1
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Ciambella C, Witt H, Dickinson CM, Smith ML, Coburn N, Messina N, Heffernan DS, Kim M, Reichner JS. INHIBITION OF INTEGRIN VLA-3 AND TETRASPANIN CD151 PROTECTS AGAINST NEUTROPHIL-MEDIATED ENDOTHELIAL DAMAGE. Shock 2024; 62:165-172. [PMID: 38813923 PMCID: PMC11254560 DOI: 10.1097/shk.0000000000002397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: The recruitment of neutrophils to sites of localized injury or infection is initiated by changes on the surface of endothelial cells located in proximity to tissue damage. Inflammatory mediators, such as TNF-α, increase surface expression of adhesive ligands and receptors on the endothelial surface to which neutrophils tether and adhere. Neutrophils then transit through the activated endothelium to reach sites of tissue injury with little lasting vascular injury. However, in cases of sepsis, the interaction of endothelial cells with highly activated neutrophils can cause damage vascular damage. The identification of molecules that are essential for neutrophil diapedesis may reveal targets of therapeutic opportunity for preservation of endothelial function in the presence of critical illness. We tested the hypothesis that inhibition of neutrophil β1 integrin very late antigen-3 (VLA-3; α3β1) and/or inhibition of the tetraspanin (TM4) family member CD151 would protect against neutrophil-mediated loss of endothelial function. Methods: Blood was obtained from septic patients or healthy donors. Neutrophils were purified, and aliquots were treated with/without proinflammatory molecules. Confluent human umbilical vascular endothelial cells were activated with TNF-α. Electric cell impedance sensing was used to determine monolayer resistance over time after the addition of neutrophils that were treated with blocking antibodies against VLA-3 and/or CD151 or isotype controls. Groups (depending on relevancy) were analyzed by Mann-Whitney U test, Wilcoxon test, or repeated-measures one-way ANOVA. Results: Neutrophils from septic patients and neutrophils activated ex vivo reduced endothelial monolayer resistance to a greater extent than neutrophils from healthy donors. Antibody blockade of VLA-3 and/or CD151 significantly reduced activation-associated endothelial damage. Similar findings were demonstrated on fibronectin, collagen I, collagen IV, and laminin, suggesting that neutrophil surface VLA-3 and CD151 are responsible for endothelial damage regardless of substrata and are likely to be operative in all bodily tissues. Conclusion: This report identifies VLA-3 and CD151 on the activated human neutrophil, which are responsible for damage to endothelial function. Targeting these molecules in vivo may demonstrate preservation of organ function during critical illness.
Collapse
Affiliation(s)
- Chelsey Ciambella
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Catherine M Dickinson
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Madison L Smith
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nicholas Coburn
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nicholas Messina
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Daithi S Heffernan
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York
| | - Jonathan S Reichner
- Rhode Island Hospital, Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
3
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
4
|
Martí‐Chillón G, Muntión S, Preciado S, Osugui L, Navarro‐Bailón A, González‐Robledo J, Sagredo V, Blanco JF, Sánchez‐Guijo F. Therapeutic potential of mesenchymal stromal/stem cells in critical-care patients with systemic inflammatory response syndrome. Clin Transl Med 2023; 13:e1163. [PMID: 36588089 PMCID: PMC9806020 DOI: 10.1002/ctm2.1163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite notable advances in the support and treatment of patients admitted to the intensive care unit (ICU), the management of those who develop a systemic inflammatory response syndrome (SIRS) still constitutes an unmet medical need. MAIN BODY Both the initial injury (trauma, pancreatitis, infections) and the derived uncontrolled response promote a hyperinflammatory status that leads to systemic hypotension, tissue hypoperfusion and multiple organ failure. Mesenchymal stromal/stem cells (MSCs) are emerging as a potential therapy for severe ICU patients due to their potent immunomodulatory, anti-inflammatory, regenerative and systemic homeostasis-regulating properties. MSCs have demonstrated clinical benefits in several inflammatory-based diseases, but their role in SIRS needs to be further explored. CONCLUSION In the current review, after briefly overviewing SIRS physiopathology, we explore the potential mechanisms why MSC therapy could aid in the recovery of this condition and the pre-clinical and early clinical evidence generated to date.
Collapse
Affiliation(s)
| | - Sandra Muntión
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Silvia Preciado
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Lika Osugui
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Almudena Navarro‐Bailón
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Javier González‐Robledo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| | | | - Juan F. Blanco
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
- Department of SurgeryUniversity of SalamancaSalamancaSpain
| | - Fermín Sánchez‐Guijo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| |
Collapse
|
5
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Song D, Adrover JM, Felice C, Christensen LN, He XY, Merrill JR, Wilkinson JE, Janowitz T, Lyons SK, Egeblad M, Tonks NK. PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. JCI Insight 2022; 7:158199. [PMID: 35866483 PMCID: PMC9431713 DOI: 10.1172/jci.insight.158199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Acute lung injury (ALI) can cause acute respiratory distress syndrome (ARDS), a lethal condition with limited treatment options and currently a common global cause of death due to COVID-19. ARDS secondary to transfusion-related ALI (TRALI) has been recapitulated preclinically by anti–MHC-I antibody administration to LPS-primed mice. In this model, we demonstrate that inhibitors of PTP1B, a protein tyrosine phosphatase that regulates signaling pathways of fundamental importance to homeostasis and inflammation, prevented lung injury and increased survival. Treatment with PTP1B inhibitors attenuated the aberrant neutrophil function that drives ALI and was associated with release of myeloperoxidase, suppression of neutrophil extracellular trap (NET) formation, and inhibition of neutrophil migration. Mechanistically, reduced signaling through the CXCR4 chemokine receptor, particularly to the activation of PI3Kγ/AKT/mTOR, was essential for these effects, linking PTP1B inhibition to promoting an aged-neutrophil phenotype. Considering that dysregulated activation of neutrophils has been implicated in sepsis and causes collateral tissue damage, we demonstrate that PTP1B inhibitors improved survival and ameliorated lung injury in an LPS-induced sepsis model and improved survival in the cecal ligation and puncture–induced (CLP-induced) sepsis model. Our data highlight the potential for PTP1B inhibition to prevent ALI and ARDS from multiple etiologies.
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York, USA
| | - Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Christy Felice
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Joseph R Merrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - John E Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
7
|
Landoni VI, Pittaluga JR, Carestia A, Castillo LA, Nebel MDC, Martire-Greco D, Birnberg-Weiss F, Schattner M, Schierloh P, Fernández GC. Neutrophil Extracellular Traps Induced by Shiga Toxin and Lipopolysaccharide-Treated Platelets Exacerbate Endothelial Cell Damage. Front Cell Infect Microbiol 2022; 12:897019. [PMID: 35811684 PMCID: PMC9262415 DOI: 10.3389/fcimb.2022.897019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is the most common cause of acute renal failure in the pediatric population. The etiology of HUS is linked to Gram-negative, Shiga toxin (Stx)-producing enterohemorrhagic bacterial infections. While the effect of Stx is focused on endothelial damage of renal glomerulus, cytokines induced by Stx or bacterial lipopolysaccharide (LPS) and polymorphonuclear cells (PMNs) are involved in the development of the disease. PMN release neutrophil extracellular traps (NETs) to eliminate pathogens, although NETs favor platelets (Plts) adhesion/thrombus formation and can cause tissue damage within blood vessels. Since thrombus formation and occlusion of vessels are characteristic of HUS, PMN–Plts interaction in the context of Stx may promote netosis and contribute to the endothelial damage observed in HUS. The aim of this study was to determine the relevance of netosis induced by Stx in the context of LPS-sensitized Plts on endothelial damage. We observed that Stx2 induced a marked enhancement of netosis promoted by Plts after LPS stimulation. Several factors seemed to promote this phenomenon. Stx2 itself increased the expression of its receptor on Plts, increasing toxin binding. Stx2 also increased LPS binding to Plts. Moreover, Stx2 amplified LPS induced P-selectin expression on Plts and mixed PMN–Plts aggregates formation, which led to activation of PMN enhancing dramatically NETs formation. Finally, experiments revealed that endothelial cell damage mediated by PMN in the context of Plts treated with LPS and Stx2 was decreased when NETs were disrupted or when mixed aggregate formation was impeded using an anti-P-selectin antibody. Using a murine model of HUS, systemic endothelial damage/dysfunction was decreased when NETs were disrupted, or when Plts were depleted, indicating that the promotion of netosis by Plts in the context of LPS and Stx2 plays a fundamental role in endothelial toxicity. These results provide insights for the first time into the pivotal role of Plts as enhancers of endothelial damage through NETs promotion in the context of Stx and LPS. Consequently, therapies designed to reduce either the formation of PMN–Plts aggregates or NETs formation could lessen the consequences of endothelial damage in HUS.
Collapse
Affiliation(s)
- Verónica Inés Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Jose R. Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Agostina Carestia
- Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Luis Alejandro Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marcelo de Campos Nebel
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Mirta Schattner
- Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Pablo Schierloh
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Gabriela C. Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- *Correspondence: Gabriela C. Fernández, ;
| |
Collapse
|
8
|
Hiyoshi T, Domon H, Maekawa T, Tamura H, Isono T, Hirayama S, Sasagawa K, Takizawa F, Tabeta K, Terao Y. Neutrophil elastase aggravates periodontitis by disrupting gingival epithelial barrier via cleaving cell adhesion molecules. Sci Rep 2022; 12:8159. [PMID: 35581391 PMCID: PMC9114116 DOI: 10.1038/s41598-022-12358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophil elastase (NE) functions as a host defense factor; however, excessive NE activity can potentially destroy human tissues. Although NE activity is positively correlated to gingival crevicular fluid and clinical attachment loss in periodontitis, the underlying mechanisms by which NE aggravates periodontitis remain elusive. In this study, we investigated how NE induces periodontitis severity and whether NE inhibitors were efficacious in periodontitis treatment. In a ligature-induced murine model of periodontitis, neutrophil recruitment, NE activity, and periodontal bone loss were increased in the periodontal tissue. Local administration of an NE inhibitor significantly decreased NE activity in periodontal tissue and attenuated periodontal bone loss. Furthermore, the transcription of proinflammatory cytokines in the gingiva, which was significantly upregulated in the model of periodontitis, was significantly downregulated by NE inhibitor injection. An in vitro study demonstrated that NE cleaved cell adhesion molecules, such as desmoglein 1, occludin, and E-cadherin, and induced exfoliation of the epithelial keratinous layer in three-dimensional human oral epithelial tissue models. The permeability of fluorescein-5-isothiocyanate-dextran or periodontal pathogen was significantly increased by NE treatment in the human gingival epithelial monolayer. These findings suggest that NE induces the disruption of the gingival epithelial barrier and bacterial invasion in periodontal tissues, aggravating periodontitis.
Collapse
Affiliation(s)
- Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-shi, Niigata, 951-8514, Japan. .,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
9
|
Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infect Immun 2022; 90:e0061421. [PMID: 35467397 DOI: 10.1128/iai.00614-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis.
Collapse
|
10
|
McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN, Orlicky DJ, Kovacs EJ. Age-Related Intestinal Dysbiosis and Enrichment of Gut-specific Bacteria in the Lung Are Associated With Increased Susceptibility to Streptococcus pneumoniae Infection in Mice. FRONTIERS IN AGING 2022; 3:859991. [PMID: 35392033 PMCID: PMC8986162 DOI: 10.3389/fragi.2022.859991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The portion of the global population that is over the age of 65 is growing rapidly and this presents a number of clinical complications, as the aged population is at higher risk for various diseases, including infection. For example, advanced age is a risk factor for heightened morbidity and mortality following infection with Streptococcus pneumoniae. This increased vulnerability is due, at least in part, to age-related dysregulation of the immune response, a phenomenon termed immunosenescence. However, our understanding of the mechanisms influencing the immunosenescent state and its effects on the innate immune response to pneumonia remain incomplete. Recently, a role for the gut microbiome in age-specific alterations in immunity has been described. Here, we utilized a murine model of intranasal Streptococcus pneumoniae infection to investigate the effects of age on both the innate immune response and the intestinal microbial populations after infection. In aged mice, compared to their younger counterparts, infection with Streptococcus pneumoniae led to increased mortality, impaired lung function and inadequate bacterial control. This poor response to infection was associated with increased influx of neutrophils into the lungs of aged mice 24 h after infection. The exacerbated pulmonary immune response was not associated with increased pro-inflammatory cytokines in the lung compared to young mice but instead heightened expression of immune cell recruiting chemokines by lung neutrophils. Bacterial 16S-rRNA gene sequencing of the fecal microbiome of aged and young-infected mice revealed expansion of Enterobacteriaceae in the feces of aged, but not young mice, after infection. We also saw elevated levels of gut-derived bacteria in the lung of aged-infected mice, including the potentially pathogenic symbiote Escherichia coli. Taken together, these results reveal that, when compared to young mice, Streptococcus pneumoniae infection in age leads to increased lung neutrophilia along with potentially pathogenic alterations in commensal bacteria and highlight potential mechanistic targets contributing to the increased morbidity and mortality observed in infections in age.
Collapse
Affiliation(s)
- Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
| | - Holly J. Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- Immunology Graduate Program, University of Colorado Denver, Aurora, CO, United States
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
| | - Daniel N. Frank
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, United States
| | - David J. Orlicky
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Alcohol Research Program, Burn Research Program, University of Colorado Denver, Aurora, CO, United States
- GI and Liver Innate Immune Program, University of Colorado Denver, Aurora, CO, United States
- Immunology Graduate Program, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
11
|
Moll M, Reichel K, Nurjadi D, Förmer S, Krall LJ, Heeg K, Hildebrand D. Notch Ligand Delta-Like 1 Is Associated With Loss of Vascular Endothelial Barrier Function. Front Physiol 2021; 12:766713. [PMID: 34955884 PMCID: PMC8703021 DOI: 10.3389/fphys.2021.766713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular leakage associated with vascular endothelial cell (vEC) dysfunction is a hallmark of sepsis. Causative for the decreased integrity of the vascular endothelium (vE) is a complex concurrence of pathogen components, inflammation-associated host factors, and the interaction of vECs and activated circulating immune cells. One signaling pathway that regulates the integrity of the vE is the Notch cascade, which is activated through the binding of a Notch ligand to its respective Notch receptor. Recently, we showed that the soluble form of the Notch ligand Delta-like1 (sDLL1) is highly abundant in the blood of patients with sepsis. However, a direct connection between DLL1-activated Notch signaling and loss of vEC barrier function has not been addressed so far. To study the impact of infection-associated sDLL1, we used human umbilical vein cells (HUVEC) grown in a transwell system and cocultured with blood. Stimulation with sDLL1 induced activation as well as loss of endothelial tight structure and barrier function. Moreover, LPS-stimulated HUVEC activation and increase in endothelial cell permeability could be significantly decreased by blocking DLL1-receptor binding and Notch signaling, confirming the involvement of the cascade in LPS-mediated endothelial dysfunction. In conclusion, our results suggest that during bacterial infection and LPS recognition, DLL1-activated Notch signaling is associated with vascular permeability. This finding might be of clinical relevance in terms of preventing vascular leakage and the severity of sepsis.
Collapse
Affiliation(s)
- Maximilian Moll
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Konrad Reichel
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandra Förmer
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lars Johannes Krall
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dagmar Hildebrand
- Medical Microbiology and Hygiene, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
13
|
Endothelial Dysfunction and Neutrophil Degranulation as Central Events in Sepsis Physiopathology. Int J Mol Sci 2021; 22:ijms22126272. [PMID: 34200950 PMCID: PMC8230689 DOI: 10.3390/ijms22126272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a major health problem worldwide. It is a time-dependent disease, with a high rate of morbidity and mortality. In this sense, an early diagnosis is essential to reduce these rates. The progressive increase of both the incidence and prevalence of sepsis has translated into a significant socioeconomic burden for health systems. Currently, it is the leading cause of noncoronary mortality worldwide and represents one of the most prevalent pathologies both in hospital emergency services and in intensive care units. In this article, we review the role of both endothelial dysfunction and neutrophil dysregulation in the physiopathology of this disease. The lack of a key symptom in sepsis makes it difficult to obtain a quick and accurate diagnosis of this condition. Thus, it is essential to have fast and reliable diagnostic tools. In this sense, the use of biomarkers can be a very important alternative when it comes to achieving these goals. Both new biomarkers and treatments related to endothelial dysfunction and neutrophil dysregulation deserve to be further investigated in order to open new venues for the diagnosis, treatment and prognosis of sepsis.
Collapse
|
14
|
Shen X, Cao K, Zhao Y, Du J. Targeting Neutrophils in Sepsis: From Mechanism to Translation. Front Pharmacol 2021; 12:644270. [PMID: 33912055 PMCID: PMC8072352 DOI: 10.3389/fphar.2021.644270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Although our understanding in the pathophysiological features of sepsis has increased significantly during the past decades, there is still lack of specific treatment for sepsis. Neutrophils are important regulators against invading pathogens, and their role during sepsis has been studied extensively. It has been suggested that the migration, the antimicrobial activity, and the function of neutrophil extracellular traps (NETs) have all been impaired during sepsis, which results in an inappropriate response to primary infection and potentially increase the susceptibility to secondary infection. On the other hand, accumulating evidence has shown that the reversal or restoration of neutrophil function can promote bacterial clearance and improve sepsis outcome, supporting the idea that targeting neutrophils may be a promising strategy for sepsis treatment. In this review, we will give an overview of the role of neutrophils during sepsis and discuss the potential therapeutic strategy targeting neutrophils.
Collapse
Affiliation(s)
- Xiaofei Shen
- Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ke Cao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangdong, China
| |
Collapse
|
15
|
Bian S, Cai H, Cui Y, Liu W, Xiao C. Nanomedicine-Based Therapeutics to Combat Acute Lung Injury. Int J Nanomedicine 2021; 16:2247-2269. [PMID: 33776431 PMCID: PMC7987274 DOI: 10.2147/ijn.s300594] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) may lead to a life-threatening form of respiratory failure, resulting in high mortality of up to 30-40% in most studies. Although there have been decades of research since ALI was first described in 1967, the clinical therapeutic alternatives for ALI are still in a state of limited availability. Supportive treatment and mechanical ventilation still have priority. Despite some preclinical studies demonstrating the benefit of pharmacological interventions, none of these has been proved completely effective to date. Recent advances in nanotechnology may shed new light on the pharmacotherapy of ALI. Nanomedicine possesses targeting and synergistic therapeutic capability, thus boosting pharmaceutical efficacy and mitigating the side effects. Currently, a variety of nanomedicine with diverse frameworks and functional groups have been elaborately developed, in accordance with their lung targeting ability and the pathophysiology of ALI. The in-depth review of the current literature reveals that liposomes, polymers, inorganic materials, cell membranes, platelets, and other nanomedicine approaches have conferred attractive therapeutic benefits for ALI treatment. In this review, we explore the recent progress in the study of the nanomedicine-based therapy of ALI, presenting various nanomedical approaches, drug choices, therapeutic strategies, and outcomes, thereby providing insight into the trends.
Collapse
Affiliation(s)
- Shuai Bian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| |
Collapse
|
16
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
17
|
Brinkworth JF, Valizadegan N. Sepsis and the evolution of human increased sensitivity to lipopolysaccharide. Evol Anthropol 2021; 30:141-157. [PMID: 33689211 DOI: 10.1002/evan.21887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/29/2020] [Accepted: 01/30/2021] [Indexed: 01/03/2023]
Abstract
Among mammals, humans are exquisitely sensitive to lipopolysaccharide (LPS), an environmentally pervasive bacterial cell membrane component. Very small doses of LPS trigger powerful immune responses in humans and can even initiate symptoms of sepsis. Close evolutionary relatives such as African and Asian monkeys require doses that are an order of magnitude higher to do the same. Why humans have evolved such an energetically expensive antimicrobial strategy is a question that biological anthropologists are positioned to help address. Here we compare LPS sensitivity in primate/mammalian models and propose that human high sensitivity to LPS is adaptive, linked to multiple immune tactics against pathogens, and part of multi-faceted anti-microbial strategy that strongly overlaps with that of other mammals. We support a notion that LPS sensitivity in humans has been driven by microorganisms that constitutively live on us, and has been informed by human behavioral changes over our species' evolution (e.g., meat eating, agricultural practices, and smoking).
Collapse
Affiliation(s)
- Jessica F Brinkworth
- Evolutionary Immunology and Genomics Laboratory, Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Negin Valizadegan
- Evolutionary Immunology and Genomics Laboratory, Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Budanova DA, Antyufeeva ON, Ilgisonis IS, Sokolova IY, Belenkov YN, Ershov VI, Bochkarnikova OV, Gadaev IY. [Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow]. ACTA ACUST UNITED AC 2020; 60:1390. [PMID: 33487150 DOI: 10.18087/cardio.2020.11.n1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022]
Abstract
Aim To study changes in markers for myocardial direct injury and dysfunction and endothelial dysfunction (ED) indexes in patients with indolent lymphoma during the antitumor treatment.Material and methods Current antitumor therapy for lymphoma is often associated with cardio- and vasculotoxicity, studying of which is a relevant scientific direction. Markers for myocardial direct injury and dysfunction and ED indexes were studied in patients with indolent lymphomas receiving polychemotherapy (PCT). The study included 77 patients with newly diagnosed indolent type lymphoma. The main group (n=52): mean age, 63.4±2.8 years, 15 (28.8 %) men who had received one course of PCT. The comparison group (n=25): mean age, 61.8±3.7 years, 8 (32 %) men who had not received PCT. Troponin I (TnI), high-sensitivity troponin I (hs-сTnI), heart-type fatty acid binding protein (h-FAВР), and N-terminal pro-B-type natriuretic peptide (NT-prоBNP) were measured in patients of both groups. ED was evaluated by measuring the level of vascular cell adhesion molecule (VCAM) and by assessing the structure and function condition of small blood vessels using photoplethysmography. In both groups, the study parameters were determined at the start of the study (T1) and following the PCT course in the main group; if the PCT schedule included anthracycline antibiotics, the second point (T2) was assessed at 6 h following the drug administration.Results In both groups, the level of NT-proBNP was increased. This increase was significantly more pronounced in the comparison group (49.896±23.228 vs 20.877±8.534 pmol/l, respectively, p=0.011) whereas a tendency to its increase was observed after the PCT course. Before the start of the treatment, laboratory and instrumental signs of ED were noticed: the level of VCAM was 4951±1297 and 3225±757 ng/ml in the comparison group and the main group, respectively (р=0.246); reflection index was <1.8 in 23 (44.2%) patients of the main group and in 16 (64%) patients of the comparison group (р=0.098). During the PTC course, the endothelial function significantly improved; the level of VCAM decreased by 748 ng/ml (p=0.016), which was associated with significant decreases in erythrocyte sedimentation rate by 2.71 mm/h (р=0.027) and lactate dehydrogenase level by 62.38 U/l (р=0.026). Statistically significant decreases in other inflammatory markers (alpha-2-globulin, fibrinogen, C-reactive protein, neutrophil count) were not observed.Conclusion The level of NT-proBNP showed the highest sensitivity in assessing the cardiotoxic effect of PCT. The dynamics of VCAM level suggested a possible role of the disease itself in the development of ED in this patient group.
Collapse
Affiliation(s)
- D A Budanova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - O N Antyufeeva
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - I S Ilgisonis
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - I Ya Sokolova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - Yu N Belenkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - V I Ershov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - O V Bochkarnikova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| | - I Yu Gadaev
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow
| |
Collapse
|
19
|
Ye W, Chen X, Huang Y, Li Y, Xu Y, Liang Z, Wu D, Liu X, Li Y. The association between neutrophil-to-lymphocyte count ratio and mortality in septic patients: a retrospective analysis of the MIMIC-III database. J Thorac Dis 2020; 12:1843-1855. [PMID: 32642088 PMCID: PMC7330395 DOI: 10.21037/jtd-20-1169] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Neutrophil-to-lymphocyte count ratio (NLCR) has been shown as a feasible parameter associated with outcomes of tumor patients and an accessible predictor of bacteremia. However, only a handful of research shed the light on the association between NLCR and outcomes of septic patients. This study is aimed to evaluate the association between NLCR and all-cause mortality in a population of adult septic patients. Methods We extracted clinical data from Medical Information Mart for Intensive Care (MIMIC)-III V1.4, a free, large-scale, single-center database. NLCR was computed individually. Patients were categorized by quartiles of NLCR. The associations between NLCR quartiles and 28-day all-cause mortality in septic patients were assessed using Cox proportional hazards models and subgroup analyzes. To evaluate the accuracy of NLCR in predicting 28-day mortality of sepsis, receiver operator characteristic curves (ROC), areas under the curve (AUC), and the Youden's J Index were calculated. Other outcomes included 7-day all-cause mortality, mortality in the intensive care units (ICU), in-hospital mortality and length of ICU stay. Results A total of 3,043 eligible patients were included in the study, of which, 760, 759, 766 and 758 patients were fallen in the first quartile (≤5.89), the second quartile (>5.89, ≤10.69), the third quartile (>10.69, ≤20.25) and the fourth quartile (>20.25) of NLCR, respectively. The 7-day mortality (13.4%, 9.9%, 13.6% and 14.2%; P=0.064) showed no difference in the four quartiles. In multivariate analysis, after adjusting for confounding factors, the highest NLCR quartile (>20.25) was associated with increased 28-day all-cause mortality [hazard ratio (HR) 1.22, 95% Cl: 1.01-1.49; P=0.046]. The areas under the receiver operating characteristic curves (AUROCs) for NLCR was 0.553 (95% CI: 0.529-0.576) for 28-day mortality. Conclusions High NLCR (>20.25) is independently related to increased 28-day all-cause mortality in adult septic patients of a limited sensibility and specificity. Further large multi-center prospective studies are needed to confirm such relationship and to validate whose clinical significance.
Collapse
Affiliation(s)
- Weiyan Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoli Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yuchong Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhenting Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Danlin Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
20
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
21
|
Dinu AR, Rogobete AF, Bratu T, Popovici SE, Bedreag OH, Papurica M, Bratu LM, Sandesc D. Cannabis Sativa Revisited-Crosstalk between microRNA Expression, Inflammation, Oxidative Stress, and Endocannabinoid Response System in Critically Ill Patients with Sepsis. Cells 2020; 9:E307. [PMID: 32012914 PMCID: PMC7072707 DOI: 10.3390/cells9020307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression.
Collapse
Affiliation(s)
- Anca Raluca Dinu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Alexandru Florin Rogobete
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Tiberiu Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Sonia Elena Popovici
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Dorel Sandesc
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| |
Collapse
|
22
|
Kikuchi DS, Campos ACP, Qu H, Forrester SJ, Pagano RL, Lassègue B, Sadikot RT, Griendling KK, Hernandes MS. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. J Neuroinflammation 2019; 16:241. [PMID: 31779628 PMCID: PMC6883676 DOI: 10.1186/s12974-019-1575-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. Methods Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/− mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/− mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. Results Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/− mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/− cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/− mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. Conclusions These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption. Electronic supplementary material The online version of this article (10.1186/s12974-019-1575-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel S Kikuchi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | | | - Hongyan Qu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Steven J Forrester
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Rosana L Pagano
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Ruxana T Sadikot
- Division of Pulmonary and Critical Care, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 308 WMB, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Abstract
Sepsis is a major health problem all over the world. Despite its existence since the time of Hippocrates (470 BC), sepsis is still a serious medical problem for physicians working in both pediatric and adult intensive care units. The most current US FDA-approved drug called recombinant human activated protein C or Drotrecogin-α is also failed in clinical trials and showed similar effects as placebo. The epidemiological data and studies have indicated sepsis as a major socioeconomic burden all over the world. Advances in immunology and genomic medicine have established different immunological mechanisms as major regulators of the pathogenesis of the sepsis. These immunological mechanisms come into action upon activation of several components of the immune system including innate and adaptive immunity. The activation of these immune cells in response to the pathogens or pathogen-associated molecular patterns (PAMPs) responsible for the onset of sepsis is regulated by the metabolic stage of the immune cells called immunometabolism. An alternation in the immunometabolism is responsible for the generation of dysregulated immune response during sepsis and plays a very important role in the process. Thus, it becomes vital to understand the immunometabolic reprograming during sepsis to design future target-based therapeutics depending on the severity. The current review is designed to highlight the importance of immune response and associated immunometabolism during sepsis and its targeting as a future therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Department of Paediatrics and Child Care, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, 4078, Australia.
| |
Collapse
|
24
|
Mai N, Miller-Rhodes K, Knowlden S, Halterman MW. The post-cardiac arrest syndrome: A case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab 2019; 39:939-958. [PMID: 30866740 PMCID: PMC6547189 DOI: 10.1177/0271678x19835552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and multi-organ failure represent hallmarks of the post-cardiac arrest syndrome (PCAS) and predict severe neurological injury and often fatal outcomes. Current interventions for cardiac arrest focus on the reversal of precipitating cardiac pathologies and the implementation of supportive measures with the goal of limiting damage to at-risk tissue. Despite the widespread use of targeted temperature management, there remain no proven approaches to manage reperfusion injury in the period following the return of spontaneous circulation. Recent evidence has implicated the lung as a moderator of systemic inflammation following remote somatic injury in part through effects on innate immune priming. In this review, we explore concepts related to lung-dependent innate immune priming and its potential role in PCAS. Specifically, we propose and investigate the conceptual model of lung-brain coupling drawing from the broader literature connecting tissue damage and acute lung injury with cerebral reperfusion injury. Subsequently, we consider the role that interventions designed to short-circuit lung-dependent immune priming might play in improving patient outcomes following cardiac arrest and possibly other acute neurological injuries.
Collapse
Affiliation(s)
- Nguyen Mai
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Kathleen Miller-Rhodes
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Sara Knowlden
- 2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| | - Marc W Halterman
- 1 Department of Neuroscience, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,2 Center for Neurotherapeutics Discovery, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA.,3 Department of Neurology, School of Medicine and Dentistry, The University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Abstract
In addition to their well-known role as the cellular mediators of immunity, key other roles have been identified for neutrophils during septic shock. Importantly, neutrophils indeed play a critical role in the recently described immunothrombosis concept and in septic shock-induced coagulopathy. Septic shock is one of the most severe forms of infection, characterized by an inadequate host response to the pathogenic organism. This host response involves numerous defense mechanisms with an intense cellular activation, including neutrophil activation. Neutrophils are key cells of innate immunity through complex interactions with vascular cells and their activation may participate in systemic tissue damages. Their activation also leads to the emission of neutrophil extracellular traps, which take part in both pathogen circumscription and phagocytosis, but also in coagulation activation. Neutrophils thus stand at the interface between hemostasis and immunity, called immunothrombosis.The present review will develop a cellular approach of septic shock pathophysiology focusing on neutrophils as key players of septic shock-induced vascular cell dysfunction and of the host response, associating immunity and hemostasis. We will therefore first develop the role of neutrophils in the interplay between innate and adaptive immunity, and will then highlight recent advances in our understanding of immunothrombosis septic shock-induced coagulopathy.
Collapse
|
26
|
Heterogeneity in sepsis: new biological evidence with clinical applications. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:80. [PMID: 30850013 PMCID: PMC6408778 DOI: 10.1186/s13054-019-2372-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
|
27
|
Trentini A, Murganti F, Rosta V, Cervellati C, Manfrinato MC, Spadaro S, Dallocchio F, Volta CA, Bellini T. Hydroxyethyl Starch 130/0.4 Binds to Neutrophils Impairing Their Chemotaxis through a Mac-1 Dependent Interaction. Int J Mol Sci 2019; 20:ijms20040817. [PMID: 30769810 PMCID: PMC6413098 DOI: 10.3390/ijms20040817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 01/04/2023] Open
Abstract
Several studies showed that hydroxyethyl starch (HES), a synthetic colloid used in volume replacement therapies, interferes with leukocyte-endothelium interactions. Although still unclear, the mechanism seems to involve the inhibition of neutrophils' integrin. With the aim to provide direct evidence of the binding of HES to neutrophils and to investigate the influence of HES on neutrophil chemotaxis, we isolated and treated the cells with different concentrations of fluorescein-conjugated HES (HES-FITC), with or without different stimuli (N-Formylmethionine-leucyl-phenylalanine, fMLP, or IL-8). HES internalization was evaluated by trypan blue quenching and ammonium chloride treatment. Chemotaxis was evaluated by under-agarose assay after pretreatment of the cells with HES or a balanced saline solution. The integrin interacting with HES was identified by using specific blocking antibodies. Our results showed that HES-FITC binds to the plasma membrane of neutrophils without being internalized. Additionally, the cell-associated fluorescence increased after stimulation of neutrophils with fMLP (p < 0.01) but not IL-8. HES treatment impaired the chemotaxis only towards fMLP, event mainly ascribed to the inhibition of CD-11b (Mac-1 integrin) activity. Therefore, the observed effect mediated by HES should be taken into account during volume replacement therapies. Thus, HES treatment could be advantageous in clinical conditions where a low activation/recruitment of neutrophils may be beneficial, but may be harmful when unimpaired immune functions are mandatory.
Collapse
Affiliation(s)
- Alessandro Trentini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Murganti
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
- Technische Universität Dresden, Research Center for Regenerative Therapies, 01307 Dresden, Germany.
| | - Valentina Rosta
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlo Cervellati
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Maria Cristina Manfrinato
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Savino Spadaro
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Franco Dallocchio
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Carlo Alberto Volta
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Tiziana Bellini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
28
|
Zhou W, Graham K, Lucendo-Villarin B, Flint O, Hay DC, Bagnaninchi P. Combining stem cell-derived hepatocytes with impedance sensing to better predict human drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:77-83. [PMID: 30572740 DOI: 10.1080/17425255.2019.1558208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: The liver plays a central role in human drug metabolism. To model drug metabolism, the major cell type of the liver, the hepatocyte, is commonly used. Hepatocytes can be derived from human and animal sources, including pluripotent stem cells. Cell-based models have shown promise in modeling human drug exposure. The assays used in those studies are normally 'snap-shot' in nature, and do not provide the complete picture of human drug exposure. Research design and methods: In this study, we employ stem cell-derived hepatocytes and impedance sensing to model human drug toxicity. This impedance-based stem cell assay reports hepatotoxicity in real time after treatment with compounds provided by industry. Results: Using electric cell-substrate impedance Sensing (ECIS), we were able to accurately measure drug toxicity post-drug exposure in real time and more quickly than gold standard biochemical assays. Conclusions: ECIS is robust and non-destructive methodology capable of monitoring human drug exposure with superior performance to current gold standard 'snapshot' assays. We believe that the methodology presented within this article could prove valuable in the quest to better predict off-target effects of drugs in humans.
Collapse
Affiliation(s)
- Wenli Zhou
- a Department of Medical Oncology , Changzheng Hospital, Navy medical University , Shanghai , China
| | - Karen Graham
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Baltasar Lucendo-Villarin
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Oliver Flint
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - David C Hay
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| | - Pierre Bagnaninchi
- b MRC Centre for Regenerative Medicine, 5 Little France Drive , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
29
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
30
|
Leligdowicz A, Chun LF, Jauregui A, Vessel K, Liu KD, Calfee CS, Matthay MA. Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L638-L644. [PMID: 30024307 DOI: 10.1152/ajplung.00286.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic immune activation is the hallmark of sepsis, which can result in endothelial injury and the acute respiratory distress syndrome (ARDS). The aim of this study was to investigate heterogeneity in sepsis-mediated endothelial permeability using primary human pulmonary microvascular endothelial cells (HPMECs) and the electric cell-substrate impedance sensing (ECIS) platform. After plasma removal, cellular component of whole blood from 35 intensive care unit (ICU) patients with early sepsis was diluted with media and stimulated with either lipopolysaccharide (LPS) or control media. Resulting supernatants were cocultured with HPMECs seeded on ECIS plates, and resistance was continually measured. A decrease in resistance signified increased permeability. After incubation, HPMECs were detached and cell adhesion proteins were quantified using flow cytometry and immunohistochemistry, and gene expression was analyzed with quantitative PCR. Significant heterogeneity in endothelial permeability after exposure to supernatants of LPS-stimulated leukocytes was identified. ICU patients with sepsis stratified into one of the following three groups: minimal (9/35, 26%), intermediate (18/35, 51%), and maximal (8/35, 23%) permeability. Maximal permeability was associated with increased intercellular adhesion molecule-1 protein and mRNA expression and decreased vascular endothelial-cadherin mRNA expression. These findings indicate that substantial heterogeneity in pulmonary endothelial permeability is induced by supernatants of LPS-stimulated leukocytes derived from patients with early sepsis and provide insights into some of the mechanisms that induce lung vascular injury. In addition, this in vitro model of lung endothelial permeability from LPS-stimulated leukocytes may be a useful method for testing therapeutic agents that could mitigate endothelial injury in early sepsis.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Cardiovascular Research Institute, University of California , San Francisco, California.,Interdepartmental Division of Critical Care Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Lauren F Chun
- Cardiovascular Research Institute, University of California , San Francisco, California
| | - Alejandra Jauregui
- Cardiovascular Research Institute, University of California , San Francisco, California
| | - Kathryn Vessel
- Cardiovascular Research Institute, University of California , San Francisco, California
| | - Kathleen D Liu
- Cardiovascular Research Institute, University of California , San Francisco, California.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California , San Francisco, California
| | - Carolyn S Calfee
- Cardiovascular Research Institute, University of California , San Francisco, California.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California , San Francisco, California
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California , San Francisco, California.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California , San Francisco, California.,Departments of Medicine and Anesthesia, University of California , San Francisco, California
| |
Collapse
|
31
|
Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. J Immunol Res 2018; 2018:8173983. [PMID: 29850639 PMCID: PMC5937416 DOI: 10.1155/2018/8173983] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Following severe tissue injury, patients are exposed to various danger- and microbe-associated molecular patterns, which provoke a strong activation of the neutrophil defense system. Neutrophils trigger and modulate the initial posttraumatic inflammatory response and contribute critically to subsequent repair processes. However, severe trauma can affect central neutrophil functions, including circulation half-life, chemokinesis, phagocytosis, cytokine release, and respiratory burst. Alterations in neutrophil biology may contribute to trauma-associated complications, including immune suppression, sepsis, multiorgan dysfunction, and disturbed tissue regeneration. Furthermore, there is evidence that neutrophil actions depend on the quality of the initial stimulus, including trauma localization and severity, the micromilieu in the affected tissue, and the patient's overall inflammatory status. In the present review, we describe the effects of severe trauma on the neutrophil phenotype and dysfunction and the consequences for tissue repair. We particularly concentrate on the role of neutrophils in wound healing, lung injury, and bone fractures, because these are the most frequently affected tissues in severely injured patients.
Collapse
|
32
|
Abstract
Experimental models of sepsis in small and large animals and a variety of in vitro preparations have established several basic mechanisms that drive endothelial injury. This review is focused on what can be learned from the results of clinical studies of plasma biomarkers of endothelial injury and inflammation in patients with sepsis. There is excellent evidence that elevated plasma levels of several biomarkers of endothelial injury, including von Willebrand factor antigen (VWF), angiopoietin-2 (Ang-2), and soluble fms-like tyrosine kinase 1 (sFLT-1), and biomarkers of inflammation, especially interleukin-8 (IL-8) and soluble tumor necrosis factor receptor (sTNFr), identify sepsis patients with a higher mortality. There are also some data that elevated levels of endothelial biomarkers can identify which patients with non-pulmonary sepsis will develop acute respiratory distress syndrome (ARDS). If ARDS patients are divided among those with indirect versus direct lung injury, then there is an association of elevated levels of endothelial biomarkers in indirect injury and markers of inflammation and alveolar epithelial injury in patients with direct lung injury. New research suggests that the combination of biologic and clinical markers may make it possible to segregate patients with ARDS into hypo- versus hyper-inflammatory phenotypes that may have implications for therapeutic responses to fluid therapy. Taken together, the studies reviewed here support a primary role of the microcirculation in the pathogenesis and prognosis of ARDS after sepsis. Biological differences identified by molecular patterns could explain heterogeneity of treatment effects that are not explained by clinical factors alone.
Collapse
Affiliation(s)
- Carolyn M. Hendrickson
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, USA
- Michael A. Matthay, 505 Parnassus Avenue, San Francisco, CA 94117, USA.
| |
Collapse
|
33
|
Dickinson CM, LeBlanc BW, Edhi MM, Heffernan DS, Faridi MH, Gupta V, Cioffi WG, O'Brien X, Reichner JS. Leukadherin-1 ameliorates endothelial barrier damage mediated by neutrophils from critically ill patients. J Intensive Care 2018; 6:19. [PMID: 29568527 PMCID: PMC5855997 DOI: 10.1186/s40560-018-0289-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background Multi-organ failure occurs during critical illness and is mediated in part by destructive neutrophil-to-endothelial interactions. The β2 integrin receptor, CR3 (complement receptor 3; Mac-1; CD11b/CD18), which binds endothelial intercellular adhesion molecule-1 (ICAM-1), plays a key role in promoting the adhesion of activated neutrophils to inflamed endothelia which, when prolonged and excessive, can cause vascular damage. Leukadherin-1 (LA-1) is a small molecule allosteric activator of CR3 and has been shown to promote adhesion of blood neutrophils to inflamed endothelium and restrict tissue infiltration. Therefore, LA-1 offers a novel mechanism of anti-inflammatory action by activation, rather than inhibition, of the neutrophil CR3 integrin. However, whether promotion of neutrophil-to-endothelial interaction by this novel therapeutic is of benefit or detriment to endothelial barrier function is not known. Methods Critically ill septic and trauma patients were prospectively enrolled from the surgical and the trauma ICU. Blood was collected from these patients and healthy volunteers. Neutrophils were isolated by dextran sedimentation and adhered to TNF-α (tumor necrosis factor-α)-activated human umbilical vein endothelial (HUVEC) monolayers in the presence or absence of fMLP (formylmethionine-leucine-phenylalanine) and/or LA-1. Electric cell-substrate impedance sensing (ECIS) and exposure of underlying collagen were used to quantify endothelial barrier function and permeability. Results Neutrophils from critically ill trauma and septic patients caused similar degrees of endothelial barrier disruption which exceeded that caused by cells obtained from healthy controls both kinetically and quantitatively. LA-1 protected barrier function in the absence and presence of fMLP which served as a secondary stimulant to cause maximal loss of barrier function. LA-1 protection was also observed by quantifying collagen exposure underlying endothelial cells challenged with fMLP-stimulated neutrophils. LA-1 treatment resulted in decreased migration dynamics of neutrophils crawling on an endothelial monolayer with reduced speed (μm/s = 0.25 ± 0.01 vs. 0.06 ± 0.01, p < 0.05), path length (μm = 199.5 ± 14.3 vs. 42.1 ± 13.0, p < 0.05), and displacement (μm = 65.2 ± 4.7 vs. 10.4 ± 1.3; p < 0.05). Conclusion Neutrophils from patients with trauma or sepsis cause endothelial barrier disruption to a similar extent relative to each other. The CR3 agonist LA-1 protects endothelial barrier function from damage caused by neutrophils obtained from both populations of critically ill patients even when exposed to secondary stimulation.
Collapse
Affiliation(s)
- Catherine M Dickinson
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Brian W LeBlanc
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Muhammad M Edhi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Daithi S Heffernan
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Mohd Hafeez Faridi
- 2College of Pharmacy, Chicago State University, Chicago, IL USA.,3Rush University Medical Center, Chicago, IL USA
| | - Vineet Gupta
- 3Rush University Medical Center, Chicago, IL USA
| | - William G Cioffi
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Xian O'Brien
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| | - Jonathan S Reichner
- 1Rhode Island Hospital Division of Surgical Research, Department of Surgery, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|
34
|
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is known to induce vascular derangements. The pathophysiology involved therein is unknown, but matrix metalloproteinases (MMPs) may be an important mediator. We hypothesized that in vitro LPS provokes vascular permeability, damages endothelial structural proteins, and increases MMP activity; that in vivo LPS increases permeability and fluid requirements; and that the MMP inhibitor doxycycline mitigates such changes. METHODS Rat lung microvascular endothelial cells were divided into four groups: control, LPS, LPS plus doxycycline, and doxycycline. Permeability, structural proteins β-catenin and Filamentous-actin, and MMP-9 activity were examined. Sprauge Dawley rats were divided into sham, IV LPS, and IV LPS plus IV doxycycline groups. Mesenteric postcapillary venules were observed. Blood pressure was measured as animals were resuscitated and fluid requirements were compared. Statistical analysis was conducted using Student's t-test and ANOVA. RESULTS In vitro LPS increased permeability, damaged adherens junctions, induced actin stress fiber formation, and increased MMP-9 enzyme activity. In vivo, IV LPS administration induced vascular permeability. During resuscitation, significantly more fluid was necessary to maintain normotension in the IV LPS group. Doxycycline mitigated all derangements observed. CONCLUSIONS We conclude that LPS increases permeability, damages structural proteins, and increases MMP-9 activity in endothelial cells. Additionally, endotoxemia induces hyperpermeability and increases the amount of IV fluid required to maintain normotension in vivo. Doxycycline mitigates such changes both in vitro and in vivo. Our findings illuminate the possible role of matrix metalloproteinases in the pathophysiology of lipopolysaccharide-induced microvascular hyperpermeability and pave the way for better understanding and treatment of this process.
Collapse
|
35
|
Halbgebauer R, Schmidt CQ, Karsten CM, Ignatius A, Huber-Lang M. Janus face of complement-driven neutrophil activation during sepsis. Semin Immunol 2018; 37:12-20. [PMID: 29454576 DOI: 10.1016/j.smim.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Abstract
During local and systemic inflammation, the complement system and neutrophil granulocytes are activated not only by pathogens, but also by released endogenous danger signals. It is recognized increasingly that complement-mediated neutrophil activation plays an ambivalent role in sepsis pathophysiology. According to the current definition, the onset of organ dysfunction is a hallmark of sepsis. The preceding organ damage can be caused by excessive complement activation and neutrophil actions against the host, resulting in bystander injury of healthy tissue. However, in contrast, persistent and overwhelming inflammation also leads to a reduction in neutrophil responsiveness as well as complement components and thus may render patients at enhanced risk of spreading infection. This review provides an overview on the molecular and cellular processes that link complement with the two-faced functional alterations of neutrophils in sepsis. Finally, we describe novel tools to modulate this interplay beneficially in order to improve outcome.
Collapse
Affiliation(s)
- R Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Helmholtzstr. 8/1, 89081 Ulm, Germany.
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstr. 20, 89081 Ulm, Germany.
| | - C M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany.
| | - A Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstr. 14, 89081 Ulm, Germany.
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Hospital, Helmholtzstr. 8/1, 89081 Ulm, Germany.
| |
Collapse
|
36
|
Septicemia is associated with increased risk for dementia: a population-based longitudinal study. Oncotarget 2017; 8:84300-84308. [PMID: 29137424 PMCID: PMC5663596 DOI: 10.18632/oncotarget.20899] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Background Systemic infection has been linked to cognitive impairment. We hypothesized that patients with septicemia are predisposed to increased risks for developing dementia in a long-term setting. Methods This observational, retrospective, longitudinal, nation-wide population-based study was conducted using the data deduced from Longitudinal Health Insurance Database (LHID) in Taiwan. All patients with septicemia hospitalized for the first time from 2001 to 2011 without prior dementia were included. The development of Alzheimer's disease (AD) or non-Alzheimer dementias (NAD) in relation to the development of septicemia for each patient was recorded. An age- and sex-matched cohort without septicemia and without prior dementia served as the control. Septicemia, dementia, and other confounding factors were defined according to International Classification of Diseases Clinical Modification Codes. Cox proportional-hazards regressions were utilized to analyze adjusted hazard ratios. Results Patients with septicemia had a higher risk for developing dementia based on hazard ratios (HRs) (p<0.001). Patients with septicemia in the younger age groups had a greater dementia risk (p<0.01). Septicemia was associated with subsequent NAD (p<0.001), whereas the increased risk of AD was statistically insignificant (p>0.05). Furthermore, higher severity of septicemia was associated with increased risk of developing dementia. Conclusions Our findings suggest that septicemia is associated with an increased risk in developing NAD but not AD. A likely causal role of septicemia in increasing the risk of NAD is suggested, according to the findings that patients with higher severity of septicemia carried greater risk of sustaining dementia.
Collapse
|
37
|
Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 2017; 22:1808-1815. [PMID: 28778587 DOI: 10.1016/j.drudis.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Drug development requires physiologically more appropriate model systems and assays to increase understanding of drug action and pathological processes in individual humans. Specifically, patient-derived cells offer great opportunities as representative cellular model systems. Moreover, with novel label-free cellular assays, it is often possible to investigate complex biological processes in their native environment. Combining these two offers distinct opportunities for increasing physiological relevance. Here, we review impedance-based label-free technologies in the context of patient samples, focusing on commonly used cell types, including fibroblasts, blood components, and stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free technologies to patient samples can produce highly biorelevant data and, with them, unique opportunities for drug development and precision medicine.
Collapse
Affiliation(s)
- Julia M Hillger
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Wai-Ling Lieuw
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands.
| |
Collapse
|
38
|
Kho DT, Johnson R, Robilliard L, du Mez E, McIntosh J, O’Carroll SJ, Angel CE, Graham ES. ECIS technology reveals that monocytes isolated by CD14+ve selection mediate greater loss of BBB integrity than untouched monocytes, which occurs to a greater extent with IL-1β activated endothelium in comparison to TNFα. PLoS One 2017; 12:e0180267. [PMID: 28732059 PMCID: PMC5521748 DOI: 10.1371/journal.pone.0180267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background We have previously shown that TNFα and IL-1β differentially regulate the inflammatory phenotype of human brain endothelial cells (hCMVECs). In this regard, IL-1β treatment was considerably more potent than TNFα at increasing expression of inflammatory chemokines and leukocyte adhesion molecules. We therefore hypothesised that interaction of the hCMVECs with human monocytes would also be dependent on the activation status of the endothelium. Therefore, the primary aim of this study was to assess whether brain endothelial cells activated by IL-1β or TNFα differed in their interaction with monocytes. Methods Monocyte interaction was measured using the real time, label-free impedance based ECIS technology, to evaluate endothelial barrier integrity during monocyte attachment and transendothelial migration. Results ECIS technology revealed that there was a greater loss of barrier integrity with IL-1β activation and this loss lasted for longer. This was expected and consistent with our hypothesis. However, more striking and concerning was the observation that the method of monocyte enrichment greatly influenced the extent of endothelial barrier compromise. Importantly, we observed that positively isolated monocytes (CD14+ve) caused greater reduction in barrier resistance, than the negatively selected monocytes (untouched). Analysis of the isolated monocyte populations revealed that the CD14+ve isolation consistently yields highly pure monocytes (>92%), whereas the untouched isolation was much more variable, yielding ~70% enrichment on average. These two enrichment methods were compared as it was thought that the presence of non-classical CD16hi monocytes in the untouched enrichment may mediate greater compromise than the classical CD14hi monocytes. This however, was not the case and these observations raise a number of important considerations pertaining to the enrichment strategy, which are essential for generating reliable and consistent data. Conclusions We conclude that IL-1β and TNFα differentially influence monocyte interaction with brain endothelial cells and moreover, the enrichment method also influences the monocyte response as revealed using ECIS technology.
Collapse
Affiliation(s)
- Dan Ting Kho
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rebecca Johnson
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Laverne Robilliard
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Elyce du Mez
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - Julie McIntosh
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - Simon J. O’Carroll
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckalnd, New Zealand
| | - E. Scott Graham
- Centre for Brain Research, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
39
|
Krüger-Genge A, Jung F, Fuhrmann R, Franke RP. Shear resistance of endothelial cells in a pathological environment. Clin Hemorheol Microcirc 2017; 64:383-389. [DOI: 10.3233/ch-168111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Clinical Hemostaseology and Transfusion Medicine, University of Saarland, Germany
| | - Rosemarie Fuhrmann
- Department of Biomaterials, Central Institute for Biomedical Engineering, University of Ulm, Ulm, Germany
| | - Ralf-Peter Franke
- Department of Biomaterials, Central Institute for Biomedical Engineering, University of Ulm, Ulm, Germany
| |
Collapse
|
40
|
Jiang Y, Zeng Y, Huang X, Qin Y, Luo W, Xiang S, Sooranna SR, Pinhu L. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1023-L1035. [PMID: 27765761 PMCID: PMC5206403 DOI: 10.1152/ajplung.00043.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.
Collapse
MESH Headings
- A549 Cells
- Active Transport, Cell Nucleus/drug effects
- Animals
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Endothelin-1/metabolism
- Kidney/drug effects
- Kidney/pathology
- Lipopolysaccharides/pharmacology
- Liver/drug effects
- Liver/pathology
- Lung/drug effects
- Lung/metabolism
- Male
- NF-kappa B/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Respiratory Distress Syndrome/enzymology
- Respiratory Distress Syndrome/genetics
- Respiratory Distress Syndrome/pathology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yujie Jiang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yi Zeng
- Department of Central Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xia Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yueqiu Qin
- Department of Digestive, Youjiang Medical University for Nationalities, Baise, Guangxi, China; Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | | | - Shulin Xiang
- Department of Intensive Care Unit, the People's Hospital of Guangxi, Nanning, Guangxi, China
| | - Suren R Sooranna
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdon; and
| | - Liao Pinhu
- Department of Intensive Care Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
41
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
42
|
O'Brien XM, Reichner JS. Neutrophil Integrins and Matrix Ligands and NET Release. Front Immunol 2016; 7:363. [PMID: 27698655 PMCID: PMC5027203 DOI: 10.3389/fimmu.2016.00363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are motile and responsive to tissue injury and infection. As neutrophils emigrate from the bloodstream and migrate toward a site of affliction, they encounter the tissue extracellular matrix (ECM) and thereby engage integrins. Our laboratory studies the neutrophilic response to the fungal pathogen Candida albicans either in the filamentous state of the microbe or to the purified pathogen-associated molecular pattern, β-glucan. We have gained an appreciation for the role of integrins in regulating the neutrophil anti-Candida response and how the presence or absence of ECM can drive experimental outcome. The β2 integrin CR3 (complement receptor 3; αMβ2; Mac-1; CD11b/CD18) plays an important role in fungal recognition by its ability to bind β-glucan at a unique lectin-like domain. The presence of ECM differentially regulates essential neutrophil anti-fungal functions, including chemotaxis, respiratory burst, homotypic aggregation, and the release of neutrophil extracellular traps (NETs). We have shown that NET release to C. albicans hyphae or immobilized β-glucan occurs rapidly and without the requirement for respiratory burst on ECM. This is in contrast to the more frequently reported mechanisms of NETosis to other pathogens without the context of ECM, which occur after a prolonged lag period and require respiratory burst. As expected for an ECM-dependent phenotype, NETosis and other neutrophil functions are dependent on specific integrins. The focus of this review is the role of ECM ligation by neutrophil integrins as it pertains to host defense functions with an emphasis on lessons we have learned studying the anti-Candida response of human neutrophils.
Collapse
Affiliation(s)
- Xian M O'Brien
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
43
|
Uhle F, Chousterman BG, Grützmann R, Brenner T, Weber GF. Pathogenic, immunologic, and clinical aspects of sepsis - update 2016. Expert Rev Anti Infect Ther 2016; 14:917-27. [PMID: 27530423 DOI: 10.1080/14787210.2016.1224971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Sepsis is a major cause of death worldwide but its orchestrating components remain incompletely understood. On the one hand, development of sepsis results from an infectious focus that cannot be controlled by the immune system, but on the other, responding immune cells that can eliminate the infection inflict damage to the host by contributing to complications such as endothelial leakage, septic shock, and multiorgan failure. AREAS COVERED In this review we give a comprehensive overview of how sepsis occurs, which exogenous and endogenous factors might affect the immune-pathophysiological course of sepsis and finally how this knowledge translates into up-to-date definitions and therapeutic approaches. Expert commentary: Although new immunological mechanisms altering the course of sepsis have been identified recently, future research needs to address the limitations of experimental approaches, redirect the research focus into translational approaches, and finally evaluate personalized treatment strategies.
Collapse
Affiliation(s)
- Florian Uhle
- a Department of Anesthesiology , Heidelberg University Hospital , Heidelberg , Germany
| | - Benjamin G Chousterman
- b Department of Anesthesia, Intensive Care and SAMU , Hôpital Lariboisière, AP-HP, and Université Paris Diderot , Paris , France
| | - Robert Grützmann
- c Department of Surgery , University Hospital Erlangen-Nürnberg , Erlangen , Germany
| | - Thorsten Brenner
- a Department of Anesthesiology , Heidelberg University Hospital , Heidelberg , Germany
| | - Georg F Weber
- c Department of Surgery , University Hospital Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
44
|
Severe Hemorrhagic Shock Induces Acute Activation and Expansion of IL-8+/IL-10+ Neutrophils with Enhanced Oxidative Reactivity in Non-Human Primates. Shock 2016; 46:129-36. [DOI: 10.1097/shk.0000000000000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Bratu LM, Rogobete AF, Sandesc D, Bedreag OH, Tanasescu S, Nitu R, Popovici SE, Crainiceanu ZP. The Use of Redox Expression and Associated Molecular Damage to Evaluate the Inflammatory Response in Critically Ill Patient with Severe Burn. Biochem Genet 2016; 54:753-768. [PMID: 27465592 DOI: 10.1007/s10528-016-9763-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/23/2016] [Indexed: 01/28/2023]
Abstract
The patient with severe burns always represents a challenge for the trauma team due to the severe biochemical and physiopathological disorders. Although there are many resuscitation protocols of severe burn patient, systemic inflammatory response, oxidative stress, decreased immune response, infections, and multiple organ dysfunction syndromes are still secondary complications of trauma, present at maximum intensity in this type of patients. Currently there are numerous studies regarding the evaluation, monitoring, and minimizing the side effects induced by free radicals through antioxidant therapy. In this study, we want to introduce biochemical and physiological aspects of oxidative stress in patients with severe burns and to summarize the biomarkers used presently in the intensive care units. Systemic inflammations and infections are according to the literature the most important causes of death in these type of patients, being directly involved in multiple organ dysfunction syndrome and death.
Collapse
Affiliation(s)
- Lavinia Melania Bratu
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Florin Rogobete
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania. .,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania.
| | - Dorel Sandesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Aneshtesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Bd. Iosif Bulbuca nr.10, 300736, Timisoara, Romania
| | - Sonia Tanasescu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Razvan Nitu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | |
Collapse
|
46
|
Bermejo-Martin JF, Andaluz-Ojeda D, Almansa R, Gandía F, Gómez-Herreras JI, Gomez-Sanchez E, Heredia-Rodríguez M, Eiros JM, Kelvin DJ, Tamayo E. Defining immunological dysfunction in sepsis: A requisite tool for precision medicine. J Infect 2016; 72:525-36. [PMID: 26850357 DOI: 10.1016/j.jinf.2016.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Immunological dysregulation is now recognised as a major pathogenic event in sepsis. Stimulation of immune response and immuno-modulation are emerging approaches for the treatment of this disease. Defining the underlying immunological alterations in sepsis is important for the design of future therapies with immuno-modulatory drugs. METHODS Clinical studies evaluating the immunological response in adult patients with Sepsis and published in PubMed were reviewed to identify features of immunological dysfunction. For this study we used key words related with innate and adaptive immunity. RESULTS Ten major features of immunological dysfunction (FID) were identified involving quantitative and qualitative alterations of [antigen presentation](FID1), [T and B lymphocytes] (FID2), [natural killer cells] (FID3), [relative increase in T regulatory cells] (FID4), [increased expression of PD-1 and PD-ligand1](FID5), [low levels of immunoglobulins](FID6), [low circulating counts of neutrophils and/or increased immature forms in non survivors](FID7), [hyper-cytokinemia] (FID8), [complement consumption] (FID9), [defective bacterial killing by neutrophil extracellular traps](FID10). CONCLUSIONS This review article identified ten major features associated with immunosuppression and immunological dysregulation in sepsis. Assessment of these features could help in utilizing precision medicine for the treatment of sepsis with immuno-modulatory drugs.
Collapse
Affiliation(s)
- Jesús F Bermejo-Martin
- Infection and Immunity Medical Investigation Unit (IMI), Hospital Clínico Universitario de Valladolid, SACYL/IECSCYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - David Andaluz-Ojeda
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - Raquel Almansa
- Infection and Immunity Medical Investigation Unit (IMI), Hospital Clínico Universitario de Valladolid, SACYL/IECSCYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - Francisco Gandía
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Medicina Intensiva, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - Jose Ignacio Gómez-Herreras
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - Esther Gomez-Sanchez
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - María Heredia-Rodríguez
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - Jose Maria Eiros
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| | - David J Kelvin
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada; Sezione di Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche, Universita' degli Studi di Sassari, Piazza Università, 21, 07100 Sassari SS, Italy; International Institute of Infection and Immunity, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, PR China.
| | - Eduardo Tamayo
- Grupo de Investigación Biomédica en Cuidados Críticos (BioCritic), Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario de Valladolid, SACYL, Avenida Ramón y Cajal, 3, 47005 Valladolid, Spain.
| |
Collapse
|
47
|
Leliefeld PHC, Wessels CM, Leenen LPH, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:73. [PMID: 27005275 PMCID: PMC4804478 DOI: 10.1186/s13054-016-1250-4] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Critically ill post-surgical, post-trauma and/or septic patients are characterised by severe inflammation. This immune response consists of both a pro- and an anti-inflammatory component. The pro-inflammatory component contributes to (multiple) organ failure whereas occurrence of immune paralysis predisposes to infections. Strikingly, infectious complications arise in these patients despite the presence of a clear neutrophilia. We propose that dysfunction of neutrophils potentially increases the susceptibility to infections or can result in the inability to clear existing infections. Under homeostatic conditions these effector cells of the innate immune system circulate in a quiescent state and serve as the first line of defence against invading pathogens. In severe inflammation, however, neutrophils are rapidly activated, which affects their functional capacities, such as chemotaxis, phagocytosis, intra-cellular killing, NETosis, and their capacity to modulate adaptive immunity. This review provides an overview of the current understanding of neutrophil dysfunction in severe inflammation. We will discuss the possible mechanisms of downregulation of anti-microbial function, suppression of adaptive immunity by neutrophils and the contribution of neutrophil subsets to immune paralysis.
Collapse
Affiliation(s)
- Pieter H C Leliefeld
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands. .,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catharina M Wessels
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luke P H Leenen
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janesh Pillay
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Anesthesiology and Critical Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
48
|
Sharma M, Merkulova Y, Raithatha S, Parkinson LG, Shen Y, Cooper D, Granville DJ. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. FEBS J 2016; 283:1734-47. [PMID: 26936634 DOI: 10.1111/febs.13699] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/25/2016] [Accepted: 02/29/2016] [Indexed: 01/26/2023]
Abstract
Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells.
Collapse
Affiliation(s)
- Mehul Sharma
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yulia Merkulova
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sheetal Raithatha
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Leigh G Parkinson
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yue Shen
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Cooper
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David J Granville
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep 2016; 6:19814. [PMID: 26813587 PMCID: PMC4728386 DOI: 10.1038/srep19814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/30/2015] [Indexed: 01/07/2023] Open
Abstract
Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.
Collapse
|
50
|
|