumor progression to introduce that as a novel tumor marker in cancer patients. It has been reported that miR-135b mainly acts as an oncogene by regulation of transcription factors, signaling pathways, drug response, cellular metabolism, and autophagy. This review paves the way to suggest miR-135b as a tumor marker and therapeutic target in cancer patients following the further clinical trials and animal studies.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keivany
- Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Wambach M, Montani M, Runz J, Stephan C, Jung K, Moch H, Eberli D, Bernhardt M, Hommerding O, Kreft T, Cronauer MV, Kremer A, Mayr T, Hauser S, Kristiansen G. Clinical implications of AGR2 in primary prostate cancer: Results from a large-scale study. APMIS 2024; 132:256-266. [PMID: 38288749 DOI: 10.1111/apm.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Human anterior gradient-2 (AGR2) has been implicated in carcinogenesis of various solid tumours, but the expression data in prostate cancer are contradictory regarding its prognostic value. The objective of this study is to evaluate the expression of AGR2 in a large prostate cancer cohort and to correlate it with clinicopathological data. AGR2 protein expression was analysed immunohistochemically in 1023 well-characterized prostate cancer samples with a validated antibody. AGR2 expression levels in carcinomas were compared with matched tissue samples of adjacent normal glands. AGR2 expression levels were dichotomized and tested for statistical significance. Increased AGR2 expression was found in 93.5% of prostate cancer cases. AGR2 levels were significantly higher in prostate cancer compared with normal prostate tissue. A gradual loss of AGR2 expression was associated with increasing tumour grade (ISUP), and AGR2 expression is inversely related to patient survival, however, multivariable significance is not achieved. AGR2 is clearly upregulated in the majority of prostate cancer cases, yet a true diagnostic value appears unlikely. In spite of the negative correlation of AGR2 expression with increasing tumour grade, no independent prognostic significance was found in this large-scale study.
Collapse
Affiliation(s)
- Moritz Wambach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Matteo Montani
- Institute of Pathology, University Hospital Bern, Bern, Switzerland
| | - Josefine Runz
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Carsten Stephan
- Department of Urology, Charité University Hospital, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité University Hospital, Berlin, Germany
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Clinic of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Marit Bernhardt
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Tobias Kreft
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Anika Kremer
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Thomas Mayr
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Stefan Hauser
- Clinic of Urology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 2023; 21:201. [PMID: 37580737 PMCID: PMC10424373 DOI: 10.1186/s12964-023-01225-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies that are considered as a global health challenge. Despite many progresses in therapeutic methods, there is still a high rate of mortality rate among CRC patients that is associated with poor prognosis and distant metastasis. Therefore, investigating the molecular mechanisms involved in CRC metastasis can improve the prognosis. Epithelial-mesenchymal transition (EMT) process is considered as one of the main molecular mechanisms involved in CRC metastasis, which can be regulated by various signaling pathways. PI3K/AKT signaling pathway has a key role in CRC cell proliferation and migration. In the present review, we discussed the role of PI3K/AKT pathway CRC metastasis through the regulation of the EMT process. It has been shown that PI3K/AKT pathway can induce the EMT process by down regulation of epithelial markers, while up regulation of mesenchymal markers and EMT-specific transcription factors that promote CRC metastasis. This review can be an effective step toward introducing the PI3K/AKT/EMT axis to predict prognosis as well as a therapeutic target among CRC patients. Video Abstract.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Zhou M, Gan XL, Ren YX, Chen QX, Yang YZ, Weng ZJ, Zhang XF, Guan JX, Tang LY, Ren ZF. AGR2 and FOXA1 as prognostic markers in ER-positive breast cancer. BMC Cancer 2023; 23:743. [PMID: 37568077 PMCID: PMC10416444 DOI: 10.1186/s12885-023-10964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/16/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The prognostic role of either forkhead box A1 (FOXA1) or anterior gradient 2 (AGR2) in breast cancer has been found separately. Considering that there were interplays between them depending on ER status, we aimed to assess the statistical interaction between AGR2 and FOXA1 on breast cancer prognosis and examine the prognostic role of the combination of them by ER status. METHODS AGR2 and FOXA1 expression in tumor tissues were evaluated with tissue microarrays by immunohistochemistry in 915 breast cancer patients with follow up data. The expression levels of these two markers were treated as binary variables, and many different cutoff values were tried for each marker. Survival and Cox proportional hazard analyses were used to evaluate the relationship between AGR2, FOXA1 and prognosis, and the statistical interaction between them on the prognosis was assessed on multiplicative scale. RESULTS Statistical interaction between AGR2 and FOXA1 on the PFS was significant with all the cutoff points in ER-positive breast cancer patients but not ER-negative ones. Among ER-positive patients, the poor prognostic role of the high level of FOXA1 was significant only in patients with the low level of AGR2, and vice versa. When AGR2 and FOXA1 were considered together, patients with low levels of both markers had significantly longer PFS compared with all other groups. CONCLUSIONS There was a statistical interaction between AGR2 and FOXA1 on the prognosis of ER-positive breast cancer. The combination of AGR2 and FOXA1 was a more useful marker for the prognosis of ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | - Xing-Li Gan
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Qian-Xin Chen
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | | | - Zi-Jin Weng
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Xiao-Fang Zhang
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Jie-Xia Guan
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Udu-Ituma S, Adélaïde J, Le TK, Omabe K, Finetti P, Paris C, Guille A, Bertucci F, Birnbaum D, Rocchi P, Chaffanet M. ZNF703 mRNA-Targeting Antisense Oligonucleotide Blocks Cell Proliferation and Induces Apoptosis in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:1930. [PMID: 37514116 PMCID: PMC10384502 DOI: 10.3390/pharmaceutics15071930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The luminal B molecular subtype of breast cancers (BC) accounts for more than a third of BCs and is associated with aggressive clinical behavior and poor prognosis. The use of endocrine therapy in BC treatment has significantly contributed to the decrease in the number of deaths in recent years. However, most BC patients with prolonged exposure to estrogen receptor (ER) selective modulators such as tamoxifen develop resistance and become non-responsive over time. Recent studies have implicated overexpression of the ZNF703 gene in BC resistance to endocrine drugs, thereby highlighting ZNF703 inhibition as an attractive modality in BC treatment, especially luminal B BCs. However, there is no known inhibitor of ZNF703 due to its nuclear association and non-enzymatic activity. Here, we have developed an antisense oligonucleotide (ASO) against ZNF703 mRNA and shown that it downregulates ZNF703 protein expression. ZNF703 inhibition decreased cell proliferation and induced apoptosis. Combined with cisplatin, the anti-cancer effects of ZNF703-ASO9 were improved. Moreover, our work shows that ASO technology may be used to increase the number of targetable cancer genes.
Collapse
Affiliation(s)
- Sandra Udu-Ituma
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- Department of Biology, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki P.M.B. 1010, Ebonyi State, Nigeria
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - José Adélaïde
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Thi Khanh Le
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Kenneth Omabe
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Pascal Finetti
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Clément Paris
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Arnaud Guille
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - François Bertucci
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Daniel Birnbaum
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Palma Rocchi
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Max Chaffanet
- Equipe Labellisée Ligue Nationale Contre le Cancer, Predictive Oncology Laboratory, Marseille Research Cancer Center, INSERM U1068, CNRS U7258, Institut Paoli-Calmettes, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
10
|
Wang Z, Li Y, Zhao W, Jiang S, Huang Y, Hou J, Zhang X, Zhai Z, Yang C, Wang J, Zhu J, Pan J, Jiang W, Li Z, Ye M, Tan M, Jiang H, Dang Y. Integrative multi-omics and drug-response characterization of patient-derived prostate cancer primary cells. Signal Transduct Target Ther 2023; 8:175. [PMID: 37121942 PMCID: PMC10149505 DOI: 10.1038/s41392-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.
Collapse
Affiliation(s)
- Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Wensi Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Urology, Zhongshan Hospital Wusong Branch, Fudan University, 200032, Shanghai, China
| | - Yuqi Huang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jiaqi Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jiying Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
11
|
Qing X, Yuan C, Wang K. Characterization of protein-based risk signature to predict prognosis and evaluate the tumor immune environment in breast cancer. Breast Cancer 2023; 30:424-435. [PMID: 36732487 DOI: 10.1007/s12282-023-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Proteomics profiles have enabled a systematic insight into the prognosis of cancer. This study aimed to establish a valuable protein-based risk signature to assess the prognosis and immune status in patients with breast cancer (BC). METHODS Protein expression profile, RNA expression data, and clinical information were acquired from The Cancer Genome Atlas (TCGA). The whole cohort was randomly split into two cohorts, one for establishing the risk signature and the other for testing. Univariate Cox analysis and Least absolute shrinkage and selection operator (LASSO) Cox regression were utilized to construct the protein-based risk signature. All cohorts were divided into high- and low-risk groups, which were applied to investigate the clinical relevance, tumor microenvironment, and therapeutic response. RESULTS The prognostic proteomics signature was established based on prognostic proteins, thus categorizing patients into low-risk and high-risk groups with different prognoses. A predictive nomogram was also developed to predict 1, 3, and 5-year survival possibility for BC patients, and the calibration curves confirmed the predictive significance of this signature. Afterward, the low-risk group displayed higher immune activities, immune checkpoint expression, and immunotherapeutic response. Moreover, GSEA analysis indicated that immune-associated pathways were rich in the low-risk group. Additionally, this prognostic signature demonstrated potential predict significance for chemotherapeutic agents. CONCLUSION This study established an effective prognostic proteomics signature with reliable predictive performance for survival, immune activity, and drug sensitivity. It might provide a novel perspective into the protein function in BC, and guide the individual treatment strategies for BC patients.
Collapse
Affiliation(s)
- Xin Qing
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlei Yuan
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China.
| | - Ke Wang
- Clinical Laboratory, Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan, China.
| |
Collapse
|
12
|
Zhang K, Li Y, Kong X, Lei C, Yang H, Wang N, Wang Z, Chang H, Xuan L. AGR2: a secreted protein worthy of attention in diagnosis and treatment of breast cancer. Front Oncol 2023; 13:1195885. [PMID: 37197416 PMCID: PMC10183570 DOI: 10.3389/fonc.2023.1195885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
AGR2 is a secreted protein widely existing in breast. In precancerous lesions, primary tumors and metastatic tumors, the expression of AGR2 is increased, which has aroused our interest. This review introduces the gene and protein structure of AGR2. Its endoplasmic reticulum retention sequence, protein disulfide isomerase active site and multiple protein binding sequences endow AGR2 with diverse functions inside and outside breast cancer cells. This review also enumerates the role of AGR2 in the progress and prognosis of breast cancer, and emphasizes that AGR2 can be a promising biomarker and a target for immunotherapy of breast cancer, providing new ideas for early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| |
Collapse
|
13
|
Goh JJH, Goh CJH, Lim QW, Zhang S, Koh CG, Chiam KH. Transcriptomics indicate nuclear division and cell adhesion not recapitulated in MCF7 and MCF10A compared to luminal A breast tumours. Sci Rep 2022; 12:20902. [PMID: 36463288 PMCID: PMC9719475 DOI: 10.1038/s41598-022-24511-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) cell lines are useful experimental models to understand cancer biology. Yet, their relevance to modelling cancer remains unclear. To better understand the tumour-modelling efficacy of cell lines, we performed RNA-seq analyses on a combined dataset of 2D and 3D cultures of tumourigenic MCF7 and non-tumourigenic MCF10A. To our knowledge, this was the first RNA-seq dataset comprising of 2D and 3D cultures of MCF7 and MCF10A within the same experiment, which facilitates the elucidation of differences between MCF7 and MCF10A across culture types. We compared the genes and gene sets distinguishing MCF7 from MCF10A against separate RNA-seq analyses of clinical luminal A (LumA) and normal samples from the TCGA-BRCA dataset. Among the 1031 cancer-related genes distinguishing LumA from normal samples, only 5.1% and 15.7% of these genes also distinguished MCF7 from MCF10A in 2D and 3D cultures respectively, suggesting that different genes drive cancer-related differences in cell lines compared to clinical BC. Unlike LumA tumours which showed increased nuclear division-related gene expression compared to normal tissue, nuclear division-related gene expression in MCF7 was similar to MCF10A. Moreover, although LumA tumours had similar cell adhesion-related gene expression compared to normal tissues, MCF7 showed reduced cell adhesion-related gene expression compared to MCF10A. These findings suggest that MCF7 and MCF10A cell lines were limited in their ability to model cancer-related processes in clinical LumA tumours.
Collapse
Affiliation(s)
- Jeremy Joon Ho Goh
- grid.418325.90000 0000 9351 8132Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671 Singapore ,grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Corinna Jie Hui Goh
- grid.418325.90000 0000 9351 8132Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671 Singapore
| | - Qian Wei Lim
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Songjing Zhang
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Cheng-Gee Koh
- grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - Keng-Hwee Chiam
- grid.418325.90000 0000 9351 8132Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671 Singapore ,grid.59025.3b0000 0001 2224 0361School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| |
Collapse
|
14
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
15
|
Mosquim Junior S, Siino V, Rydén L, Vallon-Christersson J, Levander F. Choice of High-Throughput Proteomics Method Affects Data Integration with Transcriptomics and the Potential Use in Biomarker Discovery. Cancers (Basel) 2022; 14:cancers14235761. [PMID: 36497242 PMCID: PMC9736226 DOI: 10.3390/cancers14235761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, several advances have been achieved in breast cancer (BC) classification and treatment. However, overdiagnosis, overtreatment, and recurrent disease are still significant causes of complication and death. Here, we present the development of a protocol aimed at parallel transcriptome and proteome analysis of BC tissue samples using mass spectrometry, via Data Dependent and Independent Acquisitions (DDA and DIA). Protein digestion was semi-automated and performed on flowthroughs after RNA extraction. Data for 116 samples were acquired in DDA and DIA modes and processed using MaxQuant, EncyclopeDIA, or DIA-NN. DIA-NN showed an increased number of identified proteins, reproducibility, and correlation with matching RNA-seq data, therefore representing the best alternative for this setup. Gene Set Enrichment Analysis pointed towards complementary information being found between transcriptomic and proteomic data. A decision tree model, designed to predict the intrinsic subtypes based on differentially abundant proteins across different conditions, selected protein groups that recapitulate important clinical features, such as estrogen receptor status, HER2 status, proliferation, and aggressiveness. Taken together, our results indicate that the proposed protocol performed well for the application. Additionally, the relevance of the selected proteins points to the possibility of using such data as a biomarker discovery tool for personalized medicine.
Collapse
Affiliation(s)
| | - Valentina Siino
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, 223 81 Lund, Sweden
- Department of Surgery and Gastroenterology, Skåne University Hospital, 214 28 Malmö, Sweden
| | | | - Fredrik Levander
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, 223 81 Lund, Sweden
- Correspondence:
| |
Collapse
|
16
|
Li JJ, Wang S, Guan ZN, Zhang JX, Zhan RX, Zhu JL. Anterior Gradient 2 is a Significant Prognostic Biomarker in Bone Metastasis of Breast Cancer. Pathol Oncol Res 2022; 28:1610538. [PMID: 36405393 PMCID: PMC9668893 DOI: 10.3389/pore.2022.1610538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Background: The study aimed to detect DEGs associated with BRCA bone metastasis, filter prognosis biomarkers, and explore possible pathways. Methods: GSE175692 dataset was used to detect DEGs between BRCA bone metastatic cases and non-bone metastatic cases, followed by the construction of a PPI network among DEGs. The main module among the PPI network was then determined and pathway analysis on genes within the module was performed. Through performing Cox regression, Kaplan-Meier, nomogram, and ROC curve analyses using GSE175692 and GSE124647 datasets at the same time, the most significant prognostic biomarker was gradually filtered. Finally, important pathways associated with prognostic biomarkers were explored by GSEA analysis. Results: The 74 DEGs were detected between bone metastasis and non-bone metastasis groups. A total of 15 nodes were included in the main module among the whole PPI network and they mainly correlated with the IL-17 signaling pathway. We then performed Cox analysis on 15 genes using two datasets and only enrolled the genes with p < 0.05 in Cox analysis into the further analyses. Kaplan-Meier analyses using two datasets showed that the common biomarker AGR2 expression was related to the survival time of BRCA metastatic cases. Further, the nomogram determined the greatest contribution of AGR2 on the survival probability and the ROC curve revealed its optimal prognostic performance. More importantly, high expression of AGR2 prolonged the survival time of BRCA bone metastatic patients. These results all suggested the importance of AGR2 in metastatic BRCA. Finally, we performed the GSEA analysis and found that AGR2 was negatively related to IL-17 and NF-kβ signaling pathways. Conclusion: AGR2 was finally determined as the most important prognostic biomarker in BRCA bone metastasis, and it may play a vital role in cancer progression by regulating IL-17 and NF-kB signaling pathways.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Shuai Wang
- Department of Pathology, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Zhong-Ning Guan
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jin-Xi Zhang
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Ri-Xin Zhan
- Department of Medical Record Management, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Jian-Long Zhu
- Department of Orthopaedics, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Jian-Long Zhu,
| |
Collapse
|
17
|
Koel M, Krjutškov K, Saare M, Samuel K, Lubenets D, Katayama S, Einarsdottir E, Vargas E, Sola-Leyva A, Lalitkumar PG, Gemzell-Danielsson K, Blesa D, Simon C, Lanner F, Kere J, Salumets A, Altmäe S. Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay. Hum Reprod Open 2022; 2022:hoac043. [PMID: 36339249 PMCID: PMC9632455 DOI: 10.1093/hropen/hoac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Indexed: 08/17/2023] Open
Abstract
STUDY QUESTION Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Dmitri Lubenets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, Sweden
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Parameswaran Grace Lalitkumar
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - David Blesa
- Department of Product Development, IGENOMIX, Valencia, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA in Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| |
Collapse
|
18
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
19
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
20
|
Senra D, Guisoni N, Diambra L. ORIGINS: a protein network-based approach to quantify cell pluripotency from scRNA-seq data. MethodsX 2022; 9:101778. [PMID: 35855951 PMCID: PMC9287638 DOI: 10.1016/j.mex.2022.101778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Trajectory inference is a common application of scRNA-seq data. However, it is often necessary to previously determine the origin of the trajectories, the stem or progenitor cells. In this work, we propose a computational tool to quantify pluripotency from single cell transcriptomics data. This approach uses the protein-protein interaction (PPI) network associated with the differentiation process as a scaffold and the gene expression matrix to calculate a score that we call differentiation activity. This score reflects how active the differentiation network is in each cell. We benchmark the performance of our algorithm with two previously published tools, LandSCENT (Chen et al., 2019) and CytoTRACE (Gulati et al., 2020), for four healthy human data sets: breast, colon, hematopoietic and lung. We show that our algorithm is more efficient than LandSCENT and requires less RAM memory than the other programs. We also illustrate a complete workflow from the count matrix to trajectory inference using the breast data set.ORIGINS is a methodology to quantify pluripotency from scRNA-seq data implemented as a freely available R package. ORIGINS uses the protein-protein interaction network associated with differentiation and the data set expression matrix to calculate a score (differentiation activity) that quantifies pluripotency for each cell.
Collapse
|
21
|
Bennett C, Carroll C, Wright C, Awad B, Park JM, Farmer M, Brown E(B, Heatherly A, Woodard S. Breast Cancer Genomics: Primary and Most Common Metastases. Cancers (Basel) 2022; 14:3046. [PMID: 35804819 PMCID: PMC9265113 DOI: 10.3390/cancers14133046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Specific genomic alterations have been found in primary breast cancer involving driver mutations that result in tumorigenesis. Metastatic breast cancer, which is uncommon at the time of disease onset, variably impacts patients throughout the course of their disease. Both the molecular profiles and diverse genomic pathways vary in the development and progression of metastatic breast cancer. From the most common metastatic site (bone), to the rare sites such as orbital, gynecologic, or pancreatic metastases, different levels of gene expression indicate the potential involvement of numerous genes in the development and spread of breast cancer. Knowledge of these alterations can, not only help predict future disease, but also lead to advancement in breast cancer treatments. This review discusses the somatic landscape of breast primary and metastatic tumors.
Collapse
Affiliation(s)
- Caroline Bennett
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Caleb Carroll
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Cooper Wright
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Barbara Awad
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Jeong Mi Park
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| | - Meagan Farmer
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Elizabeth (Bryce) Brown
- Laboratory Genetics Counselor, UAB Medical Genomics Laboratory, Kaul Human Genetics Building, 720 20th Street South, Suite 332, Birmingham, AL 35294, USA;
| | - Alexis Heatherly
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Stefanie Woodard
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| |
Collapse
|
22
|
Wu J, Wei Y, Li T, Lin L, Yang Z, Ye L. DNA Methylation-Mediated Lowly Expressed AOX1 Promotes Cell Migration and Invasion of Prostate Cancer. Urol Int 2022; 107:517-525. [PMID: 35354150 DOI: 10.1159/000522634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION DNA methylation regulates gene transcriptional functions in the pathogenesis of malignant diseases. In prostate cancer, several tumor suppressors are known to be tumor specifically methylated. METHODS In this study, 450K methylation data and mRNA expression data were accessed from The Cancer Genome Atlas-Prostate Adenocarcinoma database and analyzed bioinformatically. Methylation-specific PCR was used to examine the methylation condition in AOX1 promoter. qRT-PCR was applied to measure the mRNA expression of AOX1. Western blot was employed to detect the expressions of AOX1 and the EMT associated proteins. Transwell and scratch healing assays were used to examine the invasive and migratory abilities of the prostate cancer cells respectively. RESULTS AOX1 was lowly expressed and hypermethylated in the prostate cancer tissues and cells. Also, AOX1 was downregulated at protein level in prostate cancer cells. Knocking down AOX1 could promote cell migration and invasion in the prostate cancer cells. By using a DNA methylation inhibitor, 5-AzadC was found to promote the expression of AOX1 and reverse the promoting effects of short interfering RNA against AOX1 on cell migration and invasion. CONCLUSION This study suggested that DNA methylation and low AOX1 level might be biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Yongbao Wei
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Tao Li
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Le Lin
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zesong Yang
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Liefu Ye
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
23
|
Yang S, Jackson C, Karapetyan E, Dutta P, Kermah D, Wu Y, Wu Y, Schloss J, Vadgama JV. Roles of Protein Disulfide Isomerase in Breast Cancer. Cancers (Basel) 2022; 14:745. [PMID: 35159012 PMCID: PMC8833603 DOI: 10.3390/cancers14030745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerase (PDI) is the endoplasmic reticulum (ER)'s most abundant and essential enzyme and serves as the primary catalyst for protein folding. Due to its apparent role in supporting the rapid proliferation of cancer cells, the selective blockade of PDI results in apoptosis through sustained activation of UPR pathways. The functions of PDI, especially in cancers, have been extensively studied over a decade, and recent research has explored the use of PDI inhibitors in the treatment of cancers but with focus areas of other cancers, such as brain or ovarian cancer. In this review, we discuss the roles of PDI members in breast cancer and PDI inhibitors used in breast cancer research. Additionally, a few PDI members may be suggested as potential molecular targets for highly metastatic breast cancers, such as TNBC, that require more attention in future research.
Collapse
Affiliation(s)
- Suhui Yang
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Chanel Jackson
- Post Baccalaureate Pre-Medical Program, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Eduard Karapetyan
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Dulcie Kermah
- Urban Health Institute, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - John Schloss
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| |
Collapse
|
24
|
Li BB, Scott EY, Olafsen NE, Matthews J, Wheeler AR. Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays. LAB ON A CHIP 2022; 22:313-325. [PMID: 34904612 DOI: 10.1039/d1lc00854d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer. Here we used a 3D invasion assay called cell invasion in digital microfluidic microgel systems (CIMMS) to study the effect of AHR expression on invasion. In this study, MDA-MB-231 cells with stable knockout of AHR (AHRko) showed enhanced invasive characteristics and reduced proliferation, and cells with transient overexpression of AHR showed reduced invasiveness. Overexpression of AHR with a mutation in the DNA binding domain showed no difference in invasiveness compared to control, which suggests that the changes in invasiveness are related to the expression of AHR. CIMMS also allowed for extraction of sub-populations of invaded cells for RNA sequencing experiments. A comparison of the transcriptomes of invaded subpopulations of wild-type and AHRko cells identified 1809 genes that were differentially expressed, with enriched pathways including cell cycle, proliferation, survival, immunoproteasome activation, and activation of matrix metalloproteases. In sum, the data reported here for MDA-MB-231 cells suggests some new interpretations of the discrepancy in the literature on the role of AHR in breast cancer. We propose that the unique combination of functional discrimination with transcriptome profiling provided by CIMMS will be valuable for a wide range of mechanistic invasion-biology studies in the future.
Collapse
Affiliation(s)
- Bingyu B Li
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Erica Y Scott
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| | - Ninni E Olafsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
25
|
Ly TTG, Yun J, Ha JS, Kim YJ, Jang WB, Van Le TH, Rethineswaran VK, Choi J, Kim JH, Min SH, Lee DH, Yang JS, Chung JS, Kwon SM. Inhibitory Effect of Etravirine, a Non-Nucleoside Reverse Transcriptase Inhibitor, via Anterior Gradient Protein 2 Homolog Degradation against Ovarian Cancer Metastasis. Int J Mol Sci 2022; 23:944. [PMID: 35055132 PMCID: PMC8777939 DOI: 10.3390/ijms23020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Thanh Truong Giang Ly
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jong-Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Woong-Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Thi Hong Van Le
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jae-Ho Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Sang-Hyun Min
- New Drug Development Center, Deagu Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Dong-Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Ju-Seok Yang
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
26
|
Maarouf A, Boissard A, Henry C, Leman G, Coqueret O, Guette C, Lelièvre E. Anterior gradient protein 2 is a marker of tumor aggressiveness in breast cancer and favors chemotherapy‑induced senescence escape. Int J Oncol 2021; 60:5. [PMID: 34913074 PMCID: PMC8727137 DOI: 10.3892/ijo.2021.5295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Among the different chemotherapies available, genotoxic drugs are widely used. In response to these drugs, particularly doxorubicin, tumor cells can enter into senescence. Chemotherapy‑induced senescence (CIS) is a complex response. Long described as a definitive arrest of cell proliferation, the present authors and various groups have shown that this state may not be complete and could allow certain cells to reproliferate. The mechanism could be due to the activation of new signaling pathways. In the laboratory, the proteins involved in these pathways and triggering cell proliferation were studied. The present study determined a new role for anterior gradient protein 2 (AGR2) in vivo in patients and in vitro in a senescence escape model. AGR2's implication in breast cancer patients and proliferation of senescent cells was assessed based on a SWATH‑MS proteomic study of patients' samples and RNA interference technology on cell lines. First, AGR2 was identified and it was found that its concentration is higher in the serum of patients with breast cancer and that this high concentration is associated with metastasis occurrence. An inverse correlation between intratumoral AGR2 expression and the senescence marker p16 was also observed. This observation led to the study of the role of AGR2 in the CIS escape model. In this model, it was found that AGR2 is overexpressed in cells during senescence escape and that its loss considerably reduces this phenomenon. Furthermore, it was shown that the extracellular form of AGR2 stimulated the reproliferation of senescent cells. The power of proteomic analysis based on the SWATH‑MS approach allowed the present study to highlight the mammalian target of rapamycin (mTOR)/AKT signaling pathway in the senescence escape mechanism mediated by AGR2. Analysis of the two signaling pathways revealed that AGR2 modulated RICTOR and AKT phosphorylation. All these results showed that AGR2 expression in sera and tumors of breast cancer patients is a marker of tumor progression and metastasis occurrence. They also showed that its overexpression regulates CIS escape via activation of the mTOR/AKT signaling pathway.
Collapse
Affiliation(s)
- Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Cécile Henry
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Géraldine Leman
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| | - Eric Lelièvre
- Paul Papin ICO Cancer Center, CRCINA, INSERM U1232, Université de Nantes, Université d'Angers, 49055 Angers, France
| |
Collapse
|
27
|
Jach D, Cheng Y, Prica F, Dumartin L, Crnogorac-Jurcevic T. From development to cancer - an ever-increasing role of AGR2. Am J Cancer Res 2021; 11:5249-5262. [PMID: 34873459 PMCID: PMC8640830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Anterior gradient 2, AGR2, is a small, 20 kDa protein that plays a vital role in oxidative protein folding in the endoplasmic reticulum. AGR2 is involved in several signal transduction pathways that are essential for cell survival. It was initially discovered in the African clawed frog, Xenopus laevis, where it plays an important function in embryonic development. Akin to several other developmental genes, it is also frequently deregulated in cancer, where it plays a decisive role in tumor initiation, progression and metastasis. In this review, we have summarized currently known AGR2 functions, its expression and function in embryonic and cancer development, as well as its potential as a candidate tumor biomarker and promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Daria Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Yuzhu Cheng
- Institute of Human Genetics, International Centre for Life, Newcastle UniversityNewcastle Upon Tyne, UK
| | - Filip Prica
- Medical Clinic and Polyclinic I, Basic and Translational Research, Department of Cardiology Basic and Translational ResearchMunich, Germany
| | - Laurent Dumartin
- Advanced Accelerator Applications, Novartis CompanyBoulogne-Billancourt, France
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| |
Collapse
|
28
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Fessart D, Robert J, Hartog C, Chevet E, Delom F, Babin G. The Anterior GRadient (AGR) family proteins in epithelial ovarian cancer. J Exp Clin Cancer Res 2021; 40:271. [PMID: 34452625 PMCID: PMC8394676 DOI: 10.1186/s13046-021-02060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common gynecologic disorder. Even with the recent progresses made towards the use of new therapeutics, it still represents the most lethal gynecologic malignancy in women from developed countries. The discovery of the anterior gradient proteins AGR2 and AGR3, which are highly related members belonging to the protein disulfide isomerase (PDI) family, attracted researchers’ attention due to their putative involvement in adenocarcinoma development. This review compiles the current knowledge on the role of the AGR family and the expression of its members in EOC and discusses the potential clinical relevance of AGR2 and AGR3 for EOC diagnosis, prognosis, and therapeutics. A better understanding of the role of the AGR family may thus provide new handling avenues for EOC patients.
Collapse
Affiliation(s)
- Delphine Fessart
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Université Rennes 1, Rennes, France. .,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France. .,ARTiSt group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000, Bordeaux, France.
| | - Jacques Robert
- ARTiSt group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000, Bordeaux, France
| | - Cecile Hartog
- ARTiSt group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000, Bordeaux, France
| | - Eric Chevet
- INSERM U1242, "Chemistry, Oncogenesis Stress Signaling", Université Rennes 1, Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Frederic Delom
- ARTiSt group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000, Bordeaux, France.
| | - Guillaume Babin
- ARTiSt group, Univ. Bordeaux, INSERM, Institut Bergonié, ACTION, U1218, F-33000, Bordeaux, France.
| |
Collapse
|
30
|
Abstract
To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor β (ERβ) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERβ. ERβ is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERβ+ TNBC patient-derived xenografts in mice and found that the ERβ agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERβ is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERβ functionless on genes involved in proliferation and inflammation.
Collapse
|
31
|
Extracellular AGR2 activates neighboring fibroblasts through endocytosis and direct binding to β-catenin that requires AGR2 dimerization and adhesion domains. Biochem Biophys Res Commun 2021; 573:86-92. [PMID: 34399098 DOI: 10.1016/j.bbrc.2021.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in several types of cancer. AGR2 is cytoplasmic or secreted as an extracellular signal. Intracellular AGR2 properties and role in cancer have been well studied, but its extracellular function is largely unclear. It has been shown that extracellular AGR2 activates endothelial cells and fibroblasts in culture, but the mechanism of AGR2 signaling is not well elucidated. Here, we report that tumor secreted or externally added AGR2 translocates into cytoplasm by endocytosis, binds to β-catenin and further co-translocates to the nucleus in NIH3T3 fibroblasts. Externally added AGR2 also increased β-catenin expression, stability, and accumulation in the nucleus in both fibroblasts and cancer cells. External AGR2 rescued the expression of β-catenin, which was suppressed by EGFR inhibitor AG1478 indicating an alternative pathway to regulate β-catenin independent of EGFR signal. These effects were abolished when a monoclonal antibody against AGR2 was added to the experiments, confirming the effects are caused by AGR2 only. Putting together, our results show that extracellular AGR2 signaling pathway involves endocytosis mediated cellular translocation, direct binding and regulating β-catenin nuclear accumulation. It is also a target against tumor initiated AGR2 signaling to form and maintain tumor microenvironment.
Collapse
|
32
|
de Moraes CL, Cruz E Melo N, Valoyes MAV, Naves do Amaral W. AGR2 and AGR3 play an important role in the clinical characterization and prognosis of basal like breast cancer. Clin Breast Cancer 2021; 22:e242-e252. [PMID: 34462207 DOI: 10.1016/j.clbc.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Basal-like Breast Cancer (BLBC) represents an important molecular subtype of breast cancer characterized by an aggressive behavior, molecular pathology poorly understood and a limited treatment. OBJECTIVE We aim to search for molecular differences between non-BLBC and BLBC tumors in order to propose possible diagnostic and prognostic biomarkers using databases. Metodology: Microarray processed data were downloaded from GEO database considering non-BLBC and BLBC. Enrichment analysis was evaluated using GO consortium and Ingenuity, protein-protein interaction, gene Ontology and co-expression analysis using STRING. Gene expression data was extracted using TCGA, METABRIC and Breast Cancer Gene-Expression Miner v4.2 databases. The Survival was evaluated using The Kaplan-Meier plotter. RESULTS Were identified 58 upregulated and 58 downregulated genes enriched in signaling pathways like PDGF, Angiogenesis, Integrin and WNT. AGR2 and AGR3 expression were reduced in BLBC in relation to non-BLBC tumors, patients aged ≤51 years, and with negativity of ER, PR and HER-2 and nodal status. Low expression of AGR2 and AGR3 were associated with worse OS and RFS for all breast cancer cases. But according to the molecular stratification, low AGR2 conferred worst OS in luminal A, worst RFS in BLBC and good OS and RFS in luminal B. High AGR3 conferred worse OS and RFS in BLBC, but low AGR3 attributed worse OS in luminal A. CONCLUSION AGR2 and AGR3 expression were able to differentiate non-BLBC from BLBC. Downregulation of AGR2 and AGR3 was associated with BLBC clinical phenotype. Furthermore, both genes behave different when considering prognosis and molecular stratification.
Collapse
Affiliation(s)
- Carolina Leão de Moraes
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Federal University of Goiás, Goiânia, Brazil.
| | - Natália Cruz E Melo
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Maira Andrea Valoyes Valoyes
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Molecular Genetics, Center for Translational Research in Oncology (LIM24), Cancer Institute of Sao Paulo, Sao Paulo, Brazil
| | - Waldemar Naves do Amaral
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Federal University of Goiás, Goiânia, Brazil; Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
33
|
Wang J, Huang J, Huang L. TSPAN1 silencing protects against cerulein-induced pancreatic acinar cell injury via targeting AGR2. Drug Dev Res 2021; 83:158-166. [PMID: 34212407 DOI: 10.1002/ddr.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory gastrointestinal disorder affecting the pancreas. Previous study reported that tetraspanin 1 (TSPAN1) expression was significantly upregulated in the pancreas of AP patients. However, the underlying molecular mechanism of TSPAN1 in the pathogenesis of AP remains unclear. Thus, the aim of the present study was to investigate the potential role of TSPAN1 in development of AP. RT-qPCR was carried out to quantify the relative mRNA levels of TSPAN1 and anterior gradient-2 (AGR2). The CCK-8 assay was used to detect the cell viability. The TUNEL assay was performed to visualize the apoptotic cells. Western blot was performed to determine the expressions of proteins related to endoplasmic reticulum (ER) stress and apoptosis. ELISA kits were adopted to detect the concentration of inflammatory cytokines including TNF-α and IL-6. Finally, immunoprecipitation (IP) was used to verify the interaction between TSPAN1 and AGR2. TSPAN1 was upregulated in serum of AP patients and AP cell models. TSPAN1 silencing promoted the cell proliferation and inhibited inflammatory response in cerulein-induced AR42J cells. Moreover, TSPAN1 induced endoplasmic reticulum stress by binding AGR2. Interestingly, the overexpression of AGR2 abolished the effects of TSPAN1 silencing on cell proliferation and inflammatory response in cerulein-induced AR42J cells. In summary, TSPAN1 silencing protects against cerulein-induced pancreatic acinar cell injury through inhibiting ER stress-mediated by AGR2. Hence, TSPAN1 may serve as a promising therapeutic target for AP treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Digestive Medicine, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| | - Jing Huang
- Department of Digestive Medicine, Huanggang Central Hospital, Huanggang City, Hubei Province, China
| | - Lili Huang
- Department of Clinical Laboratory, Lishui People's Hospital, Lishui City, Zhejiang Province, China
| |
Collapse
|
34
|
Zhang H, Chi J, Hu J, Ji T, Luo Z, Zhou C, Huang L, Dai Z, Li J, Wang G, Wang L, Wang Z. Intracellular AGR2 transduces PGE2 stimuli to promote epithelial-mesenchymal transition and metastasis of colorectal cancer. Cancer Lett 2021; 518:180-195. [PMID: 34216690 DOI: 10.1016/j.canlet.2021.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
Human anterior gradient homolog 2 (AGR2) reportedly acts as an oncogene in multiple types of cancers. As a secreted protein, the oncogenic roles of extracellular AGR2 have been the focus of the increasing number of studies. In contrast, the oncological functions of intracellular AGR2 (iAGR2) remain elusive. Here, we report that intracellular AGR2 (iAGR2) is sufficient to promote CRC metastasis. iAGR2 binds to KDEL receptors (KDELRs) via its KTEL motif to activate downstream Gs-PKA signaling. Activated PKA upregulates the expression of NF-κB subunit c-Rel (REL) and acetylates histone H3 at lysine 9 (H3K9ac) to promote the transcription of SNAIL and SLUG. AGR2 can be upregulated by prostaglandin E2 (PGE2) via EP4-PI3K-AKT pathway and is indispensable for PGE2-induced CRC metastasis. AGR2 knockdown enhances therapeutic effects of a COX-2 inhibitor, celecoxib, in CRC metastasis. Collectively, our study reveals a promoting role and molecular mechanisms of iAGR2 in CRC metastasis and uncovers a new tumor microenvironment signal regulating AGR2 expression, which may provide new targets for treating metastatic CRC.
Collapse
Affiliation(s)
- Hongyan Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiangyang Chi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Tiantian Ji
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhen Luo
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Caihong Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lifeng Huang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jing Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
35
|
He J, Fu Y, Hu J, Chen J, Lou G. Hypomethylation-Mediated AGR2 Overexpression Facilitates Cell Proliferation, Migration, and Invasion of Lung Adenocarcinoma. Cancer Manag Res 2021; 13:5177-5185. [PMID: 34234561 PMCID: PMC8255649 DOI: 10.2147/cmar.s304869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Studies have indicated that AGR2 is crucial in many cancers. However, its methylation level in lung adenocarcinoma (LUAD) is rarely known. Hence, the effect of AGR2 methylation on LUAD was explored in the study. Methods qRT-PCR was adopted to detect the expression of AGR2 in LUAD cells and normal lung cells. Methylation-specific PCR (MSP) was used to detect the methylation of AGR2 promoter region in different cell lines. MTT, Transwell and wound healing assays were used to verify the progression of cells in each transfection group. Results The expression of AGR2 was significantly up-regulated in LUAD cells relative to that in normal cells. Moreover, the expression of AGR2 was inversely modulated by DNA methylation, and the hypomethylation of CpG islands would lead to the increased expression of AGR2. Finally, overexpression and hypomethylation of AGR2 facilitated the proliferation, invasion and migration of LUAD cells. Conclusion These results demonstrated that hypomethylation of AGR2 promoter region promoted the expression of AGR2 in LUAD cells, thus promoting the progression of LUAD cells.
Collapse
Affiliation(s)
- Junming He
- Department of Cardiothoracic Surgery, Yiwu Central Hospital, Yiwu, 322000, People's Republic of China
| | - Yin Fu
- Department of Cardiothoracic Surgery, Yiwu Central Hospital, Yiwu, 322000, People's Republic of China
| | - Jiangwei Hu
- Department of Cardiothoracic Surgery, Yiwu Central Hospital, Yiwu, 322000, People's Republic of China
| | - Jian Chen
- Department of Cardiothoracic Surgery, Yiwu Central Hospital, Yiwu, 322000, People's Republic of China
| | - Guoliang Lou
- Department of Cardiothoracic Surgery, Yiwu Central Hospital, Yiwu, 322000, People's Republic of China
| |
Collapse
|
36
|
Pan B, Wei ZX, Zhang JX, Li X, Meng QW, Cao YY, Qi LS, Yu Y. The value of AGR2 and KRT5 as an immunomarker combination in distinguishing lung squamous cell carcinoma from adenocarcinoma. Am J Transl Res 2021; 13:4464-4476. [PMID: 34150027 PMCID: PMC8205719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of tumor subtype-specific treatments, precise histopathologic distinction between adenocarcinoma (ADC) and squamous cell carcinoma (SCC) is of significant clinical importance. Nevertheless, the current markers are insufficiently precise in poorly differentiated tissue. This study aimed to establish a histology-specific immunomarker combination to subclassify non-small cell lung cancer (NSCLC) specimens. Based on previous work, we assessed the differential expression of anterior gradient 2 (AGR2) and keratin 5 (KRT5) in ADC and SCC by analyzing public datasets and postoperative specimens. Subsequently, we established a train set (n = 188) and a validation set (n = 42) comprised of NSCLC surgical specimens for training and verifying the subtype-identification capabilities of the two biomarkers separately and in combination, and contrasted the diagnostic utility of AGR2-KRT5 with that of the classic immunomarker combination, TTF1-P40. Differential expression of the two genes was statistically significant in ADC and SCC samples, both at the mRNA and protein levels. The specificity and sensitivity of AGR2 to detect ADC in the training set were 97.0% and 94.4%, while the sensitivity and specificity of KRT5 to determine SCC were 93.9% and 98.9%, respectively. The accuracies of AGR2-KRT5 in ADC, SCC, and across all samples were 93.3%, 92.0% and 92.6% respectively. In the validation cohort, the predictive accuracy of AGR2-KRT5 was up to 100% for ADC and 86.7% for SCC. Compared with TTF1-P40 in ADC samples, AGR2-KRT5 had 8.4% higher accuracy. In summary, the AGR2-KRT5 immunomarker combination reliably distinguished SCC from ADC, and was more accurate than TTF1-P40 in ADC.
Collapse
Affiliation(s)
- Bo Pan
- Department of Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Zi-Xin Wei
- Department of Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Ju-Xuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical UniversityHarbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical UniversityHarbin, China
| | - Qing-Wei Meng
- Department of Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Ying-Yue Cao
- Department of Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| | - Li-Shuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical UniversityHarbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer HospitalHarbin, China
| |
Collapse
|
37
|
Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 2021; 21:213. [PMID: 33858435 PMCID: PMC8170947 DOI: 10.1186/s12935-021-01873-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapy is one of the most common treatment options for breast cancer (BC) patients. However, about half of the BC patients are chemotherapeutic resistant. Doxorubicin (DOX) is considered as one of the first line drugs in the treatment of BC patients whose function is negatively affected by multi drug resistance. Due to the severe side effects of DOX, it is very important to diagnose the DOX resistant BC patients. Therefore, assessment of molecular mechanisms involved in DOX resistance can improve the clinical outcomes in BC patients by introducing the novel therapeutic and diagnostic molecular markers. MicroRNAs (miRNAs) as members of the non-coding RNAs family have pivotal roles in various cellular processes including cell proliferation and apoptosis. Therefore, aberrant miRNAs functions and expressions can be associated with tumor progression, metastasis, and drug resistance. Moreover, due to miRNAs stability in body fluids, they can be considered as non-invasive diagnostic markers for the DOX response in BC patients. MAIN BODY In the present review, we have summarized all of the miRNAs that have been reported to be associated with DOX resistance in BC for the first time in the world. CONCLUSIONS Since, DOX has severe side effects; it is required to distinguish the non DOX-responders from responders to improve the clinical outcomes of BC patients. This review highlights the miRNAs as pivotal regulators of DOX resistance in breast tumor cells. Moreover, the present review paves the way of introducing a non-invasive panel of prediction markers for DOX response among BC patients.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Bou Zerdan M, Ibrahim M, El Nakib C, Hajjar R, Assi HI. Genomic Assays in Node Positive Breast Cancer Patients: A Review. Front Oncol 2021; 10:609100. [PMID: 33665165 PMCID: PMC7921691 DOI: 10.3389/fonc.2020.609100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023] Open
Abstract
In recent years, developments in breast cancer have allowed yet another realization of individualized medicine in the field of oncology. One of these advances is genomic assays, which are considered elements of standard clinical practice in the management of breast cancer. These assays are widely used today not only to measure recurrence risk in breast cancer patients at an early stage but also to tailor treatment as well and minimize avoidable treatment side effects. At present, genomic tests are applied extensively in node negative disease. In this article, we review the use of these tests in node positive disease, explore their ramifications on neoadjuvant chemotherapy decisions, highlight sufficiently powered recent studies emphasizing their use and review the most recent guidelines.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maryam Ibrahim
- Division of Internal Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Clara El Nakib
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rayan Hajjar
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
39
|
CHRNA5 belongs to the secondary estrogen signaling network exhibiting prognostic significance in breast cancer. Cell Oncol (Dordr) 2021; 44:453-472. [PMID: 33469842 DOI: 10.1007/s13402-020-00581-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Cholinergic signals can be important modulators of cellular signaling in cancer. We recently have shown that knockdown of nicotinic acetylcholine receptor subunit alpha 5, CHRNA5, diminishes the proliferative potential of breast cancer cells. However, modulation of CHRNA5 expression in the context of estrogen signaling and its prognostic implications in breast cancer remained unexplored. METHODS Meta-analyses of large breast cancer microarray cohorts were used to evaluate the association of CHRNA5 expression with estrogen (E2) treatment, estrogen receptor (ER) status and patient prognosis. The results were validated through RT-qPCR analyses of multiple E2 treated cell lines, CHRNA5 depleted MCF7 cells and across a breast cancer patient cDNA panel. We also calculated a predicted secondary (PS) score representing direct/indirect induction of gene expression by E2 based on a public dataset (GSE8597). Co-expression analysis was performed using a weighted gene co-expression network analysis (WGCNA) pipeline. Multiple other publicly available datasets such as CCLE, COSMIC and TCGA were also analyzed. RESULTS Herein we found that CHRNA5 expression was induced by E2 in a dose- and time-dependent manner in breast cancer cell lines. ER- breast tumors exhibited higher CHRNA5 expression levels than ER+ tumors. Independent meta-analysis for survival outcome revealed that higher CHRNA5 expression was associated with a worse prognosis in untreated breast cancer patients. Furthermore, CHRNA5 and its co-expressed gene network emerged as secondarily induced targets of E2 stimulation. These targets were largely downregulated by exposure to CHRNA5 siRNA in MCF7 cells while the response of primary ESR1 targets was dependent on the direction of the PS-score. Moreover, primary and secondary target genes were uncoupled and clustered distinctly based on multiple public datasets. CONCLUSION Our findings strongly associate increased expression of CHRNA5 and its co-expression network with secondary E2 signaling and a worse prognosis in breast cancer.
Collapse
|
40
|
Park AY, Seo BK, Han MR. Breast Ultrasound Microvascular Imaging and Radiogenomics. Korean J Radiol 2021; 22:677-687. [PMID: 33569931 PMCID: PMC8076833 DOI: 10.3348/kjr.2020.1166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Microvascular ultrasound (US) techniques are advanced Doppler techniques that provide high sensitivity and spatial resolution for detailed visualization of low-flow vessels. Microvascular US imaging can be applied to breast lesion evaluation with or without US contrast agents. Microvascular US imaging without a contrast agent uses a sophisticated wall filtering system to selectively obtain low-flow Doppler signals from overlapped artifacts. Microvascular US imaging with second-generation contrast agents amplifies flow signals and makes them last longer, which facilitates hemodynamic evaluation of breast lesions. In this review article, we will introduce various microvascular US techniques, explain their clinical applications in breast cancer diagnosis and radiologic-histopathologic correlation, and provide a summary of a recent radiogenomic study using microvascular US.
Collapse
Affiliation(s)
- Ah Young Park
- Department of Radiology, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| | - Mi Ryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| |
Collapse
|
41
|
Lee E, Lee DH. Anterior gradient 2 is involved in the post-transcriptional regulation of β-dystroglycan. Anim Cells Syst (Seoul) 2021; 25:19-27. [PMID: 33717413 PMCID: PMC7935118 DOI: 10.1080/19768354.2020.1871405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Anterior gradient 2 (AGR2) is a protein disulfide isomerase over-expressed in numerous types of cancer. Although AGR2 plays a role in ER homeostasis, its function(s) in tumorigenesis is still elusive. Here we demonstrate that AGR2 is involved in the regulation of the β-subunit of dystroglycan (β-DG), a component of the multi-protein complex linking the extracellular matrix and cytoskeletal network. In breast cancer cells, AGR2 over-expression led to the up-regulation of β-DG but not that of α-DG, while the transcript levels of these subunits were unchanged. Conversely, the reduced expression of AGR2 caused the down-regulation of β-DG. Interestingly, induced expression of AGR2 increased the degree of co-localization of AGR2 and β-DG in the cytoplasm suggesting that AGR2 facilitates the trafficking of β-DG. In addition, AGR2 over-expression caused the re-arrangement of the actin cytoskeletal network. Presumably over-expressed AGR2 up-regulates β-DG post-transcriptionally and facilitates its trafficking, which then causes re-arrangement of the cytoskeletal network, which plays a role in the adhesion and invasion of cancer cells.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul, Korea
| | - Do Hee Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul, Korea
| |
Collapse
|
42
|
Lu H, Shi C, Liu X, Liang C, Yang C, Wan X, Li L, Liu Y. Identification of ZG16B as a prognostic biomarker in breast cancer. Open Med (Wars) 2020; 16:1-13. [PMID: 33336077 PMCID: PMC7718615 DOI: 10.1515/med-2021-0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Zymogen granule protein 16B (ZG16B) has been identified in various cancers, while so far the association between ZG16B and breast cancer hasn’t been explored. Our aim is to confirm whether it can serve as a prognostic biomarker in breast cancer. In this study, Oncomine, Cancer Cell Line Encyclopedia (CCLE), Ualcan, and STRING database analyses were conducted to detect the expression level of ZG16B in breast cancer with different types. Kaplan–Meier plotter was used to analyze the prognosis of patients with high or low expression of ZG16B. We found that ZG16B was significantly upregulated in breast cancer. Moreover, ZG16B was closely associated with foregone biomarkers and crucial factors in breast cancer. In the survival analysis, high expression of ZG16B represents a favorable prognosis in patients. Our work demonstrates the latent capacity of ZG16B to be a biomarker for prognosis of breast cancer.
Collapse
Affiliation(s)
- Haotian Lu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xinyu Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chen Liang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Chaochao Yang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Xueqi Wan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
43
|
Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA. Secretion of pro-oncogenic AGR2 protein in cancer. Heliyon 2020; 6:e05000. [PMID: 33005802 PMCID: PMC7519367 DOI: 10.1016/j.heliyon.2020.e05000] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
Collapse
Affiliation(s)
- Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Gan S, Dai H, Li R, Liu W, Ye R, Ha Y, Di X, Hu W, Zhang Z, Sun Y. Identification of key differentially expressed genes between ER-positive/HER2-negative breast cancer and ER-negative/HER2-negative breast cancer using integrated bioinformatics analysis. Gland Surg 2020; 9:661-675. [PMID: 32775256 DOI: 10.21037/gs.2020.03.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Treatment strategies for various subtypes of breast cancer (BC) are different based on their distinct molecular characteristics. Therefore, it is very important to identify key differentially expressed genes (DEGs) between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Methods Gene expression profiles of GSE22093 and GSE23988 were obtained from the Gene Expression Omnibus database. There were 74 ER-positive/HER2-negative BC tissues and 85 ER-negative/HER2-negative BC tissues in the two profile datasets. DEGs between ER-positive/HER2-negative tissues and ER-negative/HER2-negative BC tissues were identified by the GEO2R tool. The common DEGs among the two datasets were detected with Venn software online. Next, we made use of the Database for Annotation, Visualization and Integrated Discovery to analyze enriched Kyoto Encyclopedia of Gene and Genome (KEGG) pathways and gene ontology terms. Then, the protein-protein interactions (PPIs) of these DEGs were visualized by Cytoscape with the Search Tool for the Retrieval of Interacting Genes. Of the proteins in the PPI network, Molecular Complex Detection plug-in analysis identified nine core upregulated genes and one core downregulated gene. UALCAN and Gene Expression Profiling Interactive Analysis were applied to determine the expression of these 10 genes in BC. Furthermore, for the analysis of overall survival among those genes, the Kaplan-Meier method was implemented. Results Ninety-three common DEGs (63 upregulated and 30 downregulated) were identified. KEGG pathway enrichment analysis showed that upregulated DEGs were particularly enriched in the progesterone-mediated oocyte maturation pathway. In addition, PGR might be a prognostic biomarker for ER-positive/HER2-negative BC. CCND1 is a poor prognostic biomarker for ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Moreover, TFF1, AGR2 and EGFR might be predictive biomarkers of node metastasis in ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Conclusions CCND1, AGR2, PGR, TFF1 and EGFR are the key DEGs between ER-positive/HER2-negative BC and ER-negative/HER2-negative BC. Further studies are required to confirm the functions of the identified genes.
Collapse
Affiliation(s)
- Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Haixia Dai
- Department of Ultrasound, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Wang Liu
- Department of Respiratory, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Ruifang Ye
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Yanping Ha
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoqing Di
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Wenhua Hu
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Zhi Zhang
- Department of Thyroid and Mammary Vascular Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
45
|
Park AY, Han MR, Park KH, Kim JS, Son GS, Lee HY, Chang YW, Park EK, Cha SH, Cho Y, Hong H, Cho KR, Song SE, Woo OH, Lee JH, Cha J, Seo BK. Radiogenomic Analysis of Breast Cancer by Using B-Mode and Vascular US and RNA Sequencing. Radiology 2020; 295:24-34. [PMID: 32013793 DOI: 10.1148/radiol.2020191368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Radiogenomic investigations for breast cancer provide an understanding of tumor heterogeneity and discover image phenotypes of genetic variation. However, there is little research on the correlations between US features of breast cancer and whole-transcriptome profiling. Purpose To explore US phenotypes reflecting genetic alteration relevant to breast cancer treatment and prognosis by comparing US images of tumor with their RNA sequencing results. Materials and Methods From January to October 2016, B-mode and vascular US images in 31 women (mean age, 49 years ± 9 [standard deviation]) with breast cancer were prospectively analyzed. B-mode features included size, shape, echo pattern, orientation, margin, and calcifications. Vascular features were evaluated by using microvascular US and contrast agent-enhanced US: vascular index, vessel morphologic features, distribution, penetrating vessels, enhancement degree, order, margin, internal homogeneity, and perfusion defect. RNA sequencing was conducted with total RNA obtained from a surgical specimen by using next-generation sequencing. US features were compared with gene expression profiles, and ingenuity pathway analysis was used to analyze gene networks, enriched functions, and canonical pathways associated with breast cancer. The P value for differential expression was extracted by using a parametric F test comparing nested linear models. Results Thirteen US features were associated with various patterns of 340 genes (P < .05). Nonparallel orientation at B-mode US was associated with upregulation of TFF1 (log twofold change [log2FC] = 4.0; P < .001), TFF3 (log2FC = 2.5; P < .001), AREG (log2FC = 2.6; P = .005), and AGR3 (log2FC = 2.6; P = .003). Complex vessel morphologic structure was associated with upregulation of FZD8 (log2FC = 2.0; P = .01) and downregulation of IGF1R (log2FC = -2.0; P = .006) and CRIPAK (log2FC = -2.4; P = .01). The top networks with regard to orientation or vessel morphologic structure were associated with cell cycle, death, and proliferation. Conclusion Compared with RNA sequencing, B-mode and vascular US features reflected genomic alterations associated with hormone receptor status, angiogenesis, or prognosis in breast cancer. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ah Young Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Mi-Ryung Han
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Kyong Hwa Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Jung Sun Kim
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Gil Soo Son
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Hye Yoon Lee
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Young Woo Chang
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Eun Kyung Park
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Sang Hoon Cha
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Yunjung Cho
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Hyosun Hong
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Kyu Ran Cho
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Sung Eun Song
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Ok Hee Woo
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Ju-Han Lee
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Jaehyung Cha
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| | - Bo Kyoung Seo
- From the Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan city, Gyeonggi-do, 15355, Republic of Korea (A.Y.P., E.K.P., S.H.C., B.K.S.); Department of Radiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea (A.Y.P.); Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (M.R.H., Y.C., H.H.); Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Republic of Korea (M.R.H.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.H.P.); Division of Hematology/Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.S.K.); Division of Breast and Endocrine Surgery, Department of Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (G.S.S., H.Y.L., Y.W.C.); Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea (K.R.C., S.E.S.); Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea (O.H.W.); Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.H.L.); and Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Gyeonggi-do, Republic of Korea (J.C.)
| |
Collapse
|
46
|
Mangukiya HB, Negi H, Merugu SB, Sehar Q, Mashausi DS, Yunus FUN, Wu Z, Li D. Paracrine signalling of AGR2 stimulates RhoA function in fibroblasts and modulates cell elongation and migration. Cell Adh Migr 2019; 13:332-344. [PMID: 31710263 PMCID: PMC6844563 DOI: 10.1080/19336918.2019.1685928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The most prominent cancer-associated fibroblasts (CAFs) in tumor stroma is known to form a protective structure to support tumor growth. Anterior gradient-2 (AGR2), a tumor secretory protein is believed to play a pivotal role during tumor microenvironment (TME) development. Here, we report that extracellular AGR2 enhances fibroblasts elongation and migration significantly. The early stimulation of RhoA showed the association of AGR2 by upregulation of G1-S phase-regulatory protein cyclin D1 and FAK phosphorylation through fibroblasts growth factor receptor (FGFR) and vascular endothelial growth factor receptor (VEGFR). Our finding indicates that secretory AGR2 alters fibroblasts elongation, migration, and organization suggesting the secretory AGR2 as a potential molecular target that might be responsible to alter fibroblasts infiltration to support tumor growth.
Collapse
Affiliation(s)
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | - Qudsia Sehar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine 2019; 50:67-80. [PMID: 31732481 PMCID: PMC6923492 DOI: 10.1016/j.ebiom.2019.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Probing genetic dependencies of cancer cells can improve our understanding of tumour development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA-based genetic screening are commonly utilized to identify essential genes that affect cancer growth. However, systematic methods leveraging these genetic screening techniques to derive consensus cancer dependency maps for individual cancer cell lines are lacking. Finding In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 cancer cell lines representing 10 cancer types. We observed limited consistency between the essentiality profiles of these two screens at the genome scale. To improve consensus on the cancer dependence map, we developed a computational model called combined essentiality score (CES) to integrate the genetic essentiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. Interpretation Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed the limitation of relying on a single technique to identify cancer essential genes. The CES method provides an integrated framework to leverage both genetic screening techniques as well as molecular feature data to determine gene essentiality more accurately for cancer cells.
Collapse
|
48
|
Li J, Hu J, Luo Z, Zhou C, Huang L, Zhang H, Chi J, Chen Z, Li Q, Deng M, Chen J, Tao K, Wang G, Wang L, Wang Z. AGR2 is controlled by DNMT3a-centered signaling module and mediates tumor resistance to 5-Aza in colorectal cancer. Exp Cell Res 2019; 385:111644. [PMID: 31614132 DOI: 10.1016/j.yexcr.2019.111644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
Human anterior gradient-2 (AGR2), a member of protein disulfide isomerase (PDI) family, is upregulated in various human cancers and reportedly has oncogenic activities. However, the functional roles of AGR2 and its regulation in colorectal cancer (CRC) remain unclear. Here, we showed that AGR2 promoted CRC tumorigenesis and progression in vitro and in vivo and acted as an independent prognostic factor of poor outcome. AGR2 was negatively regulated by DNA methyltransferase 3a (DNMT3a) through directly methylating AGR2 promoter and by a DNMT3a-SPRY2-miR-194 axis. Moreover, AGR2 mediated the resistance to 5-Aza-2'-deoxycytidine (5-Aza) treatment. Knockdown of AGR2 improved the therapeutic effect of 5-Aza in human CRC xenograft tumor model. Thus, our work supports AGR2's oncogenic role in CRC, reveals DNMT3a-mediated epigenetic modulation on AGR2 promoter, and uncovers a new DNMT3a signaling module controlling expression of AGR2. Upregulated AGR2 offset 5-Aza mediated epigenetic therapy. This work might provide potential targets for clinical anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Hu
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Luo
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Caihong Zhou
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lifeng Huang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyan Zhang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangyang Chi
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenzhen Chen
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhou Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junhua Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
49
|
Obacz J, Sommerova L, Sicari D, Durech M, Avril T, Iuliano F, Pastorekova S, Hrstka R, Chevet E, Delom F, Fessart D. Extracellular AGR3 regulates breast cancer cells migration via Src signaling. Oncol Lett 2019; 18:4449-4456. [PMID: 31611954 PMCID: PMC6781763 DOI: 10.3892/ol.2019.10849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Human anterior gradient proteins AGR2 and AGR3 are overexpressed in a variety of adenocarcinomas and are often secreted in cancer patients' specimens, which suggests a role for AGR proteins in intra and extracellular compartments. Although these proteins exhibit high sequence homology, AGR2 is predominantly described as a pro-oncogene and a potential prognostic biomarker. However, little is known about the function of AGR3. Therefore, the aim of the present study was to investigate the role of AGR3 in breast cancer. The results demonstrated that breast cancer cells secrete AGR3. Furthermore, it was revealed that extracellular AGR3 (eAGR3) regulates tumor cell adhesion and migration. The current study indicated that the pharmacological and genetic perturbation of Src kinase signaling, through treatment with Dasatinib (protein kinase inhibitor) or investigating cells that express a dominant-negative form of Src, significantly abrogated eAGR3-mediated breast cancer cell migration. Therefore, the results indicated that eAGR3 may control tumor cell migration via activation of Src kinases. The results of the present study indicated that eAGR3 may serve as a microenvironmental signaling molecule in tumor-associated processes.
Collapse
Affiliation(s)
- Joanna Obacz
- INSERM U1242, 'Chemistry, Oncogenesis Stress Signaling', University of Rennes Campus 1, F-35000 Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, F-35000 Rennes, France.,Masaryk Memorial Cancer Institute, RECAMO, 656 53 Brno, Czech Republic.,Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Lucia Sommerova
- Masaryk Memorial Cancer Institute, RECAMO, 656 53 Brno, Czech Republic
| | - Daria Sicari
- INSERM U1242, 'Chemistry, Oncogenesis Stress Signaling', University of Rennes Campus 1, F-35000 Rennes, France
| | - Michal Durech
- Masaryk Memorial Cancer Institute, RECAMO, 656 53 Brno, Czech Republic
| | - Tony Avril
- INSERM U1242, 'Chemistry, Oncogenesis Stress Signaling', University of Rennes Campus 1, F-35000 Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, F-35000 Rennes, France
| | - Filippo Iuliano
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, 656 53 Brno, Czech Republic.,Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, 656 53 Brno, Czech Republic
| | - Eric Chevet
- INSERM U1242, 'Chemistry, Oncogenesis Stress Signaling', University of Rennes Campus 1, F-35000 Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, F-35000 Rennes, France
| | - Frederic Delom
- University of Bordeaux, ACTION, F-33000 Bordeaux, France.,INSERM U1218, F-33000 Bordeaux, France.,Bergonie Cancer Institute, F-33000 Bordeaux, France
| | - Delphine Fessart
- INSERM U1242, 'Chemistry, Oncogenesis Stress Signaling', University of Rennes Campus 1, F-35000 Rennes, France.,Centre de Lutte Contre le Cancer Eugène Marquis, F-35000 Rennes, France.,University of Bordeaux, ACTION, F-33000 Bordeaux, France.,INSERM U1218, F-33000 Bordeaux, France
| |
Collapse
|
50
|
Gupta I, Sareyeldin RM, Al-Hashimi I, Al-Thawadi HA, Al Farsi H, Vranic S, Al Moustafa AE. Triple Negative Breast Cancer Profile, from Gene to microRNA, in Relation to Ethnicity. Cancers (Basel) 2019; 11:cancers11030363. [PMID: 30871273 PMCID: PMC6468678 DOI: 10.3390/cancers11030363] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer-related deaths among women worldwide. It is classified into four major molecular subtypes. Triple-negative breast cancers (TNBCs), a subgroup of breast cancer, are defined by the absence of estrogen and progesterone receptors and the lack of HER-2 expression; this subgroup accounts for ~15% of all breast cancers and exhibits the most aggressive metastatic behavior. Currently, very limited targeted therapies exist for the treatment of patients with TNBCs. On the other hand, it is important to highlight that knowledge of the molecular biology of breast cancer has recently changed the decision-making process regarding the course of cancer therapies. Thus, a number of new techniques, such as gene profiling and sequencing, proteomics, and microRNA analysis have been used to explore human breast carcinogenesis and metastasis including TNBC, which consequently could lead to new therapies. Nevertheless, based on evidence thus far, genomics profiles (gene and miRNA) can differ from one geographic location to another as well as in different ethnic groups. This review provides a comprehensive and updated information on the genomics profile alterations associated with TNBC pathogenesis associated with different ethnic backgrounds.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Israa Al-Hashimi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | | | - Halema Al Farsi
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Semir Vranic
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha P. O. Box:2713, Qatar.
- Biomedical Research Centre, Qatar University, Doha P.O Box: 2713, Qatar.
| |
Collapse
|