1
|
Broadwater C, Guo J, Liu J, Tobin I, Whitmore MA, Kaiser MG, Lamont SJ, Zhang G. Breed-specific responses to coccidiosis in chickens: identification of intestinal bacteria linked to disease resistance. J Anim Sci Biotechnol 2025; 16:65. [PMID: 40336071 PMCID: PMC12060511 DOI: 10.1186/s40104-025-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Coccidiosis, caused by Eimeria parasites, is a major enteric disease in poultry, significantly impacting animal health, production performance, and welfare. This disease imposes a substantial economic burden, costing the global poultry industry up to $13 billion annually. However, effective mitigation strategies for coccidiosis remain elusive. While different chicken breeds exhibit varying resistance to coccidiosis, no commensal bacteria have been directly linked to this resistance. METHODS To assess relative resistance of different breeds to coccidiosis, 10-day-old Fayoumi M5.1, Leghorn Ghs6, and Cobb chickens were challenged with 50,000 sporulated Eimeria maxima oocysts or mock-infected. Body weight changes, small intestinal lesions, and fecal oocyst shedding were evaluated on d 17. Ileal and cecal digesta were collected from individual animals on d 17 and subjected to microbiome analysis using 16S rRNA gene sequencing. RESULTS: Fayoumi M5.1 chickens showed the lowest growth retardation, intestinal lesion score, fecal oocyst shedding, and pathobiont proliferation compared to Ghs6 and Cobb chickens. The intestinal microbiota of M5.1 chickens also differed markedly from the other two breeds under both healthy and coccidiosis conditions. Notably, group A Lactobacillus and Ligilactobacillus salivarius were the least prevalent in both the ileum and cecum of healthy M5.1 chickens, but became highly enriched and comparable to Ghs6 and Cobb chickens in response to coccidiosis. Conversely, Weissella, Staphylococcus gallinarum, and Enterococcus durans/hirae were more abundant in the ileum of healthy M5.1 chickens than in the other two breeds. Despite being reduced by Eimeria, these bacteria retained higher abundance in M5.1 chickens compared to the other breeds. CONCLUSIONS Fayoumi M5.1 chickens exhibit greater resistance to coccidiosis than Leghorn Ghs6 layers and Cobb broilers. Several commensal bacteria, including group A Lactobacillus, L. salivarius, Weissella, S. gallinarum, and E. durans/hirae, are differentially enriched in Fayoumi M5.1 chickens with strong correlation with coccidiosis resistance. These bacteria hold potential as probiotics for coccidiosis mitigation.
Collapse
Affiliation(s)
- Chace Broadwater
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiaqing Guo
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jing Liu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael G Kaiser
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
2
|
Kaiser M, Kaufman J, Lamont SJ. Different MHC class I cell surface expression levels in diverse chicken lines, associations with B blood group, and proposed relationship to antigen-binding repertoire. Poult Sci 2025; 104:104569. [PMID: 39642749 PMCID: PMC11665679 DOI: 10.1016/j.psj.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
The Major Histocompatibility Complex (MHC) is a cluster of genes with primarily immune-related functions. The MHC class I genes are responsible for self- versus non-self-recognition and viral antigen presentation to T lymphocytes. The chicken MHC class I protein binds its cognate antigen(s) over a repertoire spectrum ranging from promiscuous (generalist) to fastidious (specialist). The MHC class I protein expression level at the cell surface is inversely related to the promiscuity of its peptide-binding repertoire. In our study, erythrocytes from 6 diverse and highly inbred lines of chickens, a closed broiler line, and a highly advanced intercross line were evaluated for MHC class I antigen expression level by flow cytometry using monoclonal antibodies to chicken MHC class I molecules. In chickens, the B blood group antigens include the MHC class I antigen expressed from the MHC. Thus, the B blood group has historically been used as a genetic marker for Marek's Disease virus response. Erythrocytes of the inbred lines were blood typed by serology. The B21 blood type is widely recognized as relatively resistant to Marek's disease and regarded as an MHC class I generalist with low MHC class I expression. The Spanish line, which types serologically as B21.1 (similar to B21), was the lowest MHC class I expressing line. The two sublines (B5.1 and B15.2) of the Fayoumi breed, which significantly differed in their MHC class I expression, also differ in response to multiple pathogens. These defined genetic lines of chickens, with distinct MHC class I expression levels, provide an excellent platform to further interrogate the hypothesis of high or low MHC class I expression (antigenic specialists or generalists, respectively) determining diverse responses to pathogens.
Collapse
Affiliation(s)
- Michael Kaiser
- Department of Animal Science, Iowa State University, 806 Stange Road, 2255 Kildee Hall, Ames, IA 50011, USA
| | - Jim Kaufman
- University of Edinburgh, School of Biological Science, Institute of Immunology and Infection Research, Edinburgh EH9 3FL, United Kingdom
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Road, 2255 Kildee Hall, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Vanamamalai VK, Priyanka E, Kannaki TR, Sharma S. Integrative study of chicken lung transcriptome to understand the host immune response during Newcastle disease virus challenge. Front Cell Infect Microbiol 2024; 14:1368887. [PMID: 39290979 PMCID: PMC11405381 DOI: 10.3389/fcimb.2024.1368887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Newcastle disease is one of the significant issues in the poultry industry, having catastrophic effects worldwide. The lung is one of the essential organs which harbours Bronchus-associated lymphoid tissue and plays a vital role in the immune response. Leghorn and Fayoumi breeds are known to have differences in resistance to Newcastle disease. Along with genes and long non-coding RNAs (lncRNAs) are also known to regulate various biological pathways through gene regulation. Methods This study analysed the lung transcriptome data and identified the role of genes and long non-coding RNAs in differential immune resistance. The computational pipeline, FHSpipe, as used in our previous studies on analysis of harderian gland and trachea transcriptome was used to identify genes and lncRNAs. This was followed by differential expression analysis, functional annotation of genes and lncRNAs, identification of transcription factors, microRNAs and finally validation using qRT-PCR. Results and discussion A total of 8219 novel lncRNAs were identified. Of them, 1263 lncRNAs and 281 genes were differentially expressed. About 66 genes were annotated with either an immune-related GO term or pathway, and 12 were annotated with both. In challenge and breed-based analysis, most of these genes were upregulated in Fayoumi compared to Leghorn, and in timepoint-based analysis, Leghorn challenge chicken showed downregulation between time points. A similar trend was observed in the expression of lncRNAs. Co-expression analysis has revealed several lncRNAs co-expressing with immune genes with a positive correlation. Several genes annotated with non-immune pathways, including metabolism, signal transduction, transport of small molecules, extracellular matrix organization, developmental biology and cellular processes, were also impacted. With this, we can understand that Fayoumi chicken showed upregulated immune genes and positive cis-lncRNAs during both the non-challenged and NDV-challenge conditions, even without viral transcripts in the tissue. This finding shows that these immune-annotated genes and coexpressing cis-lncRNAs play a significant role in Fayoumi being comparatively resistant to NDV compared to Leghorn. Our study affirms and expands upon the outcomes of previous studies and highlights the crucial role of lncRNAs during the immune response to NDV. Conclusion This analysis clearly shows the differences in the gene expression patterns and lncRNA co-expression with the genes between Leghorn and Fayoumi, indicating that the lncRNAs and co-expressing genes might potentially have a role in differentiating these breeds. We hypothesise that these genes and lncRNAs play a vital role in the higher resistance of Fayoumi to NDV than Leghorn. This study can pave the way for future studies to unravel the biological mechanism behind the regulation of immune-related genes.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- Bioinformatics Laboratory, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - E Priyanka
- Laboratory of Avian Health and Pathology, ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - T R Kannaki
- Laboratory of Avian Health and Pathology, ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Shailesh Sharma
- Bioinformatics Laboratory, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
4
|
Lopes TSB, Nankemann J, Breedlove C, Pietruska A, Espejo R, Cuadrado C, Hauck R. Changes in the Transcriptome Profile in Young Chickens after Infection with LaSota Newcastle Disease Virus. Vaccines (Basel) 2024; 12:592. [PMID: 38932321 PMCID: PMC11209074 DOI: 10.3390/vaccines12060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding gene expression changes in chicks after vaccination against Newcastle Disease (ND) can reveal vaccine biomarkers. There are limited data on chicks' early immune response after ND vaccination. Two trials focused on this knowledge gap. In experiment one, 42 13-day-old specific-pathogen-free (SPF) chicks were used. Harderian glands (Hgs) and tracheas (Tcs) from five birds per group were sampled at 12, 24, and 48 h post-vaccination (hpv) to evaluate the gene transcription levels by RNA sequencing (RNA-seq) and RT-qPCR. The results of RNA-seq were compared by glmFTest, while results of RT-qPCR were compared by t-test. With RNA-seq, a significant up-regulation of interferon-related genes along with JAK-STAT signaling pathway regulation was observed in the Hgs at 24 hpv. None of the differentially expressed genes (DEGs) identified by RNA-seq were positive for RT-qPCR. Experiment 2 used 112 SPF and commercial chickens that were 1 day old and 14 days old. Only the commercial birds had maternal antibodies for Newcastle Disease virus (NDV). By RNA-seq, 20 core DEGs associated with innate immunity and viral genome replication inhibition were identified. Genes previously unlinked to NDV response, such as USP41, were identified. This research present genes with potential as immunity biomarkers for vaccines, yet further investigation is needed to correlate the core gene expression with viral shedding post-vaccination.
Collapse
Affiliation(s)
- Taina S. B. Lopes
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Jannis Nankemann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Cassandra Breedlove
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Andrea Pietruska
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Raimundo Espejo
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Camila Cuadrado
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
| | - Ruediger Hauck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.S.B.L.)
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Emeru BA, Dame DG, Desta HT. Molecular Detection and Serological Investigation of Newcastle Disease in Intensive, Semi-Intensive, and Backyard Production Systems in Central and Southwestern Areas of Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:141-148. [PMID: 38742180 PMCID: PMC11090124 DOI: 10.2147/vmrr.s445261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Purpose The purpose of this research is to detect Newcastle disease virus and to assess the seropositivity among backyard, semi-intensive, and intensive farms located in central and southwestern areas of Ethiopia. Material and Methods A total of 239 oropharyngeal and cloacal swab samples were collected from symptomatic birds found in Holeta, Burayu, Jimma towns as well as Seka Chekorsa and Nadhigibe woredas of Jimma Zone. In addition, ninety blood samples were collected from wing veins of unvaccinated birds found in the study areas of Jimma zone. Side-by-side information related to risk factors estimated to contribute to the susceptibility of the disease was collected by interviewing owners of sampled birds. Reverse transcription polymerase-chain reaction (RT-PCR) was conducted to detect NDV. Likewise, Enzyme-linked immunosorbent assay (ELISA) was performed to determine the seropositivity of ND. Results The proportion of samples where NDV was detected was 24.6%. Similarly, 68.9% of the sampled birds were seropositive. It was observed that adult birds were more likely to encounter the disease than youngs (OR = 11.6; 95% CI: 4.0-33.3; P = 0.000). Birds owned by respondents who leave diseased birds in the flock were more likely infected (OR = 6.2; 95% CI: 1.8-21.2; P=0.004) as compared to those isolated and mode of disposal of dead chicken significantly affect exposure (OR = 0.13; 95% CI: 0.10-4.88; P = 0.044). Likewise, access to veterinary services highly likely reduces susceptibility to the disease (OR = 12.4; 95% CI: 3.2-46.9; P = 0.000). It was also found that birds farmed intensively were the most at risk (OR = 2.8; 95% CI: 0.58-13.71; P = 0.199). Conclusion Detection of ND from a significant proportion of sampled birds and their high seropositivity percentage revealed the circulation of the virus in the study areas.
Collapse
Affiliation(s)
- Bezina Arega Emeru
- Animal Biotechnology Research Program, National Agricultural Biotechnology Research Center, Ethiopian Institute of Agricultural Research, Holeta, Ethiopia
| | | | | |
Collapse
|
6
|
Vanamamalai VK, E P, T R K, Sharma S. Integrated analysis of genes and long non-coding RNAs in trachea transcriptome to decipher the host response during Newcastle disease challenge in different breeds of chicken. Int J Biol Macromol 2023; 253:127183. [PMID: 37793531 DOI: 10.1016/j.ijbiomac.2023.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Newcastle disease is a highly infectious economically devastating disease caused by Newcastle disease Virus in Chicken (Gallus gallus). Leghorn and Fayoumi are two breeds which show differential resistance patterns towards NDV. This study aims to identify the differentially expressed genes and lncRNAs during NDV challenge which could play a potential role in this differential resistance pattern. A total of 552 genes and 1580 lncRNAs were found to be differentially expressing. Of them, 52 genes were annotated with both Immune related pathways and Gene ontologies. We found that most of these genes were upregulated in Leghorn between normal and challenged chicken but several were down regulated between different timepoints after NDV challenge, while Fayoumi showed no such downregulation. We also observed that higher number of positively correlating lncRNAs was found to be downregulated along with these genes. This shows that although Leghorn is showing higher number of differentially expressed genes in challenged than in non-challenged, most of them were downregulated during the disease between different timepoints. With this we hypothesize that the downregulation of immune related genes and co-expressing lncRNAs could play a significant role behind the Leghorn being comparatively susceptible breed than Fayoumi. The computational pipeline is available at https://github.com/Venky2804/FHSpipe.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India
| | - Priyanka E
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Kannaki T R
- ICAR-Directorate of Poultry Research, Pillar No. 216, Dairy Farm Chowrastha, Rajendra Nagar Road, Rajendranagar mandal, Hyderabad 500030, Telangana, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad 121001, Haryana, India.
| |
Collapse
|
7
|
Wu Z, Shih B, Macdonald J, Meunier D, Hogan K, Chintoan-Uta C, Gilhooley H, Hu T, Beltran M, Henderson NC, Sang HM, Stevens MP, McGrew MJ, Balic A. Development and function of chicken XCR1 + conventional dendritic cells. Front Immunol 2023; 14:1273661. [PMID: 37954617 PMCID: PMC10634274 DOI: 10.3389/fimmu.2023.1273661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Dominique Meunier
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kris Hogan
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Hazel Gilhooley
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Chuwatthanakhajorn S, Chang CS, Ganapathy K, Tang PC, Chen CF. Comparison of Immune-Related Gene Expression in Two Chicken Breeds Following Infectious Bronchitis Virus Vaccination. Animals (Basel) 2023; 13:ani13101642. [PMID: 37238072 DOI: 10.3390/ani13101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to identify the immune-related genes and the corresponding biological pathways following infectious bronchitis virus vaccination in Taiwan Country and White Leghorn chicken breeds. Transcriptomic analyses of the spleen of these two breeds were conducted by next-generation sequencing. Compared to White Leghorn chicken, Taiwan Country chicken showed a significantly higher level of anti-infectious bronchitis virus (IBV) antibodies at 14 and 21 days pos vaccination. At 7 days post vaccination, in the Taiwan Country chicken, higher expression of mitogen-activated protein kinase 10, Major histocompatibility complex class 1, and V-set pre-B cell surrogate light chain 3 were found. In contrast, the White Leghorn chicken had a high expression of interleukin 4 induced 1, interleukin 6, and interleukin 22 receptor subunit alpha 2. These findings have highlighted the variations in immune induction between chickens with distinct genetic background and provided biological pathways and specific genes involved in immune responses against live attenuated IBV vaccine.
Collapse
Affiliation(s)
- Schwann Chuwatthanakhajorn
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
- Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Chi-Sheng Chang
- Department of Animal Science, Chinese Culture University, Taipei 111, Taiwan
| | - Kannan Ganapathy
- Institute of Infection, Veterinary & Ecological Sciences (IVES), University of Liverpool, Neston CH64 7TE, UK
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung 402, Taiwan
| |
Collapse
|
10
|
Rimawi I, Turgeman G, Avital-Cohen N, Rozenboim I, Yanai J. Parental Preconception and Pre-Hatch Exposure to a Developmental Insult Alters Offspring's Gene Expression and Epigenetic Regulations: An Avian Model. Int J Mol Sci 2023; 24:5047. [PMID: 36902484 PMCID: PMC10003510 DOI: 10.3390/ijms24055047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Parental exposure to insults was initially considered safe if stopped before conception. In the present investigation, paternal or maternal preconception exposure to the neuroteratogen chlorpyrifos was investigated in a well-controlled avian model (Fayoumi) and compared to pre-hatch exposure focusing on molecular alterations. The investigation included the analysis of several neurogenesis, neurotransmission, epigenetic and microRNA genes. A significant decrease in the vesicular acetylcholine transporter (SLC18A3) expression was detected in the female offspring in the three investigated models: paternal (57.7%, p < 0.05), maternal (36%, p < 0.05) and pre-hatch (35.6%, p < 0.05). Paternal exposure to chlorpyrifos also led to a significant increase in brain-derived neurotrophic factor (BDNF) gene expression mainly in the female offspring (27.6%, p < 0.005), while its targeting microRNA, miR-10a, was similarly decreased in both female (50.5%, p < 0.05) and male (56%, p < 0.05) offspring. Doublecortin's (DCX) targeting microRNA, miR-29a, was decreased in the offspring after maternal preconception exposure to chlorpyrifos (39.8%, p < 0.05). Finally, pre-hatch exposure to chlorpyrifos led to a significant increase in protein kinase C beta (PKCß; 44.1%, p < 0.05), methyl-CpG-binding domain protein 2 (MBD2; 44%, p < 0.01) and 3 (MBD3; 33%, p < 0.05) genes expression in the offspring. Although extensive studies are required to establish a mechanism-phenotype relationship, it should be noted that the current investigation does not include phenotype assessment in the offspring.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Nataly Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
12
|
Ul-Rahman A, Rabani M, Shabbir MZ. A comparative evaluation of transcriptome changes in lung and spleen tissues of chickens infected with velogenic and mesogenic Avian Orthoavulavirus 1. Microb Pathog 2023; 174:105956. [PMID: 36572195 DOI: 10.1016/j.micpath.2022.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Newcastle disease is an acute, highly contagious disease responsible for severe economic losses to the poultry industry worldwide. Clinical assessment of different pathotypes of AOaV-1 strains is well-elucidated in chickens. However, a paucity of data exists for a comparative assessment of avian innate immune responses in birds after infection with two different pathotypes of AOaV-1. We compared early immune responses in chickens infected with a duck-originated velogenic strain (high virulent: genotype VII) and a pigeon-originated mesogenic stain (moderate virulent; genotype VI). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) identified 4737 differentially expressed genes (DEGs) in the transcriptional profiles of lung and spleen tissues of chickens infected with both pathotypes. More DEGs were expressed in spleen tissue infected with velogenic strain compared to spleen or lung exposed to mesogenic strain. An enriched expression was observed for genes involved in metabolic processes and cellular components, including innate immune-associated signaling pathways. Most DEGs were involved in RIG-I, Toll-like, NF-Kappa B, and MAPK signaling pathways to activate interferon-stimulated genes (ISGs). This study provided a comparative insight into complicated molecular mechanisms and associated DEGs involved in early immune responses of birds to two different AOaV-1 strains.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS University of Agriculture, Multan, 66000, Pakistan
| | - Masood Rabani
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences Lahore, 54600, Pakistan.
| |
Collapse
|
13
|
Sánchez-Baizán N, Ribas L, Piferrer F. Improved biomarker discovery through a plot twist in transcriptomic data analysis. BMC Biol 2022; 20:208. [PMID: 36153614 PMCID: PMC9509653 DOI: 10.1186/s12915-022-01398-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. Results In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. Conclusions We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01398-w.
Collapse
|
14
|
Botchway P, Amuzu-Aweh E, Naazie A, Aning G, Otsyina H, Saelao P, Wang Y, Zhou H, Walugembe M, Dekkers J, Lamont S, Gallardo R, Kelly T, Bunn D, Kayang B. Host response to successive challenges with lentogenic and velogenic Newcastle disease virus in local chickens of Ghana. Poult Sci 2022; 101:102138. [PMID: 36126448 PMCID: PMC9489513 DOI: 10.1016/j.psj.2022.102138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Newcastle disease (ND) is a highly contagious viral disease that constantly threatens poultry production. The velogenic (highly virulent) form of ND inflicts the most damage and can lead to 100% mortality in unvaccinated village chicken flocks. This study sought to characterize responses of local chickens in Ghana after challenging them with lentogenic and velogenic Newcastle disease virus (NDV) strains. At 4 wk of age, chicks were challenged with lentogenic NDV. Traits measured were pre- and post-lentogenic infection growth rates (GR), viral load at 2 and 6 d post-lentogenic infection (DPI), viral clearance rate and antibody levels at 10 DPI. Subsequently, the chickens were naturally exposed to velogenic NDV (vNDV) after anti-NDV antibody titers had waned to levels ≤1:1,700. Body weights and blood samples were again collected for analysis. Finally, chickens were euthanized and lesion scores (LS) across tissues were recorded. Post-velogenic exposure GR; antibody levels at 21 and 34 days post-velogenic exposure (DPE); LS for trachea, proventriculus, intestines, and cecal tonsils; and average LS across tissues were measured. Variance components and heritabilities were estimated for all traits using univariate animal models. Mean pre- and post-lentogenic NDV infection GRs were 6.26 g/day and 7.93 g/day, respectively, but mean post-velogenic NDV exposure GR was −1.96 g/day. Mean lesion scores ranged from 0.52 (trachea) to 1.33 (intestine), with males having significantly higher (P < 0.05) lesion scores compared to females. Heritability estimates for the lentogenic NDV trial traits ranged from moderate (0.23) to high (0.55) whereas those for the vNDV natural exposure trial were very low (≤ 0.08). Therefore, in contrast to the vNDV exposure trial, differences in the traits measured in the lentogenic challenge were more affected by genetics and thus selection for these traits may be more feasible compared to those following vNDV exposure. Our results can form the basis for identifying local chickens with improved resilience in the face of NDV infection for selective breeding to improve productivity.
Collapse
|
15
|
He F, Qiu Y, Wu X, Xia Y, Yang L, Wu C, Li P, Zhang R, Fang R, Li N, Peng Y. Slc6a13 Deficiency Attenuates Pasteurella multocida Infection-Induced Inflammation via Glycine-Inflammasome Signaling. J Innate Immun 2022; 15:107-121. [PMID: 35797984 PMCID: PMC10643921 DOI: 10.1159/000525089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/07/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously demonstrated that Slc6a13-deficient (Slc6a13-/-; KO) mice are resistant to P. multocida infection, which might be in connection with macrophage-mediated inflammation; however, the specific metabolic mechanism is still enigmatic. Here we reproduce the less sensitive to P. multocida infection in overall survival assays as well as reduced bacterial loads, tissue lesions, and inflammation of lungs in KO mice. The transcriptome sequencing analysis of wild-type (WT) and KO mice shows a large number of differentially expressed genes that are enriched in amino acid metabolism by functional analysis. Of note, glycine levels are substantially increased in the lungs of KO mice with or without P. multocida infection in comparison to the WT controls. Interestingly, exogenous glycine supplementation alleviates P. multocida infection-induced inflammation. Mechanistically, glycine reduces the production of inflammatory cytokines in macrophages by blocking the activation of inflammasome (NALP1, NLRP3, NLRC4, AIM2, and Caspase-1). Together, Slc6a13 deficiency attenuates P. multocida infection through lessening the excessive inflammatory responses of macrophages involving glycine-inflammasome signaling.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yangyang Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaoyao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liu Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chenlu Wu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rendong Fang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
17
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Liu W, Sun Y, Qiu X, Meng C, Song C, Tan L, Liao Y, Liu X, Ding C. Genome-Wide Analysis of Alternative Splicing during Host-Virus Interactions in Chicken. Viruses 2021; 13:v13122409. [PMID: 34960678 PMCID: PMC8703359 DOI: 10.3390/v13122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.L.); (Y.S.); (X.Q.); (C.M.); (C.S.); (L.T.); (Y.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-3429-3441
| |
Collapse
|
19
|
Hako Touko BA, Kong Mbiydzenyuy AT, Tumasang TT, Awah-Ndukum J. Heritability Estimate for Antibody Response to Vaccination and Survival to a Newcastle Disease Infection of Native chicken in a Low-Input Production System. Front Genet 2021; 12:666947. [PMID: 34659331 PMCID: PMC8514834 DOI: 10.3389/fgene.2021.666947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
The Newcastle disease virus (NDV) is the deadliest chicken pathogen in low-input village poultry, and selecting for NDV resistance has been recommended as a sustainable strategy in backyard poultry production systems. However, selecting for disease resistance needs precision data from either a big population sample size or on many generations with good pedigree records for effective prediction of heritability (h2) and breeding values of the foundation stock. Such conditions are almost impossible to meet in low-input backyard production systems. This study aimed at proposing a realistic method for estimating the heritability of the immune response to vaccination and survival of NDV infection in village poultry production to inform a breeding strategy for ND resistance in Cameroon. A 1 and 3% selection intensity of cocks and hens for higher antibody (ab) response (ABR) to vaccination followed by progeny selection of chickens who survived an experimental NDV infection was conducted from an initial population of 1,702 chickens. The selection induced an increase of 1012.47units/ml (p<0.01) of the NDV antibody of the progeny as well as an effective survival rate (ESR) increase of 11.75%. Three methods were used to estimate the heritability (h2) of NDV antibody response to vaccination. h2 was low irrespective of the method with estimates of 0.2227, 0.2442, and 0.2839 for the breeder’s equation method, the graphical method, and the full-sib/half-sib nested design, respectively. The mortality rate of infected chickens was high (86%). The antibody response to selection was not influenced by sex and genetic type even though the opposite was observed (p<0.05) for the ESR to NDV infection with naked neck chickens recording an ESR of 14% against 2.25% for the normal feather type. A very low heritability (0.0891) was observed for the survival against NDV infection. We confirm the evidence of disease resistance and the effect of selection for antibody response to vaccination on the improvement of the survival against NDV disease. Although the full sib/half sib nested design is more appropriate in case of availability of pedigree information, the direct methods are still useful in case of unavailability of full pedigree information. It is recommended that gene expression analysis should be prioritized for disease-resistance assessment and selection of native breeds of poultry.
Collapse
Affiliation(s)
- Blaise Arnaud Hako Touko
- Biotechnology and Bioinformatics Research Unit, Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon
| | - Anold Tatah Kong Mbiydzenyuy
- Biotechnology and Bioinformatics Research Unit, Department of Animal Production, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Dschang, Cameroon.,Animal Research Lab, Department of Animal Sciences, School of Agriculture and Natural Resources, Catholic University Institute of Buea, Buea, Cameroon
| | - Tebug Thomas Tumasang
- Laboratory of Animal Physiology and Health, Department of Animal Sciences, University of Dschang, Dschang, Cameroon
| | - Julius Awah-Ndukum
- Laboratory of Animal Physiology and Health, Department of Animal Sciences, University of Dschang, Dschang, Cameroon
| |
Collapse
|
20
|
Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen. Sci Rep 2021; 11:17570. [PMID: 34475461 PMCID: PMC8413450 DOI: 10.1038/s41598-021-96929-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Newcastle disease virus (NDV) has caused significant outbreaks in South-East Asia, particularly in Indonesia in recent years. Recently emerged genotype VII NDVs (NDV-GVII) have shifted their tropism from gastrointestinal/respiratory tropism to a lymphotropic virus, invading lymphoid organs including spleen and bursa of Fabricius to cause profound lymphoid depletion. In this study, we aimed to identify candidate genes and biological pathways that contribute to the disease caused by this velogenic NDV-GVII. A transcriptomic analysis based on RNA-Seq of spleen was performed in chickens challenged with NDV-GVII and a control group. In total, 6361 genes were differentially expressed that included 3506 up-regulated genes and 2855 down-regulated genes. Real-Time PCR of ten selected genes validated the RNA-Seq results as the correlation between them is 0.98. Functional and network analysis of Differentially Expressed Genes (DEGs) showed altered regulation of ElF2 signalling, mTOR signalling, proliferation of cells of the lymphoid system, signalling by Rho family GTPases and synaptogenesis signalling in spleen. We have also identified modified expression of IFIT5, PI3K, AGT and PLP1 genes in NDV-GVII infected chickens. Our findings in activation of autophagy-mediated cell death, lymphotropic and synaptogenesis signalling pathways provide new insights into the molecular pathogenesis of this newly emerged NDV-GVII.
Collapse
|
21
|
Vanamamalai VK, Garg P, Kolluri G, Gandham RK, Jali I, Sharma S. Transcriptomic analysis to infer key molecular players involved during host response to NDV challenge in Gallus gallus (Leghorn & Fayoumi). Sci Rep 2021; 11:8486. [PMID: 33875770 PMCID: PMC8055681 DOI: 10.1038/s41598-021-88029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the transcripts of length longer than 200 nucleotides. They are involved in the regulation of various biological activities. Leghorn and Fayoumi breeds of Gallus gallus were known to be having differential resistance against Newcastle Disease Virus (NDV) infection. Differentially expressed genes which were thought to be involved in this pattern of resistance were already studied. Here we report the analysis of the transcriptomic data of Harderian gland of Gallus gallus for studying the lncRNAs involved in regulation of these genes. Using bioinformatics approaches, a total of 37,411 lncRNAs were extracted and 359 lncRNAs were differentially expressing. Functional annotation using co-expression analysis revealed the involvement of lncRNAs in the regulation of various pathways. We also identified 1232 quantitative trait loci (QTLs) associated with the genes interacting with lncRNA. Additionally, we identified the role of lncRNAs as putative micro RNA precursors, and the interaction of differentially expressed Genes with transcription factors and micro RNAs. Our study revealed the role of lncRNAs during host response against NDV infection which would facilitate future experiments in unravelling regulatory mechanisms of development in the genetic improvement of the susceptible breeds of Gallus gallus.
Collapse
Affiliation(s)
- Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Priyanka Garg
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Gautham Kolluri
- ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ravi Kumar Gandham
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Itishree Jali
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddi Extended Q City Road, Gachibowli, Hyderabad, Telangana, 500032, India.
| |
Collapse
|
22
|
Distinct transcriptomic response to Newcastle disease virus infection during heat stress in chicken tracheal epithelial tissue. Sci Rep 2021; 11:7450. [PMID: 33811240 PMCID: PMC8018950 DOI: 10.1038/s41598-021-86795-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Newcastle disease (ND) has a great impact on poultry health and welfare with its most virulent (velogenic) strain. In addition, issues exacerbated by the increase in global temperatures necessitates a greater understanding of the host immune response when facing a combination of biotic and abiotic stress factors in poultry production. Previous investigations have revealed that the host immune response is tissue-specific. The goal of this study was to identify genes and/or signaling pathways associated with immune response to NDV (Newcastle disease virus) in the trachea, an essential organ where NDV replicate after the infection, by profiling the tissue specific transcriptome response in two genetically distinct inbred chicken lines when exposed to both abiotic and biotic stressors. Fayoumis appear to be able to respond more effectively (lower viral titer, higher antibody levels, immune gene up-regulation) and earlier than Leghorns. Our results suggest NDV infection in Fayoumis appears to elicit proinflammatory processes, and pathways such as the inhibition of cell viability, cell proliferation of lymphocytes, and transactivation of RNA, more rapidly than in Leghorns. These differences in immune response converge at later timepoints which may indicate that Leghorns eventually regulate its immune response to infection. The profiling of the gene expression response in the trachea adds to our understanding of the chicken host response to NDV infection and heat stress on a whole genome level and provides potential candidate genes and signaling pathways for further investigation into the characterization of the time-specific and pathway specific responses in Fayoumis and Leghorns.
Collapse
|
23
|
Jadhav A, Zhao L, Liu W, Ding C, Nair V, Ramos-Onsins SE, Ferretti L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111305. [PMID: 33202558 PMCID: PMC7698180 DOI: 10.3390/v12111305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Newcastle disease virus (NDV) infections are well known to harbour quasispecies, due to the error-prone nature of the RNA polymerase. Quasispecies variants in the fusion cleavage site of the virus are known to significantly change its virulence. However, little is known about the genomic patterns of diversity and selection in NDV viral swarms. We analyse deep sequencing data from in vitro and in vivo NDV infections to uncover the genomic patterns of diversity and the signatures of selection within NDV swarms. Variants in viruses from in vitro samples are mostly localised in non-coding regions and 3′ and 5′ untranslated regions (3′UTRs or 5′UTRs), while in vivo samples contain an order of magnitude more variants. We find different patterns of genomic divergence and diversity among NDV genotypes, as well as differences in the genomic distribution of intra-host variants among in vitro and in vivo infections of the same strain. The frequency spectrum shows clear signatures of intra-host purifying selection in vivo on the matrix protein (M) coding gene and positive or diversifying selection on nucleocapsid (NP) and haemagglutinin-neuraminidase (HN). The comparison between within-host polymorphisms and phylogenetic divergence reveals complex patterns of selective pressure on the NDV genome at between- and within-host level. The M sequence is strongly constrained both between and within hosts, fusion protein (F) coding gene is under intra-host positive selection, and NP and HN show contrasting patterns: HN RNA sequence is positively selected between hosts while its protein sequence is positively selected within hosts, and NP is under intra-host positive selection at the RNA level and negative selection at the protein level.
Collapse
Affiliation(s)
- Archana Jadhav
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking GU24 0NF, Surrey, UK; (A.J.); (V.N.)
| | - Lele Zhao
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford OX3 7LF, UK;
| | - Weiwei Liu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (W.L.); (C.D.)
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (W.L.); (C.D.)
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking GU24 0NF, Surrey, UK; (A.J.); (V.N.)
- UK-China Centre of Excellence on Avian Disease Research, Pirbright, Woking GU24 0NF, Surrey, UK
| | - Sebastian E. Ramos-Onsins
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain
- Correspondence: (S.E.R.-O.); (L.F.)
| | - Luca Ferretti
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford OX3 7LF, UK;
- Correspondence: (S.E.R.-O.); (L.F.)
| |
Collapse
|
24
|
Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111249. [PMID: 33147786 PMCID: PMC7693698 DOI: 10.3390/v12111249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
The expression of accessory non-structural proteins V and W in Newcastle disease virus (NDV) infections depends on RNA editing. These proteins are derived from frameshifts of the sequence coding for the P protein via co-transcriptional insertion of one or two guanines in the mRNA. However, a larger number of guanines can be inserted with lower frequencies. We analysed data from deep RNA sequencing of samples from in vitro and in vivo NDV infections to uncover the patterns of mRNA editing in NDV. The distribution of insertions is well described by a simple Markov model of polymerase stuttering, providing strong quantitative confirmation of the molecular process hypothesised by Kolakofsky and collaborators three decades ago. Our results suggest that the probability that the NDV polymerase would stutter is about 0.45 initially, and 0.3 for further subsequent insertions. The latter probability is approximately independent of the number of previous insertions, the host cell, and viral strain. However, in LaSota infections, we also observe deviations from the predicted V/W ratio of about 3:1 according to this model, which could be attributed to deviations from this stuttering model or to further mechanisms downregulating the abundance of W protein.
Collapse
|
25
|
Transcriptome Analysis Reveals Inhibitory Effects of Lentogenic Newcastle Disease Virus on Cell Survival and Immune Function in Spleen of Commercial Layer Chicks. Genes (Basel) 2020; 11:genes11091003. [PMID: 32859030 PMCID: PMC7565929 DOI: 10.3390/genes11091003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
As a major infectious disease in chickens, Newcastle disease virus (NDV) causes considerable economic losses in the poultry industry, especially in developing countries where there is limited access to effective vaccination. Therefore, enhancing resistance to the virus in commercial chickens through breeding is a promising way to promote poultry production. In this study, we investigated gene expression changes at 2 and 6 days post inoculation (dpi) at day 21 with a lentogenic NDV in a commercial egg-laying chicken hybrid using RNA sequencing analysis. By comparing NDV-challenged and non-challenged groups, 526 differentially expressed genes (DEGs) (false discovery rate (FDR) < 0.05) were identified at 2 dpi, and only 36 at 6 dpi. For the DEGs at 2 dpi, Ingenuity Pathway Analysis predicted inhibition of multiple signaling pathways in response to NDV that regulate immune cell development and activity, neurogenesis, and angiogenesis. Up-regulation of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) in response to NDV was consistent between the current and most previous studies. Sprouty RTK signaling antagonist 1 (SPRY1), a DEG in the current study, is in a significant quantitative trait locus associated with virus load at 6 dpi in the same population. These identified pathways and DEGs provide potential targets to further study breeding strategy to enhance NDV resistance in chickens.
Collapse
|
26
|
Li P, He F, Wu C, Zhao G, Hardwidge PR, Li N, Peng Y. Transcriptomic Analysis of Chicken Lungs Infected With Avian and Bovine Pasteurella multocida Serotype A. Front Vet Sci 2020; 7:452. [PMID: 32851030 PMCID: PMC7433353 DOI: 10.3389/fvets.2020.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pasteurella multocida (P. multocida) is a common animal pathogen responsible for many animal diseases. Strains from different hosts exhibit disparate degrees of effect in other species. Here, we characterize an avian P. multocida serogroup A strain (PmQ) showing high lethality to chickens and a bovine P. multocida serogroup A strain (PmCQ2) with no lethality to chickens. We used RNA-seq to profile the transcriptomes of chicken lungs infected with PmQ and PmCQ2. A total of 1,649 differentially expressed genes (DEGs) due to PmQ infection (831 upregulated genes and 818 downregulated genes) and 1427 DEGs (633 upregulated genes and 794 downregulated genes) due to PmCQ2 infection were identified. Functional analysis of these DEGs demonstrated that the TNF signaling pathway, the toll-like receptor signaling pathway, complement and coagulation cascades, and cytokine–cytokine receptor interaction were both enriched in PmQ and PmCQ2 infection. STAT and apoptosis signaling pathways were uniquely enriched by PmQ infection, and the NOD-like receptor signaling pathway was enriched only by PmCQ2 infection. Cell-type enrichment analysis of the transcriptomes showed that immune cells, including macrophages and granulocytes, were enriched in both infection groups. Collectively, our study profiled the transcriptomic response of chicken lungs infected with P. multocida and provided valuable information to understand the chicken responses to P. multocida infection.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guangfu Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China.,The College of Life Sciences, Sichuan University, Chengdu, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Benzarti E, Rivas J, Sarlet M, Franssen M, Moula N, Savini G, Lorusso A, Desmecht D, Garigliany MM. Usutu Virus Infection of Embryonated Chicken Eggs and a Chicken Embryo-Derived Primary Cell Line. Viruses 2020; 12:v12050531. [PMID: 32408481 PMCID: PMC7291025 DOI: 10.3390/v12050531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus, closely related to the West Nile virus (WNV). Similar to WNV, USUV may cause infections in humans, with occasional, but sometimes severe, neurological complications. Further, USUV can be highly pathogenic in wild and captive birds and its circulation in Europe has given rise to substantial avian death. Adequate study models of this virus are still lacking but are critically needed to understand its pathogenesis and virulence spectrum. The chicken embryo is a low-cost, easy-to-manipulate and ethically acceptable model that closely reflects mammalian fetal development and allows immune response investigations, drug screening, and high-throughput virus production for vaccine development. While former studies suggested that this model was refractory to USUV infection, we unexpectedly found that high doses of four phylogenetically distinct USUV strains caused embryonic lethality. By employing immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction, we demonstrated that USUV was widely distributed in embryonic tissues, including the brain, retina, and feather follicles. We then successfully developed a primary cell line from the chorioallantoic membrane that was permissive to the virus without the need for viral adaptation. We believe the future use of these models would foster a significant understanding of USUV-induced neuropathogenesis and immune response and allow the future development of drugs and vaccines against USUV.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - José Rivas
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Nassim Moula
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 46100 Teramo, Italy; (G.S.); (A.L.)
| | - Alessio Lorusso
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 46100 Teramo, Italy; (G.S.); (A.L.)
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
- Correspondence:
| |
Collapse
|
28
|
Deist MS, Gallardo RA, Dekkers JCM, Zhou H, Lamont SJ. Novel Combined Tissue Transcriptome Analysis After Lentogenic Newcastle Disease Virus Challenge in Inbred Chicken Lines of Differential Resistance. Front Genet 2020; 11:11. [PMID: 32117434 PMCID: PMC7013128 DOI: 10.3389/fgene.2020.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Disease has large negative impacts on poultry production. A more comprehensive understanding of host-pathogen interaction can lead to new and improved strategies to maintain health. In particular, host genetic factors can lead to a more effective response to pathogens, hereafter termed resistance. Fayoumi and Leghorn chicken lines have demonstrated relative resistance and susceptibility, respectively, to the Newcastle disease virus (NDV) vaccine strain and many other pathogens. This biological model was used to better understand the host response to a vaccine strain of NDV across three tissues and time points, using RNA-seq. Analyzing the Harderian gland, trachea, and lung tissues together using weighted gene co-expression network analysis (WGCNA) identified important genes that were co-expressed and associated with parameters including: genetic line, days post-infection (dpi), challenge status, sex, and tissue. Pathways and driver genes, such as EIF2AK2, MPEG1, and TNFSF13B, associated with challenge status, dpi, and genetic line were of particular interest as candidates for disease resistance. Overall, by jointly analyzing the three tissues, this study identified genes and gene networks that led to a more comprehensive understanding of the whole animal response to lentogenic NDV than that obtained by analyzing the tissues individually.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
30
|
Wang X, Jia Y, Ren J, Liu H, Adam FA, Wang X, Yang Z. Insights into the chicken bursa of fabricius response to Newcastle disease virus at 48 and 72 hours post-infection through RNA-seq. Vet Microbiol 2019; 236:108389. [PMID: 31500719 DOI: 10.1016/j.vetmic.2019.108389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Newcastle disease virus (NDV) causes significant economic losses to the poultry industry worldwide. As a lymphoid organ, the bursa of Fabricius (BF) plays a pivotal role in destroying invading pathogens. Virulent NDV strains can cause rapid atrophy of the BF; however, there is limited knowledge regarding the BF innate immune response to NDV infection. In this study, we used the virulent NDV strain F48E9 to infect four-week-old chickens and found atrophy of the BF, with severe damage and high NDV viral loads after NDV infection in dying chickens. To better understand the interactions between the host and NDV, we compared the transcriptional profiles at 48 and 72 h following infection with the virulent NDV strain F48E9 using RNA-seq. We identified a total of 1498 differentially expressed genes (DEGs), which were enriched in a variety of biological processes and pathways according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The enriched pathways were associated with innate immune and inflammatory responses as well as metabolism-related signalling pathways. Excessive inflammatory and innate immune responses induced by the NDV strain may be related to severe BF damage. The global survey of changes in gene expression performed herein provides new insights into complicated molecular mechanisms underlying the interaction between NDV and chickens and will enable the use of new strategies to protect chickens against NDV.
Collapse
Affiliation(s)
- Xiangwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Yanqing Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China
| | | | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
31
|
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Qin Q, Long JQ, Chen P, Xu AY, Pan MH, Lu C. Specific genes related to nucleopolyhedrovirus in Bombyx mori susceptible and near-isogenic resistant strains through comparative transcriptome analysis. INSECT MOLECULAR BIOLOGY 2019; 28:473-484. [PMID: 30632225 DOI: 10.1111/imb.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens that causes severe economic losses to sericulture. Comparative transcriptomics analysis has been widely applied to explore the antiviral mechanism in resistant strains. Here, to identify genes involved in BmNPV infection, we identified differentially expressed genes (DEGs) and performed weighted gene co-expression network analysis (WGCNA) between two Bombyx mori strains: strain 871 (susceptible to BmNPV infection) and the near-isogenic strain 871C (resistant to BmNPV). Our results showed that 400 genes were associated with resistance in strain 871C, and 76 genes were related to susceptibility in strain 871. In addition, the correlation analysis of DEGs and WGCNA showed that 40 genes related to resistance were highly expressed in the resistant strain. Among them, gene BGIBMGA004291 was the most noticeable. We further identified the effect of gene BGIBMGA004291, which encoded a multiprotein bridge factor 2 (MBF2) family member (MBF2-10), on viral infection in cells. Our data suggested that MBF2-10 inhibited viral infection. Taken together, this study showed specific module trait correlations related to viral infection in strains 871 and 871C, and we identified a resistance-related gene. These findings suggested promising candidate genes with antiviral activity, aiding in the analysis of the antiviral molecular mechanisms in resistant strains.
Collapse
Affiliation(s)
- T-T Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - L-R Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - N Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Z-Q Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Z-G Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Q Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - J-Q Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - A-Y Xu
- Chinese Academy of Agricultural Sciences, Jiangsu, China
| | - M-H Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - C Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Schilling MA, Memari S, Cattadori IM, Katani R, Muhairwa AP, Buza JJ, Kapur V. Innate Immune Genes Associated With Newcastle Disease Virus Load in Chick Embryos From Inbred and Outbred Lines. Front Microbiol 2019; 10:1432. [PMID: 31281305 PMCID: PMC6596324 DOI: 10.3389/fmicb.2019.01432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching’wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching’wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV.
Collapse
Affiliation(s)
- Megan A Schilling
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Sahar Memari
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Isabella M Cattadori
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States.,Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Amandus P Muhairwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, TZ, United States
| | - Joram J Buza
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States
| | - Vivek Kapur
- Animal Science Department, Pennsylvania State University, University Park, PA, United States.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, TZ, United States.,Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
33
|
Schilling MA, Memari S, Cavanaugh M, Katani R, Deist MS, Radzio-Basu J, Lamont SJ, Buza JJ, Kapur V. Conserved, breed-dependent, and subline-dependent innate immune responses of Fayoumi and Leghorn chicken embryos to Newcastle disease virus infection. Sci Rep 2019; 9:7209. [PMID: 31076577 PMCID: PMC6510893 DOI: 10.1038/s41598-019-43483-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.
Collapse
Affiliation(s)
- Megan A Schilling
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Sahar Memari
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Meredith Cavanaugh
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA
| | - Robab Katani
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Melissa S Deist
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Jessica Radzio-Basu
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA
| | - Susan J Lamont
- The Iowa State University, Department of Animal Science, Ames, IA, 50011, USA
| | - Joram J Buza
- The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania
| | - Vivek Kapur
- The Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, 16802, USA. .,The Pennsylvania State University, Animal Science Department, University Park, PA, 16802, USA. .,The Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, Arusha, Tanzania. .,The Pennsylvania State University, Applied Biological and Biosafety Research Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Saelao P, Wang Y, Chanthavixay G, Gallardo RA, Wolc A, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes (Basel) 2019; 10:genes10010061. [PMID: 30669351 PMCID: PMC6356198 DOI: 10.3390/genes10010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
Newcastle disease virus (NDV) is a highly contagious avian pathogen that poses a tremendous threat to poultry producers in endemic zones due to its epidemic potential. To investigate host genetic resistance to NDV while under the effects of heat stress, a genome-wide association study (GWAS) was performed on Hy-Line Brown layer chickens that were challenged with NDV while under high ambient temperature to identify regions associated with host viral titer, circulating anti-NDV antibody titer, and body weight change. A single nucleotide polymorphism (SNP) on chromosome 1 was associated with viral titer at two days post-infection (dpi), while 30 SNPs spanning a quantitative trait loci (QTL) on chromosome 24 were associated with viral titer at 6 dpi. Immune related genes, such as CAMK1d and CCDC3 on chromosome 1, associated with viral titer at 2 dpi, and TIRAP, ETS1, and KIRREL3, associated with viral titer at 6 dpi, were located in two QTL regions for viral titer that were identified in this study. This study identified genomic regions and candidate genes that are associated with response to NDV during heat stress in Hy-Line Brown layer chickens. Regions identified for viral titer on chromosome 1 and 24, at 2 and 6 dpi, respectively, included several genes that have key roles in regulating the immune response.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
- Hy-Line International, Dallas Center, IA 50063, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
35
|
Shultz AJ, Sackton TB. Immune genes are hotspots of shared positive selection across birds and mammals. eLife 2019; 8:e41815. [PMID: 30620335 PMCID: PMC6338464 DOI: 10.7554/elife.41815] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consistent patterns of positive selection in functionally similar genes can suggest a common selective pressure across a group of species. We use alignments of orthologous protein-coding genes from 39 species of birds to estimate parameters related to positive selection for 11,000 genes conserved across birds. We show that functional pathways related to the immune system, recombination, lipid metabolism, and phototransduction are enriched for positively selected genes. By comparing our results with mammalian data, we find a significant enrichment for positively selected genes shared between taxa, and that these shared selected genes are enriched for viral immune pathways. Using pathogen-challenge transcriptome data, we show that genes up-regulated in response to pathogens are also enriched for positively selected genes. Together, our results suggest that pathogens, particularly viruses, consistently target the same genes across divergent clades, and that these genes are hotspots of host-pathogen conflict over deep evolutionary time.
Collapse
Affiliation(s)
- Allison J Shultz
- Informatics GroupHarvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
- Museum of Comparative ZoologyHarvard UniversityCambridgeUnited States
| | | |
Collapse
|
36
|
Saelao P, Wang Y, Chanthavixay G, Yu V, Gallardo RA, Dekkers JCM, Lamont SJ, Kelly T, Zhou H. Integrated Proteomic and Transcriptomic Analysis of Differential Expression of Chicken Lung Tissue in Response to NDV Infection during Heat Stress. Genes (Basel) 2018; 9:genes9120579. [PMID: 30486457 PMCID: PMC6316021 DOI: 10.3390/genes9120579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Newcastle disease virus (NDV) is a devastating worldwide poultry pathogen with major implications for global food security. In this study, two highly inbred and genetically distinct chicken lines, Fayoumis and Leghorns, were exposed to a lentogenic strain of NDV, while under the effects of heat stress, in order to understand the genetic mechanisms of resistance during high ambient temperatures. Fayoumis, which are relatively more resistant to pathogens than Leghorns, had larger numbers of differentially expressed genes (DEGs) during the early stages of infection when compared to Leghorns and subsequently down-regulated their immune response at the latter stages to return to homeostasis. Leghorns had very few DEGs across all observed time points, with the majority of DEGs involved with metabolic and glucose-related functions. Proteomic analysis corroborates findings made within Leghorns, while also identifying interesting candidate genes missed by expression profiling. Poor correlation between changes observed in the proteomic and transcriptomic datasets highlights the potential importance of integrative approaches to understand the mechanisms of disease response. Overall, this study provides novel insights into global protein and expression profiles of these two genetic lines, and provides potential genetic targets involved with NDV resistance during heat stress in poultry.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Ganrea Chanthavixay
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA.
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Vivian Yu
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA.
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Association of Candidate Genes with Response to Heat and Newcastle Disease Virus. Genes (Basel) 2018; 9:genes9110560. [PMID: 30463235 PMCID: PMC6267452 DOI: 10.3390/genes9110560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease is considered the number one disease constraint to poultry production in low and middle-income countries, however poultry that is raised in resource-poor areas often experience multiple environmental challenges. Heat stress has a negative impact on production, and immune response to pathogens can be negatively modulated by heat stress. Candidate genes and regions chosen for this study were based on previously reported associations with response to immune stimulants, pathogens, or heat, including: TLR3, TLR7, MX, MHC-B (major histocompatibility complex, gene complex), IFI27L2, SLC5A1, HSPB1, HSPA2, HSPA8, IFRD1, IL18R1, IL1R1, AP2A2, and TOLLIP. Chickens of a commercial egg-laying line were infected with a lentogenic strain of NDV (Newcastle disease virus); half the birds were maintained at thermoneutral temperature and the other half were exposed to high ambient temperature before the NDV challenge and throughout the remainder of the study. Phenotypic responses to heat, to NDV, or to heat + NDV were measured. Selected SNPs (single nucleotide polymorphisms) within 14 target genes or regions were genotyped; and genotype effects on phenotypic responses to NDV or heat + NDV were tested in each individual treatment group and the combined groups. Seventeen significant haplotype effects, among seven genes and seven phenotypes, were detected for response to NDV or heat or NDV + heat. These findings identify specific genetic variants that are associated with response to heat and/or NDV which may be useful in the genetic improvement of chickens to perform favorably when faced with pathogens and heat stress.
Collapse
|
38
|
Saelao P, Wang Y, Gallardo RA, Lamont SJ, Dekkers JM, Kelly T, Zhou H. Novel insights into the host immune response of chicken Harderian gland tissue during Newcastle disease virus infection and heat treatment. BMC Vet Res 2018; 14:280. [PMID: 30208883 PMCID: PMC6134752 DOI: 10.1186/s12917-018-1583-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Background Newcastle disease virus, in its most pathogenic form, threatens the livelihood of rural poultry farmers where there is a limited infrastructure and service for vaccinations to prevent outbreaks of the virus. Previously reported studies on the host response to Newcastle disease in chickens have not examined the disease under abiotic stressors, such as heat, which commonly experienced by chickens in regions such as Africa. The objective of this study was to elucidate the underlying biological mechanisms that contribute to disease resistance in chickens to the Newcastle disease virus while under the effects of heat stress. Results Differential gene expression analysis identified genes differentially expressed between treated and non-treated birds across three time points (2, 6, and 10 days post-infection) in Fayoumi and Leghorn birds. Across the three time points, Fayoumi had very few genes differentially expressed between treated and non-treated groups at 2 and 6 days post-infection. However, 202 genes were differentially expressed at 10 days post-infection. Alternatively, Leghorn had very few genes differentially expressed at 2 and 10 days post-infection but had 167 differentially expressed genes at 6 days post-infection. Very few differentially expressed genes were shared between the two genetic lines, and pathway analysis found unique signaling pathways specific to each genetic line. Fayoumi had significantly lower viral load, higher viral clearance, higher anti-NDV antibody levels, and fewer viral transcripts detected compared to Leghorns. Fayoumis activated immune related pathways including SAPK/JNK and p38 MAPK signaling pathways at earlier time points, while Leghorn would activate these same pathways at a later time. Further analysis revealed activation of the GP6 signaling pathway that may be responsible for the susceptible Leghorn response. Conclusions The findings in this study confirmed our hypothesis that the Fayoumi line was more resistant to Newcastle disease virus infection compared to the Leghorn line. Within line and interaction analysis demonstrated substantial differences in response patterns between the two genetic lines that was not observed from the within line contrasts. This study has provided novel insights into the transcriptome response of the Harderian gland tissue during Newcastle disease virus infection while under heat stress utilizing a unique resistant and susceptible model. Electronic supplementary material The online version of this article (10.1186/s12917-018-1583-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Perot Saelao
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA.,Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jack M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Terra Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA.,One Health Institute, University of California, Davis, CA, 95616, USA
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA, 95616, USA. .,Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
39
|
Rowland K, Wolc A, Gallardo RA, Kelly T, Zhou H, Dekkers JCM, Lamont SJ. Genetic Analysis of a Commercial Egg Laying Line Challenged With Newcastle Disease Virus. Front Genet 2018; 9:326. [PMID: 30177951 PMCID: PMC6110172 DOI: 10.3389/fgene.2018.00326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
In low income countries, chickens play a vital role in daily life. They provide a critical source of protein through egg production and meat. Newcastle disease, caused by avian paramyxovirus type 1, has been ranked as the most devastating disease for scavenging chickens in Africa and Asia. High mortality among flocks infected with velogenic strains leads to a devastating loss of dietary protein and buying power for rural households. Improving the genetic resistance of chickens to Newcastle Disease virus (NDV), in addition to vaccination, is a practical target for improvement of poultry production in low income countries. Because response to NDV has a component of genetic control, it can be influenced through selective breeding. Adding genomic information to a breeding program can increase the amount of genetic progress per generation. In this study, we challenged a commercial egg-laying line with a lentogenic strain of NDV, measured phenotypic responses, collected genotypes, and associated genotypes with phenotypes. Collected phenotypes included viral load at 2 and 6 days post-infection (dpi), antibody levels pre-challenge and 10 dpi, and growth rates pre- and post-challenge. Six suggestive QTL associated with response to NDV and/or growth were identified, including novel and known QTL confirming previously reported associations with related traits. Additionally, previous RNA-seq analysis provided support for several of the genes located in or near the identified QTL. Considering the trend of negative genetic correlation between antibody and Newcastle Disease tolerance (growth under disease) and estimates of moderate to high heritability, we provide evidence that these NDV response traits can be influenced through selective breeding. Producing chickens that perform favorably in challenging environments will ultimately increase the supply of quality protein for human consumption.
Collapse
Affiliation(s)
- Kaylee Rowland
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA, United States.,Hy-Line International, Dallas Center, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
40
|
Deist MS, Lamont SJ. What Makes the Harderian Gland Transcriptome Different From Other Chicken Immune Tissues? A Gene Expression Comparative Analysis. Front Physiol 2018; 9:492. [PMID: 29867543 PMCID: PMC5952037 DOI: 10.3389/fphys.2018.00492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
The Harderian gland is a sparsely characterized immune tissue known to play an important role in local immunity. The function of the Harderian gland, however, is not clearly defined. Measuring the expression of all genes using RNA-seq enables the identification of genes, pathways, or networks of interest. Our relative RNA-seq expression analysis compared the chicken Harderian gland transcriptome to other important primary and secondary immune tissues including the bursa of Fabricius, thymus, and spleen of non-challenged birds. A total of 2,386 transcripts were identified as highly expressed in the Harderian gland. Gene set enrichment showed the importance of G-protein coupled receptor signaling and several immune pathways. Among the genes highly expressed in the Harderian gland were 48 miRNAs, a category of genetic elements involved in regulation of gene expression. Several identified miRNAs have immune related functions. This analysis gives insight to the unique immune processes inherent in the Harderian gland.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
41
|
Deist MS, Gallardo RA, Bunn DA, Kelly TR, Dekkers JCM, Zhou H, Lamont SJ. Novel analysis of the Harderian gland transcriptome response to Newcastle disease virus in two inbred chicken lines. Sci Rep 2018; 8:6558. [PMID: 29700338 PMCID: PMC5920083 DOI: 10.1038/s41598-018-24830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/06/2018] [Indexed: 01/14/2023] Open
Abstract
Behind each eye of the chicken resides a unique lymph tissue, the Harderian gland, for which RNA sequencing (RNA-seq) analysis is novel. We characterized the response of this tissue to Newcastle disease virus (NDV) in two inbred lines with different susceptibility to NDV across three time points. Three-week-old relatively resistant (Fayoumi) and relatively susceptible (Leghorn) birds were inoculated with a high-titered (107EID50) La Sota strain of NDV via an oculonasal route. At 2, 6, and 10 days post infection (dpi) Harderian glands were collected and analyzed via RNA-seq. The Fayoumi had significantly more detectable viral transcripts in the Harderian gland at 2 dpi than the Leghorn, but cleared the virus by 6 dpi. At all three time points, few genes were declared differentially expressed (DE) between the challenged and nonchallenged birds, except for the Leghorns at 6 dpi, and these DE genes were predicted to activate an adaptive immune response. Relative to the Leghorn, the Fayoumi was predicted to activate more immune pathways in both challenged and nonchallenged birds suggesting a more elevated immune system in the Fayoumis under homeostatic conditions. Overall, this study helped characterize the function of this important tissue and its response to NDV.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - David A Bunn
- Department of Animal Science, University of California, Davis, California, USA
| | - Terra R Kelly
- Department of Animal Science, University of California, Davis, California, USA.,One Health Institute, University of California, Davis, California, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
42
|
Liu W, Qiu X, Song C, Sun Y, Meng C, Liao Y, Tan L, Ding Z, Liu X, Ding C. Deep Sequencing-Based Transcriptome Profiling Reveals Avian Interferon-Stimulated Genes and Provides Comprehensive Insight into Newcastle Disease Virus-Induced Host Responses. Viruses 2018; 10:E162. [PMID: 29601508 PMCID: PMC5923456 DOI: 10.3390/v10040162] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic losses to the poultry industry worldwide, with variations in NDV pathogenicity due to the differences in virulence between strains. However, there is limited knowledge regarding the avian innate immune response to NDV infection. In this study, transcriptional profiles were obtained from chick embryo fibroblasts (CEFs) that were infected with the highly virulent NDV Herts/33 strain or the nonvirulent LaSota strain using RNA-seq. This yielded 8433 transcripts that were associated with NDV infection. This list of candidate genes was then further examined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. It showed a high enrichment in the areas of cellular components and metabolic processes, with the cellular components possibly being associated with NDV pathogenicity. Among these 8433 transcripts, 3616 transcripts associated with interferon-stimulated genes (ISGs) were obtained; these transcripts are involved in metabolic processes, including protein phosphorylation and protein modification. These results provide further insight into the identification of genes that are involved in NDV infection. The global survey of changes in gene expression performed herein provides new insights into the complicated molecular mechanisms underlying virus and host interactions and will enable the use of new strategies to protect chickens against this virus.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Zhuang Ding
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
43
|
Schilling MA, Katani R, Memari S, Cavanaugh M, Buza J, Radzio-Basu J, Mpenda FN, Deist MS, Lamont SJ, Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Front Genet 2018. [PMID: 29535762 PMCID: PMC5835104 DOI: 10.3389/fgene.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.
Collapse
Affiliation(s)
- Megan A Schilling
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,Applied Biological Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Sahar Memari
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Meredith Cavanaugh
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Joram Buza
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jessica Radzio-Basu
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Fulgence N Mpenda
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|