1
|
Chen M, Wang X, Zhou X, Huang B, Zhao Y, Liu H, He Q. Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms. BMC PLANT BIOLOGY 2024; 24:1260. [PMID: 39725878 DOI: 10.1186/s12870-024-05975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains. The comprehensive evaluation indicates that the ZJWZ strain holds potential as a preferred parental material for future resistance breeding. Furthermore, PAL gene expression was strongly positively correlated with flavonoid and phenol contents, highlighting its role in the stress response through the phenylpropanoid-flavonoid pathway. This study contributes to the standardization of the production and breeding of superior strains of T. hemsleyanum. It also lays the foundation for investigating how plants react to environmental stressors.
Collapse
Affiliation(s)
- Minmin Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Hangzhou, 572025, China
| | - Xiaoqun Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiawen Zhou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baiyu Huang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haiying Liu
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Guo Z, Guo J, Yu H, Huang H, Ye D, Liu T, Zhang X, Zhang L, Zheng Z, Wang Y, Li T. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116810. [PMID: 39096692 DOI: 10.1016/j.ecoenv.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.
Collapse
Affiliation(s)
- Zhipeng Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Jingyi Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China; Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China.
| |
Collapse
|
3
|
Li X, Xu B, Sahito ZA, Chen S, Liang Z. Transcriptome analysis reveals cadmium exposure enhanced the isoquinoline alkaloid biosynthesis and disease resistance in Coptis chinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115940. [PMID: 38218103 DOI: 10.1016/j.ecoenv.2024.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Coptis chinensis Franch is a perennial herb from the Ranunculaceae family with a long history of medicinal use. As the medicinal part, the rhizome of coptis often accumulates excessive cadmium (Cd) even at low concentrations in the soil, which not only compromises its medicinal safety but also raises concerns about adverse effects on human health. Therefore, effective strategies are needed to mitigate this accumulation and ensure its safe use in traditional medicine. This study utilized transcriptome profiling and physiological analysis to explore molecular mechanisms associated with ecological significance and the active accumulation of Cd in C. chinensis. The response to Cd in C. chinensis was assessed through RNA sequencing, Cd determination and isoquinoline alkaloid measurement using its roots, stems, and leaves. The transcriptome revealed, a total of 2667, 2998, or 2815 up-regulated deferentially expressed genes in roots, stems or leaves in response to Cd exposure. Furthermore, we identified phenylpropanoid and isoquinoline alkaloid biosynthesis as the key pathways response to Cd exposure, which suggests that C. chinensis may improve its tolerance to Cd through regulating the phenylpropanoid biosynthesis pathway. Under Cd exposure, plant-pathogen interaction in leaves was identified as the key pathway, which indicates that upregulation of genes involved in plant-pathogen interaction could enhance disease resistance in C. chinensis. WGCNA analysis identified WRKY8 (Cluster-55763.31419) and WRKY47 (Cluster-55763.221590) as potential regulators of secondary metabolic synthesis and plant-pathogen interaction pathway in C. chinensis triggered by Cd. The measurement of berberine, coptisine, palmatine, and epiberberine also demonstrated that Cd simulated the four isoquinoline alkaloids in roots. Therefore, our study not only presented a transcriptome expression profiles that revealed significant upregulation of genes involved in metal transport and detoxification pathways but also suggested a possible mechanism to cope with Cd accumulation. This knowledge provides a new insight into gene manipulation for controlling Cd accumulation, enhancing resistance and promoting synthesis of secondary metabolites with potential medicinal properties in other medicinal plant species.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bo Xu
- Tianjin Tasly Modern TCM Resources Co., Ltd., Tianjin 300410, China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Shaoning Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312000, China.
| |
Collapse
|
4
|
Sui X, Sun X, Liu S, Li L, Xin Z, Li X. Nitrate reduces copper toxicity by preventing oxidative stress and inhibiting copper translocation from roots to shoots in Liriodendron Chinense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15946-15957. [PMID: 38308781 DOI: 10.1007/s11356-024-32053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Nitrogen forms can affect metal accumulation in plants and tolerance to metals, but a few published studies on the effects on Cu toxicity and Cu accumulation in plants are scarce. Thus, the objective of this study was to evaluate the responses of Liriodendron chinense to different nitrogen forms, by the oxidative stress, antioxidant enzymes system, GSH-AsA cycle, Cu uptake, translocation, and accumulation under Cu stress. We found that Cu-induced growth inhibiting was alleviated by added exclusive NO3--N. Adding N as NH4+-N with or without NO3--N was aggravated as evidenced by significantly elevated malonaldehyde (MDA) and hydrogen peroxide (H2O2) compared to N-Null. Cu exposure and adding NH4+-N inhibited superoxide dismutase activity, but remarkably stimulated the activities of catalase and peroxidase, the efficiency of glutathione-ascorbate (GSH-AsA) cycle, and the activity of glutathione reductase and nitrate reductase, with respect to the control. However, adding exclusive NO3--N progressively restored the alteration of antioxidant to prevent Cu-induced oxidative stress. Additionally, adding exclusive NO3--N significantly promoted the Cu uptake and accumulation in roots, but reduced Cu concentration in leaves, accompanied by the inhibited Cu translocation factor from roots to shoots by 36.7%, when compared with N-Null. Overall, adding NO3--N alleviated its Cu toxicity by preventing Cu-induced oxidative stress and inhibiting Cu translocation from roots to shoots, which provides an effective strategy for phytostabilization in Cu-contaminated lands.
Collapse
Affiliation(s)
- Xiuyu Sui
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbes, Jiangxi Academy of Sciences, Nanchang, 330096, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyan Sun
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbes, Jiangxi Academy of Sciences, Nanchang, 330096, China.
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Shujuan Liu
- Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Liang Li
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbes, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Zaijun Xin
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbes, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xiaohui Li
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Microbes, Jiangxi Academy of Sciences, Nanchang, 330096, China
| |
Collapse
|
5
|
Qu Z, Nakanishi H. Amino Acid Residues of the Metal Transporter OsNRAMP5 Responsible for Cadmium Absorption in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:4182. [PMID: 38140509 PMCID: PMC10748276 DOI: 10.3390/plants12244182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The transport of metals such as iron (Fe), manganese (Mn), and cadmium (Cd) in rice is highly related. Although Fe and Mn are essential elements for plant growth, Cd is a toxic element for both plants and humans. OsNRAMP5-a member of the same family as the Fe, Mn, and Cd transporter OsNRAMP1-is responsible for the transport of Mn and Cd from soil in rice. Knockout of OsNRAMP5 markedly reduces both Cd and Mn absorption, and this OsNRAMP5 knockout is indispensable for the development of low-Cd rice. However, in low-Mn environments, such plants would exhibit Mn deficiency and suppressed growth. We generated random mutations in OsNRAMP5 via error-prone PCR, and used yeast to screen for the retention of Mn absorption and the inhibition of Cd absorption. The results showed that alanine 512th is the most important amino acid residue for Cd absorption and that its substitution resulted in the absorption of Mn but not Cd.
Collapse
Affiliation(s)
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
6
|
Xu Z, Duan Y, Liu H, Xu M, Zhang Z, Xu L. Analysis of WAK Genes in Nine Cruciferous Species with a Focus on Brassica napus L. Int J Mol Sci 2023; 24:13601. [PMID: 37686407 PMCID: PMC10487794 DOI: 10.3390/ijms241713601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The wall-associated kinase family contributes to plant cell elongation and pathogen recognition. Nine Cruciferous species were studied for identification and molecular evolution of the WAK gene family. Firstly, 178 WAK genes were identified. A phylogenetic tree was constructed of the Cruciferous WAK proteins into four categories, of which the Brassica rapa, Brassica oleracea and Brassica napus genes in the U's triangle were more closely related. The WAK gene family was unevenly distributed in B. napus chromosomal imaging, with the largest number of BnWAK genes located on chromosome C08. In the expression analysis, the expression patterns of the WAK gene family varied under different stress treatments, and some members of BnWAKs were significantly different under stress treatments. This study lays a foundation for further revealing the functional mechanisms of the WAK gene family in Brassica napus.
Collapse
Affiliation(s)
- Zishu Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Duan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Mingchao Xu
- Leshan Academy of Agricultural Sciences, Leshan 614000, China
| | - Zhi Zhang
- Leshan Academy of Agricultural Sciences, Leshan 614000, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Li Y, Rahman SU, Qiu Z, Shahzad SM, Nawaz MF, Huang J, Naveed S, Li L, Wang X, Cheng H. Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121433. [PMID: 36907241 DOI: 10.1016/j.envpol.2023.121433] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities pose a more significant threat to the environment than natural phenomena by contaminating the environment with heavy metals. Cadmium (Cd), a highly poisonous heavy metal, has a protracted biological half-life and threatens food safety. Plant roots absorb Cd due to its high bioavailability through apoplastic and symplastic pathways and translocate it to shoots through the xylem with the help of transporters and then to the edible parts via the phloem. The uptake and accumulation of Cd in plants pose deleterious effects on plant physiological and biochemical processes, which alter the morphology of vegetative and reproductive parts. In vegetative parts, Cd stunts root and shoot growth, photosynthetic activities, stomatal conductance, and overall plant biomass. Plants' male reproductive parts are more prone to Cd toxicity than female reproductive parts, ultimately affecting their grain/fruit production and survival. To alleviate/avoid/tolerate Cd toxicity, plants activate several defense mechanisms, including enzymatic and non-enzymatic antioxidants, Cd-tolerant gene up-regulations, and phytohormonal secretion. Additionally, plants tolerate Cd through chelating and sequestering as part of the intracellular defensive mechanism with the help of phytochelatins and metallothionein proteins, which help mitigate the harmful effects of Cd. The knowledge on the impact of Cd on plant vegetative and reproductive parts and the plants' physiological and biochemical responses can help selection of the most effective Cd-mitigating/avoiding/tolerating strategy to manage Cd toxicity in plants.
Collapse
Affiliation(s)
- Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Shafeeq Ur Rahman
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhixin Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Punjab, Pakistan
| | | | - Jianzhi Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Sadiq Naveed
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; Dongguan Key Laboratory of Water Pollution Control and Ecological Safety Regulation, Dongguan, Guangdong, 523808, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Zhang Z, Wang S, Wang J, Zhang C, Liu D, Wang C, Xu F. The overexpression of LOW PHOSPHATE ROOT 1 (LPR1) negatively regulates Arabidopsis growth in response to Cadmium (Cd) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:556-566. [PMID: 36774911 DOI: 10.1016/j.plaphy.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a highly toxic element that is easily absorbed by plant, and the mechanisms of the plant response to Cd toxicity are very complex. In this study, the role of LPR1 (LOW Phosphate Root 1) encoding a cell-wall-targeted ferroxidase in Cd stress was investigated. The results showed that the overexpression of LPR1 caused an average reduction of 23%-40% in the primary root lengths, 67%-73% in the fresh weights, 32%-46% in the lengths of the non-root hair zone (NRHZ) and 70%-71% in the chlorophyll contents in both LPR1-OX lines when compared with the wild type (WT), while there were no significant changes in these traits between the WT and mutant lpr1 lines under Cd stress (7.5 μmol/L CdSO4). Further investigation showed that the overexpression of LPR1 triggered reactive oxygen species (ROS) bursts and reduced the entry of available iron (Fe2+) into the cell, which induced the expression of iron-regulated transporter 1 (IRT1). The up-regulation of IRT1 contributed to the increase of Cd accumulation and growth retardation under Cd stress. Exogenous Fe and ROS scavengers down-regulated the IRT1's expression and alleviated the growth inhibition in LPR1-OX lines, indicating that LPR1-dependent ROS up-regulated IRT1, which subsequently exacerbated the Cd influx into plants. Our findings highlight a pathway of LPR1-mediated plant responding to Cd toxicity stress through the regulation of ROS and Fe homeostasis.
Collapse
Affiliation(s)
- Ziwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Li J, Pan J, Najeeb U, El-Beltagi HS, Huang Q, Lu H, Xu L, Shi B, Zhou W. Promotive Role of 5-Aminolevulinic Acid or Salicylic Acid Combined with Citric Acid on Sunflower Growth by Regulating Manganese Absorption. Antioxidants (Basel) 2023; 12:antiox12030580. [PMID: 36978828 PMCID: PMC10045730 DOI: 10.3390/antiox12030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Manganese (Mn) is an essential nutrient in most organisms. Establishing an effective regulatory system of Mn absorption is important for sustainable crop development. In this study, we selected sunflower as the model plant to explore the effects of 5-aminolevulinic acid (ALA) or salicylic acid (SA) combined with citric acid (CA) on Mn absorption. Six-leaf-old sunflower plants were exposed to 0.8 g kg−1 Mn for one week and then treated with chelating agents, i.e., CA (10 mmol kg−1), and different concentrations of ALA and SA for one week. The results showed that Mn-treated plants had significantly increased H2O2, O2− and MDA contents in leaves compared with the control. Under the Mn + CA treatment, ALA or SA2 significantly activated the antioxidant defense system by increasing SOD, POD and CAT activities in leaves. Moreover, the application of CA significantly increased the Mn uptake in sunflower roots compared with Mn treatment alone; however, did not accelerate the translocation efficiency of Mn from sunflower roots to shoots. Moreover, ultrastructural and RT-qPCR results further demonstrated that ALA/SA could recover the adverse impact of excessive Mn accumulation in sunflowers. Like a pump, ALA/SA regulated the translocation efficiency and promoted the transportation of Mn from roots to shoots. This study provides insights into the promotive role of ALA/SA combined with CA on sunflower growth by regulating Mn absorption, which would be beneficial for regulating Mn absorption in soil with an Mn deficit.
Collapse
Affiliation(s)
- Juanjuan Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Pan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Huaijian Lu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Bixian Shi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.X.); (B.S.); (W.Z.)
| |
Collapse
|
10
|
Zhang Z, Lu Y, Li H, Gao Y, Yang Z. The role of nickel in cadmium accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160421. [PMID: 36423846 DOI: 10.1016/j.scitotenv.2022.160421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Rice is one of the world's staple foods. Cadmium (Cd) levels in paddy soil are still increasing, and "Cd-contaminated rice" is a frequent occurrence, posing a serious threat to human health. Therefore, Cd contamination in rice is a key issue in agricultural production that needs to be addressed urgently. The Cd accumulation in rice is closely related to other elements. In this study, the impact of nickel (Ni) on the uptake and accumulation of Cd in rice was revealed, and the mechanism was discussed. Statistical analysis of field data showed that Cd concentration in rice grains decreased exponentially with increasing Ni concentration in paddy soils, which was verified by the hydroponic experiments. Under 5 μmol/L Cd exposure conditions, the addition of Ni (100 μmol/L) reduced the Cd contents in roots, stems, and leaves by 81.6 %, 60.6 %, and 65.9 %, respectively. With the presence of Ni, the amount of iron plaque decreased, and the Cd content in the iron plaque was reduced due to the competition between Ni and Cd for adsorption sites. In addition, the migration of Cd from stems to leaves was reduced. At the same time, the distribution of Cd in the cell was altered, and the concentration of Cd in the root cell walls increased with increasing Ni addition under 5 μmol/L Cd exposure. These findings highlight the critical role of Ni in inhibiting Cd accumulation in rice, and provide important information for understanding the effects of coexisting elements in Cd-contaminated soils on Cd accumulation in crops.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China; Analysis and Testing Center, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| |
Collapse
|
11
|
Wei HY, Li Y, Yan J, Peng SY, Wei SJ, Yin Y, Li KT, Cheng X. Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130186. [PMID: 36265381 DOI: 10.1016/j.jhazmat.2022.130186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Exopolysaccharides (EPS) are macromolecules with environment beneficial properties. Currently, numerous studies focus on the absorption of heavy metals by EPS, but less attention has been paid to the effects of EPS on the plants. This study explored the effects of EPS from Lactobacillus plantarum LPC-1 on the structure and function of cell walls in rice seedling roots under cadmium (Cd) stress. The results showed that EPS could regulate the remodeling process of the cell walls of rice roots. EPS affects the synthesis efficiency and the content of the substances that made up the cell wall, and thus plays an essential role in limiting the uptake and transport of Cd in rice root. Furthermore, EPS could induce plant resistance to heavy metals by regulating the lignin biosynthesis pathway in rice roots. Finally, the cell wall remodeling induced by EPS likely contributes to plant stress responses by activating the reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- Hong-Yu Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Li
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jiao Yan
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sai-Jin Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Kun-Tai Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of food science and technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xin Cheng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Zhang H, Xie S, Wan N, Feng B, Wang Q, Huang K, Fang Y, Bao Z, Xu F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22772-22786. [PMID: 36303005 DOI: 10.1007/s11356-022-23705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se4+ or Se6+), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe2+ and inhibited by Cd but not related with Se species. Shoot Se (Se4+ or Se6+) uptake was not affected by Fe plaque in most treatments, except that shoot Se concentrations were decreased by Fe plaque when Se4+ and Cd co-exposure. Shoot Cd concentrations were always inhibited by Fe plaque, regardless of Se species. Inhibiting Cd adsorption onto root surface (Se4+ + Cd) or increased Cd retention in Fe plaque (Se6+ + Cd) is an important mechanism for Fe plaque to reduce Cd uptake by rice. However, we found that DCB Cd concentrations (Cd adsorbed by Fe plaque) were not always positively correlated with Fe plaque amounts and always negatively correlated with the distribution ratios of Cd mass in root to that in Fe plaque (abbreviated as DRCMRF; r = - 0.942**); meanwhile, with the increase of DCB Fe concentration, the directions of variations of DCB Cd concentration and DRCMRF were affected by Se species. It indicated that the root system is also an important factor to affect DCB Cd concentration and inhibit Cd uptake, which is mediated by Se species. This paper provides a new understanding of Fe plaque-mediated interactive effect of Se and Cd uptakes in rice, which is beneficial for the remediation of Cd-contaminated and Cd-contaminated seleniferous areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Neng Wan
- WuHan Natural Resources and Planning Bureau, Wuhan, 430034, China
| | - Boxin Feng
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710069, China
| | - Qi Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Kangjun Huang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yang Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China
| |
Collapse
|
13
|
Yao Q, Li W, Liu Y, Cheng Y, Xiao X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y. FeCl 3 and Fe 2(SO 4) 3 differentially reduce Cd uptake and accumulation in Polish wheat (Triticum polonicum L.) seedlings by exporting Cd from roots and limiting Cd binding in the root cell walls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120762. [PMID: 36471548 DOI: 10.1016/j.envpol.2022.120762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Wheat grown in cadmium (Cd)-contaminated soils easily accumulates more Cd in edible parts than the Chinese safety limit (0.1 mg/kg). FeCl3 and Fe2(SO4)3 have been used to extract Cd from Cd-contaminated soils. Thus, we hypothesized that FeCl3 and Fe2(SO4)3, used as iron (Fe) fertilizers, can reduce Cd uptake and accumulation in wheat. Here, a hydroponic experiment was performed with three FeCl3 and Fe2(SO4)3 concentrations under 80 μM CdCl2 stress on dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB) seedlings. Compared with Fe deficiency, FeCl3 and Fe2(SO4)3 additions competitively reduced Cd concentrations. The reductions were not associated with changes in dry weight and root morphological parameters. FeCl3 and Fe2(SO4)3 additions reduced Cd concentrations in the following order from smallest to largest reduction: 25 μM Fe2(SO4)3 < 200 μM FeCl3 < 50 μM FeCl3 < 100 μM Fe2(SO4)3. Investigation of subcellular distributions showed that the four Fe fertilizers differentially reduced Cd binding in the root cell walls and enhanced root sucrose and trehalose. Cd chemical form analysis revealed that Fe fertilizer addition also differentially reduced root FE, FW, and FNaCl. Transcriptomic analysis revealed that addition of FeCl3 and Fe2(SO4)3 differentially up-regulated several genes that hydrolyze cell wall polysaccharides and metal transporter genes for Cd uptake (IRT1 and CAX19) and export (ZIP1, ABCG11, ABCG14, ABCG28, ABCG37, ABCG44, and ABCG48) reducing Cd uptake and accumulation. Our results demonstrated that FeCl3 and Fe2(SO4)3 can reduce Cd accumulation in wheat, and 50 μM FeCl3 is the most effective treatment.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Weiping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Ying Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
14
|
Liu S, Fu L, Zhang C, Deng J, Xue W, Deng Y. Effects of Exogenous Chlorinated Amino Acetic Acid on Cadmium and Mineral Elements in Rice Seedlings. TOXICS 2023; 11:71. [PMID: 36668797 PMCID: PMC9860664 DOI: 10.3390/toxics11010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
To explore the effect of exogenous application of chlorinated amino acetic acid on cadmium (Cd) transport characteristics in rice seedlings, X24 and Z35 rice were taken as the research objects to carry out hydroponics experiments, and the changes of Cd content in rice seedlings, rice mineral elements and amino acid content in rice were analyzed. The results showed that exogenous application of 1.2 mmol·L-1 chlorinated amino acetic acid inhibited cadmium in shoots and roots of rice seedlings; Cd content in shoots and roots were reduced by up to 62.19% and 45.61%, respectively. The majority of cadmium was in the cell wall of shoots and roots; this decreased with the increase of the concentration of chlorinated acetic acid. In addition, the Mn content in shoots and Ca content in roots of rice seedlings increased significantly after the application of chlorinated amino acetic acid. The results of amino acid analysis showed that the contents of aspartic acid, glutamic acid and cystine in rice seedlings were increased. These results indicate that exogenous application of chlorinated amino acetic acid is beneficial to the synthesis of aspartic acid, glutamic acid and cysteine in rice seedlings, increases the content of Mn in shoots and Ca in roots of rice seedlings, and significantly alleviates cadmium stress in seedlings. This provides a theoretical basis for the development of an environmentally friendly Cd-lowering foliar fertilizer for rice.
Collapse
Affiliation(s)
- Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yun Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Cai Y, Pan B, Liu B, Cai K, Tian J, Wang W. The Cd sequestration effects of rice roots affected by different Si management in Cd-contaminated paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157718. [PMID: 35914593 DOI: 10.1016/j.scitotenv.2022.157718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The application of exogenous silicon (Si) reportedly is one of the eco-friendly practices to mitigate cadmium (Cd) phytotoxicity and regulate the chemical behaviors of Cd in the soil-rice system. But the efficiency of Si on the Cd retention by rice root varies with the Si fertilizer management. The objective of this paper was to interpret the differences in Cd immobilization by rice roots and relevant mechanisms under different ways of Si application (T-Si, supplied at transplanting stage; TJ-Si, split at transplanting and jointing stage with the ratio of 50 % to 50 %; J-Si, supplied at jointing stage and CK, none of Si application) in Cd-contaminated paddy soils. The results showed that the Cd-retention capacity of rice root was increased by 0.60 % ~ 3.06 % under different Si management when compared to CK. The concentrations of monosilicic acid in soils and in apoplast and symplast of roots were increased significantly by Si application, while Cd concentrations in apoplast and symplast of root were decreased by 28.50 % (T-Si), 40.64 % (TJ-Si) and 30.26 % (J-Si), respectively. The distribution of Cd in rice cell wall was increased significantly by TJ-Si. The Cd concentrations of inert fractions (F3, F4 and F6) in root of TJ-Si were raised obviously. Si application downregulated the expression of OsIRT2 and OsNramp5 while upregulated OsHMA3, and the expression of OsHMA3 treated by TJ-Si was obviously higher than CK and J-Si. The distributions of the passive Cd in roots bound with thiol compounds (NPT, GSH and PCs) and polysaccharide components (pectin, hemicelluloses 1 and hemicellulose 2) were raised much more by TJ-Si than by T-Si and J-Si. On the whole, compared with T-Si and J-Si, TJ-Si could more easily replenish soil available Si and enhance Cd sequestration in roots as the result of the decrease of Cd transport factor in roots. This study unravels some mechanisms about different Si management on increasing Cd retention and decreasing Cd migration in rice roots, and TJ-Si is worthy of being recommended.
Collapse
Affiliation(s)
- Yixia Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, PR China.
| | - Bogui Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, PR China.
| | - Bingquan Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, PR China.
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, PR China.
| | - Jihui Tian
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, PR China.
| | - Wei Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
16
|
Xiao B, Huang J, Guo J, Lu X, Zhu L, Wang J, Zhou C. Flooding-induced rhizosphere Clostridium assemblage prevents root-to-shoot cadmium translocation in rice by promoting the formation of root apoplastic barriers. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129619. [PMID: 35868081 DOI: 10.1016/j.jhazmat.2022.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Water managements are the most effective agricultural practices for restraining cadmium (Cd) uptake and translocation in rice, which closely correlated with rhizosphere assembly of beneficial microbiome. However, the role of the assemblage of specific microbiota in controlling root-to-shoot Cd translocation in rice remains scarcely clear. The aim of this study was to ascertain how water managements shaped rhizosphere microbiome and mediated root-to-shoot Cd translocation. To disentangle the acting mechanisms of water managements, we performed an experiment monitoring Cd uptake and transport in rice and changes in soil microbial communities in response to continuously flooding and moistening irrigation. Continuously flooding changed rhizosphere microbial communities, leading to the increased abundance of anaerobic bacteria such as Clostridium populations. Weighted gene co-expression network analysis (WGCNA) showed that a dominant OTU163, corresponding to Clostridium sp. CSP1, exhibited a strong negative correlation with root-to-shoot Cd translocation. An integrated analysis of transcriptome and metabolome further indicated that the Clostridium-secreted butyric acid was involved in the regulation of phenylpropanoid pathway in rice roots. The formation of endodermal suberized barriers and lignified xylems was remarkably enhanced in the Clostridium-treated roots, which led to more Cd retained in root cell wall and less Cd in the xylem sap. Collectively, our results indicate that the development of root apoplastic barriers can be orchestrated by beneficial Clostridium strains that are assembled by host plants grown under flooding regime, thereby inhibiting root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- Bing Xiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Jiansheng Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Shi L, Guo Z, Liu S, Xiao X, Peng C, Feng W, Ran H, Zeng P. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2451-2463. [PMID: 34282515 DOI: 10.1007/s10653-021-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Excessive Cd content and high Cd/Zn ratio in rice grains threaten human health. To study the reduction effects of combined soil amendments on Cd content and Cd/Zn ratio in rice planting in soils with different Cd contamination levels, we conducted field trials in three regions of Hunan province, China. Six field treatments were designed in each study area, including control (CK), lime alone (L), lime combined with sepiolite (LS), phosphate fertilizer (LP), organic fertilizer (LO) and phosphate fertilizer + organic fertilizer (LPO). The application of the combined amendments reduced the Cd content in rice grains to less than the Food Health Standard of China (0.2 mg/kg) and the Cd/Zn ratio to less than the safety threshold of 0.015. The average reduction rates of grain Cd content under the combined treatments among the three regions increased with the increase in Cd content in the soil. Meanwhile, the amendments also decreased the soil available Cd and Zn concentration significantly. The LO had the highest efficiency on decreasing Cd content in rice grains among these amendments, which is ranged from 44.6% to 52.8% in the three regions compared with CK. Similarly, high reduction rates of Cd/Zn ratio were found in the LO treatment, with an average value of 57.3% among the three regions. The grain Cd contents and Cd/Zn ratios were significantly correlated with the soil available Cd concentrations, plant uptake factor and the straw to rice grain translocation factor (TFgs) (P < 0.05). The results indicated that the combined soil amendments, especially lime combined with organic fertilizer, would be an effective way to control Cd content in rice.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Shuaixia Liu
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Peng Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
18
|
Guo J, Chen M, Huang Y, Xie S, Zhang X, Zuo T, Hu C, Wang G. Chloride application weakens cadmium immobilization by lime in paddy rice soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113761. [PMID: 35714480 DOI: 10.1016/j.ecoenv.2022.113761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Contamination of agricultural products by cadmium (Cd) is a global health problem, causing chronic abnormalities. The consumption of rice, the most-consumed foods, is an important exposure route of Cd to human body. Chloride (Cl-) is reported to increase Cd uptake by rice; however, the effect on Cd uptake and accumulation by rice in the presence of lime is not clear. Therefore, a pot culture experiment was performed to explore the influence of Cl- on the absorption and accumulation of Cd in rice plants under lime remediation and its possible mechanisms. The results showed that Cl- promoted Cd accumulation in rice grains, mainly because of increased Cd bioavailability in the soil and by impeding the formation of iron plaques on rice roots, which reduced chelating and precipitation of Cd. Moreover, increased overexpression of the main transporters of Cd in rice roots, including OsNramp5, OsNramp1, OsIRTs and OsHMA2, favored the upward translocation of Cd from the root to shoot and increased the transfer factors (TFs) from soil to root, root-stem, leaf to grain, and soil to grain. Therefore, the application of Cl-rich materials to Cd-contaminated rice fields should be avoided during liming of the soil for Cd immobilization.
Collapse
Affiliation(s)
- Jingxia Guo
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Miaofen Chen
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongxin Huang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shengcong Xie
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaohui Zhang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tingting Zuo
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Cong Hu
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Guo Wang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
19
|
Zhu Q, Tan J, Liu YG. Molecular farming using transgenic rice endosperm. Trends Biotechnol 2022; 40:1248-1260. [PMID: 35562237 DOI: 10.1016/j.tibtech.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
Abstract
Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.
Collapse
Affiliation(s)
- Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
20
|
Zhang H, Xie S, Bao Z, Carranza EJM, Tian H, Wei C. Synergistic inhibitory effect of selenium, iron, and humic acid on cadmium uptake in rice (Oryza sativa L.) seedlings in hydroponic culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64652-64665. [PMID: 34318411 DOI: 10.1007/s11356-021-15527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), iron (Fe), and humic acid (HA) are beneficial fertilizers that inhibit cadmium (Cd) uptake in crops and are crucial for agricultural yields as well as human health. However, the joined effect of Se, Fe, and HA on Cd uptake in rice are still poorly understood. Therefore, a hydroponic culture experiment was established to evaluate the combined effect of Se (Se4+ or Se6+), Fe, and HA on the biomass, Cd uptake, and Cd translocation of/in rice seedlings. Compared to Se6+ application, Se4+ application in most treatments resulted in lower Cd translocations from roots to shoots, leading to a significant decrease in shoot Cd concentrations. Compared to the treatments with Se4+ or Fe2+ application, joined application of Se4+ and Fe2+ inhibited Cd uptake in shoots by decreasing Cd adsorption onto (iron plaque) and uptake by roots, and alleviating Cd translocation from root to shoot. Compared to the treatments with Se6+ or Fe2+ application, joined application of Se6+ and Fe2+ inhibited Cd uptake in shoots by sequestering (retaining) Cd onto root surface (iron plaque). HA inhibited Cd uptake in all treatments by decreasing the bioavailability of Cd in the nutrient solution through complexation. The simultaneous application of Se, Fe, and HA decreased the shoot Cd concentrations the most, followed by the combined application of two fertilizers and their individual application; the mean shoot Cd concentration in the Fe-SeIV-HA2 treatment was the lowest among all the treatments, at only 11.39 % of those in the control treatments. The 3-way ANOVA results indicated that the Cd concentrations in shoots were significantly affected by Se, Fe, HA, and certain of their interactions (Fe×Se and Se×HA) (p< 0.05). The above findings suggest that the joined application of Se, Fe, and HA ameliorated Cd uptake mainly by inhibiting Cd adsorption onto (iron plaque) and uptake by roots and the translocation from roots to shoots (Fe×Se4+), retaining (sequestering) Cd in iron plaque (Fe×Se6+), and decreasing Cd availability in nutrient solution (HA).
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Zhengyu Bao
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Emmanuel John M Carranza
- Geological Sciences, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville, 3629, South Africa
| | - Huan Tian
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | - Changhua Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
21
|
Research and Progress on the Mechanism of Iron Transfer and Accumulation in Rice Grains. PLANTS 2021; 10:plants10122610. [PMID: 34961081 PMCID: PMC8708893 DOI: 10.3390/plants10122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Iron (Fe) is one of the most important micronutrients for organisms. Currently, Fe deficiency is a growing nutritional problem and is becoming a serious threat to human health worldwide. A method that could help alleviate this “hidden hunger” is increasing the bioavailable Fe concentrations in edible tissues of major food crops. Therefore, understanding the molecular mechanisms of Fe accumulation in different crop tissues will help to develop crops with higher Fe nutritional values. Biofortification significantly increases the concentration of Fe in crops. This paper considers the important food crop of rice (Oryza sativa L.) as an example and highlights recent research advances on the molecular mechanisms of Fe uptake and allogeneic uptake in different tissues of rice. In addition, different approaches to the biofortification of Fe nutrition in rice and their outcomes are described and discussed. To address the problems that occur during the development and application of improving nutritional Fe in rice, technical strategies and long-term solutions are also proposed as a reference for the future improvement of staple food nutrition with micronutrients.
Collapse
|
22
|
Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. ENVIRONMENT INTERNATIONAL 2021; 156:106749. [PMID: 34247006 DOI: 10.1016/j.envint.2021.106749] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 659, B-9000 Gent, Belgium
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. High-throughput sequencing clarifies the spatial structures of microbial communities in cadmium-polluted rice soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47086-47098. [PMID: 33886056 DOI: 10.1007/s11356-021-13993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities are affected by environmental factors. Contamination with heavy metals such as cadmium (Cd) can decrease soil microbial species richness and substantially alter soil microbial species composition. Investigations of the microbial communities in Cd-contaminated soils are necessary to obtain data for soil bioremediation efforts. However, depth-associated variations in microbial community composition and structure in Cd-contaminated paddy soils are not well understood. Here, the effects of various degrees of long-term Cd pollution on soil microorganisms were investigated at different soil depths within the plough layer using 16S rRNA gene amplicon sequencing. We found that, in Cd-polluted soils, microbial communities were more similar between the surface soil and the underlying soil. In addition, microbial community richness and/or diversity were significantly reduced in the Cd-polluted underlying soil as compared with the non-polluted underlying soil. However, species richness in the surface layer was significantly greater in the mildly and severely Cd-polluted soils. The soil microbial communities in the same soil layer differed significantly between the non-polluted and polluted soils. Furthermore, Cd contamination affected the microbial communities of different soil layers differently. Soil pH had a synergistic effect on microbial community abundance and composition. The potential functions of the soil microbiota were mainly related to environmental processing, genetic processing, and metabolic pathways. Notably, our identification of the phyla that were differently abundant among sites with different levels of Cd pollution will provide experimental guidance for further explorations of the effects of Cd on soil microbes in natural environments. Our results not only demonstrate that long-term Cd pollution leads to a marked reduction in microbial richness and diversity in the underlying soil layer, but they also help to clarify how long-term heavy metal contamination affects the soil bacterial community.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210046, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Li X, Chen D, Yang Y, Liu Y, Luo L, Chen Q, Yang Y. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112392. [PMID: 34102395 DOI: 10.1016/j.ecoenv.2021.112392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Understanding the molecular mechanisms of cadmium (Cd) tolerance and accumulation in plants is important to address Cd pollution. In the present study, we performed comparative transcriptome analysis to identify the Cd response processes in the roots of two turnip landraces, KTRG-B14 (high-Cd accumulation) and KTRG-B36 (low-Cd accumulation). Two common enhanced processes, glutathione metabolism and antioxidant system, were identified in both landraces. However, some differential antioxidant processes are likely employed by two landraces, namely, several genes encoding peptide methionine sulfoxide reductases and thioredoxins were up-regulated in B14, whereas flavonoid synthesis was potentially induced to fight against oxidative stress in B36. In addition to the commonly upregulated ZINC INDUCED FACILITATOR 1-like gene in two landraces, different metal transporter-encoding genes identified in B14 (DETOXIFICATION 1) and B36 (PLANT CADMIUM RESISTANCE 2-like, probable zinc transporter 10, and ABC transporter C family member 3) were responsible for Cd accumulation and distribution in cells. Several genes that encode extensins were specifically upregulated in B14, which may improve Cd accumulation in cell walls or regulate root development to absorb more Cd. Meanwhile, the induced high-affinity nitrate transporter 2.1-like gene was also likely to contribute to the higher Cd accumulation in B14. However, Cd also caused some toxic symptoms in both landraces. Cd stress might inhibit iron uptake in both landraces whereas many apoenzyme-encoding genes were influenced in B36, which may be attributed to the interaction between Cd and other metal ions. This study provides novel insights into the molecular mechanism of plant root response to Cd at an early stage. The transporters and key enzymes identified in this study are helpful for the molecular-assisted breeding of low- or high-Cd-accumulating plant resources.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Di Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanyuan Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China.
| |
Collapse
|
25
|
Zhang JY, Zhou H, Zeng P, Wang SL, Yang WJ, Huang F, Huo Y, Yu SN, Gu JF, Liao BH. Nano-Fe 3O 4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. CHEMOSPHERE 2021; 276:130212. [PMID: 33740654 DOI: 10.1016/j.chemosphere.2021.130212] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Rice as a paddy field crops, iron-containing materials application could induce its iron plaque formation, thereby affecting cadmium (Cd) transportation in the rhizosphere and its uptake in root. In this study, a hydroponic experiment was conducted to investigate the effects of three exogenous iron materials, namely nano-Fe3O4-modified biochar (BC-Fe), chelated iron (EDTA-Fe), and ferrous sulfate (FeSO4), on the iron plaque formation on the surface of rice root, and to investigate the effects of formed iron plaque on the absorption, migration, and transportation of Cd and Fe in rice plant. The results showed that yellow-brown and brown iron plaque was formed on surface cells of the Fe-treated rice root, and some black particles were embedded in the iron plaque formed by BC-Fe. The proportion of crystallized iron plaque (31.8%-35.9%) formed by BC-Fe was much higher than that formed by EDTA-Fe and FeSO4. The Cd concentrations in the crystallized iron plaque formed by BC-Fe were 7.64-13.0 mg·kg-1, and increased with the increasing of Fe concentrations in the plaque. The Cd translocation factor from root to stem (TFr-s) and the Cd translocation factor from stem to leaf (TFs-l) with BC-Fe treatment decreased by 84.7% and 80.0%, respectively. The results demonstrated that application BC-Fe promoted the formation of iron plaque and enhanced the sequestration of Cd and Fe in roots, thus reduced the transportation and accumulation of Cd in aerial rice tissues.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Shi-Long Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Wen-Jun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Fang Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yang Huo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Shu-Ning Yu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
26
|
Han Y, Ling Q, Dong F, de Dios VR, Li Z, Zhang W, Huo T, Chen Y, Hu X, Wang X, Li D, Zhou L, Yang G, Zhan X. Iron and copper micronutrients influences cadmium accumulation in rice grains by altering its transport and allocation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146118. [PMID: 33684766 DOI: 10.1016/j.scitotenv.2021.146118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) contamination in rice paddy fields constitutes a serious health issue in some parts of China. Here we study the potential for remediation of Cd contaminated alkaline paddy soil with low iron (Fe) and high copper (Cu) background by altering the concentrations of Fe and Cu in the growing media, which has been only seldom considered. We assessed how these two micronutrients (Cu and Fe) affect the absorption and transport of Cd in rice. Adding Cu significantly increased rice biomass and grain yield by reducing root Cd influx and Cd upward transport which, consequently, lowered Cd concentrations in roots, culms and leaves. However, excessive Cu also promoted a relatively higher Cd allocation in grains, especially under Fe deficiency, likely because Cu significantly increased the proportion of bioavailable Cd in leaves. Contrastingly, Fe did not alleviate the toxic effects of Cd on rice growth and yield, but it significantly reduced Cd transfer towards grains, which might be attributed to a sharp decrease in the proportion of bioavailable Cd in leaves. Our results demonstrated that Cd remediation may be achieved through altering Fe and Cu inputs, such that Cd accumulation in rice grains is reduced.
Collapse
Affiliation(s)
- Ying Han
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Qin Ling
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Mianyang Boe Optoelectronics Technology Co., Ltd, Mianyang 621010, China
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Department of Crop and Forest Sciences and JRU CTFC-AGROTECNIO, Universitat de Lleida, Lleida, Spain
| | - Zhi Li
- Chengdu Defei Environmental Engineering Co., Ltd, Chengdu 610041, China
| | - Wei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yun Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xinyang Hu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xuhui Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Dongkun Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiaohong Zhan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| |
Collapse
|
27
|
Wang K, Yu H, Ye D, Wang Y, Zhang X, Huang H, Zheng Z, Li T. The critical role of the shoot base in inhibiting cadmium transport from root to shoot in a cadmium-safe rice line (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142710. [PMID: 33069470 DOI: 10.1016/j.scitotenv.2020.142710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is harmful to rice and human, thus screening and understanding the mechanism of Cd-safe rice lines, which accumulate little Cd in brown rice, is necessary. D62B was screened as a Cd-safe rice line with low Cd translocation from roots to shoots, and there must be a switch restricting Cd transport from roots to shoots. Here we found that shoot base played the role as switch. Cd concentration in the shoot base of D62B was 1.57 times higher compared with a high Cd-accumulating rice line (Wujin4B) and lower Cd translocation under Cd stress. Glutathione (GSH) and phytochelatins (PCs) were important in this process. GSH and PCs concentrations in the shoot bases of D62B were 1.01- 1.83 times higher than Wujin4B as well as the glutathione S-transferase (GST) and phytochelatin synthase (PCS) concentrations, keeping in consistent with up-regulation of the genes OsGST and OsPCS1. PCs synthesis was further promoted by exogenous GSH. Our results prove the role of shoot bases as switch for restricting Cd transport in D62B due to its great potential for GSH and PCs biosynthesis, and thereby Cd chelation. This could be considered a key mechanism for low Cd accumulation in brown rice of the Cd-safe rice line.
Collapse
Affiliation(s)
- Keji Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
28
|
Kawakami Y, Bhullar NK. Delineating the future of iron biofortification studies in rice: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2099-2113. [PMID: 32974681 DOI: 10.1093/jxb/eraa446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Iron (Fe) deficiency in humans is a widespread problem worldwide. Fe biofortification of rice (Oryza sativa) is a promising approach to address human Fe deficiency. Since its conceptualization, various biofortification strategies have been developed, some of which have resulted in significant increases in grain Fe concentration. However, there are still many aspects that have not yet been addressed in the studies to date. In this review, we first overview the important rice Fe biofortification strategies reported to date and the complications associated with them. Next, we highlight the key outstanding questions and hypotheses related to rice Fe biofortification. Finally, we make suggestions for the direction of future rice biofortification studies.
Collapse
Affiliation(s)
- Yuta Kawakami
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| | - Navreet K Bhullar
- Plant Biotechnology, Department of Biology, ETH Zurich, Universitätstrasse 2, Zurich, Switzerland
| |
Collapse
|
29
|
Yang X, Qin J, Li J, Lai Z, Li H. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124325. [PMID: 33153785 DOI: 10.1016/j.jhazmat.2020.124325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 05/22/2023]
Abstract
Intercropping of hyperaccumulators with crops is a promising measure to enhance phytoremediation without impeding agricultural production. A Cd-hyperaccumulator, Solanum nigrum L. (S. nigrum), was intercropped with upland rice in a pot and rhizo-box experiment with Cd-contaminated soil to evaluate the combined effects of intercropping and arbuscular mycorrhizal fungi on plant growth and Cd accumulation. The results showed that, compared with monoculture, the combined treatments markedly decreased Cd concentration in rice parts, with the lowest Cd concentration in brown rice (reducing by 64.5%). The spatial distribution of root surface area and DTPA-Cd in the rhizo-box indicated competitive Cd uptake by neighbouring S. nigrum. Moreover, the combined treatments reduced Nramp5 expression but increased HMA3 levels in rice roots, leading to lower bioaccumulation and transfer coefficients. Additionally, fewer secreted organic acids and a higher rhizosphere pH were observed in rice. Conversely, the combined treatments promoted biomass, root length, root surface area, and decreased the rhizosphere pH in S. nigrum, thus increasing the Cd accumulation. Although the intercropping system with AMF inoculation notably reduced rice yield, the land-use efficiency was higher. These results provided insights into the role of AMF in the upland rice/S. nigrum system and demonstrated an alternative system for Cd phytoremediation.
Collapse
Affiliation(s)
- Xu Yang
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Jiachun Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Zhenai Lai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University/Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| |
Collapse
|
30
|
Wang X, Deng S, Zhou Y, Long J, Ding D, Du H, Lei M, Chen C, Tie BQ. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7828-7839. [PMID: 33040291 DOI: 10.1007/s11356-020-11056-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 09/28/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) fertilizer can reduce cadmium (Cd) uptake and toxicity in rice, but the underlying mechanisms of Cd mitigation by different fertilizers are poorly understood. Here, pot experiments in rice were conducted to characterize the effects of four types of foliar-applied Fe fertilizer (chelated ferrous Fe, ferric Fe, ionic ferrous Fe, and ferric Fe) at three doses (20, 50, and 100 mg L-1) on photosynthetic capacity, antioxidant ability, yield, and Cd accumulation in Cd-contaminated soil. The results showed that foliar Fe application increased the net photosynthesis rate by 19.3%, peroxidase (POD) by 18.2%, superoxide dismutase (SOD) by 26.9%, and catalase (CAT) by 19.6%, and led to a 7.2% increase in grain yield compared with the control. Moreover, foliar Fe application significantly reduced Cd accumulation by 15.9% in brown rice and decreased the translocation of Cd from roots to other plant tissues. Overall, application of moderate doses (50 mg L-1) of chelated ferrous Fe was the most effective method for reducing Cd uptake (decreasing the Cd concentration in brown rice by 29.0%) and toxicity in rice (decreasing malondialdehyde by 23.2% and increasing POD, SOD, and CAT by 54.4%, 51.6%, and 45.7%, respectively), which may stem from the fact that chelated ferrous Fe was a more stable and bioavailable source of Fe for rice. The Cd concentration in rice had negative relationship with Fe concentration, and the translocation of Cd from root to the other tissues was reduced by the higher Fe nutrition status in leaf, suggesting that a high Fe supply may decrease Cd content by inhibiting the expression of the Fe transport system. These results indicate that foliar application of chelated ferrous Fe provides a promising alternative approach for enhancing growth and controlling Cd accumulation in rice plants. Furthermore, these results advance our understanding of the associations between plant Fe nutrition status and Cd accumulation.
Collapse
Affiliation(s)
- Xinqi Wang
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Sihan Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yimin Zhou
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jiumei Long
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- College of Environment and Life Science, Hengyang Normal University, Hengyang, 421001, People's Republic of China
| | - Dan Ding
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - HuiHui Du
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Congying Chen
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bai Qing Tie
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
31
|
Hussain B, Li J, Ma Y, Tahir N, Ullah A. Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment. PLoS One 2020; 15:e0243174. [PMID: 33301482 PMCID: PMC7728178 DOI: 10.1371/journal.pone.0243174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Iron (Fe) and manganese (Mn) are nutritional components of rice, plays an important role in its physiological processes and can minimize absorption of cadmium (Cd) in rice. Fe, Mn, and Cd transporters such as CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, OsHMA3, and OsNAAT1 regulate uptake of Cd in rice. However, the effect of exogenous application of Fe, and Mn on the accumulation of Cd and relative expression (RE) of these transporters in rice has not been investigated. Therefore, a hydroponic culture experiment was conducted to investigate the impact of Fe and Mn on Cd uptake and RE of these transporters in rice. The results showed that the Fe and Mn application significantly decreased Cd in the roots and shoots of rice. Whereas, Cd concentration in the rice significantly increased with increasing Cd concentration in the solution. The addition of manganese in the culture medium can reduce the cadmium content of rice roots by 11.9–82.3% and shoots by 11.6–85.0%, while the addition of iron in the culture medium can reduce the cadmium content of rice roots and shoots by 26–65% and 9–683% respectively. Meanwhile, application of sufficient doses of Fe and Cd in solution culture increased RE of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, and OsNAAT1 in roots, whereas expression level of OsHMA3 was decreased. Similarly, expression level of CAL1, OsNRAMP5, and OsNRAMP1 significantly increased in roots in high Cd and Mn deficient treatments. This may be concluded that the Cd increases expression of CAL1, OsNRAMP5, OsNRAMP1, OsIRT1, and OsNAAT1 but decreases OsHMA3 expression in rice roots, which resulted in increased Cd uptake in hydroponically grown rice.
Collapse
Affiliation(s)
- Babar Hussain
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jumei Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, Macao, China
| | - Nazia Tahir
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aman Ullah
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Hamid Y, Tang L, Hussain B, Usman M, Liu L, Cao X, Ulhassan Z, Bilal Khan M, Yang X. Cadmium mobility in three contaminated soils amended with different additives as evaluated by dynamic flow-through experiments. CHEMOSPHERE 2020; 261:127763. [PMID: 32721697 DOI: 10.1016/j.chemosphere.2020.127763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
As arable land has become an important sink for cadmium (Cd), soil is being recognized as a major source of metals to the food chain. It becomes, therefore, essential to investigate metal mobility in contaminated soils and to identify suitable remediation strategies. For this, immobilization of Cd was evaluated in contaminated stagnic anthrosol: S1, gleysol: S2 and fluvisol: S3 under flow through conditions. Ten treatments including control were tested alone or in composite form firstly at natural Cd contents (0.58-0.69 mg kg-1). Here, T2 (lime), T5 (biochar) and T10 (composite amendment) were found better in reducing the Cd concentration in the soils' leachates, so, their efficacy was further investigated in the same soils of higher Cd contents (1 and 2 mg kg-1 imposed by soil spiking). Amendments significantly reduced the leachate metal contents especially in 1 mg kg-1 spiked soils. Characterization of T2, T5 and T10 revealed their structural transformations in all the studied soil types, while active functional groups e.g. C-O, CO, O-H, Si-O-Si, ester and alcoholic groups were notably involved in Cd precipitation or adsorption on amendments surface. Variations in Cd speciation in these soils exhibited the exchange of Cd to more stable fractions with tested amendments. These continuous-flow experiments confirmed the strong efficiency of T2, T5 and T10 in reducing the Cd concentration in the leachate of three soils. This study has strong implications in understanding the role of different amendments in controlling the fate, leaching behavior and immobilization of Cd in diverse soil types.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Lei Liu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xuerui Cao
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Bilal Khan
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
33
|
Guha T, Barman S, Mukherjee A, Kundu R. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. CHEMOSPHERE 2020; 260:127533. [PMID: 32679374 DOI: 10.1016/j.chemosphere.2020.127533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 05/27/2023]
Abstract
In recent decades, nanoscale zero valent iron (nZVI) has been found to be a promising approach for heavy metal remediation. This study is the first report highlighting the role of nZVI to ameliorate Cadmium (Cd) stress in rice along with its effects in expressions of transporter genes, agronomic parameters and grain nutrient status. Initially, 3 concentration of Cd (10, 50, 250 μM) and nZVI (50, 100, 200 mg L-1) were selected. PCA analysis based on growth parameters, photosynthetic pigment contents and lipid peroxidation rate confirmed that 100 mg L-1 nZVI was most suitable for remediation of 10 μM Cd. It was evident that, nZVI can alleviate Cd-induced toxic effects by enhancing antioxidant defense mechanisms and other physiological processes in plants. nZVI treated rice seedlings also showed upregulation of phytochelatins which aided in Cd chelation within vacuoles. Study of root morphology with scanning electron microscopy and ROS imaging with confocal microscopy confirmed that nZVI could alleviate oxidative stress due to Cd uptake. In nZVI treated rice seedlings, gene expressions of iron (Fe) transporters (like, IRT1,IRT2,YSL2,YSL15) which are responsible for both Fe and Cd uptake were significantly down-regulated whereas, OsVIT1 and OsCAX4 genes were over expressed which lead to sequestration of Cd in vacuoles. Cd localization assay with leadmium proved that Cd translocation was reduced with nZVI treatment. To further validate our findings a pot experiment was carried out where it was found that nZVI could immobilize Cd in soil prevented accumulation of Cd in rice grains in addition to improving yield.
Collapse
Affiliation(s)
- Titir Guha
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Sandip Barman
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Rita Kundu
- Centre of Advanced Study, Department of Botany, Calcutta University, 35, Ballygange Circular Road, Kolkata, 19, India.
| |
Collapse
|
34
|
Wu Z, Naveed S, Zhang C, Ge Y. Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114327. [PMID: 32179232 DOI: 10.1016/j.envpol.2020.114327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) pollution poses serious risks to human health and the rice consumption is a major contribution to dietary intake of this toxic metal. In addition, Cd causes interference to iron (Fe) uptake by rice, leading to Fe deficiency, which is a common malnutrition worldwide. Sulfur (S) is essential for the rice yield and quality; however, the roles of S supply in the Cd and Fe absorption and distribution in rice have not been systematically investigated. Here, we conducted a hydroponic experiment to examine the effects of S application on the uptake and translocation of Cd and Fe in rice under Cd treatment (1.0 μM) combined with four S levels (0, 1.75, 3.5, 7.0 mM). Rice growth was suppressed by Cd but the toxicity was alleviated with S treatment, which also led to decline of Cd concentrations in rice roots, stems and leaves. In the case of low S (1.75 mM), the Fe plaque on the root surface did not decline in the presence of Cd, but it markedly decreased with the increase of S supply (3.5 and 7.0 mM). The Fe contents in rice roots and leaves consistently increased with the S provision regardless of Cd treatment. In addition, the Cd exposure and S supply significantly promoted syntheses of thiol molecules and nicotianamine (NA), but the NA levels in rice tissues decreased when the S addition reached 7.0 mM. Taken together, results of this study demonstrate that sufficient supply of S may augment Fe bioavailability and minimize Cd accumulation in rice under hydroponic conditions.
Collapse
Affiliation(s)
- Zeying Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sadiq Naveed
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Bashir A, Rizwan M, Zia Ur Rehman M, Zubair M, Riaz M, Qayyum MF, Alharby HF, Bamagoos AA, Ali S. Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. CHEMOSPHERE 2020; 246:125809. [PMID: 31927378 DOI: 10.1016/j.chemosphere.2019.125809] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 05/08/2023]
Abstract
Toxic trace element pollution in the agricultural soils may negatively affect the plant growth. This study mainly focused on investigating the impact of co-composted biochar and farmyard manure (FYM) on wheat growth and cadmium (Cd) accumulation by plants. The different ratios of FYM and biochar were composted for two and half months and mixed in Cd-contaminated soil at a rate of 2% w/w of each treatment. After this, wheat seeds were sown in the soil at normal soil moisture (70% of soil water holding capacity (WHC)) level. After 50-day of sowing, both normal and drought stress (35% WHC) levels were applied and plants were harvested at 122 days after seed sowing. The results depicted that Cd and drought alone depressed the wheat growth, elevated the oxidative stress and Cd contents in wheat tissues. However, application of co-composted treatments increased the growth, yield, chlorophyll contents and minimized the oxidative stress in the leaves along with the reduction of Cd concentrations in wheat tissues mainly in grains. The amendments enhanced the post-harvest soil pH and minimized the soil bioavailable Cd. The increasing ratios of biochar in the compost were most effective in improving the growth and alleviating Cd toxicity and its concentration in grains. Overall, co-composted biochar and FYM might be suitable for reducing Cd in grains, but the field studies in different soils and plants are required to further explore the effects of these amendments before final recommendations.
Collapse
Affiliation(s)
- Arooj Bashir
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology Bahauddin Zakariya University, Multan, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University (CMU), Taiwan.
| |
Collapse
|
36
|
Taylor CM, Doerner R, Northstone K, Kordas K. Maternal Diet During Pregnancy and Blood Cadmium Concentrations in an Observational Cohort of British Women. Nutrients 2020; 12:nu12040904. [PMID: 32224907 PMCID: PMC7230298 DOI: 10.3390/nu12040904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Few studies have investigated the extent to which diet predicts body Cd concentrations among women of reproductive age, and pregnant women in particular. The aim of this study was to examine diet as a predictor of blood Cd concentrations in pregnant women participating in the UK Avon Longitudinal Study of Parents and Children (ALSPAC). Whole blood samples were analysed for Cd (median 0.26 (IQR 0.14–0.54) µg/L). Dietary pattern scores were derived from principal components analysis of data from a food frequency questionnaire. Associations between dietary pattern scores and foods/food groups with blood Cd ≥ median value were identified using adjusted logistic regression (n = 2169 complete cases). A health conscious dietary pattern was associated with a reduced likelihood of B-Cd ≥0.26 µg/l (OR 0.56 (95% CI 0.39–0.81)). There were similarly reduced likelihoods for all leafy green and green vegetables (0.72 (0.56–0.92) when consumed ≥4 times/week vs ≤1 to ≥3 times/week) and with all meats (0.66 (0.46–0.95) when consumed ≥4 times/week vs ≤ once in 2 weeks). Sensitivity analysis excluding smokers showed similar results. The evidence from this study provides continued support for a healthy and varied diet in pregnancy, incorporating foods from all food groups in accordance with national recommendations, without the need for specific guidance.
Collapse
Affiliation(s)
- Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, 1–5 Whiteladies Road, Bristol BS8 2NU, UK
- Correspondence: ; Tel.: +44(0)117-428-3099
| | - Rita Doerner
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol BS8 2BN, UK; (R.D.); (K.N.)
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol BS8 2BN, UK; (R.D.); (K.N.)
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA;
| |
Collapse
|
37
|
Yang Y, Xiong J, Tao L, Cao Z, Tang W, Zhang J, Yu X, Fu G, Zhang X, Lu Y. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135186. [PMID: 31810697 DOI: 10.1016/j.scitotenv.2019.135186] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a heavy metal that is toxic to plants and animals. Nitrogen (N), the most significant macro-nutrient and a common input for crop production, is often excessively applied than plants' demands by farmers to obtain more economic benefits. Understanding the regulatory mechanisms of N that control Cd uptake, translocation, and accumulation may enable the development of solutions regarding Cd pollution in the trophic chain, a major and global threat to agricultural sustainability and human health. In this review, we clarified that an increased amount of N, regardless of its form, enhances Cd uptake, translocation, and accumulation in plants, and nitrate promotes Cd uptake more than any other N form. We also described that N fertilizer alters the Cd exchange capacity and the bio-available Cd content in soil; regulates nitric oxide induced divalent cation gene expression of Nramp1, HMA2, and IRT1; and changes cell wall isolation, chelation capacity, and oxidative resistance to regulate Cd accumulation in plants. By revealing the integrated interaction effects between Cd accumulation and N fertiliser use, we propose new challenges to investigate the functions and mechanisms of N in Cd-contaminated croplands and develop suitable N-fertilisation protocols to practically reduce food health risks in agricultural food production.
Collapse
Affiliation(s)
- Yongjie Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Zhenzhen Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Wei Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Jianping Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Xiaoyue Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Xiufu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Yongliang Lu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China.
| |
Collapse
|
38
|
Fan SK, Ye JY, Zhang LL, Chen HS, Zhang HH, Zhu YX, Liu XX, Jin CW. Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. PLANT, CELL & ENVIRONMENT 2020; 43:275-291. [PMID: 31703150 DOI: 10.1111/pce.13670] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 05/03/2023]
Abstract
Although the alteration of DNA methylation due to abiotic stresses, such as exposure to the toxic metal cadmium (Cd), has been often observed in plants, little is known about whether such epigenetic changes are linked to the ability of plants to adapt to stress. Herein, we report a close linkage between DNA methylation and the adaptational responses in Arabidopsis plants under Cd stress. Exposure to Cd significantly inhibited the expression of three DNA demethylase genes ROS1/DML2/DML3 (RDD) and elevated DNA methylation at the genome-wide level in Col-0 roots. Furthermore, the profile of DNA methylation in Cd-exposed Col-0 roots was similar to that in the roots of rdd triple mutants, which lack RDD, indicating that Cd-induced DNA methylation is associated with the inhibition of RDD. Interestingly, the elevation in DNA methylation in rdd conferred a higher tolerance against Cd stress and improved cellular Fe nutrition in the root tissues. In addition, lowering the Fe supply abolished improved Cd tolerance due to the lack of RDD in rdd. Together, these data suggest that the inhibition of RDD-mediated DNA demethylation in the roots by Cd would in turn enhance plant tolerance to Cd stress by improving Fe nutrition through a feedback mechanism.
Collapse
Affiliation(s)
- Shi Kai Fan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Lin Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hong Shan Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Hai Hua Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Treesubsuntorn C, Thiravetyan P. Calcium acetate-induced reduction of cadmium accumulation in Oryza sativa: Expression of auto-inhibited calcium-ATPase and cadmium transporters. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:862-872. [PMID: 30924996 DOI: 10.1111/plb.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Calcium (Ca) signalling has an essential role in regulating plant responses to various abiotic stresses. This study applied Ca in various forms (Ca acetate and CaCl2 ) and concentrations to reduce cadmium (Cd) concentration in rice and propose a possible mechanism through which Ca acts to control the Cd concentration in rice. The results showed that supplementation of Cd-contaminated soil with Ca acetate reduced the Cd concentration in rice after exposure for 7 days in both hydroponic and soil conditions. The possible involvement of the auto-inhibited Ca2+ -ATPase gene (ACA) might act to control the primary signal of the Cd stress response. The messages from ACA3 and ACA13 tended to up-regulate the low-affinity cation transporter (OsLCT1) and down-regulate Cd uptake and the Cd translocation transporter, including the genes, natural resistance-associated macrophage protein 5 (Nramp5) and Zn/Cd-transporting ATPase 2 (HMA2), which resulted in a reduction in the Cd concentration in rice. After cultivation for 120 days, the application of Ca acetate into Cd-contaminated soil inhibited Cd uptake of rice. Increasing the Ca acetate concentration in the soil lowered the Cd concentration in rice shoots and grains. Moreover, Ca acetate maintained rice productivity and quality whereas both aspects decreased under Cd stress.
Collapse
Affiliation(s)
- C Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - P Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
40
|
Chen C, Cao Q, Jiang Q, Li J, Yu R, Shi G. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency. BMC PLANT BIOLOGY 2019; 19:35. [PMID: 30665365 PMCID: PMC6341601 DOI: 10.1186/s12870-019-1654-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Iron (Fe) is an essential element for plant growth and development, whereas cadmium (Cd) is non-essential and highly toxic. Previous studies showed that Fe deficiency enhanced Cd uptake and accumulation in peanuts. However, the molecular mechanism underlying the increased Cd accumulation in Fe-deficient peanut plants is poorly understood. RESULTS We employed a comparative transcriptome analysis approach to identify differentially expressed genes (DEGs) in peanut roots exposed to Fe-sufficient without Cd, Fe-deficient without Cd, Fe-sufficient with Cd and Fe-deficient with Cd. Compared with the control, Fe deficiency induced 465 up-regulated and 211 down-regulated DEGs, whereas the up- and down-regulated DEGs in Cd exposed plants were 329 and 189, respectively. Under Fe-deficient conditions, Cd exposure resulted in 907 up-regulated DEGs and 953 down-regulated DEGs. In the presence of Cd, Fe deficiency induced 1042 up-regulated and 847 down-regulated genes, respectively. Based on our array data, we found that metal transporter genes such as CAX4, COPT1, IRT1, NRAMP5, OPT3, YSL3, VIT3 and VIT4 might be involved in iron homeostasis. Moreover, combined with quantitative real-time PCR, IRT1, NRAMP3, NRAMP5, OPT3, YSL3, ABCC3, ZIP1, and ZIP5 were verified to be responsible for Cd uptake and translocation in peanut plants under iron deficiency. Additionally, a larger amount of ABC transporter genes was induced or suppressed by iron deficiency under Cd exposure, indicating that this family may play important roles in Fe/Cd uptake and transport. CONCLUSIONS The up-regulated expression of NRAMP5 and IRT1 genes induced by iron deficiency may enhance Cd uptake in peanut roots. The decrease of Cd translocation from roots to shoots may be resulted from the down-regulation of ZIP1, ZIP5 and YSL3 under iron deficiency.
Collapse
Affiliation(s)
- Chu Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qiqi Cao
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Qun Jiang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Jin Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000 People’s Republic of China
| |
Collapse
|
41
|
Piotto FA, Carvalho MEA, Souza LA, Rabêlo FHS, Franco MR, Batagin-Piotto KD, Azevedo RA. Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27535-27544. [PMID: 30051291 DOI: 10.1007/s11356-018-2778-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
This work aimed to develop a reliable and fast approach to estimate the plant tolerance degree to heavy metal (HM) phytotoxicity. Two independent experiments were carried out using tomato accessions, with contrasting morphological features, that were grown in a hydroponic solution containing different CdCl2 concentrations for 7 days. Plant dry weight and chlorophyll content (SPAD units) were evaluated, and tolerance degree to Cd toxicity was estimated according to the tolerance index (TI), which is a new mathematical formula based on plant biomass proposed in this study. Although with different magnitudes, tomato exhibited reductions in their dry weight concurrently with the increasing CdCl2 concentration. By contrast, chlorophyll content presented no standard response, decreasing and even increasing according to CdCl2 concentrations, indicating that only under certain conditions (particularly, at CdCl2 50 μM), this parameter can be used to estimate plant tolerance to Cd toxicity. TI was efficiently able to segregate tomato cultivars with similar performance (based on the total dry weight of plants), and such segregation was optimized when the hydroponic solution contained from 25 to 50 μM CdCl2. Within this range, data pointed at 35 μM CdCl2 as the best concentration to be employed in studies related to the tomato tolerance/sensitivity to Cd toxicity. In conclusion, TI proved to be a reliable estimator of tolerance degree to Cd exposure in genetically distinct tomato accessions. Moreover, TI can be used for this same purpose in plants under other HM-induced stresses.
Collapse
Affiliation(s)
- Fernando Angelo Piotto
- Departamento de Produção Vegetal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil.
| | - Marcia Eugenia Amaral Carvalho
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Lucas Anjos Souza
- Instituto Federal Goiano, Polo de Inovação em Bioenergia e Grãos, Rodovia Sul Goiânia km 1, CP 66, Rio Verde, GO, 75901-970, Brazil
| | - Flávio Henrique Silva Rabêlo
- Departamento de Ciência do Solo, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Mônica Regina Franco
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Katherine Derlene Batagin-Piotto
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
42
|
Yang Y, Chen J, Huang Q, Tang S, Wang J, Hu P, Shao G. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. CHEMOSPHERE 2018; 193:547-556. [PMID: 29169130 DOI: 10.1016/j.chemosphere.2017.11.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health.
Collapse
Affiliation(s)
- Yongjie Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Jiangmin Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China; Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agriculture University, Changsha 410128, People's Republic of China
| | - Qina Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China
| | - Jianlong Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agriculture University, Changsha 410128, People's Republic of China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China.
| | - Guosheng Shao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou 310006, People's Republic of China.
| |
Collapse
|
43
|
Rizwan M, Ali S, Abbas T, Adrees M, Zia-Ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:676-683. [PMID: 29149723 DOI: 10.1016/j.jenvman.2017.10.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/24/2017] [Accepted: 10/15/2017] [Indexed: 05/22/2023]
Abstract
Soil cadmium (Cd) contamination and drought stress are among the main issues hindering global food security. Biochar has been used to reduce metal uptake by plants and water stress mitigation, but long-term residual effects of biochar under Cd stress at different moisture levels needs to be investigated. A following rice (Oryza sativa L.) was grown after wheat on Cd-contaminated soil amended with different levels of biochar (0, 3.0, and 5.0%, w/w). Thirty five days old plants were irrigated with three moisture levels including zero drought as a control (1-2 cm water layer on soil), mild drought (MD, 50% of soil water holding capacity, WHC), and severe drought (SD, 35% of soil WHC) for an accompanying 35 days. Plant height, biomass and photosynthesis were reduced whereas oxidative stress increased under MD and SD than control in un-amended soil while opposite trends were observed in plants grown in biochar amended soil. At the same biochar addition, Cd concentrations in seedlings were lower in continuous flooding than MD and SD treatments. The biochar supply reduced the bioavailable Cd in the soil whereas increased the soil EC and pH than the control treatment. In conclusion, continuous flooding plus residual biochar can be strategized in mitigating Cd-contamination in paddy soils and decreased Cd concentrations in rice which may reduce the potential risks to humans.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Tahir Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Pakistan
| |
Collapse
|
44
|
Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11319-11330. [PMID: 28303536 DOI: 10.1007/s11356-017-8775-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/08/2017] [Indexed: 05/15/2023]
Abstract
Strategies to reduce cadmium (Cd) in rice grain, below concentrations that represent serious human health concerns, require that the mechanisms of Cd distribution and accumulation within rice plants be established. Here, a comprehensive hydroponic experiment was performed to investigate the differences in the Cd uptake, chelation and compartmentalization between high (D83B) and low (D62B) Cd-accumulation cultivars contrasting in Cd accumulation in order to establish the roles of these processes in limiting Cd translocation from root to shoot. D83B showed 3-fold higher Cd accumulation in the shoots than the cultivar D62B. However, a short-term Cd uptake experiment showed more Cd uptake by D62B than by D83B. The distribution of Cd in roots and shoots differed significantly. D83B translocated 38% of total Cd taken up to the shoots, whereas D62B retained most of the Cd in the roots. D62B had higher amounts of non-protein thiols (NPTs) and glutathione (GSH) than D83B. The NPT and Cd distribution ratio (CDR) in the anionic form in the roots of D62B increased gradually as Cd concentration increased. In D83B, in contrast, levels of CDR in the cationic form increased significantly from 22.10 to 43.37%, while NPT only increased slightly. Furthermore, the percentage of Cd ions retained in thiol-rich peptides, especially in the HMW complexes, was significantly higher in D62B compared with D83B. However, D83B possessed a greater proportion of potentially mobile (cationic) Cd in the roots and showed superior Cd translocation from root to shoot. Taken as a whole, the results presented in this study revealed that Cd chelation, compartmentalization and adsorption contribute to the Cd retention in roots.
Collapse
Affiliation(s)
- Qiang Xu
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China.
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Huimin Road 211, Chengdu, Sichuan, 611130, China
| | - Feng Wang
- Department of Agriculture Science, Helsinki University, P.O. Box 27, Latokartanonkaari 5, FI-00014, Helsinki, Finland
| |
Collapse
|