1
|
Yan K, Lu X, Li W, Sun C, Zhou X, Wang Y. Chloroplast Genome Diversity and Molecular Evolution in Hypericaceae: New Insights from Three Hypericum Species. Int J Mol Sci 2025; 26:323. [PMID: 39796179 PMCID: PMC11719816 DOI: 10.3390/ijms26010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 01/13/2025] Open
Abstract
The Hypericaceae family, comprising nine genera and over seven hundred species, includes Hypericum plants traditionally used for medicinal purposes. In this study, we performed high-throughput sequencing on three Hypericum species: Hypericum acmosepalum, Hypericum addingtonii, and Hypericum beanii, and conducted comparative genomic analyses with related species. The chloroplast genome sizes were 152,654 bp, 122,570 bp, and 137,652 bp, respectively, with an average GC content of 37.9%. All genomes showed a quadripartite structure, with significant variations in IR regions (3231-26,846 bp). The total number of genes ranged from 91 to 129. SSRs were predominantly located in the LSC region, with mononucleotide repeats being dominant. Comparative analysis identified several hotspot regions, including accD, rpoC2, rpoB, and rpl22 in the LSC region and matK, rpl32, rpl33, and rps4 in the SSC region. Nucleotide polymorphism analysis revealed eight highly variable regions and eleven gene loci, providing potential molecular markers for species identification. Phylogenetic analysis indicated that Triadenum and Cratoxylum are closely related to Hypericum, with H. acmosepalum and H. beanii being closest relatives and Hypericum hookerianum as their sister species. These findings provide molecular tools for species identification and insights for conservation strategies of medicinal Hypericum species.
Collapse
Affiliation(s)
- Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.L.); (W.L.); (X.Z.); (Y.W.)
| | - Xin Lu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.L.); (W.L.); (X.Z.); (Y.W.)
| | - Wandi Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.L.); (W.L.); (X.Z.); (Y.W.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xueqiong Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.L.); (W.L.); (X.Z.); (Y.W.)
| | - Youyou Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.L.); (W.L.); (X.Z.); (Y.W.)
| |
Collapse
|
2
|
De BC, Cournoyer J, Gao YL, Wallace CL, Bram S, Mehta AP. Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution. Nat Commun 2024; 15:10622. [PMID: 39658562 PMCID: PMC11632070 DOI: 10.1038/s41467-024-54051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP. Here, we investigate the preferences of plastidic ADP/ATP carrier translocases from key lineages of photosynthetic eukaryotes including red algae, glaucophytes, and land plants. Particularly, we observe that the cyanobacterial endosymbionts expressing plastidic ADP/ATP carrier translocases from red algae and glaucophyte are able to export ATP and support ATP dependent endosymbiosis, whereas those expressing ADP/ATP carrier translocases from land plants preferentially import ATP and are unable to support ATP dependent endosymbiosis. These data are consistent with a scenario where the ancestral plastids may have exported ATP to support the bioenergetic functions of the host cell.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, US.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, US.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US.
| |
Collapse
|
3
|
Sellés J, Alric J, Rutherford AW, Davis GA, Viola S. In vivo ElectroChromic Shift measurements of photosynthetic activity in far-red absorbing cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149502. [PMID: 39127329 DOI: 10.1016/j.bbabio.2024.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
Collapse
Affiliation(s)
- Julien Sellés
- Institute of Physico-Chemical Biology - UMR7141, Paris, France
| | - Jean Alric
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France
| | | | - Geoffry A Davis
- Department of Life Sciences, Imperial College, London, UK; Biology Department, Ludwig-Maximilians University, Munich, Germany
| | - Stefania Viola
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
4
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Gao YL, Cournoyer J, De BC, Wallace CL, Ulanov AV, La Frano MR, Mehta AP. Introducing carbon assimilation in yeasts using photosynthetic directed endosymbiosis. Nat Commun 2024; 15:5947. [PMID: 39013857 PMCID: PMC11252298 DOI: 10.1038/s41467-024-49585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
Conversion of heterotrophic organisms into partially or completely autotrophic organisms is primarily accomplished by extensive metabolic engineering and laboratory evolution efforts that channel CO2 into central carbon metabolism. Here, we develop a directed endosymbiosis approach to introduce carbon assimilation in budding yeasts. Particularly, we engineer carbon assimilating and sugar-secreting photosynthetic cyanobacterial endosymbionts within the yeast cells, which results in the generation of yeast/cyanobacteria chimeras that propagate under photosynthetic conditions in the presence of CO2 and in the absence of feedstock carbon sources like glucose or glycerol. We demonstrate that the yeast/cyanobacteria chimera can be engineered to biosynthesize natural products under the photosynthetic conditions. Additionally, we expand our directed endosymbiosis approach to standard laboratory strains of yeasts, which transforms them into photosynthetic yeast/cyanobacteria chimeras. We anticipate that our studies will have significant implications for sustainable biotechnology, synthetic biology, and experimentally studying the evolutionary adaptation of an additional organelle in yeast.
Collapse
Affiliation(s)
- Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Bidhan C De
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US
| | - Alexander V Ulanov
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US
| | - Michael R La Frano
- Carver Metabolomics Core, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois, US.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois, US.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, US.
| |
Collapse
|
6
|
Zhang Z, Zhang G, Zhang X, Zhang H, Xie J, Zeng R, Guo B, Huang L. The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China. JOURNAL OF PLANT RESEARCH 2024; 137:575-587. [PMID: 38652407 DOI: 10.1007/s10265-024-01539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.
Collapse
Affiliation(s)
- Zhi Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Huihui Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Junbo Xie
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Baolin Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
7
|
Yokoyama R. Sense or nonsense? The role of protein acetylation in cyanobacterial photosynthesis and growth. PLANT PHYSIOLOGY 2024; 194:595-597. [PMID: 37823417 PMCID: PMC10828185 DOI: 10.1093/plphys/kiad545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Ryo Yokoyama
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
8
|
Chen H, Zhang X, Zhang G, Zhang Z, Ma G, Sun Z, Liu C, Huang L. The complete chloroplast genome sequence of Nepeta bracteata and comparison with congeneric species. Gene 2024; 893:147919. [PMID: 37884103 DOI: 10.1016/j.gene.2023.147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nepeta bracteata (N. bracteata) is an important medicinal plant used by Chinese ethnic minorities. However, the lack of knowledge regarding the chloroplast genome of N. bracteata has imposed current limitations on our study. Here, we used Next-generation sequencing to obtain the chloroplast genome of N. bracteata. The findings suggested that the 151,588 bp cp genome of N. bracteata comprises 130 genes, including 35 tRNA genes and 87 protein-coding genes. And its chloroplast genome exhibits a typical quadripartite structure, the largest single copy (LSC; 82,819 bp) and the smallest single copy (SSC; 17,557 bp) separate a pair of inverted repeats IR regions (IRa and IRb; 25,606 bp) from one another. Interestingly, palindromic repeats are more common, as shown by the examination of repetition. In the interim, 18 SSRs were discovered in the interim, the bulk of which were Adenine-Thymine (A-T) mononucleotides. Meanwhile, we compared it with five other species from the Nepeta genus. Five hypervariable areas were found by the study, including ndhH-rps15, accD-psal, ndhG-ndhl, trnH-GUG-psbA, and rpoC1-rpoB. Furthermore, the phylogenetic study revealed that N. bracteata and Nepeta stewartiana (N. stewartiana) were linked to each other most closely. In summary, our findings enrich the resources available for chloroplast genomes in the Nepeta genus. Moreover, these hypervariable regions have the potential to be developed into molecular markers, enabling the rapid identification of species within the Nepeta genus. Comparative analysis of species within the Nepeta genus can help enhance our study of their phylogenetic relationships, potential medicinal properties and bioprospecting.
Collapse
Affiliation(s)
- Haiyu Chen
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoshuai Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhi Zhang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhaocui Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Linfang Huang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
9
|
Balaga RR, Itoh F, Chauhan S, Mandal M, Krishna PS, Suzuki I, Prakash JSS. Sll1252 Coordinates Electron Transport between Plastoquinone and Cytochrome b6/f Complex in Synechocystis PCC 6803. Genes (Basel) 2023; 14:2151. [PMID: 38136973 PMCID: PMC10743179 DOI: 10.3390/genes14122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
A mutant, Δsll1252ins, was generated to functionally characterize Sll1252. Δsll1252ins exhibited a slow-growth phenotype at 70 µmol photons m-2 s-1 and glucose sensitivity. In Δsll1252ins, the rate of PSII activity was not affected, whereas the whole chain electron transport activity was reduced by 45%. The inactivation of sll1252 led to the upregulation of genes, which were earlier reported to be induced in DBMIB-treated wild-type, suggesting that Sll1252 may be involved in electron transfer from the reduced-PQ pool to Cyt b6/f. The inhibitory effect of DCMU on PSII activity was similar in both wild-type and Δsll1252ins. However, the concentration of DBMIB for 50% inhibition of whole chain electron transport activity was 140 nM for Δsll1252ins and 300 nM for wild-type, confirming the site of action of Sll1252. Moreover, the elevated level of the reduced-PQ pool in Δsll1252ins supports that Sll1252 functions between the PQ pool and Cyt b6/f. Interestingly, we noticed that Δsll1252ins reverted to wild-type phenotype by insertion of natural transposon, ISY523, at the disruption site. Δsll1252-Ntrn, expressing only the C-terminal region of Sll1252, exhibited a slow-growth phenotype and disorganized thylakoid structure compared to wild-type and Δsll1252-Ctrn (expressing only the N-terminal region). Collectively, our data suggest that Sll1252 regulates electron transfer between the PQ pool and the Cyt b6/f complex in the linear photosynthetic electron transport chain via coordinated function of both the N- and C-terminal regions of Sll1252.
Collapse
Affiliation(s)
- Radha Rani Balaga
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Fumihiro Itoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Suraj Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Mukulika Mandal
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Pilla Sankara Krishna
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Japan;
| | - Jogadhenu S. S. Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (S.C.); (M.M.); (P.S.K.)
| |
Collapse
|
10
|
Tremp AZ, Saeed S, Dessens JT. NAD(P) transhydrogenase isoform distribution provides insight into apicomplexan evolution. Front Ecol Evol 2023; 11:fevo.2023.1216385. [PMID: 37581102 PMCID: PMC7614955 DOI: 10.3389/fevo.2023.1216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Membrane-located NAD(P) transhydrogenase (NTH) catalyses reversible hydride ion transfer between NAD(H) and NADP(H), simultaneously translocating a proton across the membrane. The enzyme is structurally conserved across prokaryotes and eukaryotes. In heterotrophic bacteria NTH proteins reside in the cytoplasmic membrane, whereas in animals they localise in the mitochondrial inner membrane. Eukaryotic NTH proteins exists in two distinct configurations (isoforms) and have non-mitochondrial functions in unicellular eukaryotes like Plasmodium, the causative agent of malaria. In this study, we carried out a systematic analysis of nth genes across eukaryotic life to determine its prevalence and distribution of isoforms. The results reveal that NTH is found across all major lineages, but that some organisms, notably plants, lack nth genes altogether. Isoform distribution and phylogenetic analysis reveals different nth gene loss scenarios in apicomplexan lineages, which sheds new light on the evolution of the Piroplasmida and Eimeriidae.
Collapse
Affiliation(s)
- Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
11
|
Azuma Y, Tsuru S, Habuchi M, Takami R, Takano S, Yamamoto K, Hosoda K. Synthetic symbiosis between a cyanobacterium and a ciliate toward novel chloroplast-like endosymbiosis. Sci Rep 2023; 13:6104. [PMID: 37055487 PMCID: PMC10102011 DOI: 10.1038/s41598-023-33321-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Chloroplasts are thought to have co-evolved through endosymbiosis, after a cyanobacterial-like prokaryote was engulfed by a eukaryotic cell; however, it is impossible to observe the process toward chloroplasts. In this study, we constructed an experimental symbiosis model to observe the initial stage in the process from independent organisms to a chloroplast-like organelle. Our system of synthetic symbiosis is capable of long-term coculture of two model organisms: a cyanobacterium (Synechocystis sp. PCC6803) as a symbiont and a ciliate (Tetrahymena thermophila) as a host with endocytic ability. The experimental system was clearly defined, because we used a synthetic medium and the cultures were shaken to avoid spatial complexity. We determined the experimental conditions for sustainable coculture, by analyzing population dynamics using a mathematical model. We experimentally demonstrated that the coculture was sustainable for at least 100 generations, through serial transfers. Moreover, we found that cells isolated after the serial transfer improved the probability of coexistence of both species without extinction in re-coculture. The constructed system will be useful for understanding the initial stage of primary endosymbiosis from cyanobacteria to chloroplasts, i.e., the origin of algae and plants.
Collapse
Affiliation(s)
- Yuki Azuma
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Hygienic Chemistry, Osaka Institute of Public Health, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan.
| | - Saburo Tsuru
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masumi Habuchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Risa Takami
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sotaro Takano
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kayo Yamamoto
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazufumi Hosoda
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan.
| |
Collapse
|
12
|
Hoysted GA, Field KJ, Sinanaj B, Bell CA, Bidartondo MI, Pressel S. Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina 'fine root endophyte' fungi and a flowering plant in novel monoxenic cultures. THE NEW PHYTOLOGIST 2023; 238:70-79. [PMID: 36739554 PMCID: PMC10952891 DOI: 10.1111/nph.18630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Most plants form mycorrhizal associations with mutualistic soil fungi. Through these partnerships, resources are exchanged including photosynthetically fixed carbon for fungal-acquired nutrients. Recently, it was shown that the diversity of associated fungi is greater than previously assumed, extending to Mucoromycotina fungi. These Mucoromycotina 'fine root endophytes' (MFRE) are widespread and generally co-colonise plant roots together with Glomeromycotina 'coarse' arbuscular mycorrhizal fungi (AMF). Until now, this co-occurrence has hindered the determination of the direct function of MFRE symbiosis. To overcome this major barrier, we developed new techniques for fungal isolation and culture and established the first monoxenic in vitro cultures of MFRE colonising a flowering plant, clover. Using radio- and stable-isotope tracers in these in vitro systems, we measured the transfer of 33 P, 15 N and 14 C between MFRE hyphae and the host plant. Our results provide the first unequivocal evidence that MFRE fungi are nutritional mutualists with a flowering plant by showing that clover gained both 15 N and 33 P tracers directly from fungus in exchange for plant-fixed C in the absence of other micro-organisms. Our findings and methods pave the way for a new era in mycorrhizal research, firmly establishing MFRE as both mycorrhizal and functionally important in terrestrial ecosystems.
Collapse
Affiliation(s)
- Grace A. Hoysted
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Department of Ecosystem StewardshipRoyal Botanic Gardens, KewRichmondTW9 3DSUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonSW7 5BDUK
| |
Collapse
|
13
|
Zhang X, Han Y, Han X, Zhang S, Xiong L, Chen T. Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1172275. [PMID: 37063204 PMCID: PMC10102589 DOI: 10.3389/fpls.2023.1172275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Xiao Han
- College of Life Sciences, Fuzhou University, Fuzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, Hong Kong SAR, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Singh PR, Gupta A, Rajneesh, Pathak J, Sinha RP. Phylogenetic distribution, structural analysis and interaction of nucleotide excision repair proteins in cyanobacteria. DNA Repair (Amst) 2023; 126:103487. [PMID: 37054651 DOI: 10.1016/j.dnarep.2023.103487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Cyanobacteria are photosynthetic Gram-negative, oxygen evolving prokaryotes with cosmopolitan distribution. Ultraviolet radiation (UVR) and other abiotic stresses result in DNA lesions in cyanobacteria. Nucleotide excision repair (NER) pathway removes the DNA lesions produced by UVR to normal DNA sequence. In cyanobacteria, detailed knowledge about NER proteins is poorly studied. Therefore, we have studied the NER proteins in cyanobacteria. Analyses of 289 amino acids sequence from 77 cyanobacterial species have revealed the presence of a minimum of one copy of NER protein in their genome. Phylogenetic analysis of NER protein shows that UvrD has maximal rate of amino acid substitutions which resulted in increased branch length. The motif analysis shows that UvrABC proteins is more conserved than UvrD, Further, UvrA with UvrB protein interacts with each other and form stable complex which have DNA binding domain on the surface of the complex. UvrB also have DNA binding domain. Positive electrostatic potential was found in the DNA binding region, which is followed by negative and neutral electrostatic potential. Additionally, the surface accessibility values at the DNA strands of T5-T6 dimer binding site were maximal. Protein nucleotide interaction shows the strong binding of T5-T6 dimer with NER proteins of Synechocystis sp. PCC 6803. This process repairs the UV-induced DNA lesions in dark when photoreactivation is inactive. Regulation of NER proteins protect cyanobacterial genome and maintain the fitness of organism under different abiotic stresses.
Collapse
|
15
|
Bi YH, Feng B, Xie WY, Ouyang LL, Ye RX, Zhou ZG. Nuclear-encoded CbbX located in chloroplast is essential for the activity of red-type Rubisco in Saccharina japonica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:236-245. [PMID: 36731285 DOI: 10.1016/j.plaphy.2023.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Saccharina japonica (Laminariales, Phaeophyta) is a brown alga and the major component of algae beds on the northwest coast of the Pacific Ocean. Rubisco, the key enzyme of CO2 fixation in photosynthesis, is inhibited by nonproductive binding of its substrate RuBP and other sugar phosphates. The inhibited Rubisco in eukaryotic phytoplankton of the red plastid lineage was reactivated by CbbXs, the red-type Rubisco activases, through the process of ATP-hydrolysis-powered remodeling. As well documented, CbbXs had two types of subunits encoded by the plastid or nuclear genome respectively. In this study, both proteins of S. japonica (SjCbbX-n and SjCbbX-p) were localized in the chloroplast illustrated by immuno-electron microscopy technique. GST pull-down detection verified SjCbbX-n could interact with SjCbbX-p. Two-dimensional electrophoresis-based Western blot analysis illustrated that the endogenous SjCbbXs could form heterohexamer in the ratio of 1:1. Activase activity assays showed that although both the recombinant proteins of SjCbbXs were functional, SjCbbX-n illustrated the significantly higher activase activity than SjCbbX-p. Notably, when the two proteins were mixed, the highest specific efficiencies of Rubisco were obtained. These results implied SjCbbX-n may be essential for Rubisco activation. Molecular evolutionary analysis of cbbx genes revealed that cbbx-n originated from the duplication of cbbx-p and then evolved independently under the positive selection pressure. This is the first report about the functional relationship between the two types of CbbXs in macroalge with the red-type Rubisco and provides useful information for revealing the mechanism of high photosynthetic efficiency of this important kelp.
Collapse
Affiliation(s)
- Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Bing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Wei-Yi Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Long-Ling Ouyang
- Chinese Academy of Fishery Science East China Sea Fisheries Research Institute, No. 300 Jungong Road, Shanghai, 200090, China
| | - Rong-Xue Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred By Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred By Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
16
|
Rutkiewicz M, Nogues I, Witek W, Angelaccio S, Contestabile R, Ruszkowski M. Insights into the substrate specificity, structure, and dynamics of plant histidinol-phosphate aminotransferase (HISN6). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:759-773. [PMID: 36842242 DOI: 10.1016/j.plaphy.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Histidinol-phosphate aminotransferase is the sixth protein (hence HISN6) in the histidine biosynthetic pathway in plants. HISN6 is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of imidazole acetol phosphate into L-histidinol phosphate (HOLP). Here, we show that plant HISN6 enzymes are closely related to the orthologs from Chloroflexota. The studied example, HISN6 from Medicago truncatula (MtHISN6), exhibits a surprisingly high affinity for HOLP, which is much higher than reported for bacterial homologs. Moreover, unlike the latter, MtHISN6 does not transaminate phenylalanine. High-resolution crystal structures of MtHISN6 in the open and closed states, as well as the complex with HOLP and the apo structure without PLP, bring new insights into the enzyme dynamics, pointing at a particular role of a string-like fragment that oscillates near the active site and participates in the HOLP binding. When MtHISN6 is compared to bacterial orthologs with known structures, significant differences arise in or near the string region. The high affinity of MtHISN6 appears linked to the particularly tight active site cavity. Finally, a virtual screening against a library of over 1.3 mln compounds revealed three sites in the MtHISN6 structure with the potential to bind small molecules. Such compounds could be developed into herbicides inhibiting plant HISN6 enzymes absent in animals, which makes them a potential target for weed control agents.
Collapse
Affiliation(s)
- Maria Rutkiewicz
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Isabel Nogues
- Research Institute on Terrestrial Ecosystems, National Research Council, Monterotondo Scalo, Rome, Italy
| | - Wojciech Witek
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Sebastiana Angelaccio
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
17
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
18
|
The Complete Chloroplast Genome Sequence of Laportea bulbifera (Sieb. et Zucc.) Wedd. and Comparative Analysis with Its Congeneric Species. Genes (Basel) 2022; 13:genes13122230. [PMID: 36553498 PMCID: PMC9778553 DOI: 10.3390/genes13122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Laportea bulbifera (L. bulbifera) is an important medicinal plant of Chinese ethnic minorities, with high economic and medicinal value. However, the medicinal materials of the genus Laportea are prone to be misidentified due to the similar morphological characteristics of the original plants. Thus, it is crucial to discover their molecular marker points and to precisely identify these species for their exploitation and conservation. Here, this study reports detailed information on the complete chloroplast (cp) of L. bulbifera. The result indicates that the cp genome of L. bulbifera of 150,005 bp contains 126 genes, among them, 37 tRNA genes and 81 protein-coding genes. The analysis of repetition demonstrated that palindromic repeats are more frequent. In the meantime, 39 SSRs were also identified, the majority of which were mononucleotides Adenine-Thymine (A-T). Furthermore, we compared L. bulbifera with eight published Laportea plastomes, to explore highly polymorphic molecular markers. The analysis identified four hypervariable regions, including rps16, ycf1, trnC-GCA and trnG-GCC. According to the phylogenetic analysis, L. bulbifera was most closely related to Laportea canadensis (L. canadensis), and the molecular clock analysis speculated that the species originated from 1.8216 Mya. Overall, this study provides a more comprehensive analysis of the evolution of L. bulbifera from the perspective of phylogenetic and intrageneric molecular variation in the genus Laportea, which is useful for providing a scientific basis for further identification, taxonomic, and evolutionary studies of the genus.
Collapse
|
19
|
Zhang J, Xu X, Lv Y, Zhu W, Zhang H, Ding J, Zhang X, Zhu J, Ding Y. Research progress on influencing factors on compost maturity and cyanobacteria toxin degradation during aerobic cyanobacteria composting: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70635-70657. [PMID: 35997884 DOI: 10.1007/s11356-022-21977-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial bloom is by far one of the most common water quality hazards. As cyanobacteria are rich in nitrogen, phosphorus, and other organic matter, the potential for beneficial use of cyanobacteria is promising. Aerobic composting is currently a hot topic of research in cyanobacteria treatment, which can effectively achieve reduction, recycling, and removal of the harmful impact of cyanobacteria. In this review, the characteristics of cyanobacteria in aerobic composting processes, the effects of physical, chemical, and biological factors on the composting process, and the degradation of microcystic toxins were systematically discussed and summarized. This review epitomizes the large quantities of research data collected by many scholars around the world to address the characteristics of "one low and five highs" in the aerobic cyanobacterial composting process. The composting techniques developed are effective and easy to adopt in the real world, such as adjusting the substrate C/N ratio and moisture content and use of chemical and biological additives to achieve reduction, recycling, and detoxication of the cyanobacterial wastes. The aim of this comprehensive review is to provide theoretical guidance and reference for further development and application of aerobic cyanobacteria composting technology.
Collapse
Affiliation(s)
- Jiayi Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Xianwen Xu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Ya Lv
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Weiqin Zhu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Hangjun Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Jiafeng Ding
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Xiaofang Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ying Ding
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
20
|
Ghosh S, Namin SM, Jung C. Differential Bacterial Community of Bee Bread and Bee Pollen Revealed by 16s rRNA High-Throughput Sequencing. INSECTS 2022; 13:863. [PMID: 36292810 PMCID: PMC9604437 DOI: 10.3390/insects13100863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We investigated the bacterial community of bee bread and bee pollen samples using an approach through 16 s rRNA high-throughput sequencing. The results revealed a higher bacterial diversity in bee bread than in bee pollen as depicted in taxonomic profiling, as well as diversity indices such as the Shannon diversity index (3.7 to 4.8 for bee bread and 1.1 to 1.7 for bee pollen samples) and Simpson’s index (>0.9 for bee bread and 0.4−0.5 for bee pollen). Principal component analysis showed a distinct difference in bacterial communities. The higher bacterial diversity in the bee bread than bee pollen could presumably be due to factors such as storage period, processing of food, fermentation, and high sugar environment. However, no effect of the feed (rapeseed or oak pollen patties or even natural inflow) was indicated on the bacterial composition of bee bread, presumably because of the lack of restriction of foraged pollen inflow in the hive. The diverse bacterial profile of the bee bread could contribute to the nutritional provisioning as well as enhance the detoxification process; however, a thorough investigation of the functional role of individual bacteria genera remains a task for future studies.
Collapse
Affiliation(s)
- Sampat Ghosh
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Korea
| | - Saeed Mohamadzade Namin
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Korea
- Department of Plant Protection, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin 3381774895, Iran
| | - Chuleui Jung
- Agriculture Science and Technology Research Institute, Andong National University, Andong 36729, Korea
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
21
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
22
|
Cournoyer J, Altman SD, Gao YL, Wallace CL, Zhang D, Lo GH, Haskin NT, Mehta AP. Engineering artificial photosynthetic life-forms through endosymbiosis. Nat Commun 2022; 13:2254. [PMID: 35474066 PMCID: PMC9042829 DOI: 10.1038/s41467-022-29961-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications.
Collapse
Affiliation(s)
- Jay Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Sarah D Altman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Yang-le Gao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Catherine L Wallace
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Dianwen Zhang
- The Imaging Technology Group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| | - Guo-Hsuen Lo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Noah T Haskin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
23
|
Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, Chen S. Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan Plateau. BMC PLANT BIOLOGY 2022; 22:195. [PMID: 35413790 PMCID: PMC9004202 DOI: 10.1186/s12870-022-03577-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The genus Swertia is of great medicinal importance and one of the most taxonomically challenging taxa within Gentianaceae, largely due to the morphological similarities of species within this genus and with its closely related genera. Previous molecular studies confirmed its polyphyly but suffered from low phylogenetic resolutions because only limited sequence loci were used. Thus, we conducted the structural, gene evolutionary, and phylogenetic analyses of 11 newly obtained plastomes of Swertia. Our result greatly improved the phylogenetic resolutions in Swertia, shed new light on the plastome evolution and phylogenetic relationships of this genus. RESULTS The 11 Swertia plastomes together with the published seven species proved highly similar in overall size, structure, gene order, and content, but revealed some structural variations caused by the expansion and contraction of the IRb region into the LSC region, due to the heterogeneous length of the ψycf1. The gene rps16 was found to be in a state flux with pseudogenes or completely lost. Similar situation was also documented in other genera of Gentianaceae. This might imply loss of the gene in the common ancestor of Gentianaceae. The distribution plot of ENC vs. GC3 showed all these plastomes arranging very close in the Wright line with an expected ENC value (49-52%), suggesting the codon usage of Swertia was mainly constrained by a GC mutation bias. Most of the genes remained under the purifying selection, however, the cemA was identified under positive selection, possibly reflecting an adaptive response to low CO2 atmospheric conditions during the Late Miocene. Our phylogenomic analyses, based on 74 protein-coding genes (CDS), supported the polyphyly of Swertia with its close allies in the subtribe Swertiinae, presumably due to recent rapid radiation. The topology inferred from our phylogenetic analyses partly supported the current taxonomic treatment. Finally, several highly variable loci were identified, which can be used in future phylogenetic studies and accurate identification of medicinal genuineness of Swertia. CONCLUSIONS Our study confirmed the polyphyly of Swertia and demonstrated the power of plastome phylogenomics in improvement of phylogenetic resolution, thus contributing to a better understanding of the evolutionary history of Swertia.
Collapse
Affiliation(s)
- Qian Cao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingbo Gao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaolei Ma
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faqi Zhang
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Rui Xing
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaofeng Chi
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shilong Chen
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
24
|
Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH. CFM6 is an Essential CRM Protein Required for the Splicing of nad5 Transcript in Arabidopsis Mitochondria. PLANT & CELL PHYSIOLOGY 2022; 63:217-233. [PMID: 34752612 DOI: 10.1093/pcp/pcab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 05/21/2023]
Abstract
Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| |
Collapse
|
25
|
Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041924] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, microalgae and cyanobacteria have become a promising and sustainable source of useful products, thanks to their richness in bioactive metabolites of high value (antibiotics, toxins, pharmaceutically active compounds, plant growth regulators, and others). These photoautotroph microorganisms generate biomass using photosynthesis. This review, which distinguishes microalgae and Cyanobacteria, often called blue-green microalgae, aims to present their classification and taxonomic diversity as the ecological niches occupied by them. In addition, the usages of open ponds and photobioreactors to produce various microalgae and Cyanobacteria strains and the high-value bioactive compounds from these microorganisms are summarized. Finally, the numerous commercial applications of these phytoplanktons in different fields, such as food, dietary supplements, feed, cosmetic, and biofuel applications, are reviewed.
Collapse
|
26
|
Madhubalaji CK, Ravi S, Mudliar SN. Unraveling of Chlorella-associated bacterial load, diversity, and their imputed functions at high- and low-yield conditions through metagenome sequencing. JOURNAL OF PHYCOLOGY 2022; 58:133-145. [PMID: 34850388 DOI: 10.1111/jpy.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorella-associated bacteria can have a significant influence on facilitating higher Chlorella biomass yield due to their symbiotic relationship. In this study, non-axenic Chlorella was cultivated in an airlift photobioreactor at high and low-yield conditions. The associated bacterial diversity was analyzed using 16S rRNA metagenome sequencing. At high-yield conditions, the bacterial load was observed in the range of 108 -1010 CFU · mL-1 , whereas at low-yield conditions, bacteria were more dominant and observed in the range of 1014 -1015 CFU · mL-1 . The majority of the bacterial species associated with Chlorella at high-yield conditions belongs to Proteobacteria and Bacteroidetes. Further, Bacteroidetes levels were decreased at low-yield conditions and were highly diversified with Planctomycetes, Firmicutes, and 18 others. Predicted functional genes indicated that Chlorella-associated bacteria have the enzymes involved in the metabolism and biosynthesis of B-complex vitamins (i.e., vitamin B12 , thiamin, biotin, pyridoxine, and riboflavin). A critical evaluation revealed that vitamin biosynthesis genes were more abundant at low-yield conditions; however, vitamin B12 transport genes (B12 transport ATP-binding protein, B12 substrate-binding transportation, and B12 permease protein) were less abundant, indicating even though vitamins production occurs, but their availability to Chlorella was limited due to the lack of vitamin transport genes. Further, at high yield, Chlorella-associated bacteria enabled higher growth by supplementing the vitamins. In contrast, at low-yield condition-an increased bacterial load, diversity, and limited vitamin transport functional genes affected the Chlorella yield. It can be inferred that Chlorella yield was significantly affected by three factors: associated bacterial load, diversity, and transport functional genes of vitamins.
Collapse
Affiliation(s)
- Chegu Krishnamurthi Madhubalaji
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarada Ravi
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
27
|
Guan YH, Liu WW, Duan BZ, Zhang HZ, Chen XB, Wang Y, Xia CL. The first complete chloroplast genome of Vicatia thibetica de Boiss.: genome features, comparative analysis, and phylogenetic relationships. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:439-454. [PMID: 35400891 PMCID: PMC8943076 DOI: 10.1007/s12298-022-01154-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/13/2021] [Accepted: 02/18/2022] [Indexed: 06/03/2023]
Abstract
UNLABELLED Vicatia thibetica de Boiss.: a herb in the family Apiaceae, has been used for over a hundred years as an essential medicinal and edible plant in the Bai ethnic group of Dali City. However, due to the lack of study on plastid genomes of V. thibetica, studies of comparison and phylogeny with other related species remain scarce. In the current study, we assembled, annotated, and characterized the entire chloroplast (cp) genome of V. thibetica through high-throughput sequencing for the first time, compared with published whole chloroplast genomes from the same family. A phylogenetic analysis of the chloroplast genome has also been performed. The whole chloroplast genome of V. thibetica was 145,796 in size and consisted of a large single-copy region (LSC; 92,186 bp), a small single-copy region (SSC; 17,452 bp), and a pair of inverted repeat regions (IRs; 18,079 bp) forming a circular quadripartite structure. Annotation resulted in 128 genes, including 84 protein-coding genes (PCGs), 35 transfer RNA genes (tRNAs), eight ribosomal genes (rRNAs), and one pseudogene. Repeat sequence analysis displayed V. thibetica plastid genome contains 75 simple repeats, 37 long repeats, and 29 tandem repeats. Compared with the cp genome of other Apiaceae species, a common feature was that the IR regions of the genome were more conservative compared to the LSC and SSC regions. Highly variable hotspots included rps16, ndhC-trnV-UAC, clpP, ycf1, and ndhB in the genomes, which supply valuable molecular markers for phylogeny, identification, and classification in the Apiaceae family. The results of phylogenetic analysis strongly supported the genus Vicatia as an independent genus in the family Apiaceae, in which the closest affinities to the related species of Angelica, Peucedanum, and Ligusticum were observed. In conclusion, the first chloroplast genome of Vicatia reported in this study may improve our understanding of phylogenetic relationship of different genera of Apiaceae. In addition, the current data will be valuable as chloroplast genomic resource for species identification and population genetics. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01154-y.
Collapse
Affiliation(s)
- Yun-hui Guan
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Wen-wen Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237 China
| | - Bao-zhong Duan
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Hai-zhu Zhang
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Xu-bing Chen
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Ying Wang
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| | - Cong-long Xia
- College of Pharmacy, Dali University, Dali, 671000 China
- Key Laboratory of Yunnan Provincial Higher Education Institutions for Development of Yunnan Daodi Medicinal Materials Resources, Dali, 671000 China
| |
Collapse
|
28
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
29
|
Kong M, Wu Y, Wang Z, Qu W, Lan Y, Chen X, Liu Y, Shahnaz P, Yang Z, Yu Q, Mi H. A Novel Chloroplast Protein RNA Processing 8 Is Required for the Expression of Chloroplast Genes and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:700975. [PMID: 34956248 PMCID: PMC8695849 DOI: 10.3389/fpls.2021.700975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Chloroplast development involves the coordinated expression of both plastids- and nuclear-encoded genes in higher plants. However, the underlying mechanism still remains largely unknown. In this study, we isolated and characterized an Arabidopsis mutant with an albino lethality phenotype named RNA processing 8 (rp8). Genetic complementation analysis demonstrated that the gene AT4G37920 (RP8) was responsible for the mutated phenotype. The RP8 gene was strongly expressed in photosynthetic tissues at both transcription and translation protein levels. The RP8 protein is localized in the chloroplast and associated with the thylakoid. Disruption of the RP8 gene led to a defect in the accumulation of the rpoA mature transcript, which reduced the level of the RpoA protein, and affected the transcription of PEP-dependent genes. The abundance of the chloroplast rRNA, including 23S, 16S, 4.5S, and 5S rRNA, were reduced in the rp8 mutant, respectively, and the amounts of chloroplast ribosome proteins, such as, PRPS1(uS1c), PRPS5(uS5c), PRPL2 (uL2c), and PRPL4 (uL4c), were substantially decreased in the rp8 mutant, which indicated that knockout of RP8 seriously affected chloroplast translational machinery. Accordingly, the accumulation of photosynthetic proteins was seriously reduced. Taken together, these results indicate that the RP8 protein plays an important regulatory role in the rpoA transcript processing, which is required for the expression of chloroplast genes and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yaozong Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wantong Qu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yixin Lan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Perveen Shahnaz
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhongnan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingbo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Zhang L, Chen J, Zhang L, Wei Y, Li Y, Xu X, Wu H, Yang ZN, Huang J, Hu F, Huang W, Cui YL. The pentatricopeptide repeat protein EMB1270 interacts with CFM2 to splice specific group II introns in Arabidopsis chloroplasts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1952-1966. [PMID: 34427970 DOI: 10.1111/jipb.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.
Collapse
Affiliation(s)
- Li Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yajuan Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyun Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hui Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fenhong Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
31
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
32
|
Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol 2021; 30:143-157. [PMID: 34229911 DOI: 10.1016/j.tim.2021.05.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.
Collapse
|
33
|
Putkinen A, Siljanen HMP, Laihonen A, Paasisalo I, Porkka K, Tiirola M, Haikarainen I, Tenhovirta S, Pihlatie M. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. THE NEW PHYTOLOGIST 2021; 231:524-536. [PMID: 33780002 DOI: 10.1111/nph.17365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Methane (CH4 ) exchange in tree stems and canopies and the processes involved are among the least understood components of the global CH4 cycle. Recent studies have focused on quantifying tree stems as sources of CH4 and understanding abiotic CH4 emissions in plant canopies, with the role of microbial in situ CH4 formation receiving less attention. Moreover, despite initial reports revealing CH4 consumption, studies have not adequately evaluated the potential of microbial CH4 oxidation within trees. In this paper, we discuss the current level of understanding on these processes. Further, we demonstrate the potential of novel metagenomic tools in revealing the involvement of microbes in the CH4 exchange of plants, and particularly in boreal trees. We detected CH4 -producing methanogens and novel monooxygenases, potentially involved in CH4 consumption, in coniferous plants. In addition, our field flux measurements from Norway spruce (Picea abies) canopies demonstrate both net CH4 emissions and uptake, giving further evidence that both production and consumption are relevant to the net CH4 exchange. Our findings, together with the emerging diversity of novel CH4 -producing microbial groups, strongly suggest microbial analyses should be integrated in the studies aiming to reveal the processes and drivers behind plant CH4 exchange.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Henri M P Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
- Department of Ecogenomics and Archaea Biology, University of Vienna, Vienna, A-1090, Austria
| | - Antti Laihonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Inga Paasisalo
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70200, Finland
| | - Kaija Porkka
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Natural Resources Institute Finland, Savonlinna, FI-57200, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
| | - Iikka Haikarainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Salla Tenhovirta
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
| | - Mari Pihlatie
- Department of Agricultural Sciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
- Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, 00560, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
34
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
35
|
SRPassing Co-translational Targeting: The Role of the Signal Recognition Particle in Protein Targeting and mRNA Protection. Int J Mol Sci 2021; 22:ijms22126284. [PMID: 34208095 PMCID: PMC8230904 DOI: 10.3390/ijms22126284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/13/2023] Open
Abstract
Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.
Collapse
|
36
|
Wobbe L. The Molecular Function of Plant mTERFs as Key Regulators of Organellar Gene Expression. PLANT & CELL PHYSIOLOGY 2021; 61:2004-2017. [PMID: 33067620 DOI: 10.1093/pcp/pcaa132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
The protein family of mTERFs (mitochondrial transcription termination factors) was initially studied in mammalian and insect mitochondria before the first Arabidopsis mTERF mutant was characterized. More than 10 years of research on the function of plant mTERFs in the flowering plants Arabidopsis thaliana, Zea mays and the green microalga Chlamydomonas reinhardtii has since highlighted that mTERFs are key regulators of organellar gene expression (OGE) in mitochondria and in chloroplasts. Additional functions to be fulfilled by plant mTERFs (e.g. splicing) and the fact that the expression of two organellar genomes had to be facilitated have led to a massive expansion of the plant mTERF portfolio compared to that found in mammals. Plant mTERFs are implicated in all steps of OGE ranging from the modulation of transcription to the maturation of tRNAs and hence translation. Furthermore, being regulators of OGE, mTERFs are required for a successful long-term acclimation to abiotic stress, retrograde signaling and interorganellar communication. Here, I review the recent progress in the elucidation of molecular mTERF functions.
Collapse
Affiliation(s)
- Lutz Wobbe
- Algae Biotechnology & Bioenergy Group, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universit�tsstrasse 27, Bielefeld 33615, Germany
| |
Collapse
|
37
|
Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, He XJ. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC PLANT BIOLOGY 2020; 20:519. [PMID: 33187470 PMCID: PMC7663912 DOI: 10.1186/s12870-020-02696-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The genus Ligusticum consists of approximately 60 species distributed in the Northern Hemisphere. It is one of the most taxonomically difficult taxa within Apiaceae, largely due to the varied morphological characteristics. To investigate the plastome evolution and phylogenetic relationships of Ligusticum, we determined the complete plastome sequences of eight Ligusticum species using a de novo assembly approach. RESULTS Through a comprehensive comparative analysis, we found that the eight plastomes were similar in terms of repeat sequence, SSR, codon usage, and RNA editing site. However, compared with the other seven species, L. delavayi exhibited striking differences in genome size, gene number, IR/SC borders, and sequence identity. Most of the genes remained under the purifying selection, whereas four genes showed relaxed selection, namely ccsA, rpoA, ycf1, and ycf2. Non-monophyly of Ligusticum species was inferred from the plastomes and internal transcribed spacer (ITS) sequences phylogenetic analyses. CONCLUSION The plastome tree and ITS tree produced incongruent tree topologies, which may be attributed to the hybridization and incomplete lineage sorting. Our study highlighted the advantage of plastome with mass informative sites in resolving phylogenetic relationships. Moreover, combined with the previous studies, we considered that the current taxonomy system of Ligusticum needs to be improved and revised. In summary, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of Ligusticum species.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zi-Xuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ling-Jian Gui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jun Wen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
38
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene Loss and Evolution of the Plastome. Genes (Basel) 2020; 11:E1133. [PMID: 32992972 PMCID: PMC7650654 DOI: 10.3390/genes11101133] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203-156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | | | - Adil Khan
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Al-Harrasi
- Natural Product Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
39
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
40
|
Adaptation Evolution and Phylogenetic Analyses of Species in Chinese Allium Section Pallasia and Related Species Based on Complete Chloroplast Genome Sequences. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8542797. [PMID: 32626767 PMCID: PMC7306069 DOI: 10.1155/2020/8542797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022]
Abstract
The section Pallasia is one of the components of the genus Allium subgenus Allium (Amaryllidaceae), and species relationship in this section is still not resolved very well, which hinders further evolutionary and adaptive studies. Here, the complete chloroplast genomes of five sect. Pallasia species were reported, and a comparative analysis was performed with other three related Allium species. The genome size of the eight species ranged from 151,672 bp to 153,339 bp in length, GC content changed from 36.7% to 36.8%, and 130 genes (except Allium pallasii), 37 tRNA, and 8 rRNA were identified in each genome. By analyzing the IR/LSC and IR/SSC boundary, A. pallasii exhibited differences compared with other seven species. Phylogenetic analysis achieved high supports in each branch, seven of the eight Allium species cluster into a group, and A. pallasii exhibit a close relationship with A. obliquum. Higher pairwise Ka/Ks ratios were found in A. schoenoprasoides compared to A. caeruleum and A. macrostemon while a lower value of Ka/Ks ratios was detected between A. caeruleum and A. macrostemon. This study will be a great contribution to the future phylogenetic and adaptive research in Allium.
Collapse
|
41
|
Zhou T, Zhu H, Wang J, Xu Y, Xu F, Wang X. Complete chloroplast genome sequence determination of Rheum species and comparative chloroplast genomics for the members of Rumiceae. PLANT CELL REPORTS 2020; 39:811-824. [PMID: 32221666 DOI: 10.1007/s00299-020-02532-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/13/2020] [Indexed: 05/10/2023]
Abstract
Complete plastomes of Rheum species facilitated to clarify the phylogeny of Polygonaceae, and comparative chloroplast genomics contributed to develop genetic markers for the authentication of Rheum species. Rheum (Polygonaceae) is widely distributed throughout the temperate and subtropical areas of Asian interior. Rheum species are usually perennial herbs, and half of them are endemic to China with important medicinal properties. On account of similar morphological characteristics, species delimitation of Rheum still remains unclear. Chloroplast genomes of eight Rheum species, Rumex crispus and Oxyria digyna were characterized. Based on the comparison of genome structure of these species and the two published Rheum species, it is shown that plastome sequences of these species are relatively conserved with the same gene order, and three Sect. Palmata species remarkably showed high sequence similarities. Some hotspots could be used to discriminate the Rheum species, and 17 plastid genes were subject to positive selection. The phylogenetic analyses indicated that all the Polygonaceae species were clustered in the same group and showed that Rheum species, except for Rheum wittrockii, formed a monophyletic group with high maximum parsimony/maximum likelihood bootstrap support values and Bayesian posterior probabilities. The molecular dating based on plastomes indicated that the divergences within Polygonaceae species were dated to the Upper Cretaceous period [73.86-77.99 million years ago (Ma)]. The divergence of Sect. Palmata species was estimated to have occurred around 1.60 Ma, indicating that its diversification was affected by the repeated climatic fluctuation in the Quaternary.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Honghong Zhu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yucan Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fusheng Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
42
|
He S, Yang Y, Li Z, Wang X, Guo Y, Wu H. Comparative analysis of four Zantedeschia chloroplast genomes: expansion and contraction of the IR region, phylogenetic analyses and SSR genetic diversity assessment. PeerJ 2020; 8:e9132. [PMID: 32509453 PMCID: PMC7247528 DOI: 10.7717/peerj.9132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
The horticulturally important genus Zantedeschia (Araceae) comprises eight species of herbaceous perennials. We sequenced, assembled and analyzed the chloroplast (cp) genomes of four species of Zantedeschia (Z. aethiopica, Z. odorata, Z. elliottiana, and Z. rehmannii) to investigate the structure of the cp genome in the genus. According to our results, the cp genome of Zantedeschia ranges in size from 169,065 bp (Z. aethiopica) to 175,906 bp (Z. elliottiana). We identified a total of 112 unique genes, including 78 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Comparison of our results with cp genomes from other species in the Araceae suggests that the relatively large sizes of the Zantedeschia cp genomes may result from inverted repeats (IR) region expansion. The sampled Zantedeschia species formed a monophylogenetic clade in our phylogenetic analysis. Furthermore, the long single copy (LSC) and short single copy (SSC) regions in Zantedeschia are more divergent than the IR regions in the same genus, and non-coding regions showed generally higher divergence than coding regions. We identified a total of 410 cpSSR sites from the four Zantedeschia species studied. Genetic diversity analyses based on four polymorphic SSR markers from 134 cultivars of Zantedeschia suggested that high genetic diversity (I = 0.934; Ne = 2.371) is present in the Zantedeschia cultivars. High genetic polymorphism from the cpSSR region suggests that cpSSR could be an effective tool for genetic diversity assessment and identification of Zantedeschia varieties.
Collapse
Affiliation(s)
- Shuilian He
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Yang Yang
- College of Science, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Ziwei Li
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Xuejiao Wang
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Yanbing Guo
- College of Horticulture and Landscape, Yunnan Agricuture University, Kunming, Yunnan, China
| | - Hongzhi Wu
- College of horticulture and landscape, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
43
|
Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal ROS Challenges: Timing is of the Essence. mBio 2020; 11:mBio.00955-20. [PMID: 32430475 PMCID: PMC7240161 DOI: 10.1128/mbio.00955-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
When trying to reconstruct the evolutionary trajectories during early eukaryogenesis, one is struck by clear differences in the developments of two organelles of endosymbiotic origin: the mitochondrion and the chloroplast. From a symbiogenic perspective, eukaryotic development can be interpreted as a process in which many of the defining eukaryotic characteristics arose as a result of mutual adaptions of both prokaryotes (an archaeon and a bacterium) involved. This implies that many steps during the bacterium-to-mitochondrion transition trajectory occurred in an intense period of dramatic and rapid changes. In contrast, the subsequent cyanobacterium-to-chloroplast development in a specific eukaryotic subgroup, leading to the photosynthetic lineages, occurred in a full-fledged eukaryote. The commonalities and differences in the two trajectories shed an interesting light on early, and ongoing, eukaryotic evolutionary driving forces, especially endogenous reactive oxygen species (ROS) formation. Differences between organellar ribosomes, changes to the electron transport chain (ETC) components, and mitochondrial codon reassignments in nonplant mitochondria can be understood when mitochondrial ROS formation, e.g., during high energy consumption in heterotrophs, is taken into account.IMPORTANCE The early eukaryotic evolution was deeply influenced by the acquisition of two endosymbiotic organelles - the mitochondrion and the chloroplast. Here we discuss the possibly important role of reactive oxygen species in these processes.
Collapse
|
44
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
45
|
Abstract
Background Previously, a seven-cluster pattern claiming to be a universal one in bacterial genomes has been reported. Keeping in mind the most popular theory of chloroplast origin, we checked whether a similar pattern is observed in chloroplast genomes. Results Surprisingly, eight cluster structure has been found, for chloroplasts. The pattern observed for chloroplasts differs rather significantly, from bacterial one, and from that latter observed for cyanobacteria. The structure is provided by clustering of the fragments of equal length isolated within a genome so that each fragment is converted in triplet frequency dictionary with non-overlapping triplets with no gaps in frame tiling. The points in 63-dimensional space were clustered due to elastic map technique. The eight cluster found in chloroplasts comprises the fragments of a genome bearing tRNA genes and exhibiting excessively high GC-content, in comparison to the entire genome. Conclusion Chloroplasts exhibit very specific symmetry type in distribution of coding and non-coding fragments of a genome in the space of triplet frequencies: this is mirror symmetry. Cyanobacteria may have both mirror symmetry, and the rotational symmetry typical for other bacteria.
Collapse
Affiliation(s)
- Michael G Sadovsky
- Institute of computational modelling SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia. .,Siberian federal university, Svobodny prosp. 79, Krasnoyarsk, 660041, Russia. .,V.F.Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznjaka str. 1, Krasnoyarsk, 660022, Russia.
| | - Maria Yu Senashova
- Institute of computational modelling SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Andrew V Malyshev
- Institute of computational modelling SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
46
|
Novel molecular aspects of the CRISPR backbone protein ‘Cas7’ from cyanobacteria. Biochem J 2020; 477:971-983. [DOI: 10.1042/bcj20200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
The cyanobacterium Anabaena PCC 7120 shows the presence of Type I-D CRISPR system that can potentially confer adaptive immunity. The Cas7 protein (Alr1562), which forms the backbone of the type I-D surveillance complex, was characterized from Anabaena. Alr1562, showed the presence of the non-canonical RNA recognition motif and two intrinsically disordered regions (IDRs). When overexpressed in E. coli, the Alr1562 protein was soluble and could be purified by affinity chromatography, however, deletion of IDRs rendered Alr1562 completely insoluble. The purified Alr1562 was present in the dimeric or a RNA-associated higher oligomeric form, which appeared as spiral structures under electron microscope. With RNaseA and NaCl treatment, the higher oligomeric form converted to the lower oligomeric form, indicating that oligomerization occurred due to the association of Alr1562 with RNA. The secondary structure of both these forms was largely similar, resembling that of a partially folded protein. The dimeric Alr1562 was more prone to temperature-dependent aggregation than the higher oligomeric form. In vitro, the Alr1562 bound more specifically to a minimal CRISPR unit than to the non-specific RNA. Residues required for binding of Alr1562 to RNA, identified by protein modeling-based approaches, were mutated for functional validation. Interestingly, these mutant proteins, showing reduced ability to bind RNA were predominantly present in dimeric form. Alr1562 was detected with specific antiserum in Anabaena, suggesting that the type I-D system is expressed and may be functional in vivo. This is the first report that describes the characterization of a Cas protein from any photosynthetic organism.
Collapse
|
47
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
48
|
Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, Syed K. Comprehensive Analyses of Cytochrome P450 Monooxygenases and Secondary Metabolite Biosynthetic Gene Clusters in Cyanobacteria. Int J Mol Sci 2020; 21:ijms21020656. [PMID: 31963856 PMCID: PMC7014017 DOI: 10.3390/ijms21020656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The prokaryotic phylum Cyanobacteria are some of the oldest known photosynthetic organisms responsible for the oxygenation of the earth. Cyanobacterial species have been recognised as a prosperous source of bioactive secondary metabolites with antibacterial, antiviral, antifungal and/or anticancer activities. Cytochrome P450 monooxygenases (CYPs/P450s) contribute to the production and diversity of various secondary metabolites. To better understand the metabolic potential of cyanobacterial species, we have carried out comprehensive analyses of P450s, predicted secondary metabolite biosynthetic gene clusters (BGCs), and P450s located in secondary metabolite BGCs. Analysis of the genomes of 114 cyanobacterial species identified 341 P450s in 88 species, belonging to 36 families and 79 subfamilies. In total, 770 secondary metabolite BGCs were found in 103 cyanobacterial species. Only 8% of P450s were found to be part of BGCs. Comparative analyses with other bacteria Bacillus, Streptomyces and mycobacterial species have revealed a lower number of P450s and BGCs and a percentage of P450s forming part of BGCs in cyanobacterial species. A mathematical formula presented in this study revealed that cyanobacterial species have the highest gene-cluster diversity percentage compared to Bacillus and mycobacterial species, indicating that these diverse gene clusters are destined to produce different types of secondary metabolites. The study provides fundamental knowledge of P450s and those associated with secondary metabolism in cyanobacterial species, which may illuminate their value for the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Makhosazana Jabulile Khumalo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (M.J.K.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
49
|
Xiong HB, Wang J, Huang C, Rochaix JD, Lin FM, Zhang JX, Ye LS, Shi XH, Yu QB, Yang ZN. mTERF8, a Member of the Mitochondrial Transcription Termination Factor Family, Is Involved in the Transcription Termination of Chloroplast Gene psbJ. PLANT PHYSIOLOGY 2020; 182:408-423. [PMID: 31685645 PMCID: PMC6945865 DOI: 10.1104/pp.19.00906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/21/2019] [Indexed: 05/28/2023]
Abstract
Members of the mitochondrial transcription terminator factor (mTERF) family, originally identified in vertebrate mitochondria, are involved in the termination of organellular transcription. In plants, mTERF proteins are mainly localized in chloroplasts and mitochondria. In Arabidopsis (Arabidopsis thaliana), mTERF8/pTAC15 was identified in the plastid-encoded RNA polymerase (PEP) complex, the major RNA polymerase of chloroplasts. In this work, we demonstrate that mTERF8 is associated with the PEP complex. An mTERF8 knockout line displayed a wild-type-like phenotype under standard growth conditions, but showed impaired efficiency of photosystem II electron flow. Transcription of most chloroplast genes was not substantially affected in the mterf8 mutant; however, the level of the psbJ transcript from the psbEFLJ polycistron was increased. RNA blot analysis showed that a larger transcript accumulates in mterf8 than in the wild type. Thus, abnormal transcription and/or RNA processing occur for the psbEFLJ polycistron. Circular reverse transcription PCR and sequence analysis showed that the psbJ transcript terminates 95 nucleotides downstream of the translation stop codon in the wild type, whereas its termination is aberrant in mterf8 Both electrophoresis mobility shift assays and chloroplast chromatin immunoprecipitation analysis showed that mTERF8 specifically binds to the 3' terminal region of psbJ Transcription analysis using the in vitro T7 RNA polymerase system showed that mTERF8 terminates psbJ transcription. Together, these results suggest that mTERF8 is specifically involved in the transcription termination of the chloroplast gene psbJ.
Collapse
Affiliation(s)
- Hai-Bo Xiong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jing Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao Huang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Fei-Min Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Xing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lin-Shan Ye
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-He Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Bo Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
50
|
Mondal S, Kumar V, Singh SP. Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Comput Biol Chem 2019; 84:107141. [PMID: 31839562 DOI: 10.1016/j.compbiolchem.2019.107141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs), the oxidoreductase proteins, are involved in several cellular processes, including maintenance of cellular redox potential and iron-sulfur homeostasis. The analysis of 503 amino acid sequences from 167 cyanobacterial species led to the identification of four classes of cyanobacterial Grxs, i.e., class I, II, V, and VI Grxs. Class III and IV Grxs were absent in cyanobacteria. Class I and II Grxs are single module oxidoreductase while class V and VI Grxs are multimodular proteins having additional modules at their C-terminal and N-terminal end, respectively. Furthermore, class VI Grxs were exclusively present in marine cyanobacteria. We also report the identification of class VI Grxs with two novel active site motif compositions. Detailed phylogenetic analysis of all four classes of Grxs revealed the presence of several subgroups within each class of Grx having variable dithiol and/or monothiol catalytic active site motif and putative glutathione binding sites. However, class II Grxs possess CGFS-type highly conserved monothiol catalytic active site motif. Sequence analysis confirmed the highly diverse nature of Grx proteins in terms of their amino acid composition; though, sequence diversity does not affect the overall 3D structure of cyanobacterial Grxs. The active site residues and putative GSH binding residues are uncharged amino acids which are present on the surface of the protein. Additionally, the presence of hydrophilic residues at the surface of Grxs confirms their solubility. Protein-ligand interaction analysis identified novel glutathione binding sites on Grxs. Regulation of Grxs encoding genes expression by light quality and quantity as well as salinity suggests their role in determining the fitness of organisms under abiotic factors.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|