1
|
Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Funct Integr Genomics 2024; 24:166. [PMID: 39294509 DOI: 10.1007/s10142-024-01445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cancer is a subject of extensive investigation, and the utilization of omics technology has resulted in the generation of substantial volumes of big data in cancer research. Numerous databases are being developed to manage and organize this data effectively. These databases encompass various domains such as genomics, transcriptomics, proteomics, metabolomics, immunology, and drug discovery. The application of computational tools into various core components of pharmaceutical sciences constitutes "Pharmacoinformatics", an emerging paradigm in rational drug discovery. The three major features of pharmacoinformatics include (i) Structure modelling of putative drugs and targets, (ii) Compilation of databases and analysis using statistical approaches, and (iii) Employing artificial intelligence/machine learning algorithms for the discovery of novel therapeutic molecules. The development, updating, and analysis of databases using statistical approaches play a pivotal role in pharmacoinformatics. Multiple software tools are associated with oncoinformatics research. This review catalogs the databases and computational tools related to cancer drug discovery and highlights their potential implications in the pharmacoinformatics of cancer.
Collapse
Affiliation(s)
- Pradnya Kamble
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prinsa R Nagar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Kaushikkumar A Bhakhar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Srivatsava Naidu
- Center of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Yu X, Ren P, Yang R, Yue H, Tang Q, Xue C. Astaxanthin Ameliorates Skeletal Muscle Atrophy in Mice With Cancer Cachexia. Nutr Cancer 2024; 76:529-542. [PMID: 38567899 DOI: 10.1080/01635581.2024.2335584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.
Collapse
Affiliation(s)
- Xinyue Yu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Pengfei Ren
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Ruzhen Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Han Yue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Qingjuan Tang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Shandong, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
4
|
Ispoglou T, McCullough D, Windle A, Nair S, Cox N, White H, Burke D, Kanatas A, Prokopidis K. Addressing cancer anorexia-cachexia in older patients: Potential therapeutic strategies and molecular pathways. Clin Nutr 2024; 43:552-566. [PMID: 38237369 DOI: 10.1016/j.clnu.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Cancer cachexia (CC) syndrome, a feature of cancer-associated muscle wasting, is particularly pronounced in older patients, and is characterised by decreased energy intake and upregulated skeletal muscle catabolic pathways. To address CC, appetite stimulants, anabolic drugs, cytokine mediators, essential amino acid supplementation, nutritional counselling, cognitive behavioural therapy, and enteral nutrition have been utilised. However, pharmacological treatments that have also shown promising results, such as megestrol acetate, anamorelin, thalidomide, and delta-9-tetrahydrocannabinol, have been associated with gastrointestinal and cardiovascular complications. Emerging evidence on the efficacy of probiotics in modulating gut microbiota also presents a promising adjunct to traditional therapies, potentially enhancing nutritional absorption and systemic inflammation control. Additionally, low-dose olanzapine has demonstrated improved appetite and weight management in older patients undergoing chemotherapy, offering a potential refinement to current therapeutic approaches. This review aims to elucidate the molecular mechanisms underpinning CC, with a particular focus on the role of anorexia in exacerbating muscle wasting, and to propose pharmacological and non-pharmacological strategies to mitigate this syndrome, particularly emphasising the needs of an older demographic. Future research targeting CC should focus on refining appetite-stimulating drugs with fewer side-effects, specifically catering to the needs of older patients, and investigating nutritional factors that can either enhance appetite or minimise suppression of appetite in individuals with CC, especially within this vulnerable group.
Collapse
Affiliation(s)
| | | | - Angela Windle
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK; School of Medicine, University of Leeds, Leeds, UK
| | | | - Natalie Cox
- Academic Geriatric Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen White
- School of Health, Leeds Beckett University, Leeds, UK
| | - Dermot Burke
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Konstantinos Prokopidis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Sayers J, Skipworth RJ, Laird BJ. Cancer cachexia - adopting a systems wide approach. Curr Opin Clin Nutr Metab Care 2023; 26:393-398. [PMID: 37265093 DOI: 10.1097/mco.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Cancer cachexia results in the death of approximately 2 million people worldwide annually. Despite the impact of this devastating condition, there is limited therapy and no standard of care. Although multiple definitions exist, confusion remains as a true understanding of the biology has not yet been achieved and distinct phases of cachexia have not been examined. Research has mainly focused on weight loss and muscle wasting, but cachexia is increasingly recognized as a multiorgan disorder involving adipose tissue, liver, brain, gut and heart, with systemic inflammation a central unifying feature. RECENT FINDINGS In this review, we will discuss some of the extra-muscular features and multisystem interactions in cachexia, and describe how moving our focus beyond muscle can lead to a greater understanding of the mechanisms and clinical features seen in cachexia. SUMMARY We describe the need for robust characterization of patients with cachexia, to allow clinical phenotypes and multisystem mechanisms to be untangled, and to enable the implementation of multimodal treatment strategies.
Collapse
Affiliation(s)
- Judith Sayers
- St Columba's Hospice
- Institute of Genetics and Cancer, University of Edinburgh
- Clinical Surgery University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard Je Skipworth
- Clinical Surgery University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Barry Ja Laird
- St Columba's Hospice
- Institute of Genetics and Cancer, University of Edinburgh
| |
Collapse
|
6
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
7
|
Han DH, Shin MK, Oh JW, Lee J, Sung JS, Kim M. Chronic Exposure to TDI Induces Cell Migration and Invasion via TGF-β1 Signal Transduction. Int J Mol Sci 2023; 24:ijms24076157. [PMID: 37047129 PMCID: PMC10093867 DOI: 10.3390/ijms24076157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Toluene diisocyanate (TDI) is commonly used in manufacturing, and it is highly reactive and causes respiratory damage. This study aims to identify the mechanism of tumorigenesis in bronchial epithelial cells induced by chronic TDI exposure. In addition, transcriptome analysis results confirmed that TDI increases transforming growth factor-beta 1 (TGF-β1) expression and regulates genes associated with cancerous characteristics in bronchial cells. Our chronically TDI-exposed model exhibited elongated spindle-like morphology, a mesenchymal characteristic. Epithelial-mesenchymal transition (EMT) was evaluated following chronic TDI exposure, and EMT biomarkers increased concentration-dependently. Furthermore, our results indicated diminished cell adhesion molecules and intensified cell migration and invasion. In order to investigate the cellular regulatory mechanisms resulting from chronic TDI exposure, we focused on TGF-β1, a key factor regulated by TDI exposure. As predicted, TGF-β1 was significantly up-regulated and secreted in chronically TDI-exposed cells. In addition, SMAD2/3 was also activated considerably as it is the direct target of TGF-β1 and TGF-β1 receptors. Inhibiting TGF-β1 signaling through blocking of the TGF-β receptor attenuated EMT and cell migration in chronically TDI-exposed cells. Our results corroborate that chronic TDI exposure upregulates TGF-β1 secretion, activates TGF-β1 signal transduction, and leads to EMT and other cancer properties.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Junha Lee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Rastegari M, Salehi N, Zare-Mirakabad F. Biomarker prediction in autism spectrum disorder using a network-based approach. BMC Med Genomics 2023; 16:12. [PMID: 36691005 PMCID: PMC9869547 DOI: 10.1186/s12920-023-01439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder that is usually diagnosed in early childhood. Timely diagnosis and early initiation of treatments such as behavioral therapy are important in autistic people. Discovering critical genes and regulators in this disorder can lead to early diagnosis. Since the contribution of miRNAs along their targets can lead us to a better understanding of autism, we propose a framework containing two steps for gene and miRNA discovery. METHODS The first step, called the FA_gene algorithm, finds a small set of genes involved in autism. This algorithm uses the WGCNA package to construct a co-expression network for control samples and seek modules of genes that are not reproducible in the corresponding co-expression network for autistic samples. Then, the protein-protein interaction network is constructed for genes in the non-reproducible modules and a small set of genes that may have potential roles in autism is selected based on this network. The second step, named the DMN_miRNA algorithm, detects the minimum number of miRNAs related to autism. To do this, DMN_miRNA defines an extended Set Cover algorithm over the mRNA-miRNA network, consisting of the selected genes and corresponding miRNA regulators. RESULTS In the first step of the framework, the FA_gene algorithm finds a set of important genes; TP53, TNF, MAPK3, ACTB, TLR7, LCK, RAC2, EEF2, CAT, ZAP70, CD19, RPLP0, CDKN1A, CCL2, CDK4, CCL5, CTSD, CD4, RACK1, CD74; using co-expression and protein-protein interaction networks. In the second step, the DMN_miRNA algorithm extracts critical miRNAs, hsa-mir-155-5p, hsa-mir-17-5p, hsa-mir-181a-5p, hsa-mir-18a-5p, and hsa-mir-92a-1-5p, as signature regulators for autism using important genes and mRNA-miRNA network. The importance of these key genes and miRNAs is confirmed by previous studies and enrichment analysis. CONCLUSION This study suggests FA_gene and DMN_miRNA algorithms for biomarker discovery, which lead us to a list of important players in ASD with potential roles in the nervous system or neurological disorders that can be experimentally investigated as candidates for ASD diagnostic tests.
Collapse
Affiliation(s)
- Maryam Rastegari
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran.
| |
Collapse
|
10
|
Gao S, Zhang G, Zhang Z, Zhu JZ, Li L, Zhou Y, Rodney GG, Abo-Zahrah RS, Anderson L, Garcia JM, Kwon YT, Li YP. UBR2 targets myosin heavy chain IIb and IIx for degradation: Molecular mechanism essential for cancer-induced muscle wasting. Proc Natl Acad Sci U S A 2022; 119:e2200215119. [PMID: 36252004 PMCID: PMC9618047 DOI: 10.1073/pnas.2200215119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.
Collapse
Affiliation(s)
- Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James Z. Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Li Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - George G. Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Reem S. Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Lindsey Anderson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA98018
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA98108
| | - Jose M. Garcia
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA98018
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA98108
| | - Yong Tae Kwon
- World Class University Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
11
|
Toxicology, Nanotoxicology and Occupational Diseases Related to Chemical Exposure. Int J Mol Sci 2022; 23:ijms23169201. [PMID: 36012476 PMCID: PMC9409422 DOI: 10.3390/ijms23169201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
|
12
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Luthuli M, Ngwenya N, Gumede D, Gunda R, Gareta D, Koole O, Siedner MJ, Wong EB, Seeley J. Participant recall and understandings of information on biobanking and future genomic research: experiences from a multi-disease community-based health screening and biobank platform in rural South Africa. BMC Med Ethics 2022; 23:43. [PMID: 35436913 PMCID: PMC9014601 DOI: 10.1186/s12910-022-00782-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Abstract
Background Limited research has been conducted on explanations and understandings of biobanking for future genomic research in African contexts with low literacy and limited healthcare access. We report on the findings of a sub-study on participant understanding embedded in a multi-disease community health screening and biobank platform study known as ‘Vukuzazi’ in rural KwaZulu-Natal, South Africa. Methods Semi-structured interviews were conducted with research participants who had been invited to take part in the Vukuzazi study, including both participants and non-participants, and research staff that worked on the study. The interviews were transcribed, and themes were identified from the interview transcripts, manually coded, and thematically analysed. Results Thirty-nine individuals were interviewed. We found that the research team explained biobanking and future genomic research by describing how hereditary characteristics create similarities among individuals. However, recollection and understanding of this explanation seven months after participation was variable. The large volume of information about the Vukuzazi study objectives and procedures presented a challenge to participant recall. By the time of interviews, some participants recalled rudimentary facts about the genetic aspects of the study, but many expressed little to no interest in genetics and biobanking. Conclusion Participant’s understanding of information related to genetics and biobanking provided during the consent process is affected by the volume of information as well as participant’s interest (or lack thereof) in the subject matter being discussed. We recommend that future studies undertaking biobanking and genomic research treat explanations of this kind of research to participants as an on-going process of communication between researchers, participants and the community and that explanatory imagery and video graphic storytelling should be incorporated into theses explanations as these have previously been found to facilitate understanding among those with low literacy levels. Studies should also avoid having broader research objectives as this can divert participant’s interest and therefore understanding of why their samples are being collected. Supplementary Information The online version contains supplementary material available at 10.1186/s12910-022-00782-z.
Collapse
Affiliation(s)
- Manono Luthuli
- Africa Health Research Institute, KwaZulu-Natal, South Africa.
| | - Nothando Ngwenya
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Division of Infection and Immunity, University College London, London, UK.,School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Dumsani Gumede
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Resign Gunda
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Division of Infection and Immunity, University College London, London, UK.,School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Dickman Gareta
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Olivier Koole
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Global Health and Development Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark J Siedner
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Emily B Wong
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet Seeley
- Africa Health Research Institute, KwaZulu-Natal, South Africa.,School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa.,Global Health and Development Department, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Khamoui AV, Tokmina-Roszyk D, Feresin RG, Fields GB, Visavadiya NP. Skeletal muscle proteome expression differentiates severity of cancer cachexia in mice and identifies loss of fragile X mental retardation syndrome-related protein 1. Proteomics 2022; 22:e2100157. [PMID: 35289490 DOI: 10.1002/pmic.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
TMT-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/MAPK signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia, however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including Serpina3n, Sypl2, Idh3a, Acox1, Col6a1, Myoz3, Ugp2, and Slc41a3. Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in FXR1, an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
15
|
Kim S, Kim M, Sung JS. Exposure of Toluene Diisocyanate Induces DUSP6 and p53 through Activation of TRPA1 Receptor. Int J Mol Sci 2022; 23:ijms23010517. [PMID: 35008945 PMCID: PMC8745568 DOI: 10.3390/ijms23010517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
Toluene diisocyanate (TDI), a major intermediate agent used in the manufacturing industry, causes respiratory symptoms when exposed to the human body. In this study, we aimed to determine the molecular mechanism of TDI toxicity. To investigate the impact of TDI exposure on global gene expression, we performed transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) after TDI treatment. Differentially expressed genes (DEGs) were sorted and used for clustering and network analysis. Among DEGs, dual-specificity phosphatase 6 (DUSP6) was one of the genes significantly changed by TDI exposure. To verify the expression level of DUSP6 and its effect on lung cells, the mRNA and protein levels of DUSP6 were analyzed. Our results showed that DUSP6 was dose-dependently upregulated by TDI treatment. Thereby, the phosphorylation of ERK1/2, one of the direct inhibitory targets of DUSP6, was decreased. TDI exposure also increased the mRNA level of p53 along with its protein and activity which trans-activates DUSP6. Since TRPA1 is known as a signal integrator activated by TDI, we analyzed the relevance of TRPA1 receptor in DUSP6 regulation. Our data revealed that up-regulation of DUSP6 mediated by TDI was blocked by a specific antagonist against TRPA1. TDI exposure attenuated the apoptotic response, which suggests that it promotes the survival of cancerous cells. In conclusion, our results suggest that TDI induces DUSP6 and p53, but attenuates ERK1/2 activity through TRPA1 receptor activation, leading to cytotoxicity.
Collapse
Affiliation(s)
| | - Min Kim
- Correspondence: (M.K.); (J.-S.S.); Tel.: +82-31-961-5132 (J.-S.S.); Fax: +82-31-961-5108 (J.-S.S.)
| | - Jung-Suk Sung
- Correspondence: (M.K.); (J.-S.S.); Tel.: +82-31-961-5132 (J.-S.S.); Fax: +82-31-961-5108 (J.-S.S.)
| |
Collapse
|
16
|
Kumar R, Ojha KK, Yadav HN, Singh VK. Linking co-expression modules with phenotypes. Bioinformation 2022; 18:438-441. [PMID: 36909689 PMCID: PMC9997497 DOI: 10.6026/97320630018438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
The method for quantifying the association between co-expression module and clinical trait of interest requires application of dimensionality reduction to summaries modules as one dimensional (1D) vector. However, these methods are often linked with information loss. The amount of information lost depends upon the percentage of variance captured by the reduced 1D vector. Therefore, it is of interest to describe a method using analysis of rank (AOR) to assess the association between module and clinical trait of interest. This method works with clinical traits represented as binary class labels and can be adopted for clinical traits measured in continuous scale by dividing samples in two groups around median value. Application of the AOR method on test data for muscle gene expression profiles identifies modules significantly associated with diabetes status.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Krishna Kumar Ojha
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110029, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| |
Collapse
|
17
|
Zhang G, Anderson LJ, Gao S, Sin TK, Zhang Z, Wu H, Jafri SH, Graf SA, Wu PC, Dash A, Garcia JM, Li YP. Weight Loss in Cancer Patients Correlates With p38β MAPK Activation in Skeletal Muscle. Front Cell Dev Biol 2021; 9:784424. [PMID: 34950660 PMCID: PMC8688918 DOI: 10.3389/fcell.2021.784424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Unintentional weight loss, a first clinical sign of muscle wasting, is a major threat to cancer survival without a defined etiology. We previously identified in mice that p38β MAPK mediates cancer-induced muscle wasting by stimulating protein catabolism. However, whether this mechanism is relevant to humans is unknown. In this study, we recruited men with cancer and weight loss (CWL) or weight stable (CWS), and non-cancer controls (NCC), who were consented to rectus abdominis (RA) biopsy and blood sampling (n = 20/group). In the RA of both CWS and CWL, levels of activated p38β MAPK and its effectors in the catabolic pathways were higher than in NCC, with progressively higher active p38β MAPK detected in CWL. Remarkably, levels of active p38β MAPK correlated with weight loss. Plasma analysis for factors that activate p38β MAPK revealed higher levels in some cytokines as well as Hsp70 and Hsp90 in CWS and/or CWL. Thus, p38β MAPK appears a biomarker of weight loss in cancer patients.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Thomas K Sin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Hongyu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Syed H Jafri
- Department of Medicine, Section of Oncology, University of Texas Health Science Center, Houston, TX, United States
| | - Solomon A Graf
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter C Wu
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States.,Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Atreya Dash
- Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States.,Department of Urology, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
18
|
Smeets JSJ, Horstman AMH, van Dijk DPJ, van Boxtel AGM, Ter Woorst JF, Damink SWMO, Schijns OEMG, van Loon LJC. Basal protein synthesis rates differ between vastus lateralis and rectus abdominis muscle. J Cachexia Sarcopenia Muscle 2021; 12:769-778. [PMID: 33951313 PMCID: PMC8200451 DOI: 10.1002/jcsm.12701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In vivo muscle protein synthesis rates are typically assessed by measuring the incorporation rate of stable isotope labelled amino acids in skeletal muscle tissue collected from vastus lateralis muscle. It remains to be established whether muscle protein synthesis rates in the vastus lateralis are representative of muscle protein synthesis rates of other muscle groups. We hypothesized that post-absorptive muscle protein synthesis rates differ between vastus lateralis and rectus abdominis, pectoralis major, or temporalis muscle in vivo in humans. METHODS Twenty-four patients (62 ± 3 years, 42% female), scheduled to undergo surgery, participated in this study and underwent primed continuous intravenous infusions with l-[ring-13 C6 ]-phenylalanine. During the surgical procedures, serum samples were collected, and muscle tissue was obtained from the vastus lateralis as well as from the rectus abdominis, pectoralis major, or temporalis muscle. Fractional mixed muscle protein synthesis rates (%/h) were assessed by measuring the incorporation of l-[ring-13 C6 ]-phenylalanine into muscle tissue protein. RESULTS Serum l-[ring-13 C6 ]-phenylalanine enrichments did not change throughout the infusion period. Post-absorptive muscle protein synthesis rates calculated based upon serum l-[ring-13 C6 ]-phenylalanine enrichments did not differ between vastus lateralis and rectus abdominis (0.032 ± 0.004 vs. 0.038 ± 0.003%/h), vastus lateralis and pectoralis major, (0.025 ± 0.003 vs. 0.022 ± 0.005%/h) or vastus lateralis and temporalis (0.047 ± 0.005 vs. 0.043 ± 0.005%/h) muscle, respectively (P > 0.05). When fractional muscle protein synthesis rates were calculated based upon tissue-free l-[ring-13 C6 ]-phenylalanine enrichments as the preferred precursor pool, muscle protein synthesis rates were significantly higher in rectus abdominis (0.089 ± 0.008%/h) compared with vastus lateralis (0.054 ± 0.005%/h) muscle (P < 0.01). No differences were observed between fractional muscle protein synthesis rates in vastus lateralis and pectoralis major (0.046 ± 0.003 vs. 0.041 ± 0.008%/h) or vastus lateralis and temporalis (0.073 ± 0.008 vs. 0.083 ± 0.011%/h) muscle, respectively. CONCLUSIONS Post-absorptive muscle protein synthesis rates are higher in rectus abdominis when compared with vastus lateralis muscle. Post-absorptive muscle protein synthesis rates do not differ between vastus lateralis and pectoralis major or temporalis muscle. Protein synthesis rates in muscle tissue samples obtained during surgery do not necessarily represent a good proxy for appendicular skeletal muscle protein synthesis rates.
Collapse
Affiliation(s)
- Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Astrid M H Horstman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - David P J van Dijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Astrid G M van Boxtel
- Department of Cardiothoracic Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Joost F Ter Woorst
- Department of Cardiothoracic Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands.,School of Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology, location Maastricht, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Cao Z, Zhao K, Jose I, Hoogenraad NJ, Osellame LD. Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci 2021; 22:4501. [PMID: 33925872 PMCID: PMC8123431 DOI: 10.3390/ijms22094501] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Cancer cachexia is a common condition in many cancer patients, particularly those with advanced disease. Cancer cachexia patients are generally less tolerant to chemotherapies and radiotherapies, largely limiting their treatment options. While the search for treatments of this condition are ongoing, standards for the efficacy of treatments have yet to be developed. Current diagnostic criteria for cancer cachexia are primarily based on loss of body mass and muscle function. However, these criteria are rather limiting, and in time, when weight loss is noticeable, it may be too late for treatment. Consequently, biomarkers for cancer cachexia would be valuable adjuncts to current diagnostic criteria, and for assessing potential treatments. Using high throughput methods such as "omics approaches", a plethora of potential biomarkers have been identified. This article reviews and summarizes current studies of biomarkers for cancer cachexia.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Kening Zhao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Irvin Jose
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
| | - Nick J. Hoogenraad
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Laura D. Osellame
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC 3086, Australia; (K.Z.); (I.J.); (N.J.H.)
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| |
Collapse
|
20
|
Narasimhan A, Zhong X, Au EP, Ceppa EP, Nakeeb A, House MG, Zyromski NJ, Schmidt CM, Schloss KNH, Schloss DEI, Liu Y, Jiang G, Hancock BA, Radovich M, Kays JK, Shahda S, Couch ME, Koniaris LG, Zimmers TA. Profiling of Adipose and Skeletal Muscle in Human Pancreatic Cancer Cachexia Reveals Distinct Gene Profiles with Convergent Pathways. Cancers (Basel) 2021; 13:1975. [PMID: 33923976 PMCID: PMC8073275 DOI: 10.3390/cancers13081975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023] Open
Abstract
The vast majority of patients with pancreatic ductal adenocarcinoma (PDAC) suffer cachexia. Although cachexia results from concurrent loss of adipose and muscle tissue, most studies focus on muscle alone. Emerging data demonstrate the prognostic value of fat loss in cachexia. Here we sought to identify the muscle and adipose gene profiles and pathways regulated in cachexia. Matched rectus abdominis muscle and subcutaneous adipose tissue were obtained at surgery from patients with benign conditions (n = 11) and patients with PDAC (n = 24). Self-reported weight loss and body composition measurements defined cachexia status. Gene profiling was done using ion proton sequencing. Results were queried against external datasets for validation. 961 DE genes were identified from muscle and 2000 from adipose tissue, demonstrating greater response of adipose than muscle. In addition to known cachexia genes such as FOXO1, novel genes from muscle, including PPP1R8 and AEN correlated with cancer weight loss. All the adipose correlated genes including SCGN and EDR17 are novel for PDAC cachexia. Pathway analysis demonstrated shared pathways but largely non-overlapping genes in both tissues. Age related muscle loss predominantly had a distinct gene profiles compared to cachexia. This analysis of matched, externally validate gene expression points to novel targets in cachexia.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
| | - Ernie P. Au
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eugene P. Ceppa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Atilla Nakeeb
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Michael G. House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Nicholas J. Zyromski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - C. Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Katheryn N. H. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Daniel E. I. Schloss
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Yunlong Liu
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Bradley A. Hancock
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Milan Radovich
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Joshua K. Kays
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
| | - Safi Shahda
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marion E. Couch
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.N.); (X.Z.); (E.P.A.); (E.P.C.); (A.N.); (M.G.H.); (N.J.Z.); (C.M.S.); (K.N.H.S.); (D.E.I.S.); (B.A.H.); (M.R.); (J.K.K.); (L.G.K.)
- IUPUI Center for Cachexia Research Innovation and Therapy, Indianapolis, IN 46202, USA; (Y.L.); (S.S.); (M.E.C.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, USA
- Department of Otolaryngology—Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Dolly A, Dumas J, Servais S. Cancer cachexia and skeletal muscle atrophy in clinical studies: what do we really know? J Cachexia Sarcopenia Muscle 2020; 11:1413-1428. [PMID: 33053604 PMCID: PMC7749617 DOI: 10.1002/jcsm.12633] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Research investigators have shown a growing interest in investigating alterations underlying skeletal muscle wasting in patients with cancer. However, skeletal muscle dysfunctions associated with cancer cachexia have mainly been studied in preclinical models. In the present review, we summarize the results of clinical studies in which skeletal muscle biopsies were collected from cachectic vs. non-cachectic cancer patients. Most of these studies suggest the presence of significant physiological alterations in skeletal muscle from cachectic cancer patients. We suggest a hypothesis, which connects structural and metabolic parameters that may, at least in part, be responsible for the skeletal muscle atrophy characteristic of cancer cachexia. Finally, we discuss the importance of a better standardization of the diagnostic criteria for cancer cachexia, as well as the requirement for additional clinical studies to improve the robustness of these conclusions.
Collapse
Affiliation(s)
- Adeline Dolly
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| | - Jean‐François Dumas
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| | - Stéphane Servais
- INSERM UMR 1069, Nutrition Croissance et CancerUniversité de ToursToursFrance
| |
Collapse
|
22
|
Yang W, Huang J, Wu H, Wang Y, Du Z, Ling Y, Wang W, Wu Q, Gao W. Molecular mechanisms of cancer cachexia‑induced muscle atrophy (Review). Mol Med Rep 2020; 22:4967-4980. [PMID: 33174001 PMCID: PMC7646947 DOI: 10.3892/mmr.2020.11608] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle atrophy is a severe clinical problem involving the loss of muscle mass and strength that frequently accompanies the development of numerous types of cancer, including pancreatic, lung and gastric cancers. Cancer cachexia is a multifactorial syndrome characterized by a continuous decline in skeletal muscle mass that cannot be reversed by conventional nutritional therapy. The pathophysiological characteristic of cancer cachexia is a negative protein and energy balance caused by a combination of factors, including reduced food intake and metabolic abnormalities. Numerous necessary cellular processes are disrupted by the presence of abnormal metabolites, which mediate several intracellular signaling pathways and result in the net loss of cytoplasm and organelles in atrophic skeletal muscle during various states of cancer cachexia. Currently, the clinical morbidity and mortality rates of patients with cancer cachexia are high. Once a patient enters the cachexia phase, the consequences are difficult to reverse and the treatment methods for cancer cachexia are very limited. The present review aimed to summarize the recent discoveries regarding the pathogenesis of cancer cachexia-induced muscle atrophy and provided novel ideas for the comprehensive treatment to improve the prognosis of affected patients.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Hui Wu
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuqing Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zhiyin Du
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Yuanbo Ling
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Weizhuo Wang
- Department of Clinical Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Qian Wu
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wenbin Gao
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
23
|
Miller J, Dreczkowski G, Ramage MI, Wigmore SJ, Gallagher IJ, Skipworth RJE. Adipose depot gene expression and intelectin-1 in the metabolic response to cancer and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1141-1153. [PMID: 32232960 PMCID: PMC7432578 DOI: 10.1002/jcsm.12568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia is a poorly understood metabolic consequence of cancer. During cachexia, different adipose depots demonstrate differential wasting rates. Animal models suggest adipose tissue may be a key driver of muscle wasting through fat-muscle crosstalk, but human studies in this area are lacking. We performed global gene expression profiling of visceral (VAT) and subcutaneous (SAT) adipose from weight stable and cachectic cancer patients and healthy controls. METHODS Cachexia was defined as >2% weight loss plus low computed tomography-muscularity. Biopsies of SAT and VAT were taken from patients undergoing resection for oesophago-gastric cancer, and healthy controls (n = 16 and 8 respectively). RNA was isolated and reverse transcribed. cDNA was hybridised to the Affymetrix Clariom S microarray and data analysed using R/Bioconductor. Differential expression of genes was assessed using empirical Bayes and moderated-t-statistic approaches. Category enrichment analysis was used with a tissue-specific background to examine the biological context of differentially expressed genes. Selected differentially regulated genes were validated by qPCR. Enzyme-linked immunosorbent assay (ELISA) for intelectin-1 was performed on all VAT samples. The previously-described cohort plus 12 additional patients from each group also had plasma I = intelectin-1 ELISA carried out. RESULTS In VAT vs. SAT comparisons, there were 2101, 1722, and 1659 significantly regulated genes in the cachectic, weight stable, and control groups, respectively. There were 2200 significantly regulated genes from VAT in cachectic patients compared with controls. Genes involving inflammation were enriched in cancer and control VAT vs. SAT, although different genes contributed to enrichment in each group. Energy metabolism, fat browning (e.g. uncoupling protein 1), and adipogenesis genes were down-regulated in cancer VAT (P = 0.043, P = 5.4 × 10-6 and P = 1 × 10-6 respectively). The gene showing the largest difference in expression was ITLN1, the gene that encodes for intelectin-1 (false discovery rate-corrected P = 0.0001), a novel adipocytokine associated with weight loss in other contexts. CONCLUSIONS SAT and VAT have unique gene expression signatures in cancer and cachexia. VAT is metabolically active in cancer, and intelectin-1 may be a target for therapeutic manipulation. VAT may play a fundamental role in cachexia, but the down-regulation of energy metabolism genes implies a limited role for fat browning in cachectic patients, in contrast to pre-clinical models.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Michael I Ramage
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Stephen J Wigmore
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Iain J Gallagher
- Faculty of Health Science and Sport, University of Stirling, Stirling, UK
| | - Richard J E Skipworth
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Fernandez GJ, Ferreira JH, Vechetti IJ, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR, Carvalho RF. MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet 2020; 11:541. [PMID: 32547603 PMCID: PMC7272700 DOI: 10.3389/fgene.2020.00541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Cancer cachexia is a metabolic syndrome with alterations in gene regulatory networks that consequently lead to skeletal muscle wasting. Integrating microRNAs-mRNAs omics profiles offers an opportunity to understand transcriptional and post-transcriptional regulatory networks underlying muscle wasting. Here, we used RNA sequencing to simultaneously integrate and explore microRNAs and mRNAs expression profiles in the tibialis anterior (TA) muscles of the Lewis Lung Carcinoma (LLC) model of cancer cachexia. We found 1,008 mRNAs and 18 microRNAs differentially expressed in cachectic mice compared with controls. Although our transcriptomic analysis demonstrated a high heterogeneity in mRNA profiles of cachectic mice, we identified a reduced number of differentially expressed genes that were uniformly regulated within cachectic muscles. This set of uniformly regulated genes is associated with the extracellular matrix (ECM), proteolysis, and inflammatory response. We also used transcriptomic data to perform enrichment analysis of transcriptional factor binding sites in promoter sequences, which revealed activation of the atrophy-related transcription factors NF-κB, Stat3, AP-1, and FoxO. Furthermore, the integration of mRNA and microRNA expression profiles identified post-transcriptional regulation by microRNAs of genes involved in ECM organization, cell migration, transcription factors binding, ion transport, and the FoxO signaling pathway. Our integrative analysis of microRNA-mRNA co-profiles comprehensively characterized regulatory relationships of molecular pathways and revealed microRNAs targeting ECM-associated genes in cancer cachexia.
Collapse
Affiliation(s)
- Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Juarez Henrique Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Ivan José Vechetti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Leonardo Nazario de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Jayson Gutiérrez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Renato Ferretti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
25
|
Wilson AC, Kumar PL, Lee S, Parker MM, Arora I, Morrow JD, Wouters EFM, Casaburi R, Rennard SI, Lomas DA, Agusti A, Tal-Singer R, Dransfield MT, Wells JM, Bhatt SP, Washko G, Thannickal VJ, Tiwari HK, Hersh CP, Castaldi PJ, Silverman EK, McDonald MLN. Heme metabolism genes Downregulated in COPD Cachexia. Respir Res 2020; 21:100. [PMID: 32354332 PMCID: PMC7193359 DOI: 10.1186/s12931-020-01336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.
Collapse
Affiliation(s)
- Ava C Wilson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Preeti L Kumar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Itika Arora
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Emiel F M Wouters
- Centre of expertise for chronic organ failure, Horn, the Netherlands
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen I Rennard
- Department of Medicine, Nebraska Medical Center, Omaha, NE, USA
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David A Lomas
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Alvar Agusti
- Fundació Investigació Sanitària Illes Balears (FISIB), Ciber Enfermedades Respiratorias (CIBERES), Barcelona, Catalunya, Spain
- Thorax Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Merry-Lynn N McDonald
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Khamoui AV, Tokmina-Roszyk D, Rossiter HB, Fields GB, Visavadiya NP. Hepatic proteome analysis reveals altered mitochondrial metabolism and suppressed acyl-CoA synthetase-1 in colon-26 tumor-induced cachexia. Physiol Genomics 2020; 52:203-216. [PMID: 32146873 DOI: 10.1152/physiolgenomics.00124.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer traditionally characterized by weight loss and muscle dysfunction. Cachexia, however, is a systemic disease that also involves remodeling of nonmuscle organs. The liver exerts major control over systemic metabolism, yet its role in cancer cachexia is not well understood. To advance the understanding of how the liver contributes to cancer cachexia, we used quantitative proteomics and bioinformatics to identify hepatic pathways and cellular processes dysregulated in mice with moderate and severe colon-26 tumor-induced cachexia; ~300 differentially expressed proteins identified during the induction of moderate cachexia were also differentially regulated in the transition to severe cachexia. KEGG pathway enrichment revealed representation by oxidative phosphorylation, indicating altered hepatic mitochondrial function as a common feature across cachexia severity. Glycogen catabolism was also observed in cachexic livers along with decreased pyruvate dehydrogenase protein X component (Pdhx), increased lactate dehydrogenase A chain (Ldha), and increased lactate transporter Mct1. Together this suggests altered lactate metabolism and transport in cachexic livers, which may contribute to energetically inefficient interorgan lactate cycling. Acyl-CoA synthetase-1 (ACSL1), known for activating long-chain fatty acids, was decreased in moderate and severe cachexia based on LC-MS/MS analysis and immunoblotting. ACSL1 showed strong linear relationships with percent body weight change and muscle fiber size (R2 = 0.73-0.76, P < 0.01). Mitochondrial coupling efficiency, which is compromised in cachexic livers to potentially increase energy expenditure and weight loss, also showed a linear relationship with ACSL1. Findings suggest altered mitochondrial and substrate metabolism of the liver in cancer cachexia, and possible hepatic targets for intervention.
Collapse
Affiliation(s)
- Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida.,Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida
| | - Dorota Tokmina-Roszyk
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, Florida.,Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Nishant P Visavadiya
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
27
|
Anoveros‐Barrera A, Bhullar AS, Stretch C, Esfandiari N, Dunichand‐Hoedl AR, Martins KJ, Bigam D, Khadaroo RG, McMullen T, Bathe OF, Damaraju S, Skipworth RJ, Putman CT, Baracos VE, Mazurak VC. Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients. J Cachexia Sarcopenia Muscle 2019; 10:1356-1377. [PMID: 31307124 PMCID: PMC9536086 DOI: 10.1002/jcsm.12466] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Researchers increasingly use intraoperative muscle biopsy to investigate mechanisms of skeletal muscle atrophy in patients with cancer. Muscles have been assessed for morphological, cellular, and biochemical features. The aim of this study was to conduct a state-of-the-science review of this literature and, secondly, to evaluate clinical and biological variation in biopsies of rectus abdominis (RA) muscle from a cohort of patients with malignancies. METHODS Literature was searched for reports on muscle biopsies from patients with a cancer diagnosis. Quality of reports and risk of bias were assessed. Data abstracted included patient characteristics and diagnoses, sample size, tissue collection and biobanking procedures, and results. A cohort of cancer patients (n = 190, 88% gastrointestinal malignancies), who underwent open abdominal surgery as part of their clinical care, consented to RA biopsy from the site of incision. Computed tomography (CT) scans were used to quantify total abdominal muscle and RA cross-sectional areas and radiodensity. Biopsies were assessed for muscle fibre area (μm2 ), fibre types, myosin heavy chain isoforms, and expression of genes selected for their involvement in catabolic pathways of muscle. RESULTS Muscle biopsy occurred in 59 studies (total N = 1585 participants). RA was biopsied intraoperatively in 40 studies (67%), followed by quadriceps (26%; percutaneous biopsy) and other muscles (7%). Cancer site and stage, % of male participants, and age were highly variable between studies. Details regarding patient medical history and biopsy procedures were frequently absent. Lack of description of the population(s) sampled and low sample size contributed to low quality and risk of bias. Weight-losing cases were compared with weight stable cancer or healthy controls without considering a measure of muscle mass in 21 out of 44 studies. In the cohort of patients providing biopsy for this study, 78% of patients had preoperative CT scans and a high proportion (64%) met published criteria for sarcopenia. Fibre type distribution in RA was type I (46% ± 13), hybrid type I/IIA (1% ± 1), type IIA (36% ± 10), hybrid type IIA/D (15% ± 14), and type IID (2% ± 5). Sexual dimorphism was prominent in RA CT cross-sectional area, mean fibre cross-sectional area, and in expression of genes associated with muscle growth, apoptosis, and inflammation (P < 0.05). Medical history revealed multiple co-morbid conditions and medications. CONCLUSIONS Continued collaboration between researchers and cancer surgeons enables a more complete understanding of mechanisms of cancer-associated muscle atrophy. Standardization of biobanking practices, tissue manipulation, patient characterization, and classification will enhance the consistency, reliability, and comparability of future studies.
Collapse
Affiliation(s)
- Ana Anoveros‐Barrera
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonABCanada
| | - Amritpal S. Bhullar
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonABCanada
| | | | - Nina Esfandiari
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Abha R. Dunichand‐Hoedl
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonABCanada
| | - Karen J.B. Martins
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonABCanada
| | - David Bigam
- Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Rachel G. Khadaroo
- Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Todd McMullen
- Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Oliver F. Bathe
- Department of OncologyUniversity of CalgaryCalgaryABCanada
- Department of SurgeryUniversity of CalgaryCalgaryABCanada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABCanada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | | | - Charles T. Putman
- Faculty of Kinesiology, Sport, and Recreation, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Vickie E. Baracos
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Vera C. Mazurak
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental SciencesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
28
|
Miller J, Alshehri A, Ramage MI, Stephens NA, Mullen AB, Boyd M, Ross JA, Wigmore SJ, Watson DG, Skipworth RJE. Plasma Metabolomics Identifies Lipid and Amino Acid Markers of Weight Loss in Patients with Upper Gastrointestinal Cancer. Cancers (Basel) 2019; 11:cancers11101594. [PMID: 31635032 PMCID: PMC6826420 DOI: 10.3390/cancers11101594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a multifactorial wasting syndrome associated with high morbidity and mortality in patients with cancer. Diagnosis can be difficult and, in the clinical situation, usually relies upon reported weight loss. The ‘omics’ technologies allow us the opportunity to study the end points of many biological processes. Among these, blood-based metabolomics is a promising method to investigate the pathophysiology of human cancer cachexia and identify candidate biomarkers. In this study, we performed liquid chromatography mass spectrometry (LC/MS)-based metabolomics to investigate the metabolic profile of cancer-associated weight loss. Non-selected patients undergoing surgery with curative intent for upper gastrointestinal cancer were recruited. Fasting plasma samples were taken at induction of anaesthesia. LC/MS analysis showed that 6 metabolites were highly discriminative of weight loss. Specifically, a combination profile of LysoPC 18.2, L-Proline, Hexadecanoic acid, Octadecanoic acid, Phenylalanine and LysoPC 16:1 showed close correlation for eight weight-losing samples (≥5% weight loss) and nine weight-stable samples (<5%weight loss) between predicted and actual weight change (r = 0.976, p = 0.0014). Overall, 40 metabolites were associated with ≥5% weight loss. This study provides biological validation of the consensus definition of cancer cachexia (Fearon et al.) and provides feasible candidate markers for further investigation in early diagnosis and the assessment of therapeutic intervention.
Collapse
Affiliation(s)
- Janice Miller
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Ahmed Alshehri
- The Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK.
| | - Michael I Ramage
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Nathan A Stephens
- The Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK.
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - James A Ross
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - Stephen J Wigmore
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK.
| | - Richard J E Skipworth
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK.
| |
Collapse
|
29
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
31
|
Mitophagy in Cancer: A Tale of Adaptation. Cells 2019; 8:cells8050493. [PMID: 31121959 PMCID: PMC6562743 DOI: 10.3390/cells8050493] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
:In the past years, we have learnt that tumors co-evolve with their microenvironment, and that the active interaction between cancer cells and stromal cells plays a pivotal role in cancer initiation, progression and treatment response. Among the players involved, the pathways regulating mitochondrial functions have been shown to be crucial for both cancer and stromal cells. This is perhaps not surprising, considering that mitochondria in both cancerous and non-cancerous cells are decisive for vital metabolic and bioenergetic functions and to elicit cell death. The central part played by mitochondria also implies the existence of stringent mitochondrial quality control mechanisms, where a specialized autophagy pathway (mitophagy) ensures the selective removal of damaged or dysfunctional mitochondria. Although the molecular underpinnings of mitophagy regulation in mammalian cells remain incomplete, it is becoming clear that mitophagy pathways are intricately linked to the metabolic rewiring of cancer cells to support the high bioenergetic demand of the tumor. In this review, after a brief introduction of the main mitophagy regulators operating in mammalian cells, we discuss emerging cell autonomous roles of mitochondria quality control in cancer onset and progression. We also discuss the relevance of mitophagy in the cellular crosstalk with the tumor microenvironment and in anti-cancer therapy responses.
Collapse
|
32
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
33
|
Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2018; 94:1038-1055. [PMID: 30588725 DOI: 10.1111/brv.12489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to single acute events. The accompanying loss of strength can lead to significant disability, increased care needs and have profound negative effects on quality of life. As muscle is the most abundant source of amino acids in the body, it appears to function as a buffer for fuel and substrates that can be used to repair damage elsewhere and to feed the immune system. In essence, the fundamentals of muscle wasting are simple: less muscle is made than is broken down. However, although well-described mechanisms modulate muscle protein turnover, significant individual differences in the amount of muscle lost in the presence of a given severity of disease complicate the understanding of underlying mechanisms and suggest that individuals have different sensitivities to signals for muscle loss. Furthermore, the rate at which muscle protein is turned over under normal conditions means that clinically significant muscle loss can occur with changes in the rate of protein synthesis and/or breakdown that are too small to be measurable. Consequently, the changes in expression of factors regulating muscle turnover required to cause a decline in muscle mass are small and, except in cases of rapid wasting, there is no consistent pattern of change in the expression of factors that regulate muscle mass. MicroRNAs are fine tuners of cell phenotype and are therefore ideally suited to cause the subtle changes in proteome required to tilt the balance between synthesis and degradation in a way that causes clinically significant wasting. Herein we present a model in which muscle loss as a consequence of disease in non-muscle tissue is modulated by a set of microRNAs, the muscle expression of which is associated with severity of disease in the non-muscle tissue. These microRNAs alter fundamental biological processes including the synthesis of ribosomes and mitochondria leading to reduced protein synthesis and increased protein breakdown, thereby freeing amino acids from the muscle. We argue that the variability in muscle loss observed in the human population arises from at least two sources. The first is from pre-existing or disease-induced variation in the expression of microRNAs controlling the sensitivity of muscle to the atrophic signal and the second is from the expression of microRNAs from imprinted loci (i.e. only expressed from the maternally or paternally inherited allele) and may control the rate of myonuclear recruitment. In the absence of disease, these factors do not correlate with muscle mass, since there is no challenge to the established balance. However, in the presence of such a challenge, these microRNAs determine the rate of decline for a given disease severity. Together these mechanisms provide novel insight into the loss of muscle mass and its variation in the human population. The involvement of imprinted loci also suggests that genes that regulate early development also contribute to the ability of individuals to resist muscle loss in response to disease.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Mark Griffiths
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, U.K
| |
Collapse
|
34
|
Kandarian SC, Nosacka RL, Delitto AE, Judge AR, Judge SM, Ganey JD, Moreira JD, Jackman RW. Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J Cachexia Sarcopenia Muscle 2018; 9:1109-1120. [PMID: 30270531 PMCID: PMC6240747 DOI: 10.1002/jcsm.12346] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer cachexia is a metabolic wasting syndrome that is strongly associated with a poor prognosis. The initiating factors causing fat and muscle loss are largely unknown. Previously, we found that leukaemia inhibitory factor (LIF) secreted by C26 colon carcinoma cells was responsible for atrophy in treated myotubes. In the present study, we tested whether C26 tumour-derived LIF is required for cancer cachexia in mice by knockout of Lif in C26 cells. METHODS A C26 Lif null tumour cell line was made using CRISPR-Cas9. Measurements of cachexia were compared in mice inoculated with C26 vs. C26Lif-/- tumour cells, and atrophy was compared in myotubes treated with medium from C26 vs. C26Lif-/- tumour cells. Levels of 25 cytokines/chemokines were compared in serum of mice bearing C26 vs. C26Lif-/- tumours and in the medium from these tumour cell lines. RESULTS At study endpoint, C26 mice showed outward signs of sickness while mice with C26Lif-/- tumours appeared healthy. Mice with C26Lif-/- tumours showed a 55-75% amelioration of body weight loss, muscle loss, fat loss, and splenomegaly compared with mice with C26 tumours (P < 0.05). The heart was not affected by LIF levels because the loss of cardiac mass was the same in C26 and C26Lif-/- tumour-bearing mice. LIF levels in mouse serum was entirely dependent on secretion from the tumour cells. Serum levels of interleukin-6 and G-CSF were increased by 79-fold and 68-fold, respectively, in C26 mice but only by five-fold and two-fold, respectively, in C26Lif-/- mice, suggesting that interleukin-6 and G-CSF increases are dependent on tumour-derived LIF. CONCLUSIONS This study shows the first use of CRISPR-Cas9 knockout of a candidate cachexia factor in tumour cells. The results provide direct evidence for LIF as a major cachexia initiating factor for the C26 tumour in vivo. Tumour-derived LIF was also a regulator of multiple cytokines in C26 tumour cells and in C26 tumour-bearing mice. The identification of tumour-derived factors such as LIF that initiate the cachectic process is immediately applicable to the development of therapeutics to treat cachexia. This is a proof of principle for studies that when carried out in human cells, will make possible an understanding of the factors causing cachexia in a patient-specific manner.
Collapse
Affiliation(s)
| | - Rachel L. Nosacka
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - Andrea E. Delitto
- Department of Oral Biology, College of DentistryUniversity of Florida Health Science CenterGainesvilleFL32610USA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of FloridaGainesvilleFL32610USA
| | - John D. Ganey
- Department of Health SciencesBoston UniversityBostonMA02215USA
| | | | | |
Collapse
|
35
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
36
|
Brzeszczyńska J, Meyer A, McGregor R, Schilb A, Degen S, Tadini V, Johns N, Langen R, Schols A, Glass DJ, Roubenoff R, Ross JA, Fearon KCH, Greig CA, Jacobi C. Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. J Cachexia Sarcopenia Muscle 2018; 9:93-105. [PMID: 29214748 PMCID: PMC5803613 DOI: 10.1002/jcsm.12252] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia is defined as the age-related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2-5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle-aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non-sarcopenic skeletal muscle phenotypes during ageing. METHODS Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non-sarcopenic (HENS, n = 21) and healthy middle-aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17-83 years) was used to mimic the environmental challenges of muscle regeneration over time. RESULTS The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30-fold upregulation of TNF-α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age-related upregulation of pro-inflammatory cytokines (2-fold upregulation of interleukin (IL)-6, IL-8 mRNA, increased secretion of tumor necrosis factor-α (TNF-α) and IL-6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05). Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10-fold higher upregulation of HSPA1A a stress-induced chaperone acting upon misfolded proteins in HSE compared with the HENS group. CONCLUSIONS Both pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative-stress and mis-folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, UK
| | - Angelika Meyer
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Robin McGregor
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Alain Schilb
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Simone Degen
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Valentina Tadini
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Neil Johns
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, UK
| | - Ramon Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Annemie Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - David J Glass
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ronenn Roubenoff
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - James A Ross
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, UK
| | | | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences and MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Carsten Jacobi
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland and Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
37
|
Narasimhan A, Greiner R, Bathe OF, Baracos V, Damaraju S. Differentially expressed alternatively spliced genes in skeletal muscle from cancer patients with cachexia. J Cachexia Sarcopenia Muscle 2018; 9:60-70. [PMID: 28984045 PMCID: PMC5803615 DOI: 10.1002/jcsm.12235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional gene regulatory mechanism that contributes to proteome diversity. Aberrant splicing mechanisms contribute to various cancers and muscle-related conditions such as Duchenne muscular dystrophy. However, dysregulation of AS in cancer cachexia (CC) remains unexplored. Our objectives were (i) to profile alternatively spliced genes (ASGs) on a genome-wide scale and (ii) to identify differentially expressed alternatively spliced genes (DASGs) associated with CC. METHODS Rectus abdominis muscle biopsies obtained from cancer patients were stratified into cachectic cases (n = 21, classified based on International consensus diagnostic framework for CC) and non-cachectic controls (n = 19, weight stable cancer patients). Human transcriptome array 2.0 was used for profiling ASGs using the total RNA isolated from muscle biopsies. Representative DASG signatures were validated using semi-quantitative RT-PCR. RESULTS We identified 8960 ASGs, of which 922 DASGs (772 up-regulated and 150 down-regulated) were identified at ≥1.4 fold-change and P < 0.05. Representative DASGs validated by semi-quantitative RT-PCR confirmed the primary findings from the human transcriptome arrays. Identified DASGs were associated with myogenesis, adipogenesis, protein ubiquitination, and inflammation. Up to 10% of the DASGs exhibited cassette exon (exon included or skipped) as a predominant form of AS event. We also observed other forms of AS events such as intron retention, alternate promoters. CONCLUSIONS Overall, we have, for the first time, conducted global profiling of muscle tissue to identify DASGs associated with CC. The mechanistic roles of the identified DASGs in CC pathophysiology using model systems is warranted, as well as replication of findings in independent cohorts.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
| | - Russell Greiner
- Department of Computing SciencesUniversity of AlbertaEdmontonABT6G 2E8Canada
| | - Oliver F. Bathe
- Departments of Surgery and OncologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Vickie Baracos
- Department of OncologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| |
Collapse
|
38
|
Shen L, Meng X, Zhang Z, Wang T. Physical Exercise for Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:529-545. [PMID: 30390268 DOI: 10.1007/978-981-13-1435-3_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.
Collapse
Affiliation(s)
- Liang Shen
- Physical Education College of Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
39
|
Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu Y, Yu L, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Xu P, Shu G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J 2018; 32:488-499. [PMID: 28939592 PMCID: PMC6266637 DOI: 10.1096/fj.201700670r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy due to excessive protein degradation is the main cause for muscle dysfunction, fatigue, and weakening of athletic ability. Endurance exercise is effective to attenuate muscle atrophy, but the underlying mechanism has not been fully investigated. α-Ketoglutarate (AKG) is a key intermediate of tricarboxylic acid cycle, which is generated during endurance exercise. Here, we demonstrated that AKG effectively attenuated corticosterone-induced protein degradation and rescued the muscle atrophy and dysfunction in a Duchenne muscular dystrophy mouse model. Interestingly, AKG also inhibited the expression of proline hydroxylase 3 (PHD3), one of the important oxidoreductases expressed under hypoxic conditions. Subsequently, we identified the β2 adrenergic receptor (ADRB2) as a downstream target for PHD3. We found AKG inhibited PHD3/ADRB2 interaction and therefore increased the stability of ADRB2. In addition, combining pharmacologic and genetic approaches, we showed that AKG rescues skeletal muscle atrophy and protein degradation through a PHD3/ADRB2 mediated mechanism. Taken together, these data reveal a mechanism for inhibitory effects of AKG on muscle atrophy and protein degradation. These findings not only provide a molecular basis for the potential use of exercise-generated metabolite AKG in muscle atrophy treatment, but also identify PHD3 as a potential target for the development of therapies for muscle wasting.-Cai, X., Yuan, Y., Liao, Z., Xing, K., Zhu, C., Xu, Y., Yu, L., Wang, L., Wang, S., Zhu, X., Gao, P., Zhang, Y., Jiang, Q., Xu, P., Shu, G. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway.
Collapse
MESH Headings
- Animals
- Corticosterone/pharmacology
- Disease Models, Animal
- Ketoglutaric Acids/therapeutic use
- Male
- Metabolic Networks and Pathways/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Procollagen-Proline Dioxygenase/metabolism
- Protein Stability/drug effects
- Proteolysis/drug effects
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Xingcai Cai
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yexian Yuan
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Zhengrui Liao
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Kongping Xing
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yaqiong Xu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Lulu Yu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pingwen Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou, China;
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Li Y, Meng X, Li G, Zhou Q, Xiao J. Noncoding RNAs in Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:249-266. [PMID: 30390255 DOI: 10.1007/978-981-13-1435-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Denervation, disuse, fasting, and various diseases could induce skeletal muscle atrophy, which results in the decline of life quality and increase of the mortality risk for patients. Noncoding RNAs (ncRNAs) are implicated important in regulating gene expression. Thus, ncRNAs, especially microRNAs and long noncoding RNAs (lncRNAs), have gained widespread attention as crucial players in numerous physiological and pathological processes, including skeletal muscle atrophy. In this review, we comprehensively described the potential of circulating microRNAs as biomarkers, summarized the profiling of microRNAs and lncRNAs in atrophying muscles, as well as discussed the effects and underlying mechanisms of microRNA machinery proteins, microRNAs, and lncRNAs in skeletal muscle atrophy. Considering the large quantity and variety of ncRNAs, the understanding of ncRNAs in muscle atrophy is still very limited. Future studies are needed to elucidate the possibility of ncRNAs as diagnosis biomarkers and therapeutic targets in muscle atrophy.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
41
|
Brzeszczyńska J, Johns N, Schilb A, Degen S, Degen M, Langen R, Schols A, Glass DJ, Roubenoff R, Greig CA, Jacobi C, Fearon KC, Ross JA. Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging (Albany NY) 2017; 8:1690-702. [PMID: 27454226 PMCID: PMC5032690 DOI: 10.18632/aging.101006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Neil Johns
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Alain Schilb
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Simone Degen
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Martin Degen
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ramon Langen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Annemie Schols
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - David J Glass
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ronenn Roubenoff
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Carolyn A Greig
- School of Sport, Exercise and Rehabilitation Sciences and MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Carsten Jacobi
- Novartis Institutes for Biomedical Research Basel, Novartis Pharma AG, CH-4056 Basel, Switzerland.,Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Kenneth Ch Fearon
- Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - James A Ross
- Tissue Injury and Repair Group, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
42
|
Identification of SPOP related metabolic pathways in prostate cancer. Oncotarget 2017; 8:103032-103046. [PMID: 29262542 PMCID: PMC5732708 DOI: 10.18632/oncotarget.21460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022] Open
Abstract
Speckle-type POZ protein (SPOP), as a cullin-based E3 ubiquitin ligase, has been identified as one of the most frequently mutated genes in prostate cancer (PCa). However, whether SPOP mutations contribute to metabolic reprogramming in PCa remains unknown. Here, integrated studies of transcriptomics and metabolomics as well as lipidomics were performed in matched PCa tumor (PCT) and adjacent non-tumor (ANT) tissues, followed by correlation analysis of SPOP mutations with altered metabolic pathways in SPOP-mutated PCa patients. Interestingly, transcriptomics profiling showed that all SPOP mutations (with 16.7% frequency, 11/66) occurred at the conserved residues in the substrate binding domain of meprin and TRAF homology (MATH). The results of integrated analysis indicated that three metabolic pathways, including tricarboxylic acid (TCA) cycle, fatty acid metabolism and glycerophospholipid metabolism, exhibited obvious upregulation in SPOP-mutated PCT tissues. Furthermore, both correlation analyses based on integrated data and cBioportal revealed that FH, ELOVL2 and ACADL genes might be involved in SPOP-mutation-related upregulation of these metabolic pathways. Taken together, our study provided new insights in understanding the relationship between metabolic pathways and SPOP mutations in PCa.
Collapse
|
43
|
Mazoure B, Nadon R, Makarenkov V. Identification and correction of spatial bias are essential for obtaining quality data in high-throughput screening technologies. Sci Rep 2017; 7:11921. [PMID: 28931934 PMCID: PMC5607347 DOI: 10.1038/s41598-017-11940-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Spatial bias continues to be a major challenge in high-throughput screening technologies. Its successful detection and elimination are critical for identifying the most promising drug candidates. Here, we examine experimental small molecule assays from the popular ChemBank database and show that screening data are widely affected by both assay-specific and plate-specific spatial biases. Importantly, the bias affecting screening data can fit an additive or multiplicative model. We show that the use of appropriate statistical methods is essential for improving the quality of experimental screening data. The presented methodology can be recommended for the analysis of current and next-generation screening data.
Collapse
Affiliation(s)
- Bogdan Mazoure
- Department of Computer Science, McGill University, Montreal, Canada
| | - Robert Nadon
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Vladimir Makarenkov
- Department of Computer Science, Université du Québec à Montréal, Montreal, Canada.
| |
Collapse
|
44
|
Integration of miRNA and mRNA expression profiles reveals microRNA-regulated networks during muscle wasting in cardiac cachexia. Sci Rep 2017; 7:6998. [PMID: 28765595 PMCID: PMC5539204 DOI: 10.1038/s41598-017-07236-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 06/28/2017] [Indexed: 12/28/2022] Open
Abstract
Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis between miRNA and mRNA expression profiles of muscle wasting during CC. Global gene expression profiling identified 1,281 genes and 19 miRNAs differentially expressed in muscle wasting during CC. Several of these deregulated genes are known or putative targets of the altered miRNAs, including miR-29a-3p, miR-29b-3p, miR-210-5p, miR-214, and miR-489. Gene ontology analysis on integrative mRNA/miRNA expression profiling data revealed miRNA interactions affecting genes that regulate extra-cellular matrix (ECM) organization, proteasome protein degradation, citric acid cycle and respiratory electron transport. We further identified 11 miRNAs, including miR-29a-3p and miR-29b-3p, which target 21 transcripts encoding the collagen proteins related to ECM organization. Integrative miRNA and mRNA global expression data allowed us to identify miRNA target genes involved in skeletal muscle wasting in CC. Our functional experiments in C2C12 cells confirmed that miR-29b down-regulates collagen genes and contributes to muscle cell atrophy. Collectively, our results suggest that key ECM-associated miRNAs and their target genes may contribute to CC in HF.
Collapse
|
45
|
Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem 2017; 50:1281-1288. [PMID: 28739222 DOI: 10.1016/j.clinbiochem.2017.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia.
Collapse
Affiliation(s)
- Audrey Loumaye
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium.
| | - Jean-Paul Thissen
- Endocrinology, Diabetology and Nutrition Department, IREC, Université Catholique de Louvain, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
46
|
Narasimhan A, Ghosh S, Stretch C, Greiner R, Bathe OF, Baracos V, Damaraju S. Small RNAome profiling from human skeletal muscle: novel miRNAs and their targets associated with cancer cachexia. J Cachexia Sarcopenia Muscle 2017; 8:405-416. [PMID: 28058815 PMCID: PMC5476855 DOI: 10.1002/jcsm.12168] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/01/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) are small non-coding RNAs that regulate gene (mRNA) expression. Although the pathological role of miRs have been studied in muscle wasting conditions such as myotonic and muscular dystrophy, their roles in cancer cachexia (CC) are still emerging. OBJECTIVES The objectives are (i) to profile human skeletal muscle expressed miRs; (ii) to identify differentially expressed (DE) miRs between cachectic and non-cachectic cancer patients; (iii) to identify mRNA targets for the DE miRs to gain mechanistic insights; and (iv) to investigate if miRs show potential prognostic and predictive value. METHODS Study subjects were classified based on the international consensus diagnostic criteria for CC. Forty-two cancer patients were included, of which 22 were cachectic cases and 20 were non-cachectic cancer controls. Total RNA isolated from muscle biopsies were subjected to next-generation sequencing. RESULTS A total of 777 miRs were profiled, and 82 miRs with read counts of ≥5 in 80% of samples were retained for analysis. We identified eight DE miRs (up-regulated, fold change of ≥1.4 at P < 0.05). A total of 191 potential mRNA targets were identified for the DE miRs using previously described human skeletal muscle mRNA expression data (n = 90), and a majority of them were also confirmed in an independent mRNA transcriptome dataset. Ingenuity pathway analysis identified pathways related to myogenesis and inflammation. qRT-PCR analysis of representative miRs showed similar direction of effect (P < 0.05), as observed in next-generation sequencing. The identified miRs also showed prognostic and predictive value. CONCLUSIONS In all, we identified eight novel miRs associated with CC.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sunita Ghosh
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Cynthia Stretch
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Greiner
- Department of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Oliver F Bathe
- Departments of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Vickie Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Johns N, Stretch C, Tan BHL, Solheim TS, Sørhaug S, Stephens NA, Gioulbasanis I, Skipworth RJE, Deans DAC, Vigano A, Ross JA, Bathe OF, Tremblay ML, Kaasa S, Strasser F, Gagnon B, Baracos VE, Damaraju S, Fearon KCH. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle 2017; 8:122-130. [PMID: 27897403 PMCID: PMC5356227 DOI: 10.1002/jcsm.12138] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/06/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Cachexia affects the majority with advanced cancer. Based on current demographic and clinical factors, it is not possible to predict who will develop cachexia or not. Such variation may, in part, be due to genotype. It has recently been proposed to extend the diagnostic criteria for cachexia to include a direct measure of low skeletal muscle index (LSMI) in addition to weight loss (WL). We aimed to explore our panel of candidate single nucleotide polymorphism (SNPs) for association with WL +/- computerized tomography-defined LSMI. We also explored whether the transcription in muscle of identified genes was altered according to such cachexia phenotype METHODS: A retrospective cohort study design was used. Analysis explored associations of candidate SNPs with WL (n = 1276) and WL + LSMI (n = 943). Human muscle transcriptome (n = 134) was analysed using an Agilent platform. RESULTS Single nucleotide polymorphisms in the following genes showed association with WL alone: GCKR, LEPR, SELP, ACVR2B, TLR4, FOXO3, IGF1, CPN1, APOE, FOXO1, and GHRL. SNPs in LEPR, ACVR2B, TNF, and ACE were associated with concurrent WL + LSMI. There was concordance between muscle-specific expression for ACVR2B, FOXO1 and 3, LEPR, GCKR, and TLR4 genes and LSMI and/or WL (P < 0.05). CONCLUSIONS The rs1799964 in the TNF gene and rs4291 in the ACE gene are new associations when the definition of cachexia is based on a combination of WL and LSMI. These findings focus attention on pro-inflammatory cytokines and the renin-angiotensin system as biomarkers/mediators of muscle wasting in cachexia.
Collapse
Affiliation(s)
- Neil Johns
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | - Cynthia Stretch
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tora S Solheim
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan A Stephens
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Richard J E Skipworth
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | - D A Christopher Deans
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - James A Ross
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver F Bathe
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | | | - Stein Kaasa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Florian Strasser
- Department of Family Medicine and Emergency Medicine, Laval University, Quebec, Canada
| | - Bruno Gagnon
- Department of Internal Medicine, Cantonal Hospital, St. Gallen, Switzerland
| | - Vickie E Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kenneth C H Fearon
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Shyh-Chang N. Metabolic Changes During Cancer Cachexia Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:233-249. [PMID: 29282687 DOI: 10.1007/978-981-10-6020-5_11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wasting of adipose tissue and skeletal muscle is a hallmark of metastatic cancer and a major cause of death. Like patients with cachexia caused by other chronic infections or inflammatory diseases, the cancer subject manifests both malnutrition and metabolic stress. Both carbohydrate utilization and amino acid incorporation are decreased in the muscles of cancer cachexia patients. Cancer cells affect host metabolism in two ways: (a) their own metabolism of nutrients into other metabolites and (b) circulating factors they secrete or induce the host to secrete. Accelerated glycolysis and lactate production, i.e., the Warburg effect and the resultant increase in Cori cycle activity, are the most widely discussed metabolic effects. Meanwhile, although a large number of pro-cachexia circulating factors have been found, such as TNFa, IL-6, myostatin, and PTHrp, none have been shown to be a dominant factor that can be targeted singly to treat cancer cachexia in humans. It is possible that given the complex multifactorial nature of the cachexia secretome, and the personalized differences between cancer patients, targeting any single circulating factor would always be insufficient to treat cachexia for all patients. Here we review the metabolic changes that occur in response to tumor growth and tumor-secreted factors during cachexia.
Collapse
Affiliation(s)
- Ng Shyh-Chang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.
| |
Collapse
|
49
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|
50
|
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ. Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol 2016; 7:361. [PMID: 27610086 PMCID: PMC4997013 DOI: 10.3389/fphys.2016.00361] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as “simple” atrophy) and insulin resistance are “non-pathological” events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear—especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state “anabolic resistance.” While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic “marker” studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.
Collapse
Affiliation(s)
- Supreeth S Rudrappa
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Daniel J Wilkinson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Paul L Greenhaff
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Kenneth Smith
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Iskandar Idris
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham Derby, UK
| |
Collapse
|