1
|
Wang X, He Q, Wang L, Li C, Zhang W, Rong Z, Yin Q, Zhao Y. Acid responsive molybdenum (Mo)-based nanoparticles inhibit the cGAS-STING signaling pathway for sepsis therapy. Biomater Sci 2025; 13:2410-2421. [PMID: 40130269 DOI: 10.1039/d5bm00007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sepsis, an inflammatory disease caused by bacterial infection, has become a global public health crisis. Excessive reactive oxygen species (ROS) in sepsis patients act as the primary trigger for activating intracellular immune pathways, ultimately leading to multiple organ dysfunction syndrome. The overexpression of acidic metabolites and ROS, characteristic of the infected microenvironment, significantly impedes sepsis treatment. Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, plays a key role in inflammatory diseases. The detrimental effects of STING in sepsis have been well documented. Here, we developed a pH-responsive nanotherapy platform (DMSNM@C-178/PAA) that combines ROS scavenging with cGAS-STING pathway inhibition for anti-inflammatory therapy. This nanoparticle is selectively released in the infected microenvironment, where reduced molybdenum-based polyoxometalates (Mo-POM) efficiently neutralize toxic ROS in vivo, while C-178 selectively inhibits the cGAS-STING pathway, thereby attenuating the inflammatory response and preventing organ deterioration. In vitro and in vivo studies demonstrate that DMSNM@C-178/PAA treats sepsis by eliminating excess ROS and modulating autoimmune dysfunction via the cGAS-STING pathway, providing a novel therapeutic strategy for sepsis management.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingbin He
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Lining Wang
- Department of Oncology No.1, Rushan People's Hospital, Rushan 264500, Shandong, China
| | - Chengzhilin Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wenyu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhonghou Rong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
2
|
Rana K, Yadav P, Chakraborty R, Jha SK, Agrawal U, Bajaj A. Engineered Nanomicelles Delivering the Combination of Steroids and Antioxidants Can Mitigate Local and Systemic Inflammation, Including Sepsis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11595-11610. [PMID: 39946544 DOI: 10.1021/acsami.4c14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chronic inflammation is mainly characterized by the release of proinflammatory cytokines (cytokine storm) and reactive oxygen/nitrogen species. Sepsis is a life-threatening condition resulting from the successive chronic inflammatory responses toward infection, leading to multiple organ failure and, ultimately, death. As inflammation and oxidative stress are known to nourish each other and initiate an uncontrolled immune response, inhibiting the cross-talk between the inflammatory response using anti-inflammatory drugs and oxidative stress using antioxidants can be a promising strategy to target sepsis. Here, we present the engineering of chimeric nanomicelles (NMs) using an ester-linked polyethylene glycol-derived lithocholic acid-drug conjugate using dexamethasone (DEX), a potent glucocorticoid possessing anti-inflammatory properties, and vitamin E (VITE), an antioxidant to target oxidative stress. Interestingly, these chimeric DEX-VITE NMs show enhanced accumulation at the inflamed sites driven by enhanced permeation and retention effect and mitigate localized acute inflammation in paw, lung, and liver inflammation models. We further demonstrated the efficacy of these NMs in mitigating LPS-induced endotoxemia and CLP-induced microbial sepsis, conferring survival advantages. DEX-VITE NMs also modulate immune homeostasis by decreasing the infiltration of total immune cells, neutrophils, and overall macrophages. Finally, administration of DEX-VITE NMs also reduces the release of proinflammatory cytokines and prevents vascular damage, two critical factors of sepsis pathogenesis. Therefore, this therapeutic approach of chimeric NMs can effectively deliver steroids and antioxidants to mitigate uncontrolled localized and systemic inflammation.
Collapse
Affiliation(s)
- Kajal Rana
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Poonam Yadav
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Ruchira Chakraborty
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Somesh K Jha
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Usha Agrawal
- Asian Institute of Public Health University, Haridamada, Jatani, Bhubaneswar, Odisha 752054, India
| | - Avinash Bajaj
- NCR Biotech Science Cluster, Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
3
|
Yuwen Z, Zou T, He Z, Su Z, Gong Y, Liu H, Yang R. FRET-Based Nanoprobe with Adaptive Background Suppression for Reliable Detection of ONOO -/ClO - in Whole Blood: Facilitating Monitoring of Sepsis Progression and Hemolytic Disorders. Anal Chem 2024; 96:20318-20329. [PMID: 39663575 DOI: 10.1021/acs.analchem.4c05550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Abnormal fluctuations in blood biomarker levels serve as critical indicators of the disease. However, detecting endogenous substances in whole blood using fluorescent probes is challenging due to its complex composition. This challenge primarily arises from two factors: the high autofluorescence of whole blood and the intrinsic fluorescence of the probe, both contributing to significant background fluorescence in the detection system. To overcome these obstacles, we introduced a donor-acceptor "one-to-many" FRET-based sensing strategy integrated with blood autofluorescence suppression to design a multifunctional fluorescent nanoprobe. The donor effectively suppresses blood autofluorescence through the inner filter effect and efficiently quenches donor fluorescence by adjusting the acceptor-to-donor ratio, achieving a "zero" background in whole blood detection. Leveraging this excellent background fluorescence quenching effect, we successfully detected endogenous ONOO- and ClO- levels in whole blood samples from mice with sepsis or hemolytic diseases. Furthermore, we monitored the changes in the ONOO- and ClO- levels throughout the disease course, revealing a positive correlation between the ONOO- and ClO- concentrations and disease severity. This innovative sensing strategy for achieving a "zero" background in whole blood detection provides valuable insights for designing fluorescent probes to directly detect endogenous substances in whole blood.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Tenglong Zou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ziling Su
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yijun Gong
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
4
|
Gao J, Li H, Yue P, Xie D, Li H, Hao K, Li Y, Tian H. Multifunctional endogenous small molecule-derived polymer composite nanoparticles for the treatment of acute sepsis therapy. SCIENCE CHINA MATERIALS 2024; 67:3885-3897. [DOI: 10.1007/s40843-024-3051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/16/2024] [Indexed: 01/04/2025]
|
5
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
6
|
Feng A, Pokharel MD, Liang Y, Ma W, Aggarwal S, Black SM, Wang T. Free Radical-Associated Gene Signature Predicts Survival in Sepsis Patients. Int J Mol Sci 2024; 25:4574. [PMID: 38674159 PMCID: PMC11049877 DOI: 10.3390/ijms25084574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis continues to overwhelm hospital systems with its high mortality rate and prevalence. A strategy to reduce the strain of sepsis on hospital systems is to develop a diagnostic/prognostic measure that identifies patients who are more susceptible to septic death. Current biomarkers fail to achieve this outcome, as they only have moderate diagnostic power and limited prognostic capabilities. Sepsis disrupts a multitude of pathways in many different organ systems, making the identification of a single powerful biomarker difficult to achieve. However, a common feature of many of these perturbed pathways is the increased generation of reactive oxygen species (ROS), which can alter gene expression, changes in which may precede the clinical manifestation of severe sepsis. Therefore, the aim of this study was to evaluate whether ROS-related circulating molecular signature can be used as a tool to predict sepsis survival. Here we created a ROS-related gene signature and used two Gene Expression Omnibus datasets from whole blood samples of septic patients to generate a 37-gene molecular signature that can predict survival of sepsis patients. Our results indicate that peripheral blood gene expression data can be used to predict the survival of sepsis patients by assessing the gene expression pattern of free radical-associated -related genes in patients, warranting further exploration.
Collapse
Affiliation(s)
- Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Marissa D. Pokharel
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Wenli Ma
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
7
|
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, Xu J. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS NANO 2024; 18:7711-7738. [PMID: 38427687 DOI: 10.1021/acsnano.3c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Jiaji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wentai Cai
- The First Clinical College, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaowei Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Bertozzi G, Ferrara M, Di Fazio A, Maiese A, Delogu G, Di Fazio N, Tortorella V, La Russa R, Fineschi V. Oxidative Stress in Sepsis: A Focus on Cardiac Pathology. Int J Mol Sci 2024; 25:2912. [PMID: 38474158 PMCID: PMC10931756 DOI: 10.3390/ijms25052912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to analyze post-mortem human cardiac specimens, to verify and evaluate the existence or extent of oxidative stress in subjects whose cause of death has been traced to sepsis, through immunohistological oxidative/nitrosative stress markers. Indeed, in the present study, i-NOS, NOX2, and nitrotyrosine markers were higher expressed in the septic death group when compared to the control group, associated with also a significant increase in 8-OHdG, highlighting the pivotal role of oxidative stress in septic etiopathogenesis. In particular, 70% of cardiomyocyte nuclei from septic death specimens showed positivity for 8-OHdG. Furthermore, intense and massive NOX2-positive myocyte immunoreaction was noticed in the septic group, as nitrotyrosine immunostaining intense reaction was found in the cardiac cells. These results demonstrated a correlation between oxidative and nitrosative stress imbalance and the pathophysiology of cardiac dysfunction documented in cases of sepsis. Therefore, subsequent studies will focus on the expression of oxidative stress markers in other organs and tissues, as well as on the involvement of the intracellular pattern of apoptosis, to better clarify the complex pathogenesis of multi-organ failure, leading to support the rationale for including therapies targeting redox abnormalities in the management of septic patients.
Collapse
Affiliation(s)
- Giuseppe Bertozzi
- SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy; (G.B.); (M.F.); (A.D.F.)
| | - Michela Ferrara
- SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy; (G.B.); (M.F.); (A.D.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy; (G.D.); (N.D.F.); (V.T.)
| | - Aldo Di Fazio
- SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy; (G.B.); (M.F.); (A.D.F.)
| | - Aniello Maiese
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Giuseppe Delogu
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy; (G.D.); (N.D.F.); (V.T.)
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy; (G.D.); (N.D.F.); (V.T.)
| | - Vittoria Tortorella
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy; (G.D.); (N.D.F.); (V.T.)
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life and Environment Science, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy; (G.D.); (N.D.F.); (V.T.)
| |
Collapse
|
9
|
Saha S, Sachivkina N, Karamyan A, Novikova E, Chubenko T. Advances in Nrf2 Signaling Pathway by Targeted Nanostructured-Based Drug Delivery Systems. Biomedicines 2024; 12:403. [PMID: 38398005 PMCID: PMC10887079 DOI: 10.3390/biomedicines12020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Nanotechnology has gained significant interest in various applications, including sensors and therapeutic agents for targeted disease sites. Several pathological consequences, including cancer, Alzheimer's disease, autoimmune diseases, and many others, are mostly driven by inflammation and Nrf2, and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), plays a crucial role in maintaining redox status, the expression of antioxidant genes, and the inflammatory response. Interestingly, tuning the Nrf2/antioxidant response element (ARE) system can affect immune-metabolic mechanisms. Although many phytochemicals and synthetic drugs exhibited potential therapeutic activities, poor aqueous solubility, low bioavailability, poor tissue penetration, and, consequently, poor specific drug targeting, limit their practical use in clinical applications. Also, the therapeutic use of Nrf2 modulators is hampered in clinical applications by the absence of efficient formulation techniques. Therefore, we should explore the engineering of nanotechnology to modulate the inflammatory response via the Nrf2 signaling pathway. This review will initially examine the role of the Nrf2 signaling pathway in inflammation and oxidative stress-related pathologies. Subsequently, we will also review how custom-designed nanoscale materials encapsulating the Nrf2 activators can interact with biological systems and how this interaction can impact the Nrf2 signaling pathway and its potential outcomes, emphasizing inflammation.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Arfenya Karamyan
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Ekaterina Novikova
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| | - Tamara Chubenko
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.K.); (E.N.); (T.C.)
| |
Collapse
|
10
|
Üstündağ H, Danişman Kalindemirtaş F, Doğanay S, Demir Ö, Kurt N, Tahir Huyut M, Özgeriş B, Kariper İA. ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION. Shock 2023; 60:688-697. [PMID: 37695728 DOI: 10.1097/shk.0000000000002218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
ABSTRACT Sepsis-induced acute liver injury is a life-threatening condition involving inflammation, oxidative stress, and endothelial dysfunction. In the present study, the preventive effects of resveratrol (RV) alone and RV-loaded silver nanoparticles (AgNPs + RV) against sepsis-induced damage were investigated and compared in a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Rats were divided into four groups: Sham, CLP, RV, and AgNPs + RV. Pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, presepsin, procalcitonin (PCT), 8-hydroxy-2'-deoxyguanosine (8-OHDG), vascular endothelial growth factor (VEGF), and sirtuin-1 (SIRT1) levels were assessed to determine the treatments' effects. AgNPs + RV treatment significantly reduced pro-inflammatory cytokines, NF-κB activation, presepsin, PCT, 8-OHDG, and VEGF levels compared with the CLP group, indicating attenuation of sepsis-induced liver injury. Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects. In conclusion, AgNPs + RV treatment demonstrated extremely enhanced efficacy in alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation. In this study, the effect of AgNPs + RV on sepsis was evaluated for the first time, and these findings highlight AgNPs + RV as a promising therapeutic strategy for managing sepsis-induced liver injury, warranting further investigation.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 2400, Türkiye
| | | | - Songül Doğanay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Özlem Demir
- Department of Histology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 2400, Türkiye
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Türkiye
| | - İshak Afşin Kariper
- Education Faculty, Erciyes University, Department of Science Education, Kayseri, Türkiye
| |
Collapse
|
11
|
Song Y, Zhang R, Qin H, Xu W, Sun J, Jiang J, Ye Y, Gao J, Li H, Huang W, Liu K, Hu Y, Peng F, Tu Y. Micromotor-Enabled Active Hydrogen and Tobramycin Delivery for Synergistic Sepsis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303759. [PMID: 37818787 PMCID: PMC10667834 DOI: 10.1002/advs.202303759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Indexed: 10/13/2023]
Abstract
Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis. The peritoneal fluid of septic mouse provides an applicable space for Mg-water reaction. Hydrogen generated sustainably and controllably from the motor interface propels the motion to achieve active drug delivery along with attenuating hyperinflammation. The developed Mg-Tob motor demonstrates efficient protection from anti-inflammatory and antibacterial activity both in vitro and in vivo. Importantly, it prevents multiple organ failure and significantly improves the survival rate up to 87.5% in a high-grade sepsis model with no survival, whereas only about half of mice survive with the individual therapies. This micromotor displays the superior therapeutic effect of synergistic hydrogen-chemical therapy against sepsis, thus holding great promise to be an innovative and translational drug delivery system to treat sepsis or other inflammation-related diseases in the near future.
Collapse
Affiliation(s)
- Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Weichang Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kun Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yunrui Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
12
|
Putri M, Rastiarsa BM, Djajanagara RATM, Ramli GA, Anggraeni N, Sutadipura N, Atik N, Syamsunarno MRAA. Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model. F1000Res 2023; 10:1161. [PMID: 38559341 PMCID: PMC10980860 DOI: 10.12688/f1000research.73561.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 04/04/2024] Open
Abstract
Background: Sepsis causes several immunological and metabolic alterations that induce oxidative stress. The modulation of fatty acid-binding protein 4 (FABP4) has been shown to worsen this condition. Extract of cogon grass root (ECGR) contains flavonoids and isoeugenol compounds that exhibit anti-inflammatory and antioxidant properties. This study aimed to assess the effects of ECGR on FABP4 and oxidative stress-related factors in a sepsis mouse model. Methods: Twenty-nine male mice ( Mus musculus) of the Deutsche Denken Yoken strain were divided into four groups: group 1, control; group 2, mice treated with 10 μL/kg body weight (BW) lipopolysaccharide (LPS); and groups 3 and 4, mice pre-treated with 90 and 115 mg/kg BW, respectively, and then treated with 10 μL/kg BW LPS for 14 d. Blood, liver, lymph, and cardiac tissue samples were collected and subjected to histological and complete blood examinations. Antioxidant (Glutathione peroxidase 3 (GPx3) and superoxide dismutase), FABP4 levels, and immune system-associated biomarker levels (TNF-α, IL-6 and IL-1β) were measured. Results: Significant increases in platelet levels (p = 0.03), cardiomyocyte counts (p =0.004), and hepatocyte counts (p = 0.0004) were observed in group 4 compared with those in group 2. Conversely, compared with those in group 2, there were significant decreases in TNF-α expression in group 3 (p = 0.004), white pulp length and width in group 4 (p = 0.001), FABP4 levels in groups 3 and 4 (p = 0.015 and p = 0.012, respectively), lymphocyte counts in group 4 (p = 0.009), and monocyte counts (p = 0.000) and polymorphonuclear cell counts in the livers (p = 0.000) and hearts (p = 0.000) of groups 3 and 4. Gpx3 activity was significantly higher in group 3 than in group 1 (p = 0.04). Conclusions: ECGR reduces FABP4 level and modulating oxidative stress markers in sepsis mouse model.
Collapse
Affiliation(s)
- Mirasari Putri
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | | | | | - Ghaliby Ardhia Ramli
- Faculty of Medicine, Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Neni Anggraeni
- Medical Laboratorium Technologist, Bakti Asih School of Analyst, Bandung, West-Java, 40192, Indonesia
| | - Nugraha Sutadipura
- Department of Biochemistry, Nutrition and Biomolecular, Faculty of medicine. Universitas Islam Bandung, Bandung, West-Java, 40616, Indonesia
| | - Nur Atik
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| | - Mas Rizky A. A. Syamsunarno
- Department of Biomedicine Sciences, Faculty of Medicine, Universitas Padjadjaran, West Java, 45363, Indonesia
| |
Collapse
|
13
|
Algahtani MM, Alshehri S, Alqarni SS, Ahmad SF, Al-Harbi NO, Alqarni SA, Alfardan AS, Ibrahim KE, Attia SM, Nadeem A. Inhibition of ITK Signaling Causes Amelioration in Sepsis-Associated Neuroinflammation and Depression-like State in Mice. Int J Mol Sci 2023; 24:ijms24098101. [PMID: 37175808 PMCID: PMC10179574 DOI: 10.3390/ijms24098101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Sepsis affects millions of people worldwide and is associated with multiorgan dysfunction that is a major cause of increased morbidity and mortality. Sepsis is associated with several morbidities, such as lung, liver, and central nervous system (CNS) dysfunction. Sepsis-associated CNS dysfunction usually leads to several mental problems including depression. IL-17A is one of the crucial cytokines that is expressed and secreted by Th17 cells. Th17 cells are reported to be involved in the pathogenesis of depression and anxiety in humans and animals. One of the protein tyrosine kinases that plays a key role in controlling the development/differentiation of Th17 cells is ITK. However, the role of ITK in sepsis-associated neuroinflammation and depression-like symptoms in mice has not been investigated earlier. Therefore, this study investigated the efficacy of the ITK inhibitor, BMS 509744, in sepsis-linked neuroinflammation (ITK, IL-17A, NFkB, iNOS, MPO, lipid peroxides, IL-6, MCP-1, IL-17A) and a battery of depression-like behavioral tests, such as sucrose preference, tail suspension, and the marble burying test. Further, the effect of the ITK inhibitor on anti-inflammatory signaling (Foxp3, IL-10, Nrf2, HO-1, SOD-2) was assessed in the CNS. Our data show that sepsis causes increased ITK protein expression, IL-17A signaling, and neuroinflammatory mediators in the CNS that are associated with a depression-like state in mice. ITK inhibitor-treated mice with sepsis show attenuated IL-17A signaling, which is associated with the upregulation of IL-10/Nrf2 signaling and the amelioration of depression-like symptoms in mice. Our data show, for the first time, that the ITK inhibition strategy may counteract sepsis-mediated depression through a reduction in IL-17A signaling in the CNS.
Collapse
Affiliation(s)
- Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sana S Alqarni
- Department of Medical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Zhao J, Guo F, Hou L, Zhao Y, Sun P. Electron transfer-based antioxidant nanozymes: Emerging therapeutics for inflammatory diseases. J Control Release 2023; 355:273-291. [PMID: 36731800 DOI: 10.1016/j.jconrel.2023.01.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Inflammatory diseases are usually featured with relatively high level of reactive oxygen species (ROS). The excess ROS facilitate the polarization of microphages into proinflammatory M1 phenotype, and cause DNA damage, protein carbonylation, and lipid peroxidation, resulting in further deterioration of inflammatory diseases. Therefore, alleviating oxidative stress by ROS scavenging has been an effective strategy for reversing inflammation. Inspired by the natural antioxidant enzymes, electron transfer-based artificial antioxidant nanozymes have been emerging therapeutics for the treatment of inflammatory diseases. The present review starts with the basic knowledge of ROS and diseases, followed by summarizing the possible active centers for the preparation of antioxidant nanozymes. The strategies for the design of antioxidant nanozymes on the purpose of higher catalytic activity are provided, and the applications of the developed antioxidant nanozymes on the therapy of inflammatory diseases are discussed. A perspective is included for the design and applications of artificial antioxidant nanozymes in biomedicine as well.
Collapse
Affiliation(s)
- Jingnan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Fanfan Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yongxing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, PR China
| | - Pengchao Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
15
|
Li S, Liu X, Liu G, Liu C. Biomimetic Nanotechnology for SARS-CoV-2 Treatment. Viruses 2023; 15:596. [PMID: 36992304 PMCID: PMC10051120 DOI: 10.3390/v15030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
More than 600 million people worldwide have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the pandemic of coronavirus disease 2019 (COVID-19). In particular, new waves of COVID-19 caused by emerging SARS-CoV-2 variants pose new health risks to the global population. Nanotechnology has developed excellent solutions to combat the virus pandemic, such as ACE2-based nanodecoys, nanobodies, nanovaccines, and drug nanocarriers. Lessons learned and strategies developed during this battle against SARS-CoV-2 variants may also serve as inspiration for developing nanotechnology-based strategies to combat other global infectious diseases and their variants in the future.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
Zhang D, Wang L, Wang Z, Shi X, Tang W, Jiang L, Bo Ran Yi BYCH, Lv X, Hu C, Xiao D. Immunological responses of septic rats to combination therapy with thymosin α1 and vitamin C. Open Life Sci 2023; 18:20220551. [PMID: 36816800 PMCID: PMC9922062 DOI: 10.1515/biol-2022-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023] Open
Abstract
This study investigated the effect of combined thymosin α1 and vitamin C (Tα1 + VitC) on the immunological responses of septic rats. Five groups were designed. The septic model was established by the cecal ligation puncture (CLP) method. The sham group did not undergo CLP, the model group was given normal saline solution, the Tα1 group was given Tα1 (200 µg/kg), the VitC group was given VitC (200 mg/kg), and the Tα1 + VitC group was given Tα1 + VitC. Specimens for immunological analyses were collected at 6, 12, 24, and 48 h posttreatment in each group except for the sham group (only at 48 h). CD4 + CD25 + T cells in the peripheral blood and dendritic cell (DC) proportions in the spleen were analyzed by flow cytometry. Tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), transforming growth factor-β (TGF-ß1), and nuclear factor kappa-B (NF-κB) were measured by ELISA. CD4 + CD25 + T cells and OX62 + DCs levels significantly increased in the model group and decreased in the Tα1 and/or VitC treatment groups. Similarly, the levels of TNF-α, IL-6, TGF-ß1, and NF-κB significantly increased in the model group and decreased in the Tα1, VitC, and Tα1 + VitC groups, indicating that combined Tα1 and VitC therapy may help regulate the immunological state of patients with sepsis, thereby improving prognosis.
Collapse
Affiliation(s)
- Daquan Zhang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Lu Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Zhigao Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xiaohui Shi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Wen Tang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Long Jiang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Ba Yin Cha Han Bo Ran Yi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xinwei Lv
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Congyu Hu
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Dong Xiao
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| |
Collapse
|
17
|
Infante B, Conserva F, Pontrelli P, Leo S, Stasi A, Fiorentino M, Troise D, dello Strologo A, Alfieri C, Gesualdo L, Castellano G, Stallone G. Recent advances in molecular mechanisms of acute kidney injury in patients with diabetes mellitus. Front Endocrinol (Lausanne) 2023; 13:903970. [PMID: 36686462 PMCID: PMC9849571 DOI: 10.3389/fendo.2022.903970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Several insults can lead to acute kidney injury (AKI) in native kidney and transplant patients, with diabetes critically contributing as pivotal risk factor. High glucose per se can disrupt several signaling pathways within the kidney that, if not restored, can favor the instauration of mechanisms of maladaptive repair, altering kidney homeostasis and proper function. Diabetic kidneys frequently show reduced oxygenation, vascular damage and enhanced inflammatory response, features that increase the kidney vulnerability to hypoxia. Importantly, epidemiologic data shows that previous episodes of AKI increase susceptibility to diabetic kidney disease (DKD), and that patients with DKD and history of AKI have a generally worse prognosis compared to DKD patients without AKI; it is therefore crucial to monitor diabetic patients for AKI. In the present review, we will describe the causes that contribute to increased susceptibility to AKI in diabetes, with focus on the molecular mechanisms that occur during hyperglycemia and how these mechanisms expose the different types of resident renal cells to be more vulnerable to maladaptive repair during AKI (contrast- and drug-induced AKI). Finally, we will review the list of the existing candidate biomarkers of diagnosis and prognosis of AKI in patients with diabetes.
Collapse
Affiliation(s)
- Barbara Infante
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Conserva
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Serena Leo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Dario Troise
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Stallone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
18
|
Rivas M, Motes A, Ismail A, Yang S, Sotello D, Arevalo M, Vutthikraivit W, Suchartlikitwong S, Carrasco C, Iwuji K, Pachariyanon P, Jaroudi S, Thavaraputta S, Nugent K. Characteristics and outcomes of patients with sepsis who had cortisol level measurements or received hydrocortisone during their intensive care unit management: A retrospective single center study. SAGE Open Med 2023; 11:20503121221146907. [PMID: 36632085 PMCID: PMC9827519 DOI: 10.1177/20503121221146907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Objectives The current guidelines for managing patients with sepsis include the early cultures, administration of antibiotics, and fluid resuscitation. Several clinical trials have tried to determine whether or not the administration of corticosteroids improves outcomes in these patients. This study analyzed the characteristics of a large group of critically ill patients who either had cortisol levels drawn during their intensive care unit management or had hydrocortisone administered during their management. Methods A list of patients who had cortisol levels measured or who had hydrocortisone administered empirically for the treatment of sepsis was identified by the medical record department at University Medical Center in Lubbock, Texas. The primary outcome was in-hospital mortality. Secondary outcomes included the need for mechanical ventilation, the need for renal replacement therapy, the need for vasopressors, length of stay, and the development of nosocomial infections. Results This study included 351 patients, including 194 women (55.3%). The mean age was 62.9 ± 16.1 years. The mean admission SOFA score was 9.3 ± 3.63, the mean APACHE 2 score was 18.15 ± 7.7, and the mean lactic acid level was 3.8 ± 4.0 mmol/L. One hundred sixty-two patients required intubation, 262 required vasopressors, 215 developed acute kidney injury, and 319 had cortisol levels measured. The mean length of stay was 11.5 ± 13.7 days; the mortality rate was 32.2%. Multiple variable analysis demonstrated that higher cortisol levels were associated with increased mortality (44.1% if cortisol ⩾20 µg/dL versus 17.5% if cortisol <20 µg/dL). One hundred forty-five patients received corticosteroids, and multivariable analysis demonstrated that these patients had increased mortality (40.0% versus 26.7%). Conclusion In this study, higher cortisol levels were associated with increased mortality. The administration of hydrocortisone was associated with increased mortality possibly reflecting the use of this medication in patients who had a higher likelihood of poor outcomes.
Collapse
Affiliation(s)
| | - Arunee Motes
- Division of Pulmonary/Critical Care,
Department of Internal Medicine, Texas Tech University Health Sciences Center,
Lubbock, TX, USA
| | - Amr Ismail
- Division of Pulmonary/Critical Care,
Department of Internal Medicine, Texas Tech University Health Sciences Center,
Lubbock, TX, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington
Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Meily Arevalo
- Department of Internal Medicine,
University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Wasawat Vutthikraivit
- Division of Cardiovascular Medicine,
University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sakolwan Suchartlikitwong
- Division of Gastroenterology and
Hepatology, Department of Internal Medicine, University of Arizona College of
Medicine, Phoenix, AZ, USA
| | - Cynthia Carrasco
- Division of Pulmonary and Critical
Care, Department of Medicine, Indiana University School of Medicine, Indianapolis,
IN, USA
| | - Kenneth Iwuji
- Division of Pulmonary/Critical Care,
Department of Internal Medicine, Texas Tech University Health Sciences Center,
Lubbock, TX, USA
| | - Pavida Pachariyanon
- Division of Cardiology, Department of
Internal Medicine, Louisiana State University Health Sciences Center, Shreveport,
LA, USA
| | - Sarah Jaroudi
- Department of Internal Medicine, Baylor
College of Medicine, Houston, TX, USA
| | | | - Kenneth Nugent
- Division of Pulmonary/Critical Care,
Department of Internal Medicine, Texas Tech University Health Sciences Center,
Lubbock, TX, USA
- Kenneth Nugent, Division of
Pulmonary/Critical Care, Department of Internal Medicine, Texas Tech University
Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Jelinek M, Duris K. Inflammatory Response in Sepsis and Hemorrhagic Stroke. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Liu S, Kohler A, Langer R, Jakob MO, Salm L, Blank A, Beldi G, Jakob SM. Hepatic blood flow regulation but not oxygen extraction capability is impaired in prolonged experimental abdominal sepsis. Am J Physiol Gastrointest Liver Physiol 2022; 323:G348-G361. [PMID: 36044679 DOI: 10.1152/ajpgi.00109.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impaired oxygen utilization has been proposed to play a significant role in sepsis-induced liver dysfunction, but its magnitude and temporal course during prolonged resuscitation is controversial. The aim of this study is to evaluate the capability of the liver to increase oxygen extraction in sepsis during repeated acute portal vein blood flow reduction. Twenty anesthetized and mechanically ventilated pigs with hepatic hemodynamic monitoring were randomized to fecal peritonitis or controls (n = 10, each). After 8-h untreated sepsis, the animals were resuscitated for three days. The ability to increase hepatic O2 extraction was evaluated by repeated, acute decreases in hepatic oxygen delivery (Do2) via reduction of portal flow. Blood samples for liver function and liver biopsies were obtained repeatedly. Although liver function tests, ATP content, and Do2 remained unaltered, there were signs of liver injury in blood samples and overt liver cell necrosis in biopsies. With acute portal vein occlusion, hepatic Do2 decreased more in septic animals compared with controls [max. decrease: 1.66 ± 0.68 mL/min/kg in sepsis vs. 1.19 ± 0.42 mL/min/kg in controls; portal venous flow (Qpv) reduction-sepsis interaction: P = 0.028]. Hepatic arterial buffer response (HABR) was impaired but recovered after 3-day resuscitation, whereas hepatic oxygen extraction increased similarly during the procedures in both groups (max. increase: 0.27 ± 0.13 in sepsis vs. 0.18 ± 0.09 in controls; all P > 0.05). Our data indicate maintained capacity of the liver to acutely increase O2 extraction, whereas blood flow regulation is transiently impaired with the potential to contribute to liver injury in sepsis.NEW & NOTEWORTHY The capacity to acutely increase hepatic O2 extraction with portal flow reduction is maintained in sepsis with accompanying liver injury, but hepatic blood flow regulation is impaired.
Collapse
Affiliation(s)
- Shengchen Liu
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Cardio-thoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andreas Kohler
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuel O Jakob
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Annika Blank
- Institute of Pathology, Triemlispital Zürich, Zürich, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
22
|
Jiang L, Zhang L, Yang J, Shi H, Zhu H, Zhai M, Lu L, Wang X, Li XY, Yu S, Liu J, Duan W. 1-Deoxynojirimycin attenuates septic cardiomyopathy by regulating oxidative stress, apoptosis, and inflammation via the JAK2/STAT6 signaling pathway. Biomed Pharmacother 2022; 155:113648. [PMID: 36108388 DOI: 10.1016/j.biopha.2022.113648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiac dysfunction caused by sepsis is the predominant reason for death in patients with sepsis. However, the effective drugs for its prevention and the molecular mechanisms remain elusive. 1-Deoxynojirimycin (DNJ), a natural iminopyranose, exhibits various biological properties, such as hypoglycemic, antitumor, antiviral, and anti-inflammatory activities. However, whether DNJ can mediate biological activity resistance in sepsis-induced myocardial injury and the underlying mechanisms are unclear. Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling is an important pathway for the signal transduction of several key cytokines in the pathogenesis of sepsis, which can transcribe and modulate the host immune response. This study was conducted to confirm whether DNJ mediates oxidative stress, apoptosis, and inflammation in cardiomyocytes, thereby alleviating myocardial injury in sepsis via the JAK2/STAT6 signaling pathway. Septic cardiomyopathy was induced in mice using lipopolysaccharide (LPS), and they were then treated with DNJ. The results showed that DNJ markedly improved sepsis-induced cardiac dysfunction, attenuated reactive oxygen species generation, reduced cardiomyocyte apoptosis, and mitigated inflammation. Mechanistically, increased JAK2/STAT6 phosphorylation was observed in the mouse sepsis models, which decreased significantly after DNJ oral treatment. To further confirm whether DNJ mediates the JAK2/STAT6 pathway, the selective inhibitor fedratinib was used to block the JAK2 signaling pathway in vitro, which enhanced the protective effects of DNJ against the sepsis-induced cardiac damage. Collectively, these findings suggest that DNJ attenuates sepsis-induced myocardial injury by decreasing myocardial oxidative damage, apoptosis, and inflammation via the regulation of the JAK2/STAT6 signaling pathway.
Collapse
Affiliation(s)
- LiQing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - LiYun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - JiaChang Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - Heng Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - HanZhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - MengEn Zhai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - LinHe Lu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - XiaoWu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - Xia Yun Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - ShiQiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - JinCheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| | - WeiXun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032 Shaanxi, China.
| |
Collapse
|
23
|
Yang J, Zhang R, Zhao H, Qi H, Li J, Li J, Zhou X, Wang A, Fan K, Yan X, Zhang T. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210267. [PMID: 37325607 PMCID: PMC10191017 DOI: 10.1002/exp.20210267] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome with high morbidity and mortality mediated by infection-caused oxidative stress. Early antioxidant intervention by removing excessively produced reactive oxygen and nitrogen species (RONS) is beneficial to the prevention and treatment of sepsis. However, traditional antioxidants have failed to improve patient outcomes due to insufficient activity and sustainability. Herein, by mimicking the electronic and structural characteristics of natural Cu-only superoxide dismutase (SOD5), a single-atom nanozyme (SAzyme) featuring coordinately unsaturated and atomically dispersed Cu-N4 site was synthesized for effective sepsis treatment. The de novo-designed Cu-SAzyme exhibits a superior SOD-like activity to efficiently eliminate O2 •-, which is the source of multiple RONS, thus blocking the free radical chain reaction and subsequent inflammatory response in the early stage of sepsis. Moreover, the Cu-SAzyme effectively harnessed systemic inflammation and multi-organ injuries in sepsis animal models. These findings indicate that the developed Cu-SAzyme possesses great potential as therapeutic nanomedicines for the treatment of sepsis.
Collapse
Affiliation(s)
- Ji Yang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Haifeng Qi
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jingyun Li
- Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Jian‐Feng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Xinyao Zhou
- School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aiqin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tao Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| |
Collapse
|
24
|
Daniels RC, Tiba MH, Cummings B, Yap YR, Ansari S, McCracken B, Sun Y, Jennaro T, Ward KR, Stringer KA. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock. Shock 2022; 57:282-290. [PMID: 35670453 PMCID: PMC10314677 DOI: 10.1097/shk.0000000000001944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress. To test this hypothesis, we compared blood and urine RP with concentrations of multiple metabolites in a swine traumatic shock model to identify meaningful RP-metabolite relationships. METHODS Seven swine were subjected to traumatic shock. Mixed venous (MV) RP, urine RP, and concurrent MV and urine metabolite concentrations were assessed at baseline, max O 2 Debt (80 mL/kg), end resuscitation, and 2 h post-resuscitation. RP was measured at collection via open circuit potential using nanoporous gold electrodes with Ag/AgCl reference and a ParstatMC potentiostat. Metabolite concentrations were measured by quantitative 1 H-NMR spectroscopy. MV and urine RP were compared with time-matched metabolites across all swine. LASSO regression with leave-one-out cross validation was used to determine meaningful RP/metabolite relationships. Metabolites had to maintain magnitude and direction of coefficients across 6 or more swine to be considered as having a meaningful relationship. KEGG IDs of these metabolites were uploaded into Metscape for pathway identification and evaluation for physiologic function. RESULTS Meaningful metabolite relationships (and mean coefficients across cross-validation folds) with MV RP included: choline (-6.27), ATP (-4.39), glycine (5.93), ADP (1.84), glucose (15.96), formate (-13.09), pyruvate (6.18), and taurine (-7.18). Relationships with urine RP were: betaine (4.81), urea (4.14), glycine (-2.97), taurine (10.32), 3-hydroxyisobutyrate (-7.67), N-phenylacetylglycine, PAG (-14.52), hippurate (12.89), and formate (-5.89). These meaningful metabolites were found to scavenge extracellular peroxide (pyruvate), inhibit ROS and activate cellular antioxidant defense (taurine), act as indicators of antioxidant mobilization against oxidative stress (glycine + PAG), and reflect renal hydroxyl radical trapping (hippurate), among other activities. CONCLUSIONS Real-time RP measures demonstrate significant relationships with metabolites attributable to metabolic pathways involved in systemic responses to oxidative stress, as well as those involved in these processes. These data support RP measures as a feasible, biologically relevant marker of oxidative stress. As a direct measure of redox state, RP may be a useful biomarker and clinical tool in guiding diagnosis and therapy in states of increased oxidative stress and may offer value as a marker for organ injury in these states as well.
Collapse
Affiliation(s)
- Rodney C. Daniels
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI
| | - M. Hakam Tiba
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Brandon Cummings
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Yan Rou Yap
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Sardar Ansari
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Yihan Sun
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Teddy Jennaro
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Kevin R. Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Kathleen A. Stringer
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
Farrugia A, Mori F. Therapeutic solutions of human albumin - The possible effect of process-induced molecular alterations on clinical efficacy and safety. J Pharm Sci 2022; 111:1292-1308. [PMID: 35276228 DOI: 10.1016/j.xphs.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
Human albumin solutions were developed as therapeutic during the Second World War to address blood loss due to battlefield injury. This indication was based on the recognition that albumin provided most of the oncotic capacity of human plasma. For the succeeding sixty years, this formed the basis for the use of albumin in traumatology and emergency medicine. In more recent times, the pharmacological properties arising from albumin's complex structure have become a focus of attention by clinical researchers. In particular, albumin, through anti-inflammatory and anti-oxidant properties, has been proposed as an agent for the treatment of sepsis, cirrhosis and other inflammatory states. Some evidence for these indications has accrued from a number of small clinical trials and observational studies. These studies have not been confirmed in other large trials. Together with other investigators, we have shown that the process of plasma fractionation results in alterations in the structure of albumin, including those parts of the molecule involved in anti-oxidant and anti-inflammatory effects. Albumin products from diverse manufacturers show heterogeneity in their ability to address these effects. In this article, we review the historical development of albumin solutions, pointing out the variations in fractionation chemistries which different manufacturers have adopted. We suggest ways by which the manufacturing processes have contributed to variations in the physico-chemical properties of molecule. We review the outcomes of clinical studies assessing the role of albumin in ameliorating conditions such as sepsis and cirrhosis, and we speculate as to the extent which heterogeneity in the products may have contributed to variable clinical outcomes. Finally, we argue for a change in the perception of the plasma product industry and its regulatory overseers. Historically, albumin has been viewed as a generic commodity, with different preparations being interchangeable in their clinical application. We suggest that this implied biosimilarity is not necessarily applicable for different albumin solutions. The use of albumin, in indications other than its historical role as a plasma expander, can only be validated by clinical investigation of each separate albumin product.
Collapse
Affiliation(s)
- Albert Farrugia
- Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Perth, Australia.
| | - Filippo Mori
- Kedrion S.p.A., Research and Innovation Department, Via di Fondovalle, Loc., Bolognana 55027, Gallicano (LU), Italy
| |
Collapse
|
26
|
Zhao Y, Yu D, Wang H, Jin W, Li X, Hu Y, Qin Y, Kong D, Li G, Ellen A, Wang H. Galectin-9 Mediates the Therapeutic Effect of Mesenchymal Stem Cells on Experimental Endotoxemia. Front Cell Dev Biol 2022; 10:700702. [PMID: 35252164 PMCID: PMC8893172 DOI: 10.3389/fcell.2022.700702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Endotoxemia remains a major cause of mortality in the intensive care unit, but the therapeutic strategy is still lacking. Mesenchymal stem cell (MSC) was reported with a tissue-oriented differentiation ability and an excellent immunoregulatory capacity. However, the immunity signaling pathways that govern MSC modulation effect are not completely understood. In our current study, MSCs (2.5 × 105 /ml) were obtained and stimulated with IFN-γ (20 ng/ml) for 72 h. Gal-9 expression on MSCs was measured by ELISA, RT-PCR, flow cytometry, and immunofluorescence, respectively. Experimental endotoxemia was induced by LPS injection (10 mg/kg, i. p.) followed by the treatment with Gal-9 high-expressing MSCs, unmodified MSCs, and Gal-9 blocking MSCs. Therapeutic effects of MSCs were assessed by monitoring murine sepsis score, survival rate, splenocyte proportion rate, inflammatory mediator levels, and pathological manifestations. The results showed that Gal-9 expressed in MSCs, and this expression was increased in a dose-dependent manner after pre-stimulating with IFN-γ. Adoptive transfer of Gal-9 high-expressing MSCs into modeling mice significantly alleviated endotoxemia symptoms and multi-organ pathological damages. Splenocyte analysis indicated that Gal-9 high-expressing MSCs could promote macrophage polarization to M2-subtype and boost Treg generation. Moreover, there were also attenuated pro-inflammatory mediator expressions (TNF-α, IL-1β, IFN-γ, and iNOS), and increased anti-inflammatory mediator expressions (T-SOD and IL-35) in the sera and damaged organ homogenates. Additionally, we found a higher expression of Gal-9 in liver, lung, and kidney homogenate. Taken together, this study reveals that the optimized immunoregulatory effect of MSCs is strongly correlated with Gal-9 high expression, which provides a novel idea for the investigation of MSC immunomodulatory mechanisms and offers a potential strategy for the treatment of endotoxemia in clinical settings.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Wang Jin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Acheampong Ellen
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| |
Collapse
|
27
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
28
|
Franco JH, Chen X, Pan ZK. Novel Treatments Targeting the Dysregulated Cell Signaling Pathway during Sepsis. JOURNAL OF CELLULAR SIGNALING 2021; 2:228-234. [PMID: 34988552 PMCID: PMC8725530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously characterized as a purely immune mediated disease, sepsis is now recognized as a dysregulated multisystem response against a pathogen. Recognition of the infectious agent by pathogen recognition receptors (PRRs) can initiate activation of the NF-κB signaling pathway and promote the secretion of proinflammatory cytokines. During sepsis, the activation of NF-κB is dysregulated and results in cytokine storm, or the pathologic release of cytokines. Current treatments for sepsis rely on broad spectrum antimicrobial medications and fluid replacement therapy, to neutralize the inciting pathogen and maintain adequate blood pressure. The addition of vasopressor therapy is also utilized when sepsis progresses to septic shock, which is defined by treatment resistant hypotension. Even though modern treatment guidelines have improved clinical outcomes, the mortality rate of sepsis and septic shock is still 15-20% and 20-50%, respectively. To reduce mortality, recent sepsis treatment research has focused on investigating novel therapeutics that can attenuate the dysregulated NF-κB signaling pathway. Antioxidants, such as Retinoic acid and Oxytocin, can reduce activation of the NF-κB pathway by neutralizing stimulatory reactive oxygen species (ROS). Likewise, anti-inflammatory agents can also affect the NF-κB pathway by decreasing the secretion of proinflammatory cytokines, such as TNFα and IL-6. Novel anti-inflammatory cytokines, such as IL-37 and IL-38, have recently been characterized and shown to reduce inflammation in mice with bacterial sepsis. Separately, antioxidants and anti-inflammatory cytokines show promise as potential therapies for sepsis, however, a combined therapy including both agents may prove more beneficial in further improving clinical outcomes.
Collapse
Affiliation(s)
- Justin H. Franco
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Oh 43614 USA
| | - Xiaohuan Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Oh 43614 USA
| | - Zhixing K. Pan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Oh 43614 USA
| |
Collapse
|
29
|
Oxidative Stress in ICU Patients: ROS as Mortality Long-Term Predictor. Antioxidants (Basel) 2021; 10:antiox10121912. [PMID: 34943015 PMCID: PMC8750443 DOI: 10.3390/antiox10121912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid peroxidation, protein oxidation, and mutations in mitochondrial DNA generate reactive oxygen species (ROS) that are involved in cell death and inflammatory response syndrome. ROS can also act as a signal in the intracellular pathways involved in normal cell growth and homeostasis, as well as in response to metabolic adaptations, autophagy, immunity, differentiation and cell aging, the latter of which is an important characteristic in acute and chronic pathologies. Thus, the measurement of ROS levels of critically ill patients, upon admission, enables a prediction not only of the severity of the inflammatory response, but also of its subsequent potential outcome. The aim of this study was to measure the levels of mitochondrial ROS (superoxide anion) in the peripheral blood lymphocytes within 24 h of admission and correlate them with survival at one year after ICU and hospital discharge. We designed an observational prospective study in 51 critical care patients, in which clinical variables and ROS production were identified and correlated with mortality at 12 months post-ICU hospitalization. Oxidative stress levels, measured as DHE fluorescence, show a positive correlation with increased long-term mortality. In ICU patients the major determinant of survival is oxidative stress, which determines inflammation and outlines the cellular response to inflammatory stimuli.
Collapse
|
30
|
Fernandes SM, Watanabe M, Vattimo MDFF. Inflammation: improving understanding to prevent or ameliorate kidney diseases. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200162. [PMID: 34712277 PMCID: PMC8525891 DOI: 10.1590/1678-9199-jvatitd-2020-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Inflammatory processes are believed to play an important role in immune response to maintain tissue homeostasis by activating cellular signaling pathways and releasing inflammatory mediators in the injured tissue. Although acute inflammation can be considered protective, an uncontrolled inflammation may evolve to tissue damage, leading to chronic inflammatory diseases. Inflammation can be considered the major factor involved in the pathological progression of acute and chronic kidney diseases. Functional characteristics of this organ increase its vulnerability to developing various forms of injuries, including acute kidney injury (AKI) and chronic kidney disease (CKD). In view of translational research, several discoveries should be considered regarding the pathogenesis of the inflammatory process, which results in the validation of biomarkers for early detection of kidney diseases. Biomarkers enable the identification of proinflammatory mediators in kidney affections, based on laboratory research applied to clinical practice. Some inflammatory molecules can be useful biomarkers for the detection and diagnosis of kidney diseases, such as neutrophil gelatinase-associated lipocalin, kidney injury molecule-1 and interleukin 18.
Collapse
Affiliation(s)
- Sheila Marques Fernandes
- Animal Model Experimental Laboratory (LEMA), School of Nursing (EEUSP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Mirian Watanabe
- Animal Model Experimental Laboratory (LEMA), School of Nursing (EEUSP), University of São Paulo (USP), São Paulo, SP, Brazil.,Health Sciences and Wellbeing (CISBEM), University Center of United Metropolitan Colleges, São Paulo, SP, Brazil
| | | |
Collapse
|
31
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021; 905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced cardiac dysfunction (SICD) is one of the key complications in sepsis and it is associated with adverse outcomes and increased mortality. There is no effective drug to treat SICD. Previously, we reported that tubeimoside I (TBM) improved survival of septic mice. The aim of this study is to figure out whether TBM ameliorates SICD. Also, SIRT3 was reported to protects against SICD. Our second aim is to confirm whether SIRT3 plays essential roles in TBM's protective effects against SICD. Our results demonstrated that TBM could alleviate SICD and SICD's key pathological factor, inflammation, oxidative stress, and apoptosis were all reduced by TBM. Notably, SICD induced a significant decrease in cardiac SIRT3 expression, while TBM treatment could reverse SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we injected a specific SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) into mice before TBM treatment. Then the cardioprotective effects of TBM were largely abolished by 3-TYP. This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against LPS-induced injury, and siSIRT3 diminished these protective effects. Taken together, our results demonstrate that TBM protects against SICD via SIRT3. TBM might be a potential drug candidate for SICD treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
32
|
Karki R, Kanneganti TD. The 'cytokine storm': molecular mechanisms and therapeutic prospects. Trends Immunol 2021; 42:681-705. [PMID: 34217595 DOI: 10.1016/j.it.2021.06.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Cytokine storm syndrome (CSS) has generally been described as a collection of clinical manifestations resulting from an overactivated immune system. Cytokine storms (CSs) are associated with various pathologies, as observed in infectious diseases, certain acquired or inherited immunodeficiencies and autoinflammatory diseases, or following therapeutic interventions. Despite the role of CS in tissue damage and multiorgan failure, a systematic understanding of its underlying molecular mechanisms is lacking. Recent studies demonstrate a positive feedback loop between cytokine release and cell death pathways; certain cytokines, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), can activate inflammatory cell death, leading to further cytokine secretion. Here, we discuss recent progress in innate immunity and inflammatory cell death, providing insights into the cellular and molecular mechanisms of CSs and therapeutics that might quell ensuing life-threatening effects.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
33
|
Qi B, Yu Y, Wang Y, Wang Y, Yu Y, Xie K. Perspective of Molecular Hydrogen in the Treatment of Sepsis. Curr Pharm Des 2021; 27:667-678. [PMID: 32912119 DOI: 10.2174/1381612826666200909124936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Sepsis is the main cause of death in critically ill patients with no effective treatment. Sepsis is lifethreatening organ dysfunction due to a dysregulated host response to infection. As a novel medical gas, molecular hydrogen (H2) has a therapeutic effect on many diseases, such as sepsis. H2 treatment exerts multiple biological effects, which can effectively improve multiple organ injuries caused by sepsis. However, the underlying molecular mechanisms of hydrogen involved in the treatment of sepsis remain elusive, which are likely related to anti-inflammation, anti-oxidation, anti-apoptosis, regulation of autophagy and multiple signaling pathways. This review can help better understand the progress of hydrogen in the treatment of sepsis, and provide a theoretical basis for the clinical application of hydrogen therapy in sepsis in the future.
Collapse
Affiliation(s)
- Bo Qi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuzun Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
34
|
Bergmann CB, Beckmann N, Salyer CE, Hanschen M, Crisologo PA, Caldwell CC. Potential Targets to Mitigate Trauma- or Sepsis-Induced Immune Suppression. Front Immunol 2021; 12:622601. [PMID: 33717127 PMCID: PMC7947256 DOI: 10.3389/fimmu.2021.622601] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-β (TGF-β) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-β and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Nadine Beckmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Christen E Salyer
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| |
Collapse
|
35
|
Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020; 10:antiox10010039. [PMID: 33396350 PMCID: PMC7824104 DOI: 10.3390/antiox10010039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest-growing causes of death and is predicted to become by 2040 the fifth global cause of death. CKD is characterized by increased oxidative stress and chronic inflammation. However, therapies to slow or prevent CKD progression remain an unmet need. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that plays a key role in protection against oxidative stress and regulation of the inflammatory response. Consequently, the use of compounds targeting Nrf2 has generated growing interest for nephrologists. Pre-clinical and clinical studies have demonstrated that Nrf2-inducing strategies prevent CKD progression and protect from acute kidney injury (AKI). In this article, we review current knowledge on the protective mechanisms mediated by Nrf2 against kidney injury, novel therapeutic strategies to induce Nrf2 activation, and the status of ongoing clinical trials targeting Nrf2 in renal diseases.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Sandra Rayego-Mateos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Cristina Vázquez-Carballo
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Alejandra Palomino-Antolín
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Lucas Opazo-Rios
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
| | - Carmen Herencia
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
| | - Sebastián Mas
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Red Nacional Investigaciones Nefrológicas (REDINREN), 28040 Madrid, Spain
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Javier Egea
- Research Unit, Hospital Universitario Santa Cristina, IIS-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (A.P.-A.); (J.E.)
- Departament of Pharmacology and Therapeutics, Medicine Faculty, Instituto Teófilo Hernando, Autónoma University, 28029 Madrid, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
| | - Jesús Egido
- Instituto de Investigación Sanitaria (IIS)-Fundación Jiménez Díaz, Autónoma University, 28040 Madrid, Spain; (C.V.-C.); (L.O.-R.); (C.H.); (S.M.); (A.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain; (M.G.-H.); (S.R.-M.); (C.G.-C.); (J.L.M.-P.)
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain;
- Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-957-218-039
| |
Collapse
|
36
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
37
|
Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM. Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes. Antioxidants (Basel) 2020; 9:antiox9090848. [PMID: 32927712 PMCID: PMC7554719 DOI: 10.3390/antiox9090848] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and metabolism. Moreover, microbiota metabolites seem to interfere with mitochondrial oxidative/nitrosative stress and autophagosome formation, thus regulating the activation of the inflammasome and the production of inflammatory cytokines, key players in chronic metabolic disorders. This review focuses on the association between intestinal microbiota and mitochondrial function and examines the mechanisms that may be the key to their use as potential therapeutic strategies in obesity and T2D management.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
| | | | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| | - Víctor Manuel Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (T.V.); (Z.A.-J.)
- CIBERehd—Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.); Tel.: +34-963-189-132 (M.R. & V.M.V.); Fax: +34-961-622-492 (M.R. & V.M.V.)
| |
Collapse
|
38
|
Wei Z, Wang L, Tang C, Chen S, Wang Z, Wang Y, Bao J, Xie Y, Zhao W, Su B, Zhao C. Metal‐Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broad‐Spectrum Radical Eliminating and Endotoxemia Treatment. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202002234] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhiwei Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Liya Wang
- Department of Nephrology West China Hospital Sichuan University Chengdu 610041 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shengqiu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Zhoujun Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yilin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Jianxu Bao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Yi Xie
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
- Department of Biomedical Engineering Faculty of Engineering National University of Singapore Singapore 117583 Singapore
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Baihai Su
- Department of Nephrology West China Hospital Sichuan University Chengdu 610041 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering College of Chemical Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
39
|
Yim D, Lee DE, So Y, Choi C, Son W, Jang K, Yang CS, Kim JH. Sustainable Nanosheet Antioxidants for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species. ACS NANO 2020; 14:10324-10336. [PMID: 32806029 DOI: 10.1021/acsnano.0c03807] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sepsis is an aberrant systemic inflammatory response mediated by excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Developing an efficient antioxidant therapy for sepsis via scavenging ROS and RNS remains a big challenge owing to the insufficient activity and sustainability of conventional antioxidants. Herein, biocompatible transition-metal dichalcogenide antioxidants with excellent scavenging activity and sustainability for H2O2, O2•-, OH•, and nitric oxide are developed for effective sepsis treatment. WS2, MoSe2, and WSe2 nanosheets exfoliated and functionalized with a biocompatible polymer effectively scavenge mitochondrial and intracellular ROS and RNS in inflammatory cells. Among the nanosheets, WS2 most efficiently suppresses the excessive secretion of inflammatory cytokines along with scavenging ROS and RNS without affecting the expression levels of the anti-inflammatory cytokine and ROS-producing enzymes. The WS2 nanosheets significantly improve the survival rate up to 90% for severely septic mice by reducing systemic inflammation. The pharmacokinetics suggests that the WS2 nanosheets can be excreted from mice 3 days after intravenous injection. This work demonstrates the potential of therapeutic nanosheet antioxidants for effective treatment of ROS and RNS-related diseases.
Collapse
Affiliation(s)
- DaBin Yim
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Da-Eun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Yoonhee So
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chanhee Choi
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
- Department of Bionano Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
40
|
Troia R, Ciuffoli E, Vasylyeva K, Foglia A, Dondi F, Giunti M. Circulating Methemoblogin Fraction in Dogs With Sepsis. Front Vet Sci 2020; 7:341. [PMID: 32656253 PMCID: PMC7326004 DOI: 10.3389/fvets.2020.00341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Large amount of nitric oxide (NO) can be released in patients with sepsis. Methemoglobin is formed from the interaction between NO and hemoglobin. Mild methemoglobinemia reflecting NO overproduction has been reported in septic people, and occasionally associated to septic shock and organ dysfunction. The aim of this retrospective study was to evaluate circulating methemoglobin fraction in dogs with sepsis and to assess its prognostic value. Methemoglobin reference interval (RI) was calculated in 41 healthy dogs and was set at 0–2.2%. A total of 131 dogs with sepsis were included in the study; 24/131 had a circulating methemoglobin ≥2.2%. The median methemoglobin fraction was significantly higher in dogs with sepsis compared to healthy ones (1.7%, 0.4–3.5% vs. 1.0, 0.3–2.2%, P = 0.0005). No significant difference was observed between dogs with uncomplicated sepsis (n = 98) vs. dogs with septic shock (n = 33) (1.8%, 0.4–2.8% vs. 1.5%, 0.4–3.5%, P = 0.74), between dogs with and without multi-organ dysfunction (n = 38 and n = 93, respectively) (1.7%, 0.4–3.5% vs. 1.7%, 0.5–2.8%, P = 0.27), and between survivors (n = 77) vs. non survivors (n = 54) (1.5%, 0.4–2.8% vs. 1.8%, 0.4–3.5%, P = 0.05). Dogs with methemoglobin fraction above or equal to the upper limit of the RI had a significantly higher frequency of death compared to dogs with methemoglobin levels <2.2% (60.0% vs. 36.8%, P = 0.04). In conclusion, mild methemoglobinemia is detected in dogs with sepsis, and methemoglobin values above the RI might be associated with a worse outcome.
Collapse
Affiliation(s)
- Roberta Troia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elena Ciuffoli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Kateryna Vasylyeva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Armando Foglia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Massimo Giunti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M, Couvreur P. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. SCIENCE ADVANCES 2020; 6:eaaz5466. [PMID: 32548259 PMCID: PMC7274527 DOI: 10.1126/sciadv.aaz5466] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/10/2020] [Indexed: 05/08/2023]
Abstract
Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.
Collapse
Affiliation(s)
- Flavio Dormont
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Romain Brusini
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Catherine Cailleau
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- School of Pharmacy, Federal University of Rio de Janeiro, 21944-59 Rio de Janeiro, Brazil
| | - Arnaud Peramo
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Amandine Gendron
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Françoise Gaudin
- Plateforme d’Histologie Immunopathologie de Clamart (PHIC) Université Paris-Saclay, Inserm, CNRS, Institut Paris Saclay d'Innovation thérapeutique, 92296 Châtenay-Malabry, France
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92140 Clamart, France
| | - Mariana Varna
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
- Corresponding author.
| |
Collapse
|
42
|
Abstract
OBJECTIVES Studies suggest that mitochondrial dysfunction underlies some forms of sepsis-induced organ failure. We sought to test the hypothesis that variations in mitochondrial DNA haplogroup affect susceptibility to sepsis-associated delirium, a common manifestation of acute brain dysfunction during sepsis. DESIGN Retrospective cohort study. SETTING Medical and surgical ICUs at a large tertiary care center. PATIENTS Caucasian and African American adults with sepsis. MEASUREMENTS AND MAIN RESULTS We determined each patient's mitochondrial DNA haplogroup using single-nucleotide polymorphisms genotyping data in a DNA databank and extracted outcomes from linked electronic medical records. We then used zero-inflated negative binomial regression to analyze age-adjusted associations between mitochondrial DNA haplogroups and duration of delirium, identified using the Confusion Assessment Method for the ICU. Eight-hundred ten patients accounted for 958 sepsis admissions, with 802 (84%) by Caucasians and 156 (16%) by African Americans. In total, 795 patient admissions (83%) involved one or more days of delirium. The 7% of Caucasians belonging to mitochondrial DNA haplogroup clade IWX experienced more delirium than the 49% in haplogroup H, the most common Caucasian haplogroup (age-adjusted rate ratio for delirium 1.36; 95% CI, 1.13-1.64; p = 0.001). Alternatively, among African Americans the 24% in haplogroup L2 experienced less delirium than those in haplogroup L3, the most common African haplogroup (adjusted rate ratio for delirium 0.60; 95% CI, 0.38-0.94; p = 0.03). CONCLUSIONS Variations in mitochondrial DNA are associated with development of and protection from delirium in Caucasians and African Americans during sepsis. Future studies are now required to determine whether mitochondrial DNA and mitochondrial dysfunction contribute to the pathogenesis of delirium during sepsis so that targeted treatments can be developed.
Collapse
|
43
|
Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew Chem Int Ed Engl 2020; 59:5108-5115. [DOI: 10.1002/anie.201912182] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|
44
|
Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912182] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fangfang Cao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Yawen You
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy PhysicsChinese Academy of Sciences Beijing 100049 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of Science Changchun Jilin 130022 P. R. China
| |
Collapse
|
45
|
Abstract
Oxygen (O2) delivery, which is fundamental to supporting patients with critical illness, is a function of blood O2 content and flow. This article reviews red blood cell (RBC) physiology and dysfunction relevant to disordered O2 delivery in the critically ill. Flow is the focus of O2 delivery regulation: O2 content is relatively fixed, whereas flow fluctuates greatly. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. This article reviews conventional RBC physiology influencing O2 delivery and introduces a paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs.
Collapse
Affiliation(s)
- Stephen Rogers
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, HSF III, 8th Floor, 670 West Baltimore Street, Baltimore, MD 21204, USA
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, HSF III, 8th Floor, 670 West Baltimore Street, Baltimore, MD 21204, USA.
| |
Collapse
|
46
|
Haderski GJ, Kandar BM, Brackett CM, Toshkov IM, Johnson CP, Paszkiewicz GM, Natarajan V, Gleiberman AS, Gudkov AV, Burdelya LG. TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects. PLoS One 2020; 15:e0227940. [PMID: 32027657 PMCID: PMC7004342 DOI: 10.1371/journal.pone.0227940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5–48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.
Collapse
Affiliation(s)
- Gary J. Haderski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Bojidar M. Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Ilia M. Toshkov
- Genome Protection, Inc., Buffalo, New York, United States of America
| | - Christopher P. Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Geraldine M. Paszkiewicz
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Venkatesh Natarajan
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | | | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| |
Collapse
|
47
|
Lee SY, Hsin LW, Su MJ, ChangChien CC, Ku HC. A novel isoquinoline derivative exhibits anti-inflammatory properties and improves the outcomes of endotoxemia. Pharmacol Rep 2019; 71:1281-1288. [PMID: 31683199 DOI: 10.1016/j.pharep.2019.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Sepsis initiates an inflammatory response that causes widespread injury, and candidates for related myocardial depressant factors include cytokines and nitric oxide (NO). Nuclear factor kappa-B (NF-κB) stimulated by toll-like receptor 4 activation in sepsis mediates the transcription of multiple proinflammatory genes. These inflammatory mediators can cause myocardial dysfunction, which may deteriorate sepsis outcomes. To address this risk, we investigated the potential beneficial effects of a novel isoquinolines derivative, CYY054c, in LPS-induced inflammatory response leading to endotoxemia. METHODS The effects of CYY054c on cytokine and inflammatory-related protein production were evaluated in lipopolysaccharide (LPS)-stimulated macrophages. To determine whether CYY054c alleviates inflammatory storm-induced myocardial dysfunction in vivo, LPS was injected in rats, and cardiac function was measured by a pressure-volume loop. RESULTS CYY054c inhibited LPS-induced NF-κB expression in macrophages and reduced the release of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In the animal studies, CYY054c alleviated LPS-upregulated plasma TNF-α, IL-1β, IL-6, and NO concentrations, as well as cardiac monocyte chemotactic protein-1, iNOS, and COX-2 expression in rats, contributing to the improvement of cardiac function during endotoxemia. CONCLUSIONS The reduction of NF-κB-mediated inflammatory mediators and the maintenance of hemodynamic performance by CYY054c improved the outcomes during endotoxemia. CYY054c may be a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, Molecular Probes Development Core, Molecular Imaging Center, Taipei, Taiwan; Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei, Taiwan
| | - Ming-Jai Su
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia ChangChien
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
48
|
Tomsa AM, Alexa AL, Junie ML, Rachisan AL, Ciumarnean L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019; 7:e8046. [PMID: 31741796 PMCID: PMC6858818 DOI: 10.7717/peerj.8046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Acute kidney injury (AKI) is a major problem for health systems being directly related to short and long-term morbidity and mortality. In the last years, the incidence of AKI has been increasing. AKI and chronic kidney disease (CKD) are closely interconnected, with a growing rate of CKD linked to repeated and severe episodes of AKI. AKI and CKD can occur also secondary to imbalanced oxidative stress (OS) reactions, inflammation, and apoptosis. The kidney is particularly sensitive to OS. OS is known as a crucial pathogenetic factor in cellular damage, with a direct role in initiation, development, and progression of AKI. The aim of this review is to focus on the pathogenetic role of OS in AKI in order to gain a better understanding. We exposed the potential relationships between OS and the perturbation of renal function and we also presented the redox-dependent factors that can contribute to early kidney injury. In the last decades, promising advances have been made in understanding the pathophysiology of AKI and its consequences, but more studies are needed in order to develop new therapies that can address OS and oxidative damage in early stages of AKI. Methods We searched PubMed for relevant articles published up to May 2019. In this review we incorporated data from different types of studies, including observational and experimental, both in vivo and in vitro, studies that provided information about OS in the pathophysiology of AKI. Results The results show that OS plays a major key role in the initiation and development of AKI, providing the chance to find new targets that can be therapeutically addressed. Discussion Acute kidney injury represents a major health issue that is still not fully understood. Research in this area still provides new useful data that can help obtain a better management of the patient. OS represents a major focus point in many studies, and a better understanding of its implications in AKI might offer the chance to fight new therapeutic strategies.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomsa
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Lia Junie
- Department of Microbiology, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Andreea Liana Rachisan
- Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lorena Ciumarnean
- Department of Internal Medicine IV, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
49
|
Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:585-604. [PMID: 31399986 DOI: 10.1007/978-981-13-8871-2_29] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress results from the disruption of the redox system marked by a notable overproduction of reactive oxygen species. There are four major sources of reactive oxygen species, including NADPH oxidases, mitochondria, nitric oxide synthases, and xanthine oxidases. It is well known that renal abnormalities trigger the production of reactive oxygen species by diverse mechanisms under various pathologic stimuli, such as acute kidney injury, chronic kidney disease, nephrotic syndrome, and metabolic disturbances. Mutually, accumulating evidences have identified that oxidative stress plays an essential role in tubulointerstitial fibrosis by myofibroblast activation as well as in glomerulosclerosis by mesangial sclerosis, podocyte abnormality, and parietal epithelial cell injury. Given the involvement of oxidative stress in renal fibrosis, therapies targeting oxidative stress seem promising in renal fibrosis management. In this review, we sketch the updated knowledge of the mechanisms of oxidative stress generation during renal diseases, the pathogenic processes of oxidative stress elicited renal fibrosis and treatments targeting oxidative stress during tubulointerstitial fibrosis and glomerulosclerosis.
Collapse
|
50
|
Ramos MFDP, Oliveira OB, de Barros ADCMM, Razvickas CV, Pessoa EDA, da Silva RF, Pereira AMS, Convento MB, Borges FT, Schor N. Comparison of olive leaf, olive oil, palm oil, and omega-3 oil in acute kidney injury induced by sepsis in rats. PeerJ 2019; 7:e7219. [PMID: 31333903 PMCID: PMC6625600 DOI: 10.7717/peerj.7219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Background Hypotension, increased production of reactive oxygen species, and inflammation are all observed in experimental models of sepsis induced by lipopolysaccharide (LPS). Purpose The aim of this study was to evaluate the effects of an ethanolic extract of Brazilian olive leaf (Ex), Brazilian olive oil (Olv), Ex + Olv (ExOlv), and palm oil (Pal) in comparison to the effects of omega-3 fish oil (Omg) in a rat model of sepsis-induced acute kidney injury. Materials Wistar rats were divided into seven groups (seven per group), which were either untreated (control) or treated with LPS, LPS + Ex, LPS + ExOlv, LPS + Olv, LPS + Omg, or LPS + Pal. Results Lower values of creatinine clearance and blood pressure were observed in the LPS-treated group, and these values were not affected by Ex, Olv, ExOlv, Pal, or Omg treatment. Mortality rates were significantly lower in rats exposed to LPS when they were also treated with Ex, ExOlv, Olv, Pal, or Omg. These treatments also decreased oxidative stress and inflammation (Tumor necrosis factor alpha, interleukin-1 beta) and increased interleukin-10 levels and cell proliferation, which were associated with decreased apoptosis in kidney tissue. Conclusion Ex and Pal treatments were beneficial in septic rats, since they increased survival rate and did not aggravate inflammation. However, the most effective treatments for septic rats were Olv in comparison to Omg. These natural food substances could enable the development of effective therapeutic interventions to sepsis.
Collapse
Affiliation(s)
| | - Olvania Basso Oliveira
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Clara Versolato Razvickas
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Edson de Andrade Pessoa
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|