1
|
Zhang Q, Lei X, Wang F, He X, Liu L, Hou Y, Liu Y, Jin F, Chen C, Li B. ERK1-mediated immunomodulation of mesenchymal stem cells ameliorates inflammatory disorders. iScience 2023; 26:107868. [PMID: 37790278 PMCID: PMC10543658 DOI: 10.1016/j.isci.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Immune system disorders, especially T cell disorders, are important therapeutic targets of mesenchymal stem cells (MSCs) in many autoimmune diseases (ADs). Although extracellular regulated protein kinases (ERKs) play a role in MSC therapy by promoting T cell apoptosis, the mechanism remains unclear. Our findings indicate that ERK1-/- bone marrow MSCs (BMMSCs), but not ERK2-/- BMMSCs, failed to promote T cell apoptosis due to incapacity to activate the ETS2/AURKA/NF-κB/Fas/MCP-1 cascade. Moreover, ERK1-/- BMMSCs were unable to upregulate regulatory T cells and suppress T helper 17 cells. Licochalcone A (LA), which promotes ERK pathway activation, enhanced the therapeutic efficacy of MSC therapy in ulcerative colitis and collagen-induced arthritis mice. Our findings suggest that ERK1, but not ERK2, plays a crucial role in regulating T cells in MSCs. LA-treated MSCs provide a strategy to improve the efficacy of MSC-based treatments for ADs.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command of PLA, 68 Huangpu Road, Wuhan, Hubei 430010, China
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yuan Liu
- The Affiliated Northwest Women’s and Children’s Hospital of Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Fang Jin
- Shannxi Clinical Research Center for Oral Diseases & Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
2
|
Xia YT, Zhang YQ, Chen L, Min L, Huang D, Zhang Y, Li C, Li ZH. Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis. PLoS One 2023; 18:e0291693. [PMID: 37751436 PMCID: PMC10522031 DOI: 10.1371/journal.pone.0291693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
As one of the triterpene extracts of Taraxacum, a traditional Chinese plant, taraxerol (TRX) exhibits antitumor activity. In this study, we evaluated the effects of TRX on the migration and invasion of MDA-MB-231 cells, analyzed the molecular mechanism through network pharmacology and molecular docking, and finally verified it by in vitro experiments. The results showed that TRX could inhibit the migration and invasion of MDA-MB-231 cells in a time- and concentration-dependent manner, while MAPK3 was the most promising target and could stably combine with TRX. In addition, the relative protein expression levels were detected by Western blot, and we observed that TRX could inhibit the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis. Moreover, an ERK activator (tert-butylhydroquinone, tBHQ) partially reversed the suppressive effect of TRX on MDA-MB-231 cells. In conclusion, TRX inhibited the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis.
Collapse
Affiliation(s)
- Yu-ting Xia
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yu-qin Zhang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Lu Chen
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Liangliang Min
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Da Huang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yulu Zhang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Cong Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Zhi-hua Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Molecular mechanisms underlying the role of HLA-DQ in systemic immune activation in severe aplastic anemia. Blood Cells Mol Dis 2023; 98:102708. [DOI: 10.1016/j.bcmd.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
4
|
Brancaccio M, Milito A, Viegas CA, Palumbo A, Simes DC, Castellano I. First evidence of dermo-protective activity of marine sulfur-containing histidine compounds. Free Radic Biol Med 2022; 192:224-234. [PMID: 36174879 DOI: 10.1016/j.freeradbiomed.2022.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Among natural products, ovothiol (ovo), produced by marine invertebrates, bacteria, and microalgae, is receiving increasing interest for its unique antioxidant properties. Recently, ovo has been shown to exhibit anti-inflammatory activity in an in vitro model of endothelial dysfunction and in an in vivo model of liver fibrosis. The aim of this study was to evaluate the effect of ovo and its precursor 5-thiohistidine (5-thio) in comparison with ergothioneine (erg), in human skin cells and tissues upon inflammation. We used both an in vitro and ex vivo model of human skin, represented by a keratinocytes cell line (HaCaT) and skin biopsies, respectively. We observed that ovo, 5-thio, and erg were not cytotoxic in HaCaT cells, but instead exerted a protective function against TNF-α -induced inflammation. In order to get insights on their mechanism of action, we performed western blot analysis of ERK and JNK, as well as sub-cellular localization of Nrf2, a key mediator of the anti-inflammatory response. The results indicated that the pre-treatment with ovo, 5-thio, and erg differently affected the phosphorylation of ERK and JNK. However, all the three molecules promoted the accumulation of Nrf2 in the nucleus of HaCaT cells. In addition, gene expression analysis by RTqPCR and ELISA assays performed in ex vivo human skin tissues pre-treated with thiohistidines and then inflamed with IL-1β revealed a significant downregulation of IL-8, TNF-α and COX-2 genes and a concomitant significant decrease in the cytokines IL-6, IL-8 and TNF-α production. Moreover, the protective action of ovo and 5-thio resulted to be stronger when compared with dexamethasone, a corticosteroid drug currently used to treat skin inflammatory conditions. Our findings suggest that ovo and 5-thio can ameliorate skin damage and may be used to develop natural skin care products to prevent the inflammatory status induced by environmental stressors and aging.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics - CRAG, Barcelona, Catalonia, Spain
| | - Carla Alexandra Viegas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Dina Costa Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
5
|
Song Y, Yang X, Zhang X, Zhu J, Chen Y, Gao F, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal expression of extracellular signal regulated kinases in the colon of wild ground squirrels (Spermophilus dauricus). Mol Biol Rep 2022; 49:2209-2215. [PMID: 35040005 DOI: 10.1007/s11033-021-07042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The purpose of the experiment was to explore the localization and seasonal expression of extracellular signal regulated kinase (ERK) in the colonic tissue of wild ground squirrels (Spermophilus dauricus). METHODS AND RESULTS Hematoxylin-eosin staining, immunohistochemistry, real-time quantitative PCR and Western blotting were used in this experiment. The histological results showed that the diameter of the colon lumen enlarged and the number of glandular cells increased in the non-breeding season. It was found in the immunochemical results that both ERK1/2 and pERK1/2 were expressed in the cytoplasm of goblet cells and intestinal epithelial cells, while pERK1/2 was also expressed in the nucleus of them. The immune localization of both was more obvious in the non-breeding season, especially in intestinal epithelial cells. Real-time quantitative PCR and Western blotting showed that ERK1/2 and pERK1/2 were seasonally highly expressed in the non-breeding season. CONCLUSIONS The expression of ERK1/2 and pERK1/2 was seasonal changes and had significant increases in the non-breeding season. This study revealed that ERK1/2 had potential roles in the colon to the adaptation of seasonal changes in wild ground squirrels.
Collapse
Affiliation(s)
- Yue Song
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaoying Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xueying Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jueyu Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yixin Chen
- School of Information Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Fuli Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Haolin Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yingying Han
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qiang Weng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhengrong Yuan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
6
|
Yan ZP, Li JT, Zeng N, Ni GX. Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiol J 2020; 28:473-482. [PMID: 32329039 PMCID: PMC8169190 DOI: 10.5603/cj.a2020.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/17/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is the result of increased myocardial cell size responding to an increased workload and developmental signals. These extrinsic and intrinsic stimuli as key drivers of cardiac hypertrophy have spurred efforts to target their associated signaling pathways. The extracellular signal-regulated kinases 1/2 (ERK1/2), as an essential member of mitogen-activated protein kinases (MAPKs), has been widely recognized for promoting cardiac growth. Several modified transgenic mouse models have been generated through either affecting the upstream kinase to change ERK1/2 activity, manipulating the direct role of ERK1/2 in the heart, or targeting phosphatases or MAPK scaffold proteins to alter total ERK1/2 activity in response to an increased workload. Using these models, both regulation of the upstream events and modulation of each isoform and indirect effector could provide important insights into how ERK1/2 modulates cardiomyocyte biology. Furthermore, a plethora of compounds, inhibitors, and regulators have emerged in consideration of ERK, or its MAPK kinases, are possible therapeutic targets against cardiac hypertrophic diseases. Herein, is a review of the available evidence regarding the exact role of ERK1/2 in regulating cardiac hypertrophy and a discussion of pharmacological strategy for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Peng Yan
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Jie-Ting Li
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Ni Zeng
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Guo-Xin Ni
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China.
| |
Collapse
|
7
|
ERK1 indicates good prognosis and inhibits breast cancer progression by suppressing YAP1 signaling. Aging (Albany NY) 2019; 11:12295-12314. [PMID: 31848326 PMCID: PMC6949071 DOI: 10.18632/aging.102572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is a well-characterized signaling pathway during the development of various cancer types. ERK1 and ERK2, the two kinase effectors of MAPK cascade, exhibit high similarity. However, it is still unknown whether these two kinases are functionally different or in contrast functionally redundant during the development of breast cancer. We found that ERK1 expression levels were significantly lower in basal breast cancer compared with luminal breast cancer and normal breast tissues. RNA sequencing data suggested that ERK1 was associated with Hippo signaling pathway and cell proliferation in breast cancer cells. The gene set enrichment analysis (GSEA) further showed enrichment for YAP1 signaling pathway in breast cancer cell lines and tumors with low expression of ERK1. Silencing of ERK1 elevated YAP1 expression and TEAD activity in breast cancer cells. Additionally, ERK1 inhibited breast cancer cell proliferation via regulation of YAP1. The Kaplan-Meier analysis of data in patients with breast cancer suggested that, higher expression of ERK1 was associated with better prognosis, whereas, higher expression of ERK2 predicted poorer prognosis. These findings unveiled the role of ERK1 on regulation of YAP1 signaling pathway, indicating ERK1 as a negative regulator of breast cancer progression.
Collapse
|
8
|
Liu F, Zu X, Xie X, Liu K, Chen H, Wang T, Liu F, Bode AM, Zheng Y, Dong Z, Kim DJ. Ethyl gallate as a novel ERK1/2 inhibitor suppresses patient-derived esophageal tumor growth. Mol Carcinog 2018; 58:533-543. [PMID: 30499613 DOI: 10.1002/mc.22948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Feifei Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Xueyin Zu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
| | - Hanyong Chen
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Ting Wang
- China-US (Henan) Hormel Cancer Institute; Henan China
| | - Fangfang Liu
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Pathophysiology Department; The School of Basic Medical Sciences; Zhengzhou University; Zhengzhou Henan China
| | - Ann M. Bode
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Yan Zheng
- The Affiliated Cancer Hospital; Zhengzhou University; Zhengzhou Henan China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute; Henan China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention; Zhengzhou Henan China
- The Hormel Institute; University of Minnesota; Austin Minnesota
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute; Henan China
| |
Collapse
|
9
|
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8:552-562. [PMID: 30109180 PMCID: PMC6089851 DOI: 10.1016/j.apsb.2018.01.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
The mitogen-activated protein kinases (MAPK) pathway, often known as the RAS-RAF-MEK-ERK signal cascade, functions to transmit upstream signals to its downstream effectors to regulate physiological process such as cell proliferation, differentiation, survival and death. As the most frequently mutated signaling pathway in human cancer, targeting the MAPK pathway has long been considered a promising strategy for cancer therapy. Substantial efforts in the past decades have led to the clinical success of BRAF and MEK inhibitors. However, the clinical benefits of these inhibitors are compromised by the frequently occurring acquired resistance due to cancer heterogeneity and genomic instability. This review briefly introduces the key protein kinases involved in this pathway as well as their activation mechanisms. We also generalize the correlations between mutations of MAPK members and human cancers, followed by a summarization of progress made on the development of small molecule MAPK kinases inhibitors. In particular, this review highlights the potential advantages of ERK inhibitors in overcoming resistance to upstream targets and proposes that targeting ERK kinase may hold a promising prospect for cancer therapy.
Collapse
|
10
|
Heightman TD, Berdini V, Braithwaite H, Buck IM, Cassidy M, Castro J, Courtin A, Day JEH, East C, Fazal L, Graham B, Griffiths-Jones CM, Lyons JF, Martins V, Muench S, Munck JM, Norton D, O’Reilly M, Palmer N, Pathuri P, Reader M, Rees DC, Rich SJ, Richardson C, Saini H, Thompson NT, Wallis NG, Walton H, Wilsher NE, Woolford AJA, Cooke M, Cousin D, Onions S, Shannon J, Watts J, Murray CW. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2. J Med Chem 2018; 61:4978-4992. [DOI: 10.1021/acs.jmedchem.8b00421] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tom D. Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Valerio Berdini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Hannah Braithwaite
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Ildiko M. Buck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Megan Cassidy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Juan Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Aurélie Courtin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - James E. H. Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Charlotte East
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Lynsey Fazal
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Brent Graham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - John F. Lyons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Sandra Muench
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Joanne M. Munck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Marc O’Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Puja Pathuri
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - David C. Rees
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - Harpreet Saini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Neil T. Thompson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nicola G. Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Hugh Walton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | - Nicola E. Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, U.K
| | | | - Michael Cooke
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - David Cousin
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Stuart Onions
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - Jonathan Shannon
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | - John Watts
- Sygnature Discovery Ltd., BioCity, Pennyfoot Street, Nottingham, NG1 1GF, U.K
| | | |
Collapse
|
11
|
Goshen-Lago T, Melamed D, Admon A, Engelberg D. Isolation and Characterization of Intrinsically Active (MEK-Independent) Mutants of Mpk1/Erk. Methods Mol Biol 2018; 1487:65-88. [PMID: 27924559 DOI: 10.1007/978-1-4939-6424-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The extracellular-regulated kinase (Erk) pathway is a major determinant in the control of diverse cellular processes, such as proliferation, differentiation, survival, and motility. The pathway executes its effects through kinases of the Erk family. Erks are not only critical for a variety of physiological processes, but are also associated with neurodegenerative diseases, cardiovascular diseases, diabetes and a large number of human cancers. However, the exact role of each Erk molecule in these biological and pathological processes is not fully determined. An efficient strategy for revealing these roles is to activate each Erk isoform individually, in a signal independent manner, and to monitor the molecular, physiological, and pathological effects. This could be achieved by developing intrinsically active variants for each Erk isoform and splicing variant and expressing these molecules individually in biological systems. A screening method that selects for relevant and useful active mutants of Erks is described in this chapter. The main principle of the method is to screen for mutants of Erk that function in the total absence of their relevant MEKs. Another principle is that the screen should be unbiased toward particular domains or mechanisms of action. We describe how these principles are combined into a screen that takes advantage of the yeast Mpk1/Erk pathway. Following the description of how intrinsically active Mpk1 molecules are isolated, we provide comprehensive and detailed descriptions of the methods used to characterize their catalytic activity, autophosphorylation capabilities, and phosphorylation status, as well as the methods used to determine the precise phosphorylated sites. The principles of the screen and the methods described here could be easily adapted for any Erk molecule in any organism.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Arie Admon
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE WAY, Innovation Wing, #03-09, Singapore, 138602, Singapore. .,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
12
|
Wu JY, Xiang S, Zhang M, Fang B, Huang H, Kwon OK, Zhao Y, Yang Z, Bai W, Bepler G, Zhang XM. Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity. J Biol Chem 2017; 293:1976-1993. [PMID: 29259132 DOI: 10.1074/jbc.m117.795955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase 6 (HDAC6), a class IIb HDAC, plays an important role in many biological and pathological processes. Previously, we found that ERK1, a downstream kinase in the mitogen-activated protein kinase signaling pathway, phosphorylates HDAC6, thereby increasing HDAC6-mediated deacetylation of α-tubulin. However, whether HDAC6 reciprocally modulates ERK1 activity is unknown. Here, we report that both ERK1 and -2 are acetylated and that HDAC6 promotes ERK1 activity via deacetylation. Briefly, we found that both ERK1 and -2 physically interact with HDAC6. Endogenous ERK1/2 acetylation levels increased upon treatment with a pan-HDAC inhibitor, an HDAC6-specific inhibitor, or depletion of HDAC6, suggesting that HDAC6 deacetylates ERK1/2. We also noted that the acetyltransferases CREB-binding protein and p300 both can acetylate ERK1/2. Acetylated ERK1 exhibits reduced enzymatic activity toward the transcription factor ELK1, a well-known ERK1 substrate. Furthermore, mass spectrometry analysis indicated Lys-72 as an acetylation site in the ERK1 N terminus, adjacent to Lys-71, which binds to ATP, suggesting that acetylation status of Lys-72 may affect ERK1 ATP binding. Interestingly, an acetylation-mimicking ERK1 mutant (K72Q) exhibited less phosphorylation than the WT enzyme and a deacetylation-mimicking mutant (K72R). Of note, the K72Q mutant displayed decreased enzymatic activity in an in vitro kinase assay and in a cellular luciferase assay compared with the WT and K72R mutant. Taken together, our findings suggest that HDAC6 stimulates ERK1 activity. Along with our previous report that ERK1 promotes HDAC6 activity, we propose that HDAC6 and ERK1 may form a positive feed-forward loop, which might play a role in cancer.
Collapse
Affiliation(s)
- Jheng-Yu Wu
- From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201.,the Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Shengyan Xiang
- the Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Mu Zhang
- From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Bin Fang
- The Proteomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - He Huang
- the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and
| | - Oh Kwang Kwon
- the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and
| | - Yingming Zhao
- the Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, and
| | - Zhe Yang
- the Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Wenlong Bai
- the Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Gerold Bepler
- From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Xiaohong Mary Zhang
- From the Department of Oncology, Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201,
| |
Collapse
|
13
|
Defatting of acetone leaf extract of Acacia karroo (Hayne) enhances its hypoglycaemic potential. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:482. [PMID: 29058615 PMCID: PMC5651630 DOI: 10.1186/s12906-017-1987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Conventional drugs used to treat diabetes are too expensive, toxic and rarely available to rural communities. This study was aimed at investigating the phytochemical differences and hypoglycaemic effects (α-amylase enzyme inhibition, glucose uptake, GLUT4 translocation and phosphorylation of MAPKs) of non-defatted and defatted acetone leaf extract of Acacia karroo. METHODS Qualitative phytochemical analyses of extracts were determined using standard chemical tests and total phenolic contents using the Folin-Ciocalteu reagent method. Presence of antioxidant constituents was determined using DPPH scavenging and ferric reducing power assays. Alpha amylase enzyme inhibitory potential was determined chromogenically and cytotoxicity of the extracts on C2C12 muscle and 3T3-L1 cells using the MTT assay. Glucose uptake by the cells was determined colorimetrically and the most active extract was evaluated for its ability to translocate GLUT4 and MAPKs phosphorylation potential using immunofluorescence microscopy and dot blot analysis, respectively. RESULTS Phenols, flavonoids, tannins, saponins and cardiac glycosides were detected in both extracts. Defatting of the plant material resulted in low amounts of phenols (0.432 ± 0.014 TAE/mg), DPPH scavenging activity (EC50 0.40 ± 0.012 mg/ml), low toxicity and high ferric reducing power (EC50 1.13 ± 0.017 mg/ml), α-amylase enzyme inhibition (IC50 30.2 ± 3.037 μg/ml) and glucose uptake by both cells. The defatted extract showed an increase in GLUT4 translocation (at 25 μg/ml) with decrease in Akt expression while in combination with insulin showed a decrease in GLUT4 translocation. A finding, that is implicative that the effect of the extract on GLUT4 translocation in C2C12 cells was not Akt dependent. The defatted extract in the absence and presence of insulin show varying phosphorylation levels of CREB, p38, GSK-3 and ERK2 which are important in cell survival and metabolism. CONCLUSION This study represents the first report on the hypoglycemic potential of A. karroo and presence of compounds that can be exploited in the search for therapeutics with antidiabetic effect.
Collapse
|
14
|
Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y, Zheng Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 2016; 17:2001. [PMID: 27941647 PMCID: PMC5187801 DOI: 10.3390/ijms17122001] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM) is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK) activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1/2 activation are vital to differential biological effects of ERK1/2. Moreover, many intracellular events, including mitochondrial signaling and protein kinases, manipulate signaling upstream and downstream of MAPK, to influence myocardial survival or death. In this review, we will summarize the roles of ERK1/2 pathways in DCM development by the evidence from current studies and will present novel opinions on "differential influence of ERK1/2 action in cardiac dysfunction, and protection against myocardial ischemia-reperfusion injury".
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
| | - Jian Sun
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Tong
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| | - Lingbo Qian
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China.
| | - Yongsoo Park
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- College of Medicine & Engineering, Hanyang University, Seoul 04963, Korea.
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Vougiouklakis T, Sone K, Saloura V, Cho HS, Suzuki T, Dohmae N, Alachkar H, Nakamura Y, Hamamoto R. SUV420H1 enhances the phosphorylation and transcription of ERK1 in cancer cells. Oncotarget 2016; 6:43162-71. [PMID: 26586479 PMCID: PMC4791223 DOI: 10.18632/oncotarget.6351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023] Open
Abstract
The oncogenic protein ERK, a member of the extracellular signal-regulated kinase (ERK) cascade, is a well characterized signaling molecule involved in tumorigenesis. The ERK signaling pathway is activated in a large proportion of cancers and plays a critical role in tumor development. Functional regulation by phosphorylation of kinases in the ERK pathway has been extensively studied, however methylation of the ERK protein has not been reported to date. Here, we demonstrated that the protein lysine methyltransferase SUV420H1 tri-methylated ERK1 at lysines 302 and 361, and that substitution of methylation sites diminished phosphorylation levels of ERK1. Concordantly, knockdown of SUV420H1 reduced phosphorylated ERK1 and total ERK1 proteins, and interestingly suppressed ERK1 at the transcriptional level. Our results indicate that overexpression of SUV420H1 may result in activation of the ERK signaling pathway through enhancement of ERK phosphorylation and transcription, thereby providing new insights in the regulation of the ERK cascade in human cancer.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kenbun Sone
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hyun-Soo Cho
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Houda Alachkar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Padhan N, Nordling TEM, Sundström M, Åkerud P, Birgisson H, Nygren P, Nelander S, Claesson-Welsh L. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer 2016; 16:683. [PMID: 27562229 PMCID: PMC5000422 DOI: 10.1186/s12885-016-2725-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The progression of colorectal cancer (CRC) involves recurrent amplifications/mutations in the epidermal growth factor receptor (EGFR) and downstream signal transducers of the Ras pathway, KRAS and BRAF. Whether genetic events predicted to result in increased and constitutive signaling indeed lead to enhanced biological activity is often unclear and, due to technical challenges, unexplored. Here, we investigated proliferative signaling in CRC using a highly sensitive method for protein detection. The aim of the study was to determine whether multiple changes in proliferative signaling in CRC could be combined and exploited as a "complex biomarker" for diagnostic purposes. METHODS We used robotized capillary isoelectric focusing as well as conventional immunoblotting for the comprehensive analysis of epidermal growth factor receptor signaling pathways converging on extracellular regulated kinase 1/2 (ERK1/2), AKT, phospholipase Cγ1 (PLCγ1) and c-SRC in normal mucosa compared with CRC stage II and IV. Computational analyses were used to test different activity patterns for the analyzed signal transducers. RESULTS Signaling pathways implicated in cell proliferation were differently dysregulated in CRC and, unexpectedly, several were downregulated in disease. Thus, levels of activated ERK1 (pERK1), but not pERK2, decreased in stage II and IV while total ERK1/2 expression remained unaffected. In addition, c-SRC expression was lower in CRC compared with normal tissues and phosphorylation on the activating residue Y418 was not detected. In contrast, PLCγ1 and AKT expression levels were elevated in disease. Immunoblotting of the different signal transducers, run in parallel to capillary isoelectric focusing, showed higher variability and lower sensitivity and resolution. Computational analyses showed that, while individual signaling changes lacked predictive power, using the combination of changes in three signaling components to create a "complex biomarker" allowed with very high accuracy, the correct diagnosis of tissues as either normal or cancerous. CONCLUSIONS We present techniques that allow rapid and sensitive determination of cancer signaling that can be used to differentiate colorectal cancer from normal tissue.
Collapse
Affiliation(s)
- Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Torbjörn E M Nordling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.,Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, 171 21, Solna, Sweden.,Current address: Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan
| | - Magnus Sundström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Peter Åkerud
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Helgi Birgisson
- Department Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala, 751 85, Sweden.
| |
Collapse
|
17
|
Lim DY, Shin SH, Lee MH, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, Lee KY, Bae KB, Choi BY, Deng Y, Bode A, Dong Z. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 2016; 7:35001-14. [PMID: 27167001 PMCID: PMC5085205 DOI: 10.18632/oncotarget.9223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022] Open
Abstract
Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches.
Collapse
Affiliation(s)
- Do Young Lim
- The Hormel Institute, University of Minnesota, MN, USA
| | - Seung Ho Shin
- The Hormel Institute, University of Minnesota, MN, USA
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
| | | | | | - Qiong Wu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
| | - Jinglong Xu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Ziming Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kun Yeong Lee
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, MN, USA
| | - Bu Young Choi
- Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, Chungbuk, South Korea
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ann Bode
- The Hormel Institute, University of Minnesota, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
18
|
Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JTS, Robinson CV, Pedersen SF, Kragelund BB. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biol 2016; 14:31. [PMID: 27083547 PMCID: PMC4833948 DOI: 10.1186/s12915-016-0252-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/29/2016] [Indexed: 11/22/2022] Open
Abstract
Background Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. Methods and results Here, we identify the human Na+/H+ exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. Conclusions This work characterizes a new type of scaffolding complex, which we term a “shuffle complex”, between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0252-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.,Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Elena Pedraz-Cuesta
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Christina W Olesen
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jeff A Schnell
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Jonathan T S Hopper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Stine F Pedersen
- Cell and Developmental Biology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
19
|
Quaglio AEV, Castilho ACS, Di Stasi LC. Experimental evidence of MAP kinase gene expression on the response of intestinal anti-inflammatory drugs. Life Sci 2015; 136:60-6. [PMID: 26141991 DOI: 10.1016/j.lfs.2015.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/13/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
AIM The etiopathogenesis of inflammatory bowel disease (IBD) is unclear and further understanding of the mechanisms that regulate intestinal barrier integrity and function could give insight into its pathophysiology and mode of action of current drugs used to treat human IBD. Therefore, we investigated how intestinal inflammation affects Map kinase gene expression in rats, and if current intestinal anti-inflammatory drugs (sulphasalazine, prednisolone and azathioprine) act on these expressions. MATERIAL AND METHODS Macroscopic parameters of lesion, biochemical markers (myeloperoxidase, alkaline phosphatase and glutathione), gene expression of 13Map kinases, and histologic evaluations (optic, electronic scanning and transmission microscopy) were performed in rats with colonic inflammation induced by trinitrobenzenesulphonic (TNBS) acid. KEY FINDINGS The colonic inflammation was characterized by a significant increase in the expression of Mapk1, Mapk3 and Mapk9 accompanied by a significant reduction in the expression ofMapk6. Alterations inMapk expression induced by TNBS were differentially counteracted after treatment with sulphasalazine, prednisolone and azathioprine. Protective effects were also related to the significant reduction of oxidative stress, which was related to increase Mapk1/3 expressions, which were reduced after pharmacological treatment. SIGNIFICANCE Mapk1, Mapk3,Mapk6 and Mapk9 gene expressionswere affected by colonic inflammation induced by TNBS in rats and counteracted by sulphasalazine, prednisolone and azathioprine treatments, suggesting that these genes participate in the pharmacological response produced for these drugs.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Anthony Cesar Souza Castilho
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
20
|
Yan K, Merritt H, Crawford K, Pardee G, Cheng JM, Widger S, Hekmat-Nejad M, Zaror I, Sim J. Expression, purification and characterization of inactive and active forms of ERK2 from insect expression system. Protein Expr Purif 2015; 110:172-9. [PMID: 25818999 DOI: 10.1016/j.pep.2015.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Extracellular signal-regulated kinase 2 (ERK2) is a serine/threonine protein kinase involved in many cellular programs, such as cell proliferation, differentiation, motility and programed cell-death. It is therefore considered an important target in the treatment of cancer. In an effort to support biochemical screening and small molecule drug discovery, we established a robust system to generate both inactive and active forms of ERK2 using insect expression system. We report here, for the first time, that inactive ERK2 can be expressed and purified with 100% homogeneity in the unphosphorylated form using insect system. This resulted in a significant 20-fold yield improvement compared to that previously reported using bacterial expression system. We also report a newly developed system to generate active ERK2 in insect cells through in vivo co-expression with a constitutively active MEK1 (S218D S222D). Isolated active ERK2 was confirmed to be doubly phosphorylated at the correct sites, T185 and Y187, in the activation loop of ERK2. Both ERK2 forms, inactive and active, were well characterized by biochemical activity assay for their kinase function. Inactive and active ERK2 were the two key reagents that enabled successful high through-put biochemical assay screen and structural drug discovery studies.
Collapse
Affiliation(s)
- Kelly Yan
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA.
| | - Hanne Merritt
- Biochemical Lead Discovery, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Kenneth Crawford
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Gwynn Pardee
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Jan Marie Cheng
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Stephania Widger
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Mohammad Hekmat-Nejad
- Biochemical Lead Discovery, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Isabel Zaror
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| | - Janet Sim
- Protein Sciences, Novartis Institutes for BioMedical Research, Inc., 5300 Chiron Way, Emeryville, CA 94608, USA
| |
Collapse
|
21
|
Zhang X, Lui WY. Transforming growth factor-β3 regulates cell junction restructuring via MAPK-mediated mRNA destabilization and Smad-dependent protein degradation of junctional adhesion molecule B (JAM-B). BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:601-11. [PMID: 25817991 DOI: 10.1016/j.bbagrm.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Abstract
Junctional adhesion molecule-B (JAM-B) is found between Sertoli cells at the blood-testis barrier (BTB) as well as between Sertoli and germ cells at the apical ectoplasmic specializations (ES) in the testis. The expression of JAM-B is tightly regulated to modulate the passage of spermatocytes across the BTB as well as the release of mature spermatozoa from the seminiferous epithelium. Transforming growth factor beta (TGF-β) family is implicated in the regulation of testicular cell junction dynamics during spermatogenesis. This study aims to investigate the effects of TGF-β3 on the expression of JAM-B as well as the underlying mechanisms on how TGF-β3 regulates JAM-B expression to facilitate the disassembly of the BTB and apical ES. Our results revealed that TGF-β3 suppresses JAM-B at post-transcriptional and post-translational levels. Inhibitor, siRNA knockdown and co-immunoprecipitation have shown that TGF-β3 induces JAM-B protein degradation via ubiquitin-proteasome pathway. Immunofluorescence staining further confirmed that blockage of ubiquitin-proteasome pathway could abrogate TGF-β3-induced loss of JAM-B at the cell-cell interface. siRNA knockdown and immunofluorescence staining also demonstrated that activation of Smad signaling is required for TGF-β3-induced JAM-B protein degradation. In addition, TGF-β3 reduces JAM-B mRNA levels, at least in part, via post-transcriptional regulation. mRNA stability assay has confirmed that TGF-β3 promotes the degradation of JAM-B transcript and TGF-β3-mediated mRNA destabilization requires the activation of ERK1/2 and p54 JNK signal cascades. Taken together, TGF-β3 significantly downregulates JAM-B expression via post-transcriptional and post-translational modulation and results in the disruption of BTB and apical ES.
Collapse
Affiliation(s)
- Xu Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Zhu M, Duan H, Gao M, Zhang H, Peng Y. Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication. Viruses 2015; 7:1344-56. [PMID: 25803100 PMCID: PMC4379574 DOI: 10.3390/v7031344] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/16/2022] Open
Abstract
It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Hao Duan
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Meng Gao
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Hao Zhang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| | - Yihong Peng
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
23
|
Schwebs DJ, Hadwiger JA. The Dictyostelium MAPK ERK1 is phosphorylated in a secondary response to early developmental signaling. Cell Signal 2014; 27:147-55. [PMID: 25451080 DOI: 10.1016/j.cellsig.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
Previous reports have suggested that the two mitogen-activated protein kinases (MAPKs) in Dictyostelium discoideum, ERK1 and ERK2, can be directly activated in response to external cAMP even though these MAPKs play different roles in the developmental life cycle. To better characterize MAPK regulation, the levels of phosphorylated MAPKs were analyzed in response to external signals. Only ERK2 was rapidly phosphorylated in response to the chemoattractants, cAMP and folate. In contrast, the phosphorylation of ERK1 occurred as a secondary or indirect response to these stimuli and this phosphorylation was enhanced by cell-cell interactions, suggesting that other external signals can activate ERK1. The phosphorylation of ERK1 or ERK2 did not require the function of the other MAPK in these responses. Folate stimulation of a chimeric population of erk1- and gα4- cells revealed that the phosphorylation of ERK1 could be mediated through an intercellular signal other than folate. Loss of ERK1 function suppressed the developmental delay and the deficiency in anterior cell localization associated with gα5- mutants suggesting that ERK1 function can be down regulated through Gα5 subunit-mediated signaling. However, no major changes in the phosphorylation of ERK1 were observed in gα5- cells suggesting that the Gα5 subunit signaling pathway does not regulate the phosphorylation of ERK1. These findings suggest that the activation of ERK1 occurs as a secondary response to chemoattractants and that other cell-cell signaling mechanisms contribute to this activation. Gα5 subunit signaling can down regulate ERK1 function to promote prestalk cell development but not through major changes to the level of phosphorylated ERK1.
Collapse
Affiliation(s)
- David J Schwebs
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA.
| |
Collapse
|
24
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Thauerer B, Voegele P, Hermann-Kleiter N, Thuille N, de Araujo MEG, Offterdinger M, Baier G, Huber LA, Baier-Bitterlich G. LAMTOR2-mediated modulation of NGF/MAPK activation kinetics during differentiation of PC12 cells. PLoS One 2014; 9:e95863. [PMID: 24752675 PMCID: PMC3994133 DOI: 10.1371/journal.pone.0095863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Bettina Thauerer
- Division of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Voegele
- Division of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Division of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Thuille
- Division of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Mariana E. G. de Araujo
- Division of Cell Biology, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Offterdinger
- Division of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Division of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A. Huber
- Division of Cell Biology, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Baier-Bitterlich
- Division of Neurobiochemistry, CCB-Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
26
|
Linke R, Pries R, Könnecke M, Bruchhage KL, Böscke R, Gebhard M, Wollenberg B. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz) 2014; 62:217-29. [PMID: 24609540 DOI: 10.1007/s00005-014-0281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common disease that has a considerable impact on the quality of life. Alterations in signalling pathways may contribute to the ongoing inflammation and proliferation in CRSwNP. The MEK1/2-ERK1/2 pathway transmits signals from many extracellular molecules to regulate cellular processes. We examined tissue samples from nasal polyps and the inferior turbinate of patients with CRSwNP and the inferior turbinate from subjects with healthy mucosa. The expressions of MEK1/2, ERK1/2, and their active phosphorylated forms pMEK1/2 and pERK1/2 were analysed using DNA microarray, quantitative real-time PCR, protein array, Western hybridisation, and immunohistochemistry. We detected increased MEK1/2 protein expression in nasal polyps compared to the inferior turbinates of patients with CRSwNP or healthy mucosa. We also found a higher amount of MEK1/2 in the inferior turbinates of patients with CRSwNP compared to those with healthy mucosa. Most importantly, we observed a significant increase in the phosphorylation of MEK1/2 and ERK1/2 in nasal polyps compared to both types of controls. We observed activation of the MEK1/2-ERK1/2 pathway in nasal polyps. Interestingly, we did not see the same activation pattern in different tiers of the MEK1/2-ERK1/2 signalling cascade. One explanation for this result is that the components enhance the complex MEK-ERK cascade in a distinct manner, enabling a wide variety of functions. The MEK1/2-ERK1/2 pathway appears to play a pivotal role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Robert Linke
- Department of Otorhinolaryngology and Facial Plastic Surgery, UK-SH, HNO-Klinik, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany,
| | | | | | | | | | | | | |
Collapse
|
27
|
Ding ZY, Jin GN, Liang HF, Wang W, Chen WX, Datta PK, Zhang MZ, Zhang B, Chen XP. Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal 2013; 25:1981-1992. [PMID: 23727026 DOI: 10.1016/j.cellsig.2013.05.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/27/2022]
Abstract
Hepatic progenitor cells (HPCs) are activated in the chronic liver injury and are found to participate in the progression of liver fibrosis, while the precise role of HPCs in liver fibrosis remains largely elusive. In this study, by immunostaining of human liver sections, we confirmed that HPCs were activated in the cirrhotic liver and secreted transforming growth factor β (TGF-β) and connective tissue growth factor (CTGF), both of which were important inducers of liver fibrosis. Besides, we used HPC cell lines LE/6 and WB-F344 as in vitro models and found that TGF-β induced secretion of CTGF in HPCs. Moreover, TGF-β signaling was intracrine activated and contributed to autonomous secretion of CTGF in HPCs. Furthermore, we found that TGF-β induced expression of CTGF was not mediated by TGF-β activated Smad signaling but mediated by TGF-β activated Erk, JNK and p38 MAPK signaling. Taken together, our results provide evidence for the role of HPCs in liver fibrosis and suggest that the production of CTGF by TGF-β activated MAPK signaling in HPCs may be a therapeutic target of liver fibrosis.
Collapse
Affiliation(s)
- Ze-yang Ding
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Imada K, Shiota M, Kohashi K, Kuroiwa K, Song Y, Sugimoto M, Naito S, Oda Y. Mutual regulation between Raf/MEK/ERK signaling and Y-box-binding protein-1 promotes prostate cancer progression. Clin Cancer Res 2013; 19:4638-50. [PMID: 23838318 DOI: 10.1158/1078-0432.ccr-12-3705] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Y-box-binding protein-1 (YB-1) is known to conduct various functions related to cell proliferation, anti-apoptosis, epithelial-mesenchymal transition, and castration resistance in prostate cancer. However, it is still unknown how YB-1 affects cancer biology, especially its correlations with the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, we aimed to examine the interaction between YB-1 and the MAPK pathway in prostate cancer. EXPERIMENTAL DESIGN Quantitative real-time PCR, Western blotting, and co-immunoprecipitation assay were conducted in prostate cancer cells. YB-1, phosphorylated YB-1 (p-YB-1), and ERK2 protein expressions in 165 clinical specimens of prostate cancer were investigated by immunohistochemistry. YB-1, p-YB-1, and ERK2 nuclear expressions were compared with clinicopathologic characteristics and patient prognoses. RESULTS EGF upregulated p-YB-1, whereas MEK inhibitor (U0126, PD98059) decreased p-YB-1. Inversely, silencing of YB-1 using siRNA decreased the expression of ERK2 and phosphorylated MEK, ERK1/2, and RSK. Furthermore, YB-1 interacted with ERK2 and Raf-1 and regulated their expressions, through the proteasomal pathway. Immunohistochemical staining showed a significant correlation among the nuclear expressions of YB-1, p-YB-1, and ERK2. The Cox proportional hazards model revealed that high ERK2 expression was an independent prognostic factor [HR, 7.947; 95% confidence interval (CI), 3.527-20.508; P<0.0001]. CONCLUSION We revealed the functional relationship between YB-1 and MAPK signaling and its biochemical relevance to the progression of prostate cancer. In addition, ERK2 expression was an independent prognostic factor. These findings suggest that both the ERK pathway and YB-1 may be promising molecular targets for prostate cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Kenjiro Imada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Drew DA, Devers T, Horelik N, Yang S, O'Brien M, Wu R, Rosenberg DW. Nanoproteomic analysis of extracellular receptor kinase-1/2 post-translational activation in microdissected human hyperplastic colon lesions. Proteomics 2013; 13:1428-36. [PMID: 23467982 DOI: 10.1002/pmic.201200430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/04/2013] [Accepted: 02/07/2013] [Indexed: 12/21/2022]
Abstract
Oncogenic activation resulting in hyperproliferative lesions within the colonic mucosa has been identified in putative precancerous lesions, aberrant crypt foci (ACF). KRAS and BRAF mutation status was determined in 172 ACF identified in the colorectum of screening subjects by in situ high-definition, magnifying chromoendoscopy. Lesions were stratified according to histology (serrated vs. distended). Due to their limiting size, however, it was not technically feasible to examine downstream signaling consequences of these oncogenic mutations. We have combined ultraviolet-infrared (UV/IR) microdissection with an ultrasensitive nanofluidic proteomic immunoassay (NIA) to enable accurate quantification of posttranslational modifications to mitogen-activated protein kinase (MAPK) in total protein lysates isolated from hyperproliferative crypts and adjacent normal mucosa. Using this approach, levels of singly and dually (activated) phosphorylated isoforms of extracellular receptor kinase(ERK)-1 and ERK-2 were quantified in samples containing as little as 16 ng of total protein recovered from <200 cells. ERK activation is responsible for observed hyperplasia found in these early lesions, but is not directly dependent on KRAS and/or BRAF mutation status. This study describes the novel use of a sensitive nanofluidic platform to measure oncogene-driven proteomic changes in diminutive lesions and highlights the advantage of this approach over classical immunohistochemistry-based analyses.
Collapse
Affiliation(s)
- David A Drew
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030-3101, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial-mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 2013; 332:63-73. [PMID: 23348690 DOI: 10.1016/j.canlet.2013.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family, essential for mitotic spindle dynamics and centrosome integrity during mitosis. Mounting evidence suggests that deregulation of TACC3 is associated with various types of human cancer. However, the molecular mechanisms by which TACC3 contributes to the development of cancer remain largely unknown. Here, we propose a novel mechanism by which TACC3 regulates epithelial-mesenchymal transition (EMT). By modulating the expression of TACC3, we found that overexpression of TACC3 leads to changes in cell morphology, proliferation, transforming capability, migratory/invasive behavior as well as the expression of EMT-related markers. Moreover, phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinases (ERKs) signaling pathways are critical for TACC3-mediated EMT process. Notably, depletion of TACC3 is sufficient to suppress EMT phenotype. Collectively, our findings identify TACC3 as a driver of tumorigenesis as well as an inducer of oncogenic EMT and highlight its overexpression as a potential therapeutic target for preventing EMT-associated tumor progression and invasion.
Collapse
Affiliation(s)
- Geun-Hyoung Ha
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|
31
|
Hahn B, D'Alessandro LA, Depner S, Waldow K, Boehm ME, Bachmann J, Schilling M, Klingmüller U, Lehmann WD. Cellular ERK phospho-form profiles with conserved preference for a switch-like pattern. J Proteome Res 2012; 12:637-46. [PMID: 23210697 DOI: 10.1021/pr3007232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ERK is a member of the MAPK pathway with essential functions in cell proliferation, differentiation, and survival. Complete ERK activation by the kinase MEK requires dual phosphorylation at T and Y within the activation motif TEY. We show that exposure of primary mouse hepatocytes to hepatocyte growth factor (HGF) results in phosphorylation at the activation motif, but not of other residues nearby. To determine the relative abundances of unphosphorylated ERK and the three ERK phospho-forms pT, pY, and pTpY, we employed an extended one-source peptide/phosphopeptide standard method in combination with nanoUPLC-MS. This method enabled us to determine the abundances of phospho-forms with a relative variability of ≤5% (SD). We observed a switch-like preference of ERK phospho-form abundances toward the active, doubly phosphorylated and the inactive, unphosphorylated form. Interestingly, ERK phospho-form profiles were similar upon growth factor and cytokine stimulation. A screening of several murine and human cell systems revealed that the balance between TY- and pTpY-ERK is conserved while the abundances of pT- and pY-ERK are more variable within cell types. We show that the phospho-form profiles do not change by blocking MEK activity suggesting that cellular phosphatases determine the ERK phospho-form distribution. This study provides novel quantitative insights into multisite phosphorylation.
Collapse
Affiliation(s)
- Bettina Hahn
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Guégan JP, Ezan F, Théret N, Langouët S, Baffet G. MAPK signaling in cisplatin-induced death: predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis 2012; 34:38-47. [PMID: 23042098 DOI: 10.1093/carcin/bgs317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma treatment by arterial infusion of cis-diamminedichloroplatinum-II (cisplatin) exhibits certain therapeutic efficacy. However, optimizations are required and the mechanisms underlying cisplatin proapoptotic effect remain unclear. The mitogen-activated protein kinase (MAPK) pathway plays a key role in cell response to cisplatin and the functional specificity of the isoform MAPK/ERK kinase 1 and 2 (MEK1/2) and ERK1/2 could influence this response. The individual contribution of each kinase on cisplatin-induced death was thus analyzed after a transient or stable specific inhibition by RNA interference in the human hepatocellular carcinoma cells Huh-7 or in knockout mice. We demonstrated here that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas MEK1 and MEK2 acted in a redundant manner. Indeed, at clinically relevant concentrations of cisplatin, ERK1 silencing alone was sufficient to protect cells from cisplatin-induced death both in vitro, in Huh-7 cells and ERK1(-/-) hepatocytes, and in vivo, in ERK1-deficient mice. Moreover, we showed that ERK1 activity correlated with the induction level of the proapoptotic BH3-only protein Noxa, a critical mediator of cisplatin toxicity. On the contrary, ERK2 inhibition upregulated ERK1 activity, favored Noxa induction and sensitized hepatocarcinoma cells to cisplatin. Our results point to a crucial role of ERK1 in cisplatin-induced proapoptotic signal and lead us to propose that ERK2-specific targeting could improve the efficacy of cisplatin therapy by increasing ERK1 prodeath functions.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Inserm U1085, Institut de Recherche sur la Santé l'Environnement et le Travail IRSET, Université de Rennes 1, Biosit, F-35043 Rennes, France
| | | | | | | | | |
Collapse
|
33
|
Carter CA, Misra M, Maronpot RR. Tracheal Morphologic and Protein Alterations FollowingShort-Term Cigarette Mainstream Smoke Exposure to Rats. J Toxicol Pathol 2012; 25:201-7. [PMID: 22988338 PMCID: PMC3434335 DOI: 10.1293/tox.25.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
A short-term 5-day nose-only cigarette smoke exposure study was conducted in Fisher 344
rats to identify smoke-induced tracheal protein changes. Groups of 10 male and female 5
week old rats were assigned to 1 of 4 exposure groups. Animals received filtered air, or
75, 200 or 400 mg total particulate matter (TPM)/m3 of diluted 3R4F Kentucky
reference cigarette mainstream smoke. Exposures were conducted for 3 hrs/day, for 5
consecutive days. Tracheas from half the rats were processed for pathology, and tracheas
from the other half of the rats frozen immediately for proteomics. We hypothesized that
smoke will activate tracheal inflammatory, apoptotic, proliferative, and stress-induced
pathways. Mucosal epithelial toxicity from the inhaled material was evidenced by cilia
shortening and loss of tracheal mucosal epithelium in smoke-exposed animals. Mucosal
thinning occurred in all smoke-exposed groups with hyperplastic reparative responses in
the 200 and 400 mg TPM/m3 groups. Tracheal lysates from control vs. treated
animals were screened for 800 proteins using antibody-based microarray technology and
subsequently the most changed proteins evaluated by Western blot. Tracheal proteins
expressed at high levels that were markedly increased or decreased by smoke exposure
depended on dose and gender and included caspase 5, ERK 1/2 and p38. Signaling pathways
common between the morphologic and protein changes were stress, apoptosis, cell cycle
control, cell proliferation and survival. Changes in identified proteins affected by smoke
exposure were associated with tracheal mucosal pathology, may induce functional tracheal
changes, and could serve as early indicators of tracheal damage and associated
disease.
Collapse
Affiliation(s)
- Charleata A Carter
- A. W. Spears Research Center, 420 N. English Street, Lorillard Tobacco Company, Greensboro, NC 27405, USA
| | | | | |
Collapse
|
34
|
Busch S, Rydén L, Stål O, Jirström K, Landberg G. Low ERK phosphorylation in cancer-associated fibroblasts is associated with tamoxifen resistance in pre-menopausal breast cancer. PLoS One 2012; 7:e45669. [PMID: 23029174 PMCID: PMC3454403 DOI: 10.1371/journal.pone.0045669] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/20/2012] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this study was to evaluate ERK phosphorylation as a stromal biomarker for breast cancer prognosis and tamoxifen treatment prediction within a randomized tamoxifen trial. Patients and Methods Tissue microarrays of two breast cancer cohorts including in total 743 invasive breast cancer samples were analyzed for ERK phosphorylation (pERK) and smooth muscle actin-alpha expression (SMAα) in cancer-associated fibroblasts (CAFs) and links to clinico-pathological data and treatment-predictive values were delineated. Results By analyzing a unique randomized tamoxifen trial including breast cancer patients receiving no adjuvant treatment we show for the first time that patients low in ERK phosphorylation in CAFs did not respond to tamoxifen treatment despite having estrogen-receptor alpha (ERα-positive tumors compared to patients with high pERK levels in CAFs (P = 0.015, multivariate Cox regression interaction analysis). In both clinical materials we further show a significant association between pERK and SMAα, a characteristic marker for activated fibroblasts. SMAα expression however was not linked to treatment-predictive information but instead had prognostic qualities. Conclusion The data suggests that the presence of a subpopulation of CAFs, defined by minimal activated ERK signaling, is linked to an impaired tamoxifen response. Thus, this report illustrates the importance of the stroma for monitoring treatment effects in pre-menopausal breast cancer.
Collapse
Affiliation(s)
- Susann Busch
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Lisa Rydén
- Department of Surgery, Institution of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Olle Stål
- Division of Oncology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Jirström
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Göran Landberg
- Breakthrough Breast Cancer Research Unit, School of Cancer, Enabling Sciences and Technology, University of Manchester, Manchester Academic Health Science Centre, Paterson Institute for Cancer Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
35
|
Illert AL, Zech M, Moll C, Albers C, Kreutmair S, Peschel C, Bassermann F, Duyster J. Extracellular signal-regulated kinase 2 (ERK2) mediates phosphorylation and inactivation of nuclear interaction partner of anaplastic lymphoma kinase (NIPA) at G2/M. J Biol Chem 2012; 287:37997-8005. [PMID: 22955283 DOI: 10.1074/jbc.m112.373464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NIPA is an F-box-like protein that contributes to the timing of mitotic entry. It targets nuclear cyclin B1 for ubiquitination in interphase, whereas in G(2)/M phase, NIPA is inactivated by phosphorylation to allow for cyclin B1 accumulation, a critical event for proper G(2)/M transition. We recently specified three serine residues of NIPA and demonstrated a sequential phosphorylation at G(2)/M, where initial Ser-354 and Ser-359 phosphorylation is most crucial for SCF(NIPA) inactivation. In this study, we identified ERK2 as the kinase responsible for this critical initial phosphorylation step. Using in vitro kinase assays, we found that both ERK1 and ERK2 phosphorylated NIPA with high efficiency. Mutation of either Ser-354 or Ser-359 abolished ERK-dependent NIPA phosphorylation. Pharmacologic inhibition of ERK1/2 in cell lines resulted in decreased NIPA phosphorylation at G(2)/M. By combining cell cycle synchronization with stable expression of shRNA targeting either ERK1 or ERK2, we showed that ERK2 but not ERK1 mediated NIPA inactivation at G(2)/M. ERK2 knockdown led to a delay at the G(2)/M transition, a phenotype also observed in cells expressing a phospho-deficient mutant of NIPA. Thus, our data add to the recently described divergent functions of ERK1 and ERK2 in cell cycle regulation, which may be due in part to the differential ability of these kinases to phosphorylate and inactivate NIPA at G(2)/M.
Collapse
Affiliation(s)
- Anna Lena Illert
- Department of Internal Medicine III, Technical University of Munich, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zassadowski F, Rochette-Egly C, Chomienne C, Cassinat B. Regulation of the transcriptional activity of nuclear receptors by the MEK/ERK1/2 pathway. Cell Signal 2012; 24:2369-77. [PMID: 22906493 DOI: 10.1016/j.cellsig.2012.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Cells undergo continuous and simultaneous external influences regulating their behavior. As an example, during differentiation, they go through different stages of maturation and gene expression is regulated by several simultaneous signaling pathways. We often tend at separating the nuclear pathways from the signaling ones initiated at membrane receptors. However, it is essential to keep in mind that all these pathways are interconnected to achieve a fine regulation of cell functions. The regulation of transcription by nuclear receptors has been thoroughly studied, but it now appears that a critical level of this regulation involves the action of several kinases that target the nuclear receptors themselves as well as their partners. The purpose of this review is to highlight the importance of one family of the mitogen-activated protein kinase (MAPK) superfamily, the MEK/ERK1/2 pathway, in the transcriptional activity of nuclear receptors.
Collapse
|
37
|
Distinct roles for extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the structure and production of a primate gammaherpesvirus. J Virol 2012; 86:9721-36. [PMID: 22740395 DOI: 10.1128/jvi.00695-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During their progression from intranuclear capsids to mature trilaminar virions, herpesviruses incorporate an extensive array of viral as well as a smaller subset of cellular proteins. Our laboratory previously reported that rhesus monkey rhadinovirus (RRV), a close homolog of the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), is comprised of at least 33 different virally encoded proteins. In the current study, we found that RRV infection activated the extracellular signal-regulated kinase (ERK) pathway and nascent virions preferentially incorporated the activated form of ERK2 (pERK2) into the tegument. This was evident even in the face of greatly diminished stores of intracellular ERK2, suggesting a clear bias toward the incorporation of pERK2 into the RRV particle. Similar to earlier findings with KSHV, activation of ERK was essential for the production of lytic viral proteins and virions. Knockdown of intracellular ERK, however, failed to inhibit virus production, likely due to maintenance of residual pools of intracellular pERK2. Paradoxically, selective knockdown of ERK1 enhanced virion production nearly 5-fold and viral titers more than 10-fold. These data are the first to implicate ERK1 as a negative regulator of lytic replication in a herpesvirus and the first to demonstrate the incorporation of an activated signaling molecule within a herpesvirus. Together, the results further our understanding of how herpesviruses interact with host cells during infection and demonstrate how this family of viruses can exploit cellular signal transduction pathways to modulate their own replication.
Collapse
|
38
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1179] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
39
|
|
40
|
Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res 2011; 49:248-68. [PMID: 21170740 DOI: 10.1007/s12026-010-8187-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent research on hematological malignancies has shown that malignant cells often co-opt physiological pathways to promote their growth and development. Bone marrow homeostasis requires a fine balance between cellular differentiation and self-renewal; cell survival and apoptosis; and cellular proliferation and senescence. The Ras/Raf/MEK/ERK pathway has been shown to be important in regulating these biological functions. Moreover, the Ras/Raf/MEK/ERK pathway has been estimated to be mutated in 30% of all cancers, thus making it the focus of many scientific studies which have lead to a deeper understanding of cancer development and help to elucidate potential weaknesses that can be targeted by pharmacological agents [1]. In this review, we specifically focus on the role of this pathway in physiological hematopoiesis and how augmentation of the pathway may lead to hematopoietic malignancies. We also discuss the challenges and success of targeting this pathway.
Collapse
Affiliation(s)
- Eva Chung
- Department of Immunology, Duke University Medical Center, 101 Jones Building, DUMC Box 3010, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
Jain SS, AshokKumar M, Bird RP. Differential expression of TNF-α signaling molecules and ERK1 in distal and proximal colonic tumors associated with obesity. Tumour Biol 2011; 32:1005-12. [DOI: 10.1007/s13277-011-0202-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/08/2011] [Indexed: 01/03/2023] Open
|
42
|
Midde NM, Gomez AM, Harrod SB, Zhu J. Genetically expressed HIV-1 viral proteins attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB signaling in rats. Pharmacol Biochem Behav 2011; 98:587-97. [PMID: 21420997 PMCID: PMC3091851 DOI: 10.1016/j.pbb.2011.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 12/29/2022]
Abstract
The prevalence of tobacco smoking in HIV-1 positive individuals is 3-fold greater than that in the HIV-1 negative population; however, whether HIV-1 viral proteins and nicotine together produce molecular changes in mesolimbic structures that mediate psychomotor behavior has not been studied. This study determined whether HIV-1 viral proteins changed nicotine-induced behavioral sensitization in HIV-1 transgenic (HIV-1Tg) rats. Further, we examined cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). HIV-1Tg rats exhibited a transient decrease of activity during habituation, but showed attenuated nicotine (0.35mg/kg, s.c.)-induced behavioral sensitization compared to Fisher 344 (F344) rats. The basal levels of phosphorylated CREB and ERK2 were lower in the PFC of HIV-1Tg rats, but not in the NAc and VTA, relative to the controls. In the nicotine-treated groups, the levels of phosphorylated CREB and ERK2 in the PFC were increased in HIV-1Tg rats, but decreased in F344 animals. Moreover, repeated nicotine administration reduced phosphorylated ERK2 in the VTA of HIV-1Tg rats and in the NAc of F344 rats, but had no effect on phosphorylated CREB, indicating a region-specific change of intracellular signaling. These results demonstrate that HIV-1 viral proteins produce differences in basal and nicotine-induced alterations in CREB and ERK signaling that may contribute to the alteration in psychomotor sensitization. Thus, HIV-1 positive smokers are possibly more vulnerable to alterations in CREB and ERK signaling and this has implications for motivated behavior, including tobacco smoking, in HIV-1 positive individuals who self-administer nicotine.
Collapse
Affiliation(s)
- Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Steven B. Harrod
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
43
|
Abstract
Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| | - Hoai-Nghia Nguyen
- Department of Microbiology and Molecular Genetics Oklahoma State University 74078-3020, USA
| |
Collapse
|
44
|
Ronda AC, Buitrago C, Boland R. Role of estrogen receptors, PKC and Src in ERK2 and p38 MAPK signaling triggered by 17β-estradiol in skeletal muscle cells. J Steroid Biochem Mol Biol 2010; 122:287-94. [PMID: 20478382 DOI: 10.1016/j.jsbmb.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 12/30/2022]
Abstract
We have previously reported in C2C12 murine skeletal muscle cells that 10(-8)M 17β-estradiol promotes MAPKs stimulation which in turn mediates the activation of CREB and Elk-1 transcription factors. In this work, we demonstrated that the hormone induces ERK2 phosphorylation (without affecting ERK1 activation) and also stimulates p38 MAPK, both in a dose-dependent manner. Moreover, estrogen receptors involvement in MAPKs activation by the estrogen was studied. The use of ICI182780 (1 μM), an antagonist of ERs, and specific siRNAs to block ERα and ERβ expression, demonstrated that ERα mediates ERK2 activation but not p38 MAPK phosphorylation by 17β-estradiol, and that ERβ isoform is not implicated in MAPKs activation by the hormone. Furthermore, Src and PKC contribution in estrogen stimulation of the MAPKs was investigated. Compounds PP2 and Ro318220, Src and PKC family inhibitors, respectively abrogated ERK2 and p38 MAPK phosphorylation by 17β-estradiol. Of interest, the hormone was able to induce Src and PKCδ activation. In addition, Ro318220 decreased estrogen-dependent Src modulation implicating PKC in hormone upregulation of Src. Accordingly, PP2 and Ro318220 suppressed CREB and Elk-1 phosphorylation as well as c-Fos and c-Jun oncoprotein levels induced by 17β-estradiol. Altogether, these data indicate that 17β-estradiol activates ERK2 through ERα and p38 MAPK in an ERα/β-independent manner and that PKC and Src proteins are key upstream components on MAPKs activation in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ana C Ronda
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
45
|
IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 2010; 116:1698-704. [DOI: 10.1182/blood-2009-12-261461] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Among various mechanisms for interactions with B cells, intravenous immunoglobulin (IVIg) may operate through the insertion of its Fc part into the Fc-γ receptor, or the binding of its sialic acid (SA)–bearing glycans to the negatively regulating CD22 lectin. It appeared that IVIg reduces B lymphocyte viability in a dose- and time-dependent manner. Furthermore, we show by confocal microscopy that SA-positive IgG, but not SA-negative IgG bind to CD22. This interaction reduces the strength of B-cell receptor–mediated signaling trough down-regulating tyrosine phosphorylation of Lyn and the B-cell linker proteins, and up-regulating phospholipase Cγ2 activation. This cascade resulted in a sustained activation of Erk 1/2 and arrest of the cell cycle at the G1 phase. These changes may be accounted for the efficacy of IVIg in autoimmune diseases.
Collapse
|
46
|
Iñiguez SD, Vialou V, Warren BL, Cao JL, Alcantara LF, Davis LC, Manojlovic Z, Neve RL, Russo SJ, Han MH, Nestler EJ, Bolaños-Guzmán CA. Extracellular signal-regulated kinase-2 within the ventral tegmental area regulates responses to stress. J Neurosci 2010; 30:7652-63. [PMID: 20519540 PMCID: PMC2895424 DOI: 10.1523/jneurosci.0951-10.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/12/2022] Open
Abstract
Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors.
Collapse
MESH Headings
- Action Potentials/physiology
- Analysis of Variance
- Animals
- Animals, Genetically Modified
- Behavior, Animal/physiology
- Dominance-Subordination
- Electroshock/adverse effects
- Escape Reaction/physiology
- Food Preferences/physiology
- Gene Expression Regulation, Enzymologic/physiology
- Green Fluorescent Proteins/genetics
- Hindlimb Suspension/methods
- In Vitro Techniques
- Male
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Motor Activity
- Neurons/physiology
- Oncogene Proteins, Fusion
- Pain/enzymology
- Pain/etiology
- Pain/pathology
- Phosphorylation/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Fibroblast Growth Factor
- Signal Transduction/physiology
- Simplexvirus/physiology
- Stress, Psychological/enzymology
- Stress, Psychological/etiology
- Stress, Psychological/pathology
- Sucrose/administration & dosage
- Sweetening Agents/administration & dosage
- Swimming/psychology
- Time Factors
- Transduction, Genetic/methods
- Tyrosine 3-Monooxygenase/metabolism
- Ventral Tegmental Area/enzymology
- Ventral Tegmental Area/pathology
Collapse
Affiliation(s)
- Sergio D. Iñiguez
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| | | | - Brandon L. Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| | - Jun-Li Cao
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029-6574, and
| | - Lyonna F. Alcantara
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| | - Lindsey C. Davis
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| | - Zarko Manojlovic
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| | - Rachael L. Neve
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | | | - Ming-Hu Han
- Fishberg Department of Neuroscience and
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029-6574, and
| | | | - Carlos A. Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301
| |
Collapse
|
47
|
Genetic demonstration of a redundant role of extracellular signal-regulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation. Mol Cell Biol 2010; 30:2918-32. [PMID: 20368360 DOI: 10.1128/mcb.00131-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinase 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinase signaling pathway plays an important role in the proliferative response of mammalian cells to mitogens. However, the individual contribution of the isoforms ERK1 and ERK2 to cell proliferation control is unclear. The two ERK isoforms have similar biochemical properties and recognize the same primary sequence determinants on substrates. On the other hand, analysis of mice lacking individual ERK genes suggests that ERK1 and ERK2 may have evolved unique functions. In this study, we used a robust genetic approach to analyze the individual functions of ERK1 and ERK2 in cell proliferation using genetically matched primary embryonic fibroblasts. We show that individual loss of either ERK1 or ERK2 slows down the proliferation rate of fibroblasts to an extent reflecting the expression level of the kinase. Moreover, RNA interference-mediated silencing of ERK1 or ERK2 expression in cells genetically disrupted for the other isoform similarly reduces cell proliferation. We generated fibroblasts genetically deficient in both Erk1 and Erk2. Combined loss of ERK1 and ERK2 resulted in a complete arrest of cell proliferation associated with G(1) arrest and premature replicative senescence. Together, our findings provide compelling genetic evidence for a redundant role of ERK1 and ERK2 in promoting cell proliferation.
Collapse
|
48
|
Nguyen HN, Raisley B, Hadwiger JA. MAP kinases have different functions in Dictyostelium G protein-mediated signaling. Cell Signal 2010; 22:836-47. [PMID: 20079430 DOI: 10.1016/j.cellsig.2010.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
Abstract
Extracellular signal regulated kinases (ERKs) are a class of MAP kinases that function in many signaling pathways in eukaryotic cells and in some cases, a single stimulus can activate more than one ERK suggesting functional redundancy or divergence from a common pathway. Dictyostelium discoideum encodes only two MAP kinases, ERK1 and ERK2, that both function during the developmental life cycle. To determine if ERK1 and ERK2 have overlapping functions, chemotactic and developmental phenotypes of erk1(-) and erk2(-) mutants were assessed with respect to G protein-mediated signal transduction pathways. ERK1 was specifically required for Galpha5-mediated tip morphogenesis and inhibition of folate chemotaxis but not for cAMP-stimulated chemotaxis or cGMP accumulation. ERK2 was the primary MAPK phosphorylated in response to folate or cAMP stimulation. Cell growth was not altered in erk1(-), erk2(-) or erk1(-)erk2(-) mutants but each mutant displayed a different pattern of cell sorting in chimeric aggregates. The distribution of GFP-ERK1 or GFP-ERK2 fusion proteins in the cytoplasm and nucleus was not grossly altered in cells stimulated with cAMP or folate. These results suggest ERK1 and ERK2 have different roles in G protein-mediated signaling during growth and development.
Collapse
Affiliation(s)
- Hoai-Nghia Nguyen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 74078-3020, USA
| | | | | |
Collapse
|
49
|
Zhong W, Shen WF, Ning BF, Hu PF, Lin Y, Yue HY, Yin C, Hou JL, Chen YX, Zhang JP, Zhang X, Xie WF. Inhibition of extracellular signal-regulated kinase 1 by adenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatology 2009; 50:1524-36. [PMID: 19787807 DOI: 10.1002/hep.23189] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Extracellular signal-regulated kinase 1 (ERK1) is a critical part of the mitogen-activated protein kinase signal transduction pathway, which is involved in hepatic fibrosis. However, the effect of down-regulation of ERK1 on hepatic fibrosis has not been reported. Here, we induced hepatic fibrosis in rats with dimethylnitrosamine administration or bile duct ligation. An adenovirus carrying small interfering RNA targeting ERK1 (AdshERK1) was constructed to determine its effect on hepatic fibrosis, as evaluated by histological and immunohistochemical examination. Our results demonstrated that AdshERK1 significantly reduced the expression of ERK1 and suppressed proliferation and levels of fibrosis-related genes in hepatic stellate cells in vitro. More importantly, selective inhibition of ERK1 remarkably attenuated the deposition of the extracellular matrix in fibrotic liver in both fibrosis models. In addition, both hepatocytes and biliary epithelial cells were proven to exert the ability to generate the myofibroblasts depending on the insults of the liver, which were remarkably reduced by AdshERK1. Furthermore, up-regulation of ERK1 paralleled the increased expression of transforming growth factor beta1 (TGF-beta1), vimentin, snail, platelet-derived growth factor-BB (PDGF-BB), bone morphogenetic protein 4 (BMP4), and small mothers against decapentaplegic-1 (p-Smad1), and was in reverse correlation with E-cadherin in the fibrotic liver. Nevertheless, inhibition of ERK1 resulted in the increased level of E-cadherin in parallel with suppression of TGF-beta1, vimentin, snail, PDGF-BB, BMP4, and p-Smad1. Interestingly, AdshERK1 treatment promoted hepatocellular proliferation. CONCLUSION Our study provides the first evidence for AdshERK1 suppression of hepatic fibrosis through the reversal of epithelial-mesenchymal transition of both hepatocytes and biliary epithelial cells without interference of hepatocellular proliferation. This suggests that ERK1 is implicated in hepatic fibrogenesis and selective inhibition of ERK1 by small interfering RNA may present a novel option for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Galli S, Jahn O, Hitt R, Hesse D, Opitz L, Plessmann U, Urlaub H, Poderoso JJ, Jares-Erijman EA, Jovin TM. A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells. PLoS One 2009; 4:e7541. [PMID: 19847302 PMCID: PMC2760858 DOI: 10.1371/journal.pone.0007541] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022] Open
Abstract
Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells.
Collapse
Affiliation(s)
- Soledad Galli
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Reiner Hitt
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Doerte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lennart Opitz
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juan Jose Poderoso
- Laboratory of Oxygen Metabolism, University Hospital “Jose de San Martin”, UBA, Buenos Aires, Argentina
| | - Elizabeth A. Jares-Erijman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
| | - Thomas M. Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Laboratorio Max Planck de Dinámica Celular, FCEyN, UBA, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| |
Collapse
|