1
|
Zhang H, Cao X, Wang Y, Cheng B, Leng L, Luan P, Cao Z, Li Y, Bai X. Functional analysis of lncRNAs in lipid metabolism of fat and lean line broiler embryonic livers. Poult Sci 2025; 104:105261. [PMID: 40347785 DOI: 10.1016/j.psj.2025.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
As the primary site of lipogenesis in birds, the liver orchestrates avian lipid metabolism and is pivotal for fat accumulation in chickens. Lipid metabolism during the broiler embryo stage may significantly affect post-hatch growth performance, yet research on this subject remains limited. While long non-coding RNAs (lncRNAs) have been found to regulate liver lipid metabolism in post-hatch chickens, their functions during the embryonic stage remains unclear. This study revealed that, compared to lean line broiler embryos, fat line broiler embryos showed upregulated gene expression related to de novo fatty acid synthesis, glycerol-3-phosphate synthesis, triglyceride synthesis, and the degradation of both fatty acids and cholesterol. Through transcriptome analysis and functional validation, lncRNA1926 and lncRNA3223 were identified as key regulators of lipid metabolism in broiler embryo livers. Knocking down either of lncRNA1926 or lncRNA3223 significantly reduced lipid droplet accumulation, triglyceride levels, and total cholesterol levels in primary hepatocytes of broiler embryos. Our findings demonstrate distinct lipid metabolic gene expression profiles between fat and lean line broiler embryo livers, and highlight lncRNA1926 and lncRNA3223 are key regulators of lipid metabolism during the embryonic stage. This study enhances the scientific understanding of lipid metabolism regulation in chicken livers and provides a theoretical foundation for genetically improving abdominal fat traits in broilers.
Collapse
Affiliation(s)
- Huili Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; Yangquan Animal Husbandry Technology Service Center, Yangquan, 045000, PR China.
| | - Xuanming Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Youdong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Bohan Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Li Leng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Zhiping Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Yumao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| | - Xue Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China.
| |
Collapse
|
2
|
Deng L, Gòdia M, Derks MFL, Harlizius B, Farhangi S, Tang Z, Groenen MAM, Madsen O. Comprehensive expression genome-wide association study of long non-coding RNAs in four porcine tissues. Genomics 2025; 117:111026. [PMID: 40049421 DOI: 10.1016/j.ygeno.2025.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of non-coding RNA molecules, are known to play critical regulatory roles in various biological processes. However, the functions of the majority of lncRNAs remain largely unknown, and little is understood about the regulation of lncRNA expression. In this study, high-throughput DNA genotyping and RNA sequencing were applied to investigate genomic regions associated with lncRNA expression, commonly referred to as lncRNA expression quantitative trait loci (eQTLs). We analyzed the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred sows to identify lncRNA transcripts, explore genomic regions that might influence lncRNA expression, and identify potential regulators interacting with these regions. RESULT We identified 6380 lncRNA transcripts and 3733 lncRNA genes. Correlation tests between the expression of lncRNAs and protein-coding genes were performed. Subsequently, functional enrichment analyses were carried out on protein-coding genes highly correlated with lncRNAs. Our correlation results of these protein-coding genes uncovered terms that are related to tissue specific functions. Additionally, heatmaps of lncRNAs and protein-coding genes at different correlation levels revealed several distinct clusters. An expression genome-wide association study (eGWAS) was conducted using 535,896 genotypes and 1829, 1944, 2089, and 2074 expressed lncRNA genes for liver, spleen, lung, and muscle, respectively. This analysis identified 520,562 significant associations and 6654, 4525, 4842, and 7125 eQTLs for the respective tissues. Only a small portion of these eQTLs were classified as cis-eQTLs. Fifteen regions with the highest eQTL density were selected as eGWAS hotspots and potential mechanisms of lncRNA regulation in these hotspots were explored. However, we did not identify any interactions between the transcription factors or miRNAs in the hotspots and the lncRNAs, nor did we observe a significant enrichment of regulatory elements in these hotspots. While we could not pinpoint the key factors regulating lncRNA expression, our results suggest that the regulation of lncRNAs involves more complex mechanisms. CONCLUSION Our findings provide insights into several features and potential functions of lncRNAs in various tissues. However, the mechanisms by which lncRNA eQTLs regulate lncRNA expression remain unclear. Further research is needed to explore the regulation of lncRNA expression and the mechanisms underlying lncRNA interactions with small molecules and regulatory proteins.
Collapse
Affiliation(s)
- Liyan Deng
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Topigs Norsvin Research Center, 's-Hertogenbosch, the Netherlands
| | | | - Samin Farhangi
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Comparative Transcriptome Analysis of Hens' Livers in Conventional Cage vs. Cage-Free Egg Production Systems. Vet Med Int 2025; 2025:3041254. [PMID: 40160973 PMCID: PMC11952924 DOI: 10.1155/vmi/3041254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/22/2025] [Indexed: 04/02/2025] Open
Abstract
Different conditions of production systems including stocking density, thermal conditions, and behavior restriction can have a significant detrimental effect on the health and performance of laying hens. The conventional cage system is one of the systems that have been reported to cause stress problems in birds, due to social and behavioral stress. Emerging technologies have facilitated a deeper understanding of animal responses to various scenarios and can be an additional tool to conventional ones to assess animal welfare, where transcriptomic analysis has the potential to show the genetic changes that occur in response to stress. According to this, the aim of this work was to characterize the liver transcriptome of hens housed under two egg production systems (conventional cage and cage-free). Liver tissue from Hy-Line Brown hens housed in conventional cage (n = 3) and cage-free (n = 3) production systems at week 80 of age was processed using the Illumina platform to identify differentially expressed genes with a padj < 0.05. Regarding the differentially expressed genes, 138 genes were found, of which 81 were upregulated and 57 downregulated. Some of the genes of interest were TENM2, GRIN2C, and ACACB, which would indicate greater fat synthesis in the liver of caged hens. The enriched KEGG pathways were DNA replication and the cell cycle. In conclusion, it was identified that the cage production system may influence DNA replication and the cell cycle since the genes related to these terms were found suppressed, which would indicate cellular instability.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
4
|
Jia QH, Cao YZ, Xing YX, Guan HB, Ma CL, Li X, Tian WH, Li ZJ, Tian YD, Li GX, Jiang RR, Kang XT, Liu XJ, Li H. LncRNA lncLLM Facilitates Lipid Deposition by Promoting the Ubiquitination of MYH9 in Chicken LMH Cells. Int J Mol Sci 2024; 25:10316. [PMID: 39408647 PMCID: PMC11477197 DOI: 10.3390/ijms251910316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The liver plays an important role in regulating lipid metabolism in animals. This study investigated the function and mechanism of lncLLM in liver lipid metabolism in hens at the peak of egg production. The effect of lncLLM on intracellular lipid content in LMH cells was evaluated by qPCR, Oil Red O staining, and detection of triglyceride (TG) and cholesterol (TC) content. The interaction between lncLLM and MYH9 was confirmed by RNA purification chromatin fractionation (CHIRP) and RNA immunoprecipitation (RIP) analysis. The results showed that lncLLM increased the intracellular content of TG and TC and promoted the expression of genes related to lipid synthesis. It was further found that lncLLM had a negative regulatory effect on the expression level of MYH9 protein in LMH cells. The intracellular TG and TC content of MYH9 knockdown cells increased, and the expression of genes related to lipid decomposition was significantly reduced. In addition, this study confirmed that the role of lncLLM is at least partly through mediating the ubiquitination of MYH9 protein to accelerate the degradation of MYH9 protein. This discovery provides a new molecular target for improving egg-laying performance in hens and treating fatty liver disease in humans.
Collapse
Affiliation(s)
- Qi-Hui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Yu-Zhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Yu-Xin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Hong-Bo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Cheng-Lin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Wei-Hua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Ya-Dong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Rui-Rui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiang-Tao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiao-Jun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Q.-H.J.); (Y.-Z.C.); (Y.-X.X.); (H.-B.G.); (C.-L.M.); (X.L.); (W.-H.T.); (Z.-J.L.); (Y.-D.T.); (G.-X.L.); (R.-R.J.); (X.-T.K.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Degalez F, Bardou P, Lagarrigue S. GEGA (Gallus Enriched Gene Annotation): an online tool providing genomics and functional information across 47 tissues for a chicken gene-enriched atlas gathering Ensembl and Refseq genome annotations. NAR Genom Bioinform 2024; 6:lqae101. [PMID: 39157583 PMCID: PMC11327871 DOI: 10.1093/nargab/lqae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/21/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024] Open
Abstract
GEGA is a user-friendly tool designed to navigate through various genomic and functional information related to an enriched gene atlas in chicken that integrates the gene catalogues from the two reference databases, NCBI-RefSeq and EMBL-Ensembl/GENCODE, along with four additional rich resources such as FAANG and NONCODE. Using the latest GRCg7b genome assembly, GEGA encompasses a total of 78 323 genes, including 24 102 protein-coding genes (PCGs) and 44 428 long non-coding RNAs (lncRNAs), significantly increasing the number of genes provided by each resource independently. However, GEGA is more than just a gene database. It offers a range of features that allow us to go deeper into the functional aspects of these genes. Users can explore gene expression and co-expression profiles across 47 tissues from 36 datasets and 1400 samples, discover tissue-specific variations and their expression as a function of sex or age and extract orthologous genes or their genomic configuration relative to the closest gene. For the communities interested in a specific gene, a list of genes or a quantitative trait locus region in chicken, GEGA's user-friendly interface facilitates efficient gene analysis, easy downloading of results and a multitude of graphical representations, from genomic information to detailed visualization of expression levels.
Collapse
Affiliation(s)
- Fabien Degalez
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - Philippe Bardou
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet Tolosan, France
| | | |
Collapse
|
6
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
7
|
Jasim SA, Aziz DZ, Mustafa YF, Margiana R, Al-Alwany AA, Hjazi A, Alawadi A, Yumashev A, Alsalamy A, Fenjan MN. Role of genetically engineered mesenchymal stem cell exosomes and LncRNAs in respiratory diseases treatment. Pathol Res Pract 2024; 254:155135. [PMID: 38295461 DOI: 10.1016/j.prp.2024.155135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The term acute respiratory disease encompasses a wide range of acute lung diseases, which in recent years have been ranked among the top three deadly diseases in the world. Since conventional treatment methods, including the use of anti-inflammatory drugs, have had no significant effect on the treatment process of these diseases, the attention of the medical community has been drawn to alternative methods. Mesenchymal stem cells (MSC) are multipotential stem/progenitor cells that have extensive immunomodulatory and anti-inflammatory properties and also play a critical role in the microenvironment of injured tissue. MSC secretomes (containing large extracellular vesicles, microvesicles, and exosomes) are a newly introduced option for cell-free therapies that can circumvent the hurdles of cell-based therapies while maintaining the therapeutic role of MSC themselves. The therapeutic capabilities of MSCs have been showed in many acute respiratory diseases, including chronic respiratory disease (CRD), novel coronavirus 2019 (COVID -19), and pneumonia. MSCs offer novel therapeutic approaches for chronic and acute lung diseases due to their anti-inflammatory and immunomodulatory properties. In this review, we summarize the current evidence on the efficacy and safety of MSC-derived products in preclinical models of lung diseases and highlight the biologically active compounds present in the MSC secretome and their mechanisms involved in anti-inflammatory activity and tissue regeneration.
Collapse
Affiliation(s)
| | - Dhifaf Zeki Aziz
- College of Science, Department of pathological Analyses, University of Kufa, Al-Najaf, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| |
Collapse
|
8
|
Asselstine V, Medrano JF, Muniz MMM, Mallard BA, Karrow NA, Cánovas A. Novel lncRNA regulatory elements in milk somatic cells of Holstein dairy cows associated with mastitis. Commun Biol 2024; 7:98. [PMID: 38225372 PMCID: PMC10789785 DOI: 10.1038/s42003-024-05764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2024] [Indexed: 01/17/2024] Open
Abstract
Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Juan F Medrano
- Department of Animal Science, University of California-Davis, 95616, Davis, CA, USA
| | - Malane M M Muniz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Bonnie A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
9
|
Zhao W, Cai Z, Jiang Q, Zhang J, Yu B, Feng X, Fu X, Zhang T, Hu J, Gu Y. Transcriptome analysis reveals the role of long noncoding RNAs in specific deposition of inosine monphosphate in Jingyuan chickens. J Anim Sci 2024; 102:skae136. [PMID: 38738625 PMCID: PMC11249926 DOI: 10.1093/jas/skae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
Inosine monphosphate (IMP) is one of the important indicators for evaluating meat flavor, and long noncoding RNAs (lncRNAs) play an important role in its transcription and post-transcriptional regulation. Currently, there is little information about how lncRNA regulates the specific deposition of IMP in chicken muscle. In this study, we used transcriptome sequencing to analyze the lncRNAs of the breast and leg muscles of the Jingyuan chicken and identified a total of 357 differentially expressed lncRNAs (DELs), of which 158 were up-regulated and 199 were down-regulated. There were 2,203 and 7,377 cis- and trans-regulated target genes of lncRNAs, respectively, and we identified the lncRNA target genes that are involved in NEGF signaling pathway, glycolysis/glucoseogenesis, and biosynthesis of amino acids pathways. Meanwhile, 621 pairs of lncRNA-miRNA-mRNA interaction networks were constructed with target genes involved in purine metabolism, fatty acid metabolism, and biosynthesis of amino acids. Next, three interacting meso-networks gga-miR-1603-LNC_000324-PGM1, gga-miR-1768-LNC_000324-PGM1, and gga-miR-21-LNC_011339-AMPD1 were identified as closely associated with IMP-specific deposition. Both differentially expressed genes (DEGs) PGM1 and AMPD1 were significantly enriched in IMP synthesis and metabolism-related pathways, and participated in the anabolic process of IMP in the form of organic matter synthesis and energy metabolism. This study obtained lncRNAs and target genes affecting IMP-specific deposition in Jingyuan chickens based on transcriptome analysis, which deepened our insight into the role of lncRNAs in chicken meat quality.
Collapse
Affiliation(s)
- Wei Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Zhengyun Cai
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Qiufei Jiang
- Animal Husbandry Extension Station, Yinchuan750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Baojun Yu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Xiaofang Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Xi Fu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Jiahuan Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
10
|
Guo Y, Tian W, Wang D, Yang L, Wang Z, Wu X, Zhi Y, Zhang K, Wang Y, Li Z, Jiang R, Sun G, Li G, Tian Y, Wang H, Kang X, Liu X, Li H. LncHLEF promotes hepatic lipid synthesis through miR-2188-3p/GATA6 axis and encoding peptides and enhances intramuscular fat deposition via exosome. Int J Biol Macromol 2023; 253:127061. [PMID: 37751822 DOI: 10.1016/j.ijbiomac.2023.127061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emergingly been implicated in mammalian lipid metabolism. However, their biological functions and regulatory mechanisms underlying adipogenesis remain largely elusive in chicken. Here, we systematically characterized the genome-wide full-length lncRNAs in the livers of pre- and peak-laying hens, and identified a novel intergenic lncRNA, lncHLEF, an RNA macromolecule with a calculated molecular weight of 433 kDa. lncHLEF was primarily distributed in cytoplasm of chicken hepatocyte and significantly up-regulated in livers of peak-laying hens. Functionally, lncHLEF could promote hepatocyte lipid droplet formation, triglycerides and total cholesterol contents. Mechanistically, lncHLEF could not only serve as a competitive endogenous RNA to modulate miR-2188-3p/GATA6 axis, but also encode three small functional polypeptides that directly interact with ACLY protein to enable its stabilization. Importantly, adeno-associated virus-mediated liver-specific lncHLEF overexpression resulted in increased hepatic lipid synthesis and intramuscular fat (IMF) deposition, but did not alter abdominal fat (AbF) deposition. Furthermore, hepatocyte lncHLEF could be delivered into intramuscular and abdominal preadipocytes via hepatocyte-secreted exosome to enhance intramuscular preadipocytes differentiation without altering abdominal preadipocytes differentiation. In conclusion, this study revealed that the lncHLEF could promote hepatic lipid synthesis through two independent regulatory mechanisms, and could enhance IMF deposition via hepatocyte-adipocyte communications mediated by exosome.
Collapse
Affiliation(s)
- Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China
| | - Hongjun Wang
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450002, China.
| |
Collapse
|
11
|
Vanamamalai VK, E P, T R K, Sharma S. Integrated analysis of genes and long non-coding RNAs in trachea transcriptome to decipher the host response during Newcastle disease challenge in different breeds of chicken. Int J Biol Macromol 2023; 253:127183. [PMID: 37793531 DOI: 10.1016/j.ijbiomac.2023.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Newcastle disease is a highly infectious economically devastating disease caused by Newcastle disease Virus in Chicken (Gallus gallus). Leghorn and Fayoumi are two breeds which show differential resistance patterns towards NDV. This study aims to identify the differentially expressed genes and lncRNAs during NDV challenge which could play a potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs were found to be differentially expressing. Of them, 52 genes were annotated with both Immune related pathways and Gene ontologies. We found that most of these genes were upregulated in Leghorn between normal and challenged chicken but several were down regulated between different timepoints after NDV challenge, while Fayoumi showed no such downregulation. We also observed that higher number of positively correlating lncRNAs was found to be downregulated along with these genes. This shows that although Leghorn is showing higher number of differentially expressed genes in challenged than in non-challenged, most of them were downregulated during the disease between different timepoints. With this we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs could play a significant role behind the Leghorn being comparatively susceptible breed than Fayoumi. The computational pipeline is available at https://github.com/Venky2804/FHSpipe.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India
| | - Priyanka E
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Kannaki T R
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India.
| |
Collapse
|
12
|
Kurylo C, Guyomar C, Foissac S, Djebali S. TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data. NAR Genom Bioinform 2023; 5:lqad089. [PMID: 37850035 PMCID: PMC10578202 DOI: 10.1093/nargab/lqad089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Genome annotation plays a crucial role in providing comprehensive catalog of genes and transcripts for a particular species. As research projects generate new transcriptome data worldwide, integrating this information into existing annotations becomes essential. However, most bioinformatics pipelines are limited in their ability to effectively and consistently update annotations using new RNA-seq data. Here we introduce TAGADA, an RNA-seq pipeline for Transcripts And Genes Assembly, Deconvolution, and Analysis. Given a genomic sequence, a reference annotation and RNA-seq reads, TAGADA enhances existing gene models by generating an improved annotation. It also computes expression values for both the reference and novel annotation, identifies long non-coding transcripts (lncRNAs), and provides a comprehensive quality control report. Developed using Nextflow DSL2, TAGADA offers user-friendly functionalities and ensures reproducibility across different computing platforms through its containerized environment. In this study, we demonstrate the efficacy of TAGADA using RNA-seq data from the GENE-SWiTCH project alongside chicken and pig genome annotations as references. Results indicate that TAGADA can substantially increase the number of annotated transcripts by approximately [Formula: see text] in these species. Furthermore, we illustrate how TAGADA can integrate Illumina NovaSeq short reads with PacBio Iso-Seq long reads, showcasing its versatility. TAGADA is available at github.com/FAANG/analysis-TAGADA.
Collapse
Affiliation(s)
- Cyril Kurylo
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Toulouse, France
| | - Cervin Guyomar
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Toulouse, France
| | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Toulouse, France
| | - Sarah Djebali
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
13
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
14
|
Zhang BB, Li MX, Wang HN, Liu C, Sun YY, Ma TH. An integrative analysis of lncRNAs and mRNAs highlights the potential roles of lncRNAs in the process of follicle selection in Taihang chickens. Theriogenology 2023; 195:122-130. [DOI: 10.1016/j.theriogenology.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
15
|
Jian H, Sun H, Liu R, Zhang W, Shang L, Wang J, Khassanov V, Lyu D. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC PLANT BIOLOGY 2022; 22:381. [PMID: 35909124 PMCID: PMC9341072 DOI: 10.1186/s12870-022-03758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum) is the fourth most important food crop in the world and plays an important role in food security. Drought stress has a significantly negative impact on potato growth and production. There are several publications involved drought stress in potato, this research contributes to enrich the knowledge. RESULTS In this study, next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technology were used to study the transcription profiles in potato in response to 20%PEG6000 simulates drought stress. The leaves of the variety "Désirée" from in vitro plantlets after drought stress at six time points from 0 to 48 hours were used to perform NGS and SMRT sequencing. According to the sequencing data, a total of 12,798 differentially expressed genes (DEGs) were identified in six time points. The real-time (RT)-PCR results are significantly correlated with the sequencing data, confirming the accuracy of the sequencing data. Gene ontology and KEGG analysis show that these DEGs participate in response to drought stress through galactose metabolism, fatty acid metabolism, plant-pathogen interaction, glutathione metabolism and other pathways. Through the analysis of alternative splicing of 66,888 transcripts, the functional pathways of these transcripts were enriched, and 51,098 transcripts were newly discovered from alternative splicing events and 47,994 transcripts were functionally annotated. Moreover, 3445 lncRNAs were predicted and enrichment analysis of corresponding target genes was also performed. Additionally, Alternative polyadenylation was analyzed by TADIS, and 26,153 poly (A) sites from 13,010 genes were detected in the Iso-Seq data. CONCLUSION Our research greatly enhanced potato drought-induced gene annotations and provides transcriptome-wide insights into the molecular basis of potato drought resistance.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Haonan Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Vadim Khassanov
- S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Republic of Kazakhstan
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| |
Collapse
|
16
|
Li T, Jin M, Fei X, Yuan Z, Wang Y, Quan K, Wang T, Yang J, He M, Wei C. Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds. Animals (Basel) 2022; 12:ani12131650. [PMID: 35804549 PMCID: PMC9265030 DOI: 10.3390/ani12131650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hu sheep and Tibetan sheep are two commonly raised local sheep breeds in China, and they have different morphological characteristics, such as tail type and adaptability to extreme environments. A fat tail in sheep is the main adipose depot in sheep, whereas the liver is an important organ for fat metabolism, with the uptake, esterification, oxidation, and secretion of fatty acids (FAs). Meanwhile, adaptations to high-altitude and arid environments also affect liver metabolism. Therefore, in this study, RNA-sequencing (RNA-seq) technology was used to characterize the difference in liver fat metabolism between Hu sheep and Tibetan sheep. We identified 1179 differentially expressed genes (DEGs) (Q-value < 0.05) between the two sheep breeds, including 25 fat-metabolism-related genes. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 16 pathways were significantly enriched (Q-value < 0.05), such as the proteasome, glutamatergic synapse, and oxidative phosphorylation pathways. In particular, one of these pathways was enriched to be associated with fat metabolism, namely the thermogenesis pathway, to which fat-metabolism-related genes such as ACSL1, ACSL4, ACSL5, CPT1A, CPT1C, SLC25A20, and FGF21 were enriched. Then, the expression levels of ACSL1, CPT1A, and FGF21 were verified in mRNA and protein levels via qRT-PCR and Western blot analysis between the two sheep breeds. The results showed that the mRNA and protein expression levels of these three genes were higher in the livers of Tibetan sheep than those of Hu sheep. The above genes are mainly related to FAs oxidation, involved in regulating the oxidation of liver FAs. So, this study suggested that Tibetan sheep liver has a greater FAs oxidation level than Hu sheep liver. In addition, the significant enrichment of fat-metabolism-related genes in the thermogenesis pathway appears to be related to plateau-adaptive thermogenesis in Tibetan sheep, which may indicate that liver- and fat-metabolism-related genes have an impact on adaptive thermogenesis.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China;
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
- Correspondence:
| |
Collapse
|
17
|
Karimi P, Bakhtiarizadeh MR, Salehi A, Izadnia HR. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken. Sci Rep 2022; 12:2558. [PMID: 35169237 PMCID: PMC8847365 DOI: 10.1038/s41598-022-06528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Feed efficiency is an important economic trait and reduces the production costs per unit of animal product. Up to now, few studies have conducted transcriptome profiling of liver tissue in feed efficiency-divergent chickens (Ross vs native breeds). Also, molecular mechanisms contributing to differences in feed efficiency are not fully understood, especially in terms of long non-coding RNAs (lncRNAs). Hence, transcriptome profiles of liver tissue in commercial and native chicken breeds were analyzed. RNA-Seq data along with bioinformatics approaches were applied and a series of lncRNAs and target genes were identified. Furthermore, protein-protein interaction network construction, co-expression analysis, co-localization analysis of QTLs and functional enrichment analysis were used to functionally annotate the identified lncRNAs. In total, 2,290 lncRNAs were found (including 1,110 annotated, 593 known and 587 novel), of which 53 (including 39 known and 14 novel), were identified as differentially expressed genes between two breeds. The expression profile of lncRNAs was validated by RT-qPCR. The identified novel lncRNAs showed a number of characteristics similar to those of known lncRNAs. Target prediction analysis showed that these lncRNAs have the potential to act in cis or trans mode. Functional enrichment analysis of the predicted target genes revealed that they might affect the differences in feed efficiency of chicken by modulating genes associated with lipid metabolism, carbohydrate metabolism, growth, energy homeostasis and glucose metabolism. Some gene members of significant modules in the constructed co-expression networks were reported as important genes related to feed efficiency. Co-localization analysis of QTLs related to feed efficiency and the identified lncRNAs suggested several candidates to be involved in residual feed intake. The findings of this study provided valuable resources to further clarify the genetic basis of regulation of feed efficiency in chicken from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Parastoo Karimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| |
Collapse
|
18
|
Emerging Roles of Non-Coding RNAs in the Feed Efficiency of Livestock Species. Genes (Basel) 2022; 13:genes13020297. [PMID: 35205343 PMCID: PMC8872339 DOI: 10.3390/genes13020297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals. Non-coding RNAs (ncRNAs), especially micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs), play important roles in the regulation of bio-logical processes and disease development. The functions of ncRNAs in the biology of FE have emerged as they participate in the regulation of many genes and pathways related to the major FE indicators, such as residual feed intake and feed conversion ratio. This review provides the state of the art studies related to the ncRNAs associated with FE in livestock species. The contribution of ncRNAs to FE in the liver, muscle, and adipose tissues were summarized. The research gap of the function of ncRNAs in key processes for improved FE, such as the nutrition, heat stress, and gut–brain axis, was examined. Finally, the potential uses of ncRNAs for the improvement of FE were discussed.
Collapse
|
19
|
Chen Y, Zhao S, Ding R, Li H, Yang CX, Du ZQ. Identification of a Long Noncoding RNA (lncPRDM16) Inhibiting Preadipocyte Proliferation in the Chicken. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1335-1345. [PMID: 35048701 DOI: 10.1021/acs.jafc.1c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long noncoding RNAs are vital to a variety of biological and physiological processes through multiple modes of functional interaction with DNA, RNA, and proteins. In chickens, numerous lncRNAs were discovered to be important to growth or disease progression. However, the detailed molecular function and role of lncRNAs remain less explored. Here, we performed lncRNA sequencing on abdominal adipose tissues from broiler lines divergently selected for abdominal fat content, and significantly differentially expressed lncRNAs were found, including lncPRDM16, a divergently transcribed and conserved lncRNA near PRDM16. Full lengths of two transcripts of lncPRDM16 were obtained, and their genomic structures were compared. Expression dynamics of lncPRDM16 in different tissues and during preadipocyte proliferation and differentiation were profiled. Moreover, a 250-nucleotide sequence at 5'-end was found to be inevitable to the function of lncPRDM16 in inhibiting preadipocyte proliferation and regulating the promoter activities of both lncPRDM16 and PRDM16. Taken together, we identified the 5'-end functional elements of lncPRDM16 and their potential importance in inhibiting preadipocyte proliferation. Our findings provide the foundation for further exploration of lncPRDM16 function and potential improvement of chicken muscle quality.
Collapse
Affiliation(s)
- Yaofeng Chen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agricultural and Rural Affairs, Harbin 150030, Heilongjiang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Sujuan Zhao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agricultural and Rural Affairs, Harbin 150030, Heilongjiang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Ran Ding
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agricultural and Rural Affairs, Harbin 150030, Heilongjiang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agricultural and Rural Affairs, Harbin 150030, Heilongjiang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- College of Animal Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agricultural and Rural Affairs, Harbin 150030, Heilongjiang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
- College of Animal Science, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
20
|
Li M, Liu Y, Xie S, Ma L, Zhao Z, Gong H, Sun Y, Huang T. Transcriptome analysis reveals that long noncoding RNAs contribute to developmental differences between medium-sized ovarian follicles of Meishan and Duroc sows. Sci Rep 2021; 11:22510. [PMID: 34795345 PMCID: PMC8602415 DOI: 10.1038/s41598-021-01817-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ovulation rate is an extremely important factor affecting litter size in sows. It differs greatly among pig breeds with different genetic backgrounds. Long non-coding RNAs (lncRNAs) can regulate follicle development, granulosa cell growth, and hormone secretion, which in turn can affect sow litter size. In this study, we identified 3554 lncRNAs and 25,491 mRNAs in M2 follicles of Meishan and Duroc sows. The lncRNA sequence and open reading frame lengths were shorter than mRNAs, and lncRNAs had fewer exons, were less abundant, and more conserved than protein-coding RNAs. Furthermore, 201 lncRNAs were differentially expressed (DE) between breeds, and quantitative trait loci analysis of DE lncRNAs were performed. A total of 127 DE lncRNAs were identified in 119 reproduction trait-related loci. In addition, the potential target genes of lncRNAs in cis or trans configurations were predicted. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that some potential target genes were involved in follicular development and hormone secretion-related biological processes or pathways, such as progesterone biosynthetic process, estrogen metabolic process, ovarian steroidogenesis, and PI3K-Akt signaling pathway. Furthermore, we also screened 19 differentially expressed lncRNAs in the PI3K-Akt signaling pathway as candidates. This study provides new insights into the roles of lncRNAs in follicular growth and development in pigs.
Collapse
Affiliation(s)
- Mengxun Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Zhichao Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Guangxi Yangxiang Animal Husbandry Co. Ltd., Guangxi, Guigang, 537100, China
| | - Hongbin Gong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
21
|
Lagarrigue S, Lorthiois M, Degalez F, Gilot D, Derrien T. LncRNAs in domesticated animals: from dog to livestock species. Mamm Genome 2021; 33:248-270. [PMID: 34773482 PMCID: PMC9114084 DOI: 10.1007/s00335-021-09928-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.
Collapse
Affiliation(s)
| | - Matthias Lorthiois
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, 35590, Saint-Gilles, France
| | - David Gilot
- CLCC Eugène Marquis, INSERM, Université Rennes, UMR_S 1242, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 2 av Prof Leon Bernard, F-35000, Rennes, France.
| |
Collapse
|
22
|
He X, Wu R, Yun Y, Qin X, Chen L, Han Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep. Food Sci Nutr 2021; 9:5722-5734. [PMID: 34646540 PMCID: PMC8498062 DOI: 10.1002/fsn3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The tail fat of sheep is the most typical deposited fat, and it can be widely used in human daily life, such as diet, cosmetics, and industrial raw materials. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6, 18, and 30 months. A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep. Based on functional analysis, we found that fat-related DEGs were mainly expressed at 6 months of age and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their transregulators. Further, we obtained several fat-related differentially expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Finally, we concluded that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Rihan Wu
- College of Biochemistry and EngineeringHohhot Vocational CollegeHohhotChina
| | - Yueying Yun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
- School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
| | - Xia Qin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lu Chen
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Yunfei Han
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Jindi Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lina Sha
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Gerelt Borjigin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
23
|
Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y. Transcriptomes of an Array of Chicken Ovary, Intestinal, and Immune Cells and Tissues. Front Genet 2021; 12:664424. [PMID: 34276773 PMCID: PMC8278112 DOI: 10.3389/fgene.2021.664424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
While the chicken (Gallus gallus) is the most consumed agricultural animal worldwide, the chicken transcriptome remains understudied. We have characterized the transcriptome of 10 cell and tissue types from the chicken using RNA-seq, spanning intestinal tissues (ileum, jejunum, proximal cecum), immune cells (B cells, bursa, macrophages, monocytes, spleen T cells, thymus), and reproductive tissue (ovary). We detected 17,872 genes and 24,812 transcripts across all cell and tissue types, representing 73% and 63% of the current gene annotation, respectively. Further quantification of RNA transcript biotypes revealed protein-coding and lncRNAs specific to an individual cell/tissue type. Each cell/tissue type also has an average of around 1.2 isoforms per gene, however, they all have at least one gene with at least 11 isoforms. Differential expression analysis revealed a large number of differentially expressed genes between tissues of the same category (immune and intestinal). Many of these differentially expressed genes in immune cells were involved in cellular processes relating to differentiation and cell metabolism as well as basic functions of immune cells such as cell adhesion and signal transduction. The differential expressed genes of the different segments of the chicken intestine (jejunum, ileum, proximal cecum) correlated to the metabolic processes in nutrient digestion and absorption. These data should provide a valuable resource in understanding the chicken genome.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, Interdepartmental Astrobiology Program, University of Washington, Seattle, WA, United States
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pietro Catini
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Paul Stewart
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Suzana Tkalcic
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
24
|
Jehl F, Degalez F, Bernard M, Lecerf F, Lagoutte L, Désert C, Coulée M, Bouchez O, Leroux S, Abasht B, Tixier-Boichard M, Bed'hom B, Burlot T, Gourichon D, Bardou P, Acloque H, Foissac S, Djebali S, Giuffra E, Zerjal T, Pitel F, Klopp C, Lagarrigue S. RNA-Seq Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species. Front Genet 2021; 12:655707. [PMID: 34262593 PMCID: PMC8273700 DOI: 10.3389/fgene.2021.655707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.
Collapse
Affiliation(s)
- Frédéric Jehl
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Maria Bernard
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France.,INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Colette Désert
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Manon Coulée
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Sophie Leroux
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | | | - Bertrand Bed'hom
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Philippe Bardou
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France
| | - Hervé Acloque
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Sylvain Foissac
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Sarah Djebali
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Elisabetta Giuffra
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Tatiana Zerjal
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Frédérique Pitel
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | | | | |
Collapse
|
25
|
Liu J, Zhou Y, Hu X, Yang J, Lei Q, Liu W, Han H, Li F, Cao D. Transcriptome Analysis Reveals the Profile of Long Non-coding RNAs During Chicken Muscle Development. Front Physiol 2021; 12:660370. [PMID: 34040544 PMCID: PMC8141850 DOI: 10.3389/fphys.2021.660370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
The developmental complexity of muscle arises from elaborate gene regulation. Long non-coding RNAs (lncRNAs) play critical roles in muscle development through the regulation of transcription and post-transcriptional gene expression. In chickens, previous studies have focused on the lncRNA profile during the embryonic periods, but there are no studies that explore the profile from the embryonic to post-hatching period. Here, we reconstructed 14,793 lncRNA transcripts and identified 2,858 differentially expressed lncRNA transcripts and 4,282 mRNAs from 12-day embryos (E12), 17-day embryos (E17), 1-day post-hatch chicks (D1), 14-day post-hatch chicks (D14), 56-day post-hatch chicks (D56), and 98-day post-hatch chicks (D98), based on our published RNA-seq datasets. We performed co-expression analysis for the differentially expressed lncRNAs and mRNAs, using STEM, and identified two profiles with opposite expression trends: profile 4 with a downregulated pattern and profile 21 with an upregulated pattern. The cis- and trans-regulatory interactions between the lncRNAs and mRNAs were predicted within each profile. Functional analysis of the lncRNA targets showed that lncRNAs in profile 4 contributed to the cell proliferation process, while lncRNAs in profile 21 were mainly involved in metabolism. Our work highlights the lncRNA profiles involved in the development of chicken breast muscle and provides a foundation for further experiments on the role of lncRNAs in the regulation of muscle development.
Collapse
Affiliation(s)
- Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Hu
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, China
| |
Collapse
|
26
|
Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. The role of long noncoding RNAs in livestock adipose tissue deposition - A review. Anim Biosci 2021; 34:1089-1099. [PMID: 33902176 PMCID: PMC8255878 DOI: 10.5713/ab.21.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
With the development of sequencing technology, numerous, long noncoding RNAs (lncRNAs) have been discovered and annotated. Increasing evidence has shown that lncRNAs play an essential role in regulating many biological and pathological processes, especially in cancer. However, there have been few studies on the roles of lncRNAs in livestock production. In animal products, meat quality and lean percentage are vital economic traits closely related to adipose tissue deposition. However, adipose tissue accumulation is also a pivotal contributor to obesity, diabetes, atherosclerosis, and many other diseases, as demonstrated by human studies. In livestock production, the mechanism by which lncRNAs regulate adipose tissue deposition is still unclear. In addition, the phenomenon that different animal species have different adipose tissue accumulation abilities is not well understood. In this review, we summarize the characteristics of lncRNAs and their four functional archetypes and review the current knowledge about lncRNA functions in adipose tissue deposition in livestock species. This review could provide theoretical significance to explore the functional mechanisms of lncRNAs in adipose tissue accumulation in animals.
Collapse
Affiliation(s)
- Lixue Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
27
|
Jia X, He Y, Chen SY, Wang J, Hu S, Lai SJ. Genome-wide identification and characterisation of long non-coding RNAs in two Chinese cattle breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1735266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Li B, Li W, Liu W, Xing J, Wu Y, Ma Y, Xu D, Li Y. Comprehensive analysis of lncRNAs, miRNAs and mRNAs related to thymic development and involution in goose. Genomics 2020; 113:1176-1188. [PMID: 33276006 DOI: 10.1016/j.ygeno.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Thymic involution is a sign of immunosenescence, but little is known about it in goose. miRNAs and lncRNAs are critical factors regulating organ growth and development. In this study, we comprehensively analyzed the profiles of lncRNAs, miRNAs and mRNAs during the development and involution of the thymus in Magang goose. The results showed that 2436 genes, 16 miRNAs and 417 lncRNAs were differentially co-expressed between the developmental (20-embryo age, 3-day post-hatch and 3-month age) and degenerative (6-month age) stages. The functional analysis showed that these differentially expressed genes were significantly enriched in cell proliferation, cell adhesion, apoptotic signaling pathway, and Notch signaling pathway. In addition, we established a gene-gene network through the STRING database and identified 50 key genes. Finally, we constructed a miRNA-mRNA network followed by a lncRNA-miRNA-mRNA network. These results suggest that lncRNAs and miRNAs may be involved in the regulation of thymic development and involution in goose.
Collapse
Affiliation(s)
- Bingxin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wanyan Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Liu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jingjing Xing
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Sci Rep 2020; 10:20457. [PMID: 33235280 PMCID: PMC7686352 DOI: 10.1038/s41598-020-77586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC (http://www.fragencode.org/), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.
Collapse
|
30
|
Shan B, Li JY, Liu YJ, Tang XB, Zhou Z, Luo LX. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation 2020; 44:344-357. [PMID: 32996061 DOI: 10.1007/s10753-020-01340-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is an infectious disease that seriously endangers human health. It usually leads to myocardial injury which seriously endangers to the health of human beings. H19 has been confirmed to play key roles in various diseases, including sepsis. However, its function in the progression of sepsis-induced myocardial injury remains largely unknown. H9C2 cells were treated with lipopolysaccharide (LPS) to mimic sepsis-induced myocardial injury in vitro. Cell proliferation and apoptosis were detected by MTT assay and flow cytometry, respectively. In addition, gene and protein expression levels in H9C2 cells were measured by quantitative real-time PCR (qRT-PCR) and Western blotting. The levels of inflammatory cytokines in H9C2 cell supernatants were tested by ELISA. JC-1 staining was performed to observe the mitochondrial membrane potential level in H9C2 cells. H19 and SORBS2 were downregulated in H9C2 cells following LPS treatment, while miR-93-5p was upregulated. Moreover, LPS-induced cell growth inhibition and mitochondrial damage were significantly reversed by overexpression of H19. In addition, H19 upregulation notably suppressed LPS-induced inflammatory responses in H9C2 cells. Moreover, H19 sponged miR-93-5p to promote SORBS2 expression. Overall, H19 suppressed sepsis-induced myocardial injury via regulation of the miR-93-5p/SORBS2 axis. H19 attenuated the development of sepsis-induced myocardial injury in vitro via modulation of the miR-93-5p/SORBS2 axis. Thus, H19 could serve as a potential target for the treatment of sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Bin Shan
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Jia-Yan Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Ya-Jiang Liu
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Xiao-Bin Tang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Zheng Zhou
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China
| | - Liang-Xian Luo
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, No. 8, Qinnian Avenue Road, Chenzhou, 423000, Hunan Province, People's Republic of China.
| |
Collapse
|
31
|
Ning C, Ma T, Hu S, Xu Z, Zhang P, Zhao X, Wang Y, Yin H, Hu Y, Fan X, Zeng B, Yang M, Yang D, Ni Q, Li Y, Zhang M, Xu H, Yao Y, Zhu Q, Li D. Long Non-coding RNA and mRNA Profile of Liver Tissue During Four Developmental Stages in the Chicken. Front Genet 2020; 11:574. [PMID: 32612636 PMCID: PMC7309962 DOI: 10.3389/fgene.2020.00574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
The liver is the major organ of lipid biosynthesis in the chicken. In laying hens, the liver synthesizes most of the yolk precursors and transports them to developing follicles to produce eggs. However, a systematic investigation of the long non-coding RNA (lncRNA) and mRNA transcriptome in liver across developmental stages is needed. Here, we constructed 12 RNA libraries from liver tissue during four developmental stages: juvenile (day 60), sexual maturity (day 133), peak laying (day 220), and broodiness (day 400). A total of 16,930 putative lncRNAs and 18,260 mRNAs were identified. More than half (53.70%) of the lncRNAs were intergenic lncRNAs. The temporal expression pattern showed that lncRNAs were more restricted than mRNAs. We identified numerous differentially expressed lncRNAs and mRNAs by pairwise comparison between the four developmental stages and found that VTG2, RBP, and a novel protein-coding gene were differentially expressed in all stages. Time-series analysis showed that the modules with upregulated genes were involved in lipid metabolism processes. Co-expression networks suggested functional relatedness between mRNAs and lncRNAs; the DE-lncRNAs were mainly involved in lipid biosynthesis and metabolism processes. We showed that the liver transcriptome varies across different developmental stages. Our results improve our understanding of the molecular mechanisms underlying liver development in chickens.
Collapse
Affiliation(s)
- Chunyou Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongxian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaodong Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Abstract
Less than 2% of mammalian genomes code for proteins, but 'the majority of its bases can be found in primary transcripts' - a phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the current state of knowledge on lncRNAs in three major livestock species - Sus scrofa, Bos taurus and Gallus gallus, based on the literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records. Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals' genomes is critical in bridging the gap between genotype and phenotype.
Collapse
|
33
|
Nolte W, Weikard R, Brunner RM, Albrecht E, Hammon HM, Reverter A, Kühn C. Identification and Annotation of Potential Function of Regulatory Antisense Long Non-Coding RNAs Related to Feed Efficiency in Bos taurus Bulls. Int J Mol Sci 2020; 21:E3292. [PMID: 32384694 PMCID: PMC7247587 DOI: 10.3390/ijms21093292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can influence transcriptional and translational processes in mammalian cells and are associated with various developmental, physiological and phenotypic conditions. However, they remain poorly understood and annotated in livestock species. We combined phenotypic, metabolomics and liver transcriptomic data of bulls divergent for residual feed intake (RFI) and fat accretion. Based on a project-specific transcriptome annotation for the bovine reference genome ARS-UCD.1.2 and multiple-tissue total RNA sequencing data, we predicted 3590 loci to be lncRNAs. To identify lncRNAs with potential regulatory influence on phenotype and gene expression, we applied the regulatory impact factor algorithm on a functionally prioritized set of loci (n = 4666). Applying the algorithm of partial correlation and information theory, significant and independent pairwise correlations were calculated and co-expression networks were established, including plasma metabolites correlated with lncRNAs. The network hub lncRNAs were assessed for potential cis-actions and subjected to biological pathway enrichment analyses. Our results reveal a prevalence of antisense lncRNAs positively correlated with adjacent protein-coding genes and suggest their participation in mitochondrial function, acute phase response signalling, TCA-cycle, fatty acid β-oxidation and presumably gluconeogenesis. These antisense lncRNAs indicate a stabilizing function for their cis-correlated genes and a putative regulatory role in gene expression.
Collapse
Affiliation(s)
- Wietje Nolte
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (W.N.); (R.W.); (R.M.B.)
| | - Rosemarie Weikard
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (W.N.); (R.W.); (R.M.B.)
| | - Ronald M. Brunner
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (W.N.); (R.W.); (R.M.B.)
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Harald M. Hammon
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, St Lucia 4067 QLD, Australia;
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (W.N.); (R.W.); (R.M.B.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
34
|
AFB1 Induced Transcriptional Regulation Related to Apoptosis and Lipid Metabolism in Liver of Chicken. Toxins (Basel) 2020; 12:toxins12050290. [PMID: 32375309 PMCID: PMC7290437 DOI: 10.3390/toxins12050290] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at different concentrations were evaluated. The purpose of this study was to explore the mechanism of liver toxicosis responses to AFB1. We found that highly toxic group exposure resulted in liver fat deposition, increased interstitial space, and hepatocyte apoptosis in laying hens. Furthermore, a total of 164 differentially expressed lnRNAs and 186 differentially expressed genes were found to be highly correlated (Pearson Correlation Coefficient > 0.80, p-value < 0.05) by sequencing the transcriptome of control (CB) and highly toxic group (TB3) chickens. We also identify 29 differentially expressed genes and 19 miRNAs that have targeted regulatory relationships. Based on the liver cell apoptosis and fatty liver syndrome that this research focused on, we found that the highly toxic AFB1 led to dysregulation of the expression of PPARG and BCL6. They are cis-regulated by TU10057 and TU45776, respectively. PPARG was the target gene of gga-miR-301a-3p, gga-miR-301b-3p, and BCL6 was the target gene of gga-miR-190a-3p. In summary, highly toxic AFB1 affects the expression levels of protein-coding genes and miRNAs in the liver of Roman layer hens, as well as the expression level of long non-coding RNA in the liver, which upregulates the expression of PPARG and downregulates the expression of Bcl-6. Our study provides information on possible genetic regulatory networks in AFB1-induced hepatic fat deposition and hepatocyte apoptosis.
Collapse
|
35
|
Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, Song JK, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vectors 2020; 13:167. [PMID: 32245514 PMCID: PMC7118956 DOI: 10.1186/s13071-020-04047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eimeria necatrix, the most highly pathogenic coccidian in chicken small intestines, can cause high morbidity and mortality in susceptible birds and devastating economic losses in poultry production, but the underlying molecular mechanisms in interaction between chicken and E. necatrix are not entirely revealed. Accumulating evidence shows that the long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are key regulators in various infectious diseases. However, the expression profiles and roles of these two non-coding RNAs (ncRNAs) during E. necatrix infection are still unclear. METHODS The expression profiles of mRNAs, lncRNAs and circRNAs in mid-segments of chicken small intestines at 108 h post-infection (pi) with E. necatrix were analyzed by using the RNA-seq technique. RESULTS After strict filtering of raw data, we putatively identified 49,183 mRNAs, 818 lncRNAs and 4153 circRNAs. The obtained lncRNAs were classified into four types, including 228 (27.87%) intergenic, 67 (8.19%) intronic, 166 (20.29%) anti-sense and 357 (43.64%) sense-overlapping lncRNAs; of these, 571 were found to be novel. Five types were also predicted for putative circRNAs, including 180 exonic, 54 intronic, 113 antisense, 109 intergenic and 3697 sense-overlapping circRNAs. Eimeria necatrix infection significantly altered the expression of 1543 mRNAs (707 upregulated and 836 downregulated), 95 lncRNAs (49 upregulated and 46 downregulated) and 13 circRNAs (9 upregulated and 4 downregulated). Target predictions revealed that 38 aberrantly expressed lncRNAs would cis-regulate 73 mRNAs, and 1453 mRNAs could be trans-regulated by 87 differentially regulated lncRNAs. Additionally, 109 potential sponging miRNAs were also identified for 9 circRNAs. GO and KEGG enrichment analysis of target mRNAs for lncRNAs, and sponging miRNA targets and source genes for circRNAs identified associations of both lncRNAs and circRNAs with host immune defense and pathogenesis during E. necatrix infection. CONCLUSIONS To the best of our knowledge, the present study provides the first genome-wide analysis of mRNAs, lncRNAs and circRNAs in chicken small intestines infected with E. necatrix. The obtained data will offer novel clues for exploring the interaction mechanisms between chickens and Eimeria spp.
Collapse
Affiliation(s)
- Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Peng Lai
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
36
|
Wang Y, Zhang W, Wu X, Wu C, Qian L, Wang L, Zhang X, Yang M, Li D, Ding J, Wang C, Yin Z, Ding Y. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing. Genome 2020; 63:203-214. [DOI: 10.1139/gen-2019-0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chinese indigenous pig and Western commercial pig breeds show different patterns of lipid metabolism, fat deposition, and fatty acid composition; for these reasons, they have become vitally important models of energy metabolism and obesity in humans. To compare the mechanisms underlying lipid metabolism between Yorkshire pigs (lean type) and Anqing six-end-white pigs (obese type), the liver transcriptomes of six castrated boars with a body weight of approximately 100 kg (three Yorkshire and three Anqing) were analyzed by RNA-seq. The total number of reads produced for each liver sample ranged from 47.05 to 62.6 million. Among 362 differentially expressed genes, 142 were up-regulated and 220 were down-regulated in Anqing six-end-white pigs. Based on these data, 79 GO terms were significantly enriched. The top 10 (the 10 with lowest corrected P-value) significantly enriched GO terms were identified, including lipid metabolic process and carboxylic acid metabolic process. Pathway analysis revealed three significantly enriched KEGG pathways including PPAR signaling pathway, steroid hormone biosynthesis, and retinol metabolism. Based on protein–protein interaction networks, multiple genes responsible for lipid metabolism were identified, such as PCK1, PPARA, and CYP7A1, and these were considered promising candidate genes that could affect porcine liver lipid metabolism and fat deposition. Our results provide abundant transcriptomic information that will be useful for animal breeding and biomedical research.
Collapse
Affiliation(s)
- Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Dengtao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
37
|
Transcriptome analyses of liver in newly-hatched chicks during the metabolic perturbation of fasting and re-feeding reveals THRSPA as the key lipogenic transcription factor. BMC Genomics 2020; 21:109. [PMID: 32005146 PMCID: PMC6995218 DOI: 10.1186/s12864-020-6525-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background The fasting-refeeding perturbation has been used extensively to reveal specific genes and metabolic pathways that control energy metabolism in the chicken. Most global transcriptional scans of the fasting-refeeding response in liver have focused on juvenile chickens that were 1, 2 or 4 weeks old. The present study was aimed at the immediate post-hatch period, in which newly-hatched chicks were subjected to fasting for 4, 24 or 48 h, then refed for 4, 24 or 48 h, and compared with a fully-fed control group at each age (D1-D4). Results Visual analysis of hepatic gene expression profiles using hierarchical and K-means clustering showed two distinct patterns, genes with higher expression during fasting and depressed expression upon refeeding and those with an opposing pattern of expression, which exhibit very low expression during fasting and more abundant expression with refeeding. Differentially-expressed genes (DEGs), identified from five prominent pair-wise contrasts of fed, fasted and refed conditions, were subjected to Ingenuity Pathway Analysis. This enabled mapping of analysis-ready (AR)-DEGs to canonical and metabolic pathways controlled by distinct gene interaction networks. The largest number of hepatic DEGs was identified by two contrasts: D2FED48h/D2FAST48h (968 genes) and D2FAST48h/D3REFED24h (1198 genes). The major genes acutely depressed by fasting and elevated upon refeeding included ANGTPL, ATPCL, DIO2, FASN, ME1, SCD, PPARG, SREBP2 and THRSPA—a primary lipogenic transcription factor. In contrast, major lipolytic genes were up-regulated by fasting or down-regulated after refeeding, including ALDOB, IL-15, LDHB, LPIN2, NFE2L2, NR3C1, NR0B1, PANK1, PPARA, SERTAD2 and UPP2. Conclusions Transcriptional profiling of liver during fasting/re-feeding of newly-hatched chicks revealed several highly-expressed upstream regulators, which enable the metabolic switch from fasted (lipolytic/gluconeogenic) to fed or refed (lipogenic/thermogenic) states. This rapid homeorhetic shift of whole-body metabolism from a catabolic-fasting state to an anabolic-fed state appears precisely orchestrated by a small number of ligand-activated transcription factors that provide either a fasting-lipolytic state (PPARA, NR3C1, NFE2L2, SERTAD2, FOX01, NR0B1, RXR) or a fully-fed and refed lipogenic/thermogenic state (THRSPA, SREBF2, PPARG, PPARD, JUN, ATF3, CTNNB1). THRSPA has emerged as the key transcriptional regulator that drives lipogenesis and thermogenesis in hatchling chicks, as shown here in fed and re-fed states.
Collapse
|
38
|
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, Esquerré D, Zytnicki M, Derrien T, Bardou P, Blanc F, Cabau C, Crisci E, Dhorne-Pollet S, Drouet F, Faraut T, Gonzalez I, Goubil A, Lacroix-Lamandé S, Laurent F, Marthey S, Marti-Marimon M, Momal-Leisenring R, Mompart F, Quéré P, Robelin D, Cristobal MS, Tosser-Klopp G, Vincent-Naulleau S, Fabre S, der Laan MHPV, Klopp C, Tixier-Boichard M, Acloque H, Lagarrigue S, Giuffra E. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 2019; 17:108. [PMID: 31884969 PMCID: PMC6936065 DOI: 10.1186/s12915-019-0726-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.
Collapse
Affiliation(s)
- Sylvain Foissac
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Sarah Djebali
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Kylie Munyard
- Curtin University, School of Pharmacy & Biomedical Sciences, CHIRI Biosciences, Perth, 24105 Australia
| | - Nathalie Vialaneix
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Andrea Rau
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Kevin Muret
- PEGASE, Agrocampus-Ouest, INRA, Saint-Gilles Cedex, F-35590 France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- INRA, US1426, GeT-PlaGe, Genotoul, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Matthias Zytnicki
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Fany Blanc
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Cédric Cabau
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Elisa Crisci
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607 USA
| | - Sophie Dhorne-Pollet
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Thomas Faraut
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Ignacio Gonzalez
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Adeline Goubil
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | | | - Sylvain Marthey
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | - Maria Marti-Marimon
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Florence Mompart
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - David Robelin
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Magali San Cristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | - Gwenola Tosser-Klopp
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Christophe Klopp
- MIAT, Université de Toulouse, INRA, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
| | | | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Chemin de Borde Rouge, Castanet-Tolosan Cedex, F-31326 France
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| | | | - Elisabetta Giuffra
- GABI, AgroParisTech, INRA, Université Paris Saclay, Jouy-en-Josas, F-78350 France
| |
Collapse
|
39
|
Xu E, Zhang L, Yang H, Shen L, Feng Y, Ren M, Xiao Y. Transcriptome profiling of the liver among the prenatal and postnatal stages in chickens. Poult Sci 2019; 98:7030-7040. [PMID: 31376353 PMCID: PMC8913967 DOI: 10.3382/ps/pez434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022] Open
Abstract
The liver is an important organ that has pivotal functions in the synthesis of several vital proteins, the metabolism of various biologically useful materials, the detoxification of toxic substances, and immune defense. Most liver functions are not mature at a young age and many changes happen during postnatal liver development, which lead to differential functions of the liver at different developmental stages. However, the transcriptome details of what changes occur in the liver after birth and the molecular mechanisms for the regulation of the developmental process are not clearly known in chickens. Here, we used RNA-sequencing to analyze the transcriptome of chicken liver from the prenatal (at an embryonic day of 13) to the postnatal stages (at 5 wk and 42 wk of age). A total of approximately 161.17 Gb of raw data were obtained, with 4,127 putative and 539 differentially expressed lncRNAs, and with 13,949 putative and 6,370 differentially expressed mRNAs. Coexpression of lncRNAs-mRNAs in hepatic transcriptome analysis showed that the liver plays important roles in providing energy for organisms through the mitochondrial respiratory chain in chickens, meanwhile, acting as a crucial part of antioxidant stress. The developmental transcriptome date revealed that antioxidant defenses are likely to act on chicken embryo development and that significant functional changes during postnatal liver development are associated with the liver maturation of chickens. These results provide a timeline for the functional transcriptome transition from the prenatal to adult stages in chickens and will be helpful to reveal the underlying molecular mechanisms of liver development.
Collapse
Affiliation(s)
- E. Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Long Zhang
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lulu Shen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yanzhong Feng
- Institute of animal husbandry, Heilongjiang Academy of Agricultural Science, Haerbing 161601, China
| | - Minmin Ren
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yingping Xiao
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Corresponding author
| |
Collapse
|
40
|
Muret K, Désert C, Lagoutte L, Boutin M, Gondret F, Zerjal T, Lagarrigue S. Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genomics 2019; 20:882. [PMID: 31752679 PMCID: PMC6868825 DOI: 10.1186/s12864-019-6093-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.
Collapse
Affiliation(s)
- Kevin Muret
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Colette Désert
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Morgane Boutin
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Tatiana Zerjal
- GABI INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | | |
Collapse
|
41
|
Guo L, Li L, Zhang Y, Fu S, Zhang J, Wang X, Zhu H, Qiao M, Wu L, Liu Y. Long non-coding RNA profiling in LPS-induced intestinal inflammation model: New insight into pathogenesis. Innate Immun 2019; 25:491-502. [PMID: 31474162 PMCID: PMC6900666 DOI: 10.1177/1753425919872812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LPS can induce an inflammatory immune response in the intestine, and long
non-coding RNA (lncRNA) is involved in the process of inflammatory disease.
However, the biological role of lncRNA in the intestinal inflammation of piglets
remains unclear. In this study, the lncRNA expression profile of the ileal
mucosa of piglets challenged by LPS was analysed using lncRNA sequencing. In
total, 112 novel lncRNAs were predicted, of which 58 were up-regulated and 54
down-regulated following LPS challenge. Expression of 15 selected lncRNAs was
validated by quantitative PCR. We further investigated the target genes of
lncRNA that were enriched in the signalling pathways involved in the
inflammatory immune response by utilising Gene Ontology and Kyoto Encyclopaedia
of Genes and Genomes analysis, with cell adhesion molecules and mTOR signalling
pathway identified. In addition, the co-expression networks between the
differentially expressed lncRNAs and the target mRNAs were constructed, with
seven core lncRNAs identified, which also demonstrated that the relationship
between lncRNAs and the target genes was highly correlated. Our study offers
important information about the lncRNAs of the mucosal immune system in piglets
and provides new insights into the inflammatory mechanism of LPS challenge,
which might serve as a novel target to control intestinal inflammation.
Collapse
Affiliation(s)
- Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Linna Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
| | - Yang Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Mu Qiao
- Key Laboratory of Animal Embryo Engineering and Molecular
Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei
Academy of Agricultural Sciences, PR China
| | - Lingying Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan
Polytechnic University, PR China
- Hubei Collaborative Innovation Center for Animal Nutrition and
Feed Safety, PR China
- Yulan Liu, Hubei Key Laboratory of Animal
Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR
China.
| |
Collapse
|
42
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
43
|
Wei S, Li A, Zhang L, Du M. GROWTH AND DEVELOPMENT SYMPOSIUM: STEM AND PROGENITOR CELLS IN ANIMAL GROWTH: Long noncoding RNAs in adipogenesis and adipose development of meat animals12. J Anim Sci 2019; 97:2644-2657. [PMID: 30959518 DOI: 10.1093/jas/skz114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Sequencing technology, especially next-generation RNA sequencing, has greatly facilitated the identification and annotation of long noncoding RNAs (lncRNAs). In mammals, a large number of lncRNAs have been identified, which regulate various biological processes. An increasing number of lncRNAs have been identified which could function as key regulators of adipogenesis (adipocyte formation), a key step of the development of adipose tissue. Because proper adipose tissue development is a key factor affecting animal growth efficiency, lean/fat ratio, and meat quality, summarizing the roles and recent advances of lncRNAs in adipogenesis is needed in order to develop strategies to effectively manage fat deposition. In this review, we updated lncRNAs contributed to the regulation of adipogenesis, focusing on their roles in fat development of farm animals.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anning Li
- Department of Animal Sciences, Washington State University, Pullman, WA
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA
| |
Collapse
|
44
|
Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds. G3-GENES GENOMES GENETICS 2019; 9:1263-1276. [PMID: 30787031 PMCID: PMC6469412 DOI: 10.1534/g3.118.201014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. However, most studies have been focused on a few established model organisms and little is known about lncRNAs in fat-tail development in sheep. Here, the first profile of lncRNA in sheep fat-tail along with their possible roles in fat deposition were investigated, based on a comparative transcriptome analysis between fat-tailed (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds. Among all identified lncRNAs candidates, 358 and 66 transcripts were considered novel intergenic (lincRNAs) and novel intronic (ilncRNAs) corresponding to 302 and 58 gene loci, respectively. Our results indicated that a low percentage of the novel lncRNAs were conserved. Also, synteny analysis identified 168 novel lincRNAs with the same syntenic region in human, bovine and chicken. Only seven lncRNAs were identified as differentially expressed genes between fat and thin tailed breeds. Q-RT-PCR results were consistent with the RNA-Seq data and validated the findings. Target prediction analysis revealed that the novel lncRNAs may act in cis or trans and regulate the expression of genes that are involved in the lipid metabolism. A gene regulatory network including lncRNA-mRNA interactions were constructed and three significant modules were found, with genes relevant to lipid metabolism, insulin and calcium signaling pathway. Moreover, integrated analysis with AnimalQTLdb database further suggested six lincRNAs and one ilncRNAs as candidates of sheep fat-tail development. Our results highlighted the putative contributions of lncRNAs in regulating expression of genes associated with fat-tail development in sheep.
Collapse
|
45
|
You Z, Zhang Q, Liu C, Song J, Yang N, Lian L. Integrated analysis of lncRNA and mRNA repertoires in Marek's disease infected spleens identifies genes relevant to resistance. BMC Genomics 2019; 20:245. [PMID: 30922224 PMCID: PMC6438004 DOI: 10.1186/s12864-019-5625-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV) is an oncogenic herpesvirus that can cause T-cell lymphomas in chicken. Long noncoding RNA (lncRNA) is strongly associated with various cancers and many other diseases. In chickens, lncRNAs have not been comprehensively identified. Here, we profiled mRNA and lncRNA repertoires in three groups of spleens from MDV-infected and non-infected chickens, including seven tumorous spleens (TS) from MDV-infected chickens, five spleens from the survivors (SS) without lesions after MDV infection, and five spleens from noninfected chickens (NS), to explore the underlying mechanism of host resistance in Marek's disease (MD). RESULTS By using a precise lncRNA identification pipeline, we identified 1315 putative lncRNAs and 1166 known lncRNAs in spleen tissue. Genomic features of putative lncRNAs were characterized. Differentially expressed (DE) mRNAs, putative lncRNAs, and known lncRNAs were profiled among three groups. We found that several specific intergroup differentially expressed genes were involved in important biological processes and pathways, including B cell activation and the Wnt signaling pathway; some of these genes were also found to be the hub genes in the co-expression network analyzed by WGCNA. Network analysis depicted both intergenic correlation and correlation between genes and MD traits. Five DE lncRNAs including MSTRG.360.1, MSTRG.6725.1, MSTRG.6754.1, MSTRG.15539.1, and MSTRG.7747.5 strongly correlated with MD-resistant candidate genes, such as IGF-I, CTLA4, HDAC9, SWAP70, CD72, JCHAIN, CXCL12, and CD8B, suggesting that lncRNAs may affect MD resistance and tumorigenesis in chicken spleens through their target genes. CONCLUSIONS Our results provide both transcriptomic and epigenetic insights on MD resistance and its pathological mechanism. The comprehensive lncRNA and mRNA transcriptomes in MDV-infected chicken spleens were profiled. Co-expression analysis identified integrated lncRNA-mRNA and gene-gene interaction networks, implying that hub genes or lncRNAs exert critical influence on MD resistance and tumorigenesis.
Collapse
Affiliation(s)
- Zhen You
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Qinghe Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001 China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
46
|
Lin S, Zhang Z, Xie T, Hu B, Ruan Z, Zhang L, Li C, Li C, Luo W, Nie Q, Zhang X. Identification of a novel antisense RNA that regulates growth hormone receptor expression in chickens. RNA Biol 2019; 16:626-638. [PMID: 30764709 PMCID: PMC6546403 DOI: 10.1080/15476286.2019.1572440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules of gene expression. However, studies on NATs in the chicken are relatively rare. We identified a novel antisense transcript in the chicken, designated GHR-AS-EST, transcribed from the growth hormone receptor (GHR) locus, which encodes a well-known regulatory molecule of muscle development and fat deposition. GHR-AS-EST is predominantly expressed in the chicken liver and muscle tissues. GHR-AS-EST sequence conservation among vertebrates is weak. GHR-AS-EST forms an RNA-RNA duplex with GHBP to increase its stability, and regulates the expression of GHR sense transcripts at both the mRNA and protein levels. Further, GHR-AS-EST promotes cell proliferation by stimulating the expression of signaling factors in the JAK2/STAT pathway, and contributes to fat deposition via downregulating the expression of signaling factors in the JAK2/SOCS pathway in LMH hepatocellular carcinoma cells. We expect that the discovery of a NAT for a regulatory gene associated with cell proliferation and lipolysis will further our understanding of the molecular regulation of both muscle development and fat deposition.
Collapse
Affiliation(s)
- Shudai Lin
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China.,b Animal Genomics and Improvement Laboratory, Agricultural Research Service , United States Department of Agriculture , Beltsville , MD , USA.,c Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service , United States Department of Agriculture , Beltsville , MD , USA
| | - Zihao Zhang
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Tingting Xie
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Bowen Hu
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Zhuohao Ruan
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Li Zhang
- d Agricultural College , Guangdong Ocean University , Zhanjiang , P.R. China
| | - Congjun Li
- b Animal Genomics and Improvement Laboratory, Agricultural Research Service , United States Department of Agriculture , Beltsville , MD , USA
| | - Charles Li
- c Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service , United States Department of Agriculture , Beltsville , MD , USA
| | - Wen Luo
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Qinghua Nie
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| | - Xiquan Zhang
- a Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture , College of Animal Science of South China Agricultural University , Guangzhou , P.R. China
| |
Collapse
|
47
|
Yoon J, Kim H. Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1044-1051. [PMID: 30744377 PMCID: PMC6603329 DOI: 10.5713/ajas.18.0516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. METHODS We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. RESULTS As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. CONCLUSION In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.
Collapse
Affiliation(s)
- Joon Yoon
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
48
|
Wang GZ, Du K, Hu SQ, Chen SY, Jia XB, Cai MC, Shi Y, Wang J, Lai SJ. Genome-wide identification and characterization of long non-coding RNAs during postnatal development of rabbit adipose tissue. Lipids Health Dis 2018; 17:271. [PMID: 30486837 PMCID: PMC6263043 DOI: 10.1186/s12944-018-0915-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background The rabbit is widely used as an important experimental model for biomedical research, and shows low adipose tissue deposition during growth. Long non-coding RNAs (lncRNAs) are associated with adipose growth, but little is known about the function of lncRNAs in the rabbit adipose tissue. Methods Deep RNA-sequencing and comprehensive bioinformatics analyses were used to characterize the lncRNAs of rabbit visceral adipose tissue (VAT) at 35, 85 and 120 days after birth. Differentially expressed (DE) lncRNAs were identified at the three growth stages by DESeq. The cis and trans prediction ways predicted the target genes of the DE lncRNAs. To explore the function of lncRNAs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on the candidate genes. Results A total of 991,157,544 clean reads were generated after RNA-Seq of the three growth stages, of which, 30,353 and 107 differentially expressed (DE) lncRNAs were identified. Compared to the protein-coding transcripts, the rabbit lncRNAs shared some characteristics such as shorter length and fewer exons. Cis and trans target gene prediction revealed, 43 and 64 DE lncRNAs respectively, corresponding to 72 and 20 protein-coding genes. GO enrichment and KEGG pathway analyses revealed that the candidate DE lncRNA target genes were involved in oxidative phosphorylation, glyoxylate and dicarboxylate metabolism, and other adipose growth-related pathways. Six DE lncRNAs were randomly selected and validated by q-PCR. Conclusions This study is the first to profile the potentially functional lncRNAs in the adipose tissue growth in rabbits, and contributes to our understanding of mammalian adipogenesis. Electronic supplementary material The online version of this article (10.1186/s12944-018-0915-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Ze Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Kun Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shen-Qiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Bo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Cheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
49
|
Giuffra E, Tuggle CK. Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap. Annu Rev Anim Biosci 2018; 7:65-88. [PMID: 30427726 DOI: 10.1146/annurev-animal-020518-114913] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional annotation of genomes is a prerequisite for contemporary basic and applied genomic research, yet farmed animal genomics is deficient in such annotation. To address this, the FAANG (Functional Annotation of Animal Genomes) Consortium is producing genome-wide data sets on RNA expression, DNA methylation, and chromatin modification, as well as chromatin accessibility and interactions. In addition to informing our understanding of genome function, including comparative approaches to elucidate constrained sequence or epigenetic elements, these annotation maps will improve the precision and sensitivity of genomic selection for animal improvement. A scientific community-driven effort has already created a coordinated data collection and analysis enterprise crucial for the success of this global effort. Although it is early in this continuing process, functional data have already been produced and application to genetic improvement reported. The functional annotation delivered by the FAANG initiative will add value and utility to the greatly improved genome sequences being established for domesticated animal species.
Collapse
Affiliation(s)
- Elisabetta Giuffra
- Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France;
| | | | | |
Collapse
|
50
|
Suárez-Vega A, Arranz JJ, Pérez V, de la Fuente LF, Mateo J, Gutiérrez-Gil B. Early adipose deposits in sheep: comparative analysis of the perirenal fat transcriptome of Assaf and Churra suckling lambs. Anim Genet 2018; 49:605-617. [PMID: 30311245 DOI: 10.1111/age.12725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Abstract
Adipose deposits influence the quality of ruminant carcasses, and in suckling lambs, internal types of adipose deposits represent a notable proportion of total fat. The aim of this study was to perform a comparative analysis of the perirenal fat transcriptomes of suckling lambs from two breeds with different growth and carcass characteristics. The perirenal fat tissue from 14 suckling lambs (Assaf, n = 8; Churra, n = 6) was used for the RNA-seq analysis. The functional enrichment analysis of the 670 highly expressed genes (>150 fragments per kilobase of exon per million fragments mapped) in the perirenal fat transcriptome of both breeds revealed that the majority of these genes were involved in energy processes. The expression of the UCP1 gene, a classical biomarker of brown fat, and the presence of multilocular adipocytes in the two breeds supported the presence of brown fat at the transition stage towards white fat tissue. The differential expression analysis performed identified 373 differentially expressed genes (DEGs) between the two compared breeds. Brown/white fat gene biomarkers were not included in the list of DEGs. In Assaf lambs, DEGs were enriched in Gene Ontology (GO) biological processes related to fatty-acid oxidation, whereas in Churra lambs, the majority of the significantly enriched GO terms were related to cholesterol synthesis, which suggests that upregulated DEGs in Assaf lambs are implicated in fat burning, whereas the Churra upregulated DEGs are linked to fat accumulation. These results can help to increase knowledge of the genes controlling early fat deposition in ruminants and shed light on fundamental aspects of adipose tissue growth.
Collapse
Affiliation(s)
- A Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - J J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - V Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - L F de la Fuente
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - J Mateo
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - B Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|