1
|
Head TB, Pérez-Moreno JL, Ventura T, Durica DS, Mykles DL. Two cGMP-dependent protein kinases have opposing effects on molt-inhibiting hormone regulation of Y-organ ecdysteroidogenesis. J Exp Biol 2025; 228:JEB249739. [PMID: 39850985 DOI: 10.1242/jeb.249739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Decapod crustaceans regulate molting through steroid molting hormones (ecdysteroids) synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers. cGMP-dependent protein kinase (PKG) is the presumed effector of MIH signaling by inhibiting mechanistic Target of Rapamycin Complex 1 (mTORC1)-dependent ecdysteroidogenesis. Phylogenetic analysis of PKG contiguous sequences in CrusTome, as well as 35 additional species in NCBI RefSeq, identified 206 PKG1 sequences in 108 species and 59 PKG2 sequences in 53 species. These included four PKG1α splice variants in the N-terminal region that were unique to decapods, as well as PKG1β and PKG2 homologs. In vitro assays using YOs from the blackback land crab (Gecarcinus lateralis) and green shore crab (Carcinus maenas) determined the effects of MIH±PKG inhibitors on ecdysteroid secretion. A general PKG inhibitor, Rp-8-Br-PET-cGMPS, countered the effects of MIH, as ecdysteroid secretion increased in PKG-inhibited YOs compared with C. maenas YOs incubated with MIH alone. By contrast, a PKG2-specific inhibitor, AP-C5 {4-(4-[1H-imidazol-1-yl]phenyl)-N-2-propyn-1-yl-2-pyrimidinamine}, enhanced the effects of MIH, as ecdysteroid secretion decreased in G. lateralis and C. maenas YOs incubated with AP-C5 and MIH compared with YOs incubated with MIH alone. These data suggest that both PKG1 and PKG2 are activated by MIH, but have opposing effects on mTORC1-dependent ecdysteroidogenesis. A model is proposed in which the dominant role of PKG1 is countered by PKG2, resulting in low ecdysteroid production by the basal YO during intermolt.
Collapse
Affiliation(s)
- Talia B Head
- Department of Biology, Colorado State University, Fort Collins, CO 80521, USA
| | | | - Tomer Ventura
- Centre for Bioinnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - David S Durica
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80521, USA
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
2
|
Hoppes JL, Wilcockson DC, Webster SG. Allatostatin-C signaling in the crab Carcinus maenas is implicated in the ecdysis program. J Exp Biol 2025; 228:JEB249929. [PMID: 39865907 PMCID: PMC11959706 DOI: 10.1242/jeb.249929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
The allatostatin (AST) family of neuropeptides are widespread in arthropods. The multitude of structures and pleiotropic actions reflect the tremendous morphological, physiological and behavioral diversity of the phylum. Regarding the AST-C (with C-terminal PISCF motif) peptides, crustaceans commonly express three (AST-C, AST-CC and AST-CCC) that have likely arisen by gene duplication. However, we know little regarding their physiologically relevant actions. Here, we functionally characterize the cognate receptor for AST-C and AST-CC, determine tissue expression, and comprehensively examine the localization of AST mRNA and peptide. We also measured peptide release, circulating titers and performed bioassays to investigate possible roles. AST-C and AST-CC activate a single receptor (AST-CRd), but this, and other candidate receptors, were not activated by AST-CCC. Whole-mount in situ hybridization and hybridization chain reaction fluorescent in situ hybridization complemented neuropeptide immunolocalization strategies and revealed extensive expression of AST-Cs in the central nervous system. AST-C or AST-CCC expressing neurons were found in the cerebral ganglia, but AST-CC expression was never observed. Of note, we infer that AST-C and AST-CC are co-expressed in every neuron expressing crustacean cardioactive peptide (CCAP) and bursicon (BURS); all four peptides are released from the pericardial organs during a brief period coinciding with completion of emergence. In contrast to other studies, none of the AST-C peptides exhibited any effect on ecdysteroid synthesis or cardiac activity. However, expression of the AST-C receptor on hemocytes suggests a tantalizing glimpse of possible functions in immune modulation following ecdysis, at a time when crustaceans are vulnerable to pathogens.
Collapse
Affiliation(s)
- Jodi L. Hoppes
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor LL57 2UW, UK
| | - David C. Wilcockson
- Department of Life Sciences, Edward Llywd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Simon G. Webster
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
3
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
4
|
Tang Y, Liu F, Lu L, Liu A, Ye H. Identification of ETH receptor and its possible roles in the mud crab Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111692. [PMID: 38977174 DOI: 10.1016/j.cbpa.2024.111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Ecdysis-triggering hormone (ETH) is a neuropeptide hormone characterized by a conserved KxxKxxPRx amide structure widely identified in arthropods. While its involvement in the regulation of molting and reproduction in insects is well-established, its role in crustaceans has been overlooked. This study aimed to de-orphanise a receptor for ETH in the mud crab Scylla paramamosain and explore its potential impact on ovarian development. A 513-amino-acid G protein-coupled receptor for ETH (SpETHR) was identified in S. paramamosain, exhibiting a dose-dependent activation by SpETH with an EC50 value of 75.18 nM. Tissue distribution analysis revealed SpETH was in the cerebral ganglion and thoracic ganglion, while SpETHR was specifically expressed in the ovary, hepatopancreas, and Y-organ of female crabs. In vitro experiments demonstrated that synthetic SpETH (at a concentration of 10-8 M) significantly increased the expression of SpVgR in the ovary and induced ecdysone biosynthesis in the Y-organ. In vivo experiments showed a significant upregulation of SpEcR in the ovary and Disembodied and Shadow in the Y-organ after 12 h of SpETH injection. Furthermore, a 16-day administration of SpETH significantly increased 20E titers in hemolymph, gonadosomatic index (GSI) and oocyte size of S. paramamosain. In conclusion, our findings suggest that SpETH may play stimulatory roles in ovarian development and ecdysone biosynthesis by the Y-organ.
Collapse
Affiliation(s)
- Yiwei Tang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China.
| |
Collapse
|
5
|
Toyota K. Crustacean endocrinology: Sexual differentiation and potential application for aquaculture. Gen Comp Endocrinol 2024; 356:114578. [PMID: 38971237 DOI: 10.1016/j.ygcen.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Crustaceans, which represent a significant subset of arthropods, are classified into three major classes: Ostracoda, Malacostraca, and Branchiopoda. Among them, sex manipulation in decapod species from the Malacostraca class has been extensively researched for aquaculture purposes and to study reproductive physiology and sexual plasticity. Some decapods exhibit sexual dimorphism that influences their biological and economic value. Monosex culture, in which only one sex is cultivated, increases production yields while reducing the risk of invasiveness, as genetic leakage into natural waters is less likely to occur. Differences in yield are also observed when cultivating different sexes, with all-male cultures of Macrobrachium rosenbergii being more profitable than both mixed and all-female cultures. Research on decapod sexual differentiation has led to a better understanding of sex determination and sexual differentiation processes in arthropods. Similar to most mammals and other vertebrate classes, Malacostraca crustaceans, including decapods, exhibit a cell-non-autonomous mode of sexual development. Genetic factors (e.g., sex chromosomes) and endocrine factors (e.g., insulin-like androgenic gland factor and crustacean female sex hormone) play pivotal roles in the development of sexually dimorphic traits. This review synthesizes the existing understanding of sex determination mechanisms and the role of sex hormones in decapod species. Additionally, it provides an overview of the methyl farnesoate, which has been suggested to be involved in male sex differentiation in some crab species, as well as the phenomenon of male-to-female sex reversal in host decapods caused by parasitic crustaceans.
Collapse
Affiliation(s)
- Kenji Toyota
- Department of Bioresource Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, Hiroshima 739-8528, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
6
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
7
|
Flores KA, Pérez-Moreno JL, Durica DS, Mykles DL. Phylogenetic and transcriptomic characterization of insulin and growth factor receptor tyrosine kinases in crustaceans. Front Endocrinol (Lausanne) 2024; 15:1379231. [PMID: 38638139 PMCID: PMC11024359 DOI: 10.3389/fendo.2024.1379231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.
Collapse
Affiliation(s)
- Kaylie A. Flores
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, United States
| |
Collapse
|
8
|
Sullivan LF, Barker MS, Felix PC, Vuong RQ, White BH. Neuromodulation and the toolkit for behavioural evolution: can ecdysis shed light on an old problem? FEBS J 2024; 291:1049-1079. [PMID: 36223183 PMCID: PMC10166064 DOI: 10.1111/febs.16650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 05/10/2023]
Abstract
The geneticist Thomas Dobzhansky famously declared: 'Nothing in biology makes sense except in the light of evolution'. A key evolutionary adaptation of Metazoa is directed movement, which has been elaborated into a spectacularly varied number of behaviours in animal clades. The mechanisms by which animal behaviours have evolved, however, remain unresolved. This is due, in part, to the indirect control of behaviour by the genome, which provides the components for both building and operating the brain circuits that generate behaviour. These brain circuits are adapted to respond flexibly to environmental contingencies and physiological needs and can change as a function of experience. The resulting plasticity of behavioural expression makes it difficult to characterize homologous elements of behaviour and to track their evolution. Here, we evaluate progress in identifying the genetic substrates of behavioural evolution and suggest that examining adaptive changes in neuromodulatory signalling may be a particularly productive focus for future studies. We propose that the behavioural sequences used by ecdysozoans to moult are an attractive model for studying the role of neuromodulation in behavioural evolution.
Collapse
Affiliation(s)
- Luis F Sullivan
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Matthew S Barker
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Princess C Felix
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Richard Q Vuong
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| | - Benjamin H White
- Section on Neural Function, Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Buckley SJ, Nguyen TV, Cummins SF, Elizur A, Fitzgibbon QP, Smith GS, Mykles DL, Ventura T. Evaluating conserved domains and motifs of decapod gonadotropin-releasing hormone G protein-coupled receptor superfamily. Front Endocrinol (Lausanne) 2024; 15:1348465. [PMID: 38444586 PMCID: PMC10912298 DOI: 10.3389/fendo.2024.1348465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are an ancient family of signal transducers that are both abundant and consequential in metazoan endocrinology. The evolutionary history and function of the GPCRs of the decapod superfamilies of gonadotropin-releasing hormone (GnRH) are yet to be fully elucidated. As part of which, the use of traditional phylogenetics and the recycling of a diminutive set of mis-annotated databases has proven insufficient. To address this, we have collated and revised eight existing and three novel GPCR repertoires for GnRH of decapod species. We developed a novel bioinformatic workflow that included clustering analysis to capture likely GnRH receptor-like proteins, followed by phylogenetic analysis of the seven transmembrane-spanning domains. A high degree of conservation of the sequences and topology of the domains and motifs allowed the identification of species-specific variation (up to ~70%, especially in the extracellular loops) that is thought to be influential to ligand-binding and function. Given the key functional role of the DRY motif across GPCRs, the classification of receptors based on the variation of this motif can be universally applied to resolve cryptic GPCR families, as was achieved in this work. Our results contribute to the resolution of the evolutionary history of invertebrate GnRH receptors and inform the design of bioassays in their deorphanization and functional annotation.
Collapse
Affiliation(s)
- Sean J. Buckley
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Tuan Viet Nguyen
- Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, Australia
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Quinn P. Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, Australia
| | - Gregory S. Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
10
|
Mo N, Shao S, Zhuang Y, Yang Y, Cui Z, Bao C. Activation and characterization of G protein-coupled receptors for CHHs in the mud crab, Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111563. [PMID: 38122925 DOI: 10.1016/j.cbpa.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yan Zhuang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
11
|
Kozma MT, Pérez-Moreno JL, Gandhi NS, Hernandez Jeppesen L, Durica DS, Ventura T, Mykles DL. In silico analysis of crustacean hyperglycemic hormone family G protein-coupled receptor candidates. Front Endocrinol (Lausanne) 2024; 14:1322800. [PMID: 38298185 PMCID: PMC10828670 DOI: 10.3389/fendo.2023.1322800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR). The YO of the blackback land crab, Gecarcinus lateralis, expresses 49 Class A GPCRs, three of which (Gl-CHHR-A9, -A10, and -A12) were provisionally assigned as CHH-like receptors. CrusTome, a transcriptome database assembled from 189 crustaceans and 12 ecdysozoan outgroups, was used to deorphanize candidate MIH/CHH GPCRs, relying on sequence homology to three functionally characterized ITP receptors (BNGR-A2, BNGR-A24, and BNGR-A34) in the silk moth, Bombyx mori. Phylogenetic analysis and multiple sequence alignments across major taxonomic groups revealed extensive expansion and diversification of crustacean A2, A24, and A34 receptors, designated CHH Family Receptor Candidates (CFRCs). The A2 clade was divided into three subclades; A24 clade was divided into five subclades; and A34 was divided into six subclades. The subclades were distinguished by conserved motifs in extracellular loop (ECL) 2 and ECL3 in the ligand-binding region. Eleven of the 14 subclades occurred in decapod crustaceans. In G. lateralis, seven CFRC sequences, designated Gl-CFRC-A2α1, -A24α, -A24β1, -A24β2, -A34α2, -A34β1, and -A34β2, were identified; the three A34 sequences corresponded to Gl-GPCR-A12, -A9, and A10, respectively. ECL2 in all the CFRC sequences had a two-stranded β-sheet structure similar to human Class A GPCRs, whereas the ECL2 of decapod CFRC-A34β1/β2 had an additional two-stranded β-sheet. We hypothesize that this second β-sheet on ECL2 plays a role in MIH/CHH binding and activation, which will be investigated further with functional assays.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Neha S. Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tomer Ventura
- Centre for BioInnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Coastal and Marine Sciences Institute, University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
12
|
Wang T, Bachvaroff T, Chung JS. Identifying the genes involved in the egg-carrying ovigerous hair development of the female blue crab Callinectes sapidus: transcriptomic and genomic expression analyses. BMC Genomics 2023; 24:764. [PMID: 38082257 PMCID: PMC10712104 DOI: 10.1186/s12864-023-09862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Crustacean female sex hormone (CFSH) controls gradually developing adult female-specific morphological features essential for mating and brood care. Specifically, ovigerous hairs are developed during the prepuberty molt cycle of the blue crab Callinectes sapidus that are essential for carrying the eggs until they finish development. Reduced CFSH transcripts by CFSH-dsRNA injections result in fewer and shorter ovigerous hairs than the control. This study aimed to identify the specific genes responsible for ovigerous hair formation using transcriptomic, genomic and expression analyses of the ovigerous setae at three stages: prepuberty at early (OE) and late premolt (OL), and adult (AO) stages. RESULTS The de novo Trinity assembly on filtered sequence reads produced 96,684 Trinity genes and 124,128 transcripts with an N50 of 1,615 bp. About 27.3% of the assembled Trinity genes are annotated to the public protein sequence databases (i.e., NR, Swiss-Prot, COG, KEGG, and GO databases). The OE vs. OL, OL vs. AO, and OE vs. AO comparisons resulted in 6,547, 7,793, and 7,481 differentially expressed genes, respectively, at a log2-fold difference. Specifically, the genes involved in the Wnt signaling and cell cycle pathways are positively associated with ovigerous hair development. Moreover, the transcripts of ten cuticle protein genes containing chitin-binding domains are most significantly changed by transcriptomic analysis and RT-qPCR assays, which shows a molt-stage specific, down-up-down mode across the OE-OL-AO stages. Furthermore, the expression of the cuticle genes with the chitin-binding domain, Rebers and Riddiford domain (RR)-1 appears at early premolt, followed by RR-2 at late premolt stage. Mapping these 10 cuticle protein sequences to the C. sapidus genome reveals that two scaffolds with a 549.5Kb region and 35 with a 1.19 Mb region harbor 21 RR1 and 20 RR2 cuticle protein genes, respectively. With these findings, a putative mode of CFSH action in decapod crustaceans is proposed. CONCLUSIONS The present study describes a first step in understanding the mechanism underlying ovigerous hair formation in C. sapidus at the molecular level. Overall, demonstrating the first transcriptome analysis of crustacean ovigerous setae, our results may facilitate future studies into the decapod female reproduction belonging to the suborder Pleocyemata.
Collapse
Affiliation(s)
- Tao Wang
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA.
| |
Collapse
|
13
|
Toyota K, Matsushima H, Osanai R, Okutsu T, Yamane F, Ohira T. Dual roles of crustacean female sex hormone during juvenile stage in the kuruma prawn Marsupenaeus japonicus. Gen Comp Endocrinol 2023; 344:114374. [PMID: 37683706 DOI: 10.1016/j.ygcen.2023.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The crustacean female sex hormone (CFSH) has been identified as a female-specific hormone that plays a crucial role in female phenotype developments in the blue crab Callinectes sapidus. To date, its homologous genes have been reported in various decapod species. Additionally, unlike the blue crab, several species have two different CFSH subtypes. The kuruma prawn Marsupenaeus japonicus is a representative example species of this phenomenon, having two CFSH subtypes identified from the eyestalk (MajCFSH) and ovary (MajCFSH-ov). Eyestalk-type MajCFSH is expressed predominantly in the eyestalk at the same level in both sexes, indicating no female-specificity. Here, we conducted gene knockdown analysis of eyestalk-type MajCFSH using sexually immature juveniles of kuruma prawn (average body length: ∼10 mm) to elucidate its physiological functions. As a result, MajCFSH-knockdown did not affect the development of sex-specific characteristics such as external reproductive organs, while it induced apparent growth suppression in male juveniles, implying that MajCFSH may play a male-biased juvenile growth role. Moreover, MajCFSH-knockdown female and male juveniles changed their body color to become brighter, indicating that MajCFSH has the ability to change body color by dispersing the pigment granules in the chromatophore. Overall, our present study improved our understanding of the physiological roles of CFSH using kuruma prawn.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Hanako Matsushima
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Rei Osanai
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Tomoyuki Okutsu
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Fumihiro Yamane
- Mie Prefectural Fish Farming Center, Shima, Mie 517-0404, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| |
Collapse
|
14
|
Zatylny-Gaudin C, Hervé O, Dubos MP, Rabet N, Henry J, Liittschwager K, Fabienne A. Differential analysis of the haemolymph proteome of Carcinus maenas parasitized by Sacculina carcini (Cirripeda, Rhizocephala) reveals potential mechanisms of parasite control. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109064. [PMID: 37689227 DOI: 10.1016/j.fsi.2023.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Sacculina carcini is an endoparasite of the green crab, Carcinus maenas. This parasite induces behavioural changes in its host and affects its metabolism by inhibiting moulting and reproduction. Using a proteomic approach in mass spectrometry, we studied the haemolymph proteomes of healthy and parasitized wild green crabs from Brittany, France to identify proteins that are differentially expressed as a consequence of parasitization. We also investigated specific proteins involved in reproduction, moulting, and immunity. We detected 77 proteins for females and 53 proteins for males that were differentially present between the healthy and parasitized crabs, some of which were sex-specific. Detection of these differentially expressed proteins suggests that the parasite can inhibit and promote different aspects of the immune response of the host. Sacculina appears to inhibit host melanisation for self-protection, while promoting the presence of immune factors, such as antimicrobial peptides to cope with possible bacterial superinfections. Moreover, one protein, juvenile hormone esterase-like carboxylesterase, was 17-times more abundant in parasitized crabs than in healthy crabs and may be responsible for inhibiting moulting and reproduction in parasitized crabs, thus ensuring the success of Sacculina reproduction.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Océane Hervé
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Marie-Pierre Dubos
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | - Nicolas Rabet
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France.
| | - Joël Henry
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France; Université de CAEN-Normandie, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
| | | | - Audebert Fabienne
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN, Sorbonne Université, CNRS, IRD-207, Université de Caen-Normandie, UA, 43 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
15
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
16
|
Liu F, Huang L, Liu A, Jiang Q, Huang H, Ye H. Identification of a Putative CFSH Receptor Inhibiting IAG Expression in Crabs. Int J Mol Sci 2023; 24:12240. [PMID: 37569617 PMCID: PMC10418988 DOI: 10.3390/ijms241512240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The crustacean female sex hormone (CFSH) is a neurohormone peculiar to crustaceans that plays a vital role in sexual differentiation. This includes the preservation and establishment of secondary female sexual traits, as well as the inhibition of insulin-like androgenic gland factor (IAG) expression in the androgenic gland (AG). There have been no reports of CFSH receptors in crustaceans up to this point. In this study, we identified a candidate CFSH receptor from the mud crab Scylla paramamosain (named Sp-SEFIR) via protein interaction experiments and biological function experiments. Results of GST pull-down assays indicated that Sp-SEFIR could combine with Sp-CFSH. Findings of in vitro and in vivo interference investigations exhibited that knockdown of Sp-SEFIR could significantly induce Sp-IAG and Sp-STAT expression in the AG. In brief, Sp-SEFIR is a potential CFSH receptor in S. paramamosain, and Sp-CFSH controls Sp-IAG production through the CFSH-SEFIR-STAT-IAG axis.
Collapse
Affiliation(s)
- Fang Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Lin Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - An Liu
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| | - Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (L.H.); (Q.J.); (H.H.)
| | - Haihui Ye
- Fisheries College, Jimei University, Xiamen 361021, China; (F.L.); (A.L.)
| |
Collapse
|
17
|
Phetsanthad A, Carr AV, Fields L, Li L. Definitive Screening Designs to Optimize Library-Free DIA-MS Identification and Quantification of Neuropeptides. J Proteome Res 2023; 22:1510-1519. [PMID: 36921255 DOI: 10.1021/acs.jproteome.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Method optimization is crucial for successful mass spectrometry (MS) analysis. However, extensive method assessments, altering various parameters individually, are rarely performed due to practical limitations regarding time and sample quantity. To maximize sample space for optimization while maintaining reasonable instrumentation requirements, a definitive screening design (DSD) is leveraged for systematic optimization of data-independent acquisition (DIA) parameters to maximize crustacean neuropeptide identifications. While DSDs require several injections, a library-free methodology enables surrogate sample usage for comprehensive optimization of MS parameters to assess biomolecules from limited samples. We identified several parameters contributing significant first- or second-order effects to method performance, and the DSD model predicted ideal values to implement. These increased reproducibility and detection capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides identified through data-dependent acquisition (DDA) and a published DIA method for crustacean neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using standard material, not reliant on spectral libraries for the analysis of any low abundance molecules from previous samples of limited availability. This extends the DIA method to low abundance isoforms dysregulated or only detectable in disease samples, thus improving characterization of previously inaccessible biomolecules, such as neuropeptides. Data are available via ProteomeXchange with identifier PXD038520.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Austin V Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
19
|
Techa S, Thongda W, Bunphimpapha P, Ittarat W, Boonbangyang M, Wilantho A, Ngamphiw C, Pratoomchat B, Nounurai P, Piyapattanakorn S. Isolation and functional identification of secretin family G-protein coupled receptor from Y-organ of the mud crab, Scylla olivacea. Gene X 2023; 848:146900. [DOI: 10.1016/j.gene.2022.146900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022] Open
|
20
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
21
|
Comparative Transcriptome Analysis on the Regulatory Mechanism of Thoracic Ganglia in Eriocheir sinensis at Post-Molt and Inter-Molt Stages. Life (Basel) 2022; 12:life12081181. [PMID: 36013360 PMCID: PMC9409648 DOI: 10.3390/life12081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Eriocheir sinensis is an aquatic species found distributed worldwide. It is found in the Yangtze River of China, where the commercial fishing of this valuable catadromous aquatic species has been banned. As an important member of the phylum Arthropoda, E. sinensis grows by molting over its whole lifespan. The central nervous system of Eriocheir sinensis plays an important regulatory role in molting growth. Nevertheless, there are no reports on the regulatory mechanisms of the nervous system in E. sinensis during the molting cycle. In this study, a comparative transcriptome analysis of E. sinensis thoracic ganglia at post-molt and inter-molt stages was carried out for the first time to reveal the key regulatory pathways and functional genes operating at the post-molt stage. The results indicate that pathways and regulatory genes related to carapace development, tissue regeneration, glycolysis and lipolysis and immune and anti-stress responses were significantly differentially expressed at the post-molt stage. The results of this study lay a theoretical foundation for research on the regulatory network of the E. sinensis nervous system during the post-molt developmental period. Detailed knowledge of the regulatory network involved in E. sinensis molting can be used as a basis for breeding improved E. sinensis species, recovery of the wild E. sinensis population and prosperous development of the E. sinensis artificial breeding industry.
Collapse
|
22
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Weiner AC, Chen HY, Roegner ME, Watson RD. Calcium signaling and regulation of ecdysteroidogenesis in crustacean Y-organs. Gen Comp Endocrinol 2021; 314:113901. [PMID: 34530000 DOI: 10.1016/j.ygcen.2021.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Crustacean Y-organs secrete ecdysteroid molting hormones. Ecdysteroids are released in increased amount during premolt, circulate in hemolymph, and stimulate the events in target cells that lead to molting. During much of the molting cycle, ecdysteroid production is suppressed by molt-inhibiting hormone (MIH), a peptide neurohormone produced in the eyestalks. The suppressive effect of MIH is mediated by a cyclic nucleotide second messenger. A decrease in circulating MIH is associated with an increase in the hemolymphatic ecdysteroid titer during pre-molt. Nevertheless, it has long been hypothesized that a positive regulatory signal or stimulus is also involved in promoting ecdysteroidogenensis during premolt. Data reviewed here are consistent with the hypothesis that an intracellular Ca2+ signal provides that stimulus. Pharmacological agents that increase intracellular Ca2+ in Y-organs promote ecdysteroidogenesis, while agents that lower intracellular Ca2+ or disrupt Ca2+ signaling suppress ecdysteroidogenesis. Further, an increase in the hemolymphatic ecdysteroid titer after eyestalk ablation or during natural premolt is associated with an increase in intracellular free Ca2+ in Y-organ cells. Several lines of evidence suggest elevated intracellular calcium is linked to enhanced ecdysteroidogenesis through activation of Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, thereby lowering intracellular cyclic nucleotide second messenger levels and promoting ecdysteroidogenesis. Results of transcriptomic studies show genes involved in Ca2+ signaling are well represented in Y-organs. Several recent studies have focused on Ca2+ transport proteins in Y-organs. Complementary DNAs encoding a plasma membrane Ca2+ ATPase (PMCA) and a sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) have been cloned from crab Y-organs. The relative abundance of PMCA and SERCA transcripts in Y-organs is elevated during premolt, a time when Ca2+ levels in Y-organs are likewise elevated. The results are consistent with the notion that these transport proteins act to maintain the Ca2+ gradient across the cell membrane and re-set the cell for future Ca2+ signals.
Collapse
Affiliation(s)
- Amanda C Weiner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hsiang-Yin Chen
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Megan E Roegner
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - R Douglas Watson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
24
|
Andersen Ø, Johnsen H, Wittmann AC, Harms L, Thesslund T, Berg RS, Siikavuopio S, Mykles DL. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110678. [PMID: 34655763 DOI: 10.1016/j.cbpb.2021.110678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) are deep-sea crustaceans widely distributed in the North Pacific and Northwest Atlantic Oceans. These giant predators have invaded the Barents Sea over the past decades, and climate-driven temperature changes may influence their distribution and abundance in the sub-Arctic region. Molting and growth in crustaceans are strongly affected by temperature, but the underlying molecular mechanisms are little known, particularly in cold-water species. Here, we describe multiple regulatory factors in the two high-latitude crabs by developing de novo transcriptomes from the molting gland (Y-organ or YO) and eye stalk ganglia (ESG), in addition to the hepatopancreas and claw muscle of red king crab. The Halloween genes encoding the ecdysteroidogenic enzymes were expressed in YO, and the ESG contained multiple neuropeptides, including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), and ion-transport peptide (ITP). Both crabs expressed a diversity of growth-related factors, such as mTOR, AKT, Rheb and AMPKα, and stress-responsive factors, including multiple heat shock proteins (HSPs). Temperature effects on the expression of key regulatory genes were quantified by qPCR in adult red king crab males kept at 4 °C or 10 °C for two weeks during intermolt. The Halloween genes tended to be upregulated in YO at high temperature, while the ecdysteroid receptor and several growth regulators showed tissue-specific responses to elevated temperature. Constitutive and heat-inducible HSPs were expressed in an inverse temperature-dependent manner, suggesting that adult red king crabs can acclimate to increased water temperatures.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, Tromsø NO-9291, Norway; Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433 Ås, Norway.
| | - Hanne Johnsen
- Nofima, Tromsø NO-9291, Norway; Norwegian Polar Institute, 9296 Tromsø, Norway
| | - Astrid C Wittmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Lars Harms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | | | | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
25
|
Tu S, Xu R, Wang M, Xie X, Bao C, Zhu D. Identification and characterization of expression profiles of neuropeptides and their GPCRs in the swimming crab, Portunus trituberculatus. PeerJ 2021; 9:e12179. [PMID: 34616625 PMCID: PMC8449533 DOI: 10.7717/peerj.12179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) regulate multiple physiological processes. Currently, little is known about the identity of native neuropeptides and their receptors in Portunus trituberculatus. This study employed RNA-sequencing and reverse transcription-polymerase chain reaction (RT-PCR) techniques to identify neuropeptides and their receptors that might be involved in regulation of reproductive processes of P. trituberculatus. In the central nervous system transcriptome data, 47 neuropeptide transcripts were identified. In further analyses, the tissue expression profile of 32 putative neuropeptide-encoding transcripts was estimated. Results showed that the 32 transcripts were expressed in the central nervous system and 23 of them were expressed in the ovary. A total of 47 GPCR-encoding transcripts belonging to two classes were identified, including 39 encoding GPCR-A family and eight encoding GPCR-B family. In addition, we assessed the tissue expression profile of 33 GPCRs (27 GPCR-As and six GPCR-Bs) transcripts. These GPCRs were found to be widely expressed in different tissues. Similar to the expression profiles of neuropeptides, 20 of these putative GPCR-encoding transcripts were also detected in the ovary. This is the first study to establish the identify of neuropeptides and their GPCRs in P. trituberculatus, and provide information for further investigations into the effect of neuropeptides on the physiology and behavior of decapod crustaceans.
Collapse
Affiliation(s)
- Shisheng Tu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Xu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Mengen Wang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xi Xie
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenchang Bao
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dongfa Zhu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
26
|
Li WF, Li S, Liu J, Wang XF, Chen HY, Hao H, Wang KJ. Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab ( Scylla paramamosain). Metabolites 2021; 11:metabo11100651. [PMID: 34677366 PMCID: PMC8538883 DOI: 10.3390/metabo11100651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Pubertal molt is a vital stage in the cultivation of mature female crabs in the aquacultural industry of Scylla paramamosain. Since fasting occurs during molting, which requires a large supply of energy, internal energy reserves are critical. However, the dynamics of energy supply during pubertal molt is not clear. This study focuses on the variations of carbohydrates and lipids in serum during the pubertal molt of S. paramamosain via a metabolomics approach. Eleven lipid or carbohydrate metabolic pathways were significantly influenced postmolt. A remarkable decrease in carbohydrates in serum suggested that free sugars were consumed for energy. A significant decrease in glucose and alpha-d-glucosamine 1-phosphate showed that chitin synthesis exhausted glycogen, resulting in insufficient glucose supply. An increase in l-carnitine and acetylcarnitine, and a significant decrease in 15 fatty acyls and 8 glycerophosphocholines in serum indicated that carnitine shuttle was stimulated, and β-oxidation was upregulated postmolt. In addition, astaxanthin, ponasterone A, and riboflavin in serum were significantly decreased postmolt. Eleven potential metabolite biomarkers were identified for pubertal molt. Taken together, carbohydrates and lipids were possibly major energy reserves in pubertal molt. This study suggests that an increase in carbohydrate and lipid levels in crab feed may alleviate the effects of fasting during molt and improve farm productivity in mature female crabs.
Collapse
Affiliation(s)
- Wen-Feng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shuang Li
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiao-Fei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hui-Yun Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Hua Hao
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; (W.-F.L.); (S.L.); (J.L.); (X.-F.W.); (H.-Y.C.); (H.H.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence:
| |
Collapse
|
27
|
Tinikul Y, Kruangkum T, Tinikul R, Sobhon P. Comparative neuroanatomical distribution and expression levels of neuropeptide F in the central nervous system of the female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. J Comp Neurol 2021; 530:729-755. [PMID: 34545567 DOI: 10.1002/cne.25241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Does Differential Receptor Distribution Underlie Variable Responses to a Neuropeptide in the Lobster Cardiac System? Int J Mol Sci 2021; 22:ijms22168703. [PMID: 34445418 PMCID: PMC8395929 DOI: 10.3390/ijms22168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.
Collapse
|
29
|
Zieger E, Calcino AD, Robert NSM, Baranyi C, Wanninger A. Ecdysis-related neuropeptide expression and metamorphosis in a non-ecdysozoan bilaterian. Evolution 2021; 75:2237-2250. [PMID: 34268730 DOI: 10.1111/evo.14308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Ecdysis-related neuropeptides (ERNs), including eclosion hormone, crustacean cardioactive peptide, myoinhibitory peptide, bursicon alpha, and bursicon beta regulate molting in insects and crustaceans. Recent evidence further revealed that ERNs likely play an ancestral role in invertebrate life cycle transitions, but their tempo-spatial expression patterns have not been investigated outside Arthropoda. Using RNA-seq and in situ hybridization, we show that ERNs are broadly expressed in the developing nervous system of a mollusk, the polyplacophoran Acanthochitona fascicularis. While some ERN-expressing neurons persist from larval to juvenile stages, others are only present during settlement and metamorphosis. These transient neurons belong to the "ampullary system," a polyplacophoran-specific larval sensory structure. Surprisingly, however, ERN expression is absent from the apical organ, another larval sensory structure that degenerates before settlement is completed in A. fascicularis. Our findings thus support a role of ERNs in A. fascicularis metamorphosis but contradict the common notion that the apical organ-like structures shared by various aquatic invertebrates (i.e., cnidarians, annelids, mollusks, echinoderms) are of general importance for this process.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andrew D Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Nicolas S M Robert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Christian Baranyi
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Xu Z, Wei Y, Wang G, Ye H. B-type allatostatin regulates immune response of hemocytes in mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104050. [PMID: 33631272 DOI: 10.1016/j.dci.2021.104050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
B-type allatostatins (AST-B) are neuropeptides that have important physiological roles in arthropods, they have also been identified in a number of crustacean species. Recent research on neuroendocrine-immune (NEI) regulatory system in invertebrates has exploded, it reveals that the NEI network plays an indispensable role in optimizing the immune response and maintaining homeostasis. Herein, mud crab Scylla paramamosain provides a primitive and ancient model to study crosstalk between the neuroendocrine and immune systems. In this study, qRT-PCR analysis showed that the nervous system was the main production site for Sp-AST-B mRNA in S. paramamosain, while its receptor gene (Sp-AST-BR) mRNA could be detected in all the analyzed tissues including hemocytes. This reveals that AST-B might act as a pleiotropic neuropeptide. In situ hybridization further confirmed that granular cells of hemocyte subpopulations express Sp-AST-BR. Time-course analysis revealed that bacteria-analog LPS or virus-analog Poly (I:C) challenge significantly induced Sp-AST-B expression in the thoracic ganglion, and the expression of Sp-AST-BR in hemocytes were also positively changed. Furthermore, mud crabs treated with a synthetic AST-B peptide significantly increased the mRNA levels of AST-BR, nuclear factor-κB (NF-κB) transcription factor (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and immune-effector molecules, and also dramatically enhanced the nitric oxide (NO) production and phagocytic activity in hemocytes. Meanwhile dsRNA-mediated knockdown of Sp-AST-B remarkably suppressed the NO concentrations, phagocytic activity and the expression of immune related genes, resulting in markedly impaired ability of crabs to inhibit bacterial proliferation in vivo. Combined, these data demonstrate that AST-B induced innate immune in the mud crab.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guizhong Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
31
|
Feleke M, Bennett S, Chen J, Chandler D, Hu X, Xu J. Biological insights into the rapid tissue regeneration of freshwater crayfish and crustaceans. Cell Biochem Funct 2021; 39:740-753. [PMID: 34165197 DOI: 10.1002/cbf.3653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022]
Abstract
The freshwater crayfish is capable of regenerating limbs, following autotomy, injury and predation. In arthropod species, regeneration and moulting are two processes linked and strongly regulated by ecdysone. The regeneration of crayfish limbs is divided into wound healing, blastema formation, cellular reprogramming and tissue patterning. Limb blastema cells undergo proliferation, dedifferentiation and redifferentiation. A limb bud, containing folded segments of the regenerating limb, is encased within a cuticular sheath. The functional limb regenerates, in proecdysis, in two to three consecutive moults. Rapid tissue growth is regulated by hormones, limb nerves and local cells. The TGF-β/activin signalling pathway has been determined in the crayfish, P. fallax f. virginalis, and is suggested as a potential regulator of tissue regeneration. In this review article, we discuss current understanding of tissue regeneration in the crayfish and various crustaceans. A thorough understanding of the cellular, genetic and molecular pathways of these biological processes is promising for the development of therapeutic applications for a wide array of diseases in regenerative medicine.
Collapse
Affiliation(s)
- Mesalie Feleke
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiazhi Chen
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - David Chandler
- Australian Genome Research Facility, Medical Research Foundation, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
33
|
Rump MT, Kozma MT, Pawar SD, Derby CD. G protein-coupled receptors as candidates for modulation and activation of the chemical senses in decapod crustaceans. PLoS One 2021; 16:e0252066. [PMID: 34086685 PMCID: PMC8177520 DOI: 10.1371/journal.pone.0252066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus). We identified 333 putative class A GPCRs– 83 from P. argus, 81 from H. americanus, 102 from P. clarkii, and 67 from C. sapidus–which belong to five distinct subclasses. The numbers of sequences for each subclass in the four decapod species are (in parentheses): opsins (19), small-molecule receptors including biogenic amine receptors (83), neuropeptide receptors (90), leucine-rich repeat-containing GPCRs (LGRs) (24), orphan receptors (117). Most class A GPCRs are predominately expressed in the brain; however, we identified multiple transcripts enriched in the LF and several in the dactyl. In total, we found 55 sequences with higher expression in the chemosensory organs relative to the brain across three decapod species. We also identified novel transcripts enriched in the LF including a metabotropic histamine receptor and numerous orphan receptors. Our work establishes expression patterns for class A GPCRs in the chemosensory organs of crustaceans, providing insight into molecular mechanisms mediating neurotransmission, neuromodulation, and possibly chemoreception.
Collapse
Affiliation(s)
- Matthew T. Rump
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shrikant D. Pawar
- Yale Center for Genomic Analysis, Yale University, New Haven, Connecticut, United States of America
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Torres G, Charmantier G, Wilcockson D, Harzsch S, Giménez L. Physiological basis of interactive responses to temperature and salinity in coastal marine invertebrate: Implications for responses to warming. Ecol Evol 2021; 11:7042-7056. [PMID: 34141274 PMCID: PMC8207410 DOI: 10.1002/ece3.7552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing physiological mechanistic models to predict species' responses to climate-driven environmental variables remains a key endeavor in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species' distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes in temperature and salinity. First, we evaluated the effect of temperature on hemolymph osmolality and on the expression of genes relevant for osmoregulation in larvae of the shore crab Carcinus maenas. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction toward or away from ROFIs. In C. maenas, high temperature led to a threefold increase in the capacity to osmoregulate in the first and last larval stages (i.e., those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesize that the increase in osmoregulatory capacity (OC) at high temperature should involve post-translational processes. Further analysis of data suggested that TMLS occurs in C. maenas larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for C. maenas and other coastal species showing the contribution of osmoregulation and phenological mechanisms toward changes in range distribution under coastal warming. In species where the OC increases with temperature (e.g., C. maenas larvae), osmoregulation should contribute toward expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be toward range contraction.
Collapse
Affiliation(s)
- Gabriela Torres
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und MeeresforschungBiologische Anstalt HelgolandHelgolandGermany
| | - Guy Charmantier
- CNRSIfremerIRDUMMarbecUniversité MontpellierMontpellierFrance
| | - David Wilcockson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Steffen Harzsch
- Department of Cytology and Evolutionary BiologyZoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Luis Giménez
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und MeeresforschungBiologische Anstalt HelgolandHelgolandGermany
- School of Ocean SciencesCollege of Environmental Sciences and EngineeringBangor UniversityMenai BridgeUK
| |
Collapse
|
35
|
Toyota K, Miyakawa H, Hiruta C, Sato T, Katayama H, Ohira T, Iguchi T. Sex Determination and Differentiation in Decapod and Cladoceran Crustaceans: An Overview of Endocrine Regulation. Genes (Basel) 2021; 12:genes12020305. [PMID: 33669984 PMCID: PMC7924870 DOI: 10.3390/genes12020305] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms underlying sex determination and differentiation in animals are known to encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing and mass spectrometry technologies have been widely applied in non-model organisms without reference genomes. Crustaceans are no exception. They are particularly diverse among the Arthropoda and contain a wide variety of commercially important fishery species such as shrimps, lobsters and crabs (Order Decapoda), and keystone species of aquatic ecosystems such as water fleas (Order Branchiopoda). In terms of decapod sex determination and differentiation, previous approaches have attempted to elucidate their molecular components, to establish mono-sex breeding technology. Here, we overview reports describing the physiological functions of sex hormones regulating masculinization and feminization, and gene discovery by transcriptomics in decapod species. Moreover, this review summarizes the recent progresses of studies on the juvenile hormone-driven sex determination system of the branchiopod genus Daphnia, and then compares sex determination and endocrine systems between decapods and branchiopods. This review provides not only substantial insights for aquaculture research, but also the opportunity to re-organize the current and future trends of this field.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan;
| | - Chizue Hiruta
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan;
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan;
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| |
Collapse
|
36
|
Swall ME, Benrabaa SAM, Tran NM, Tran TD, Ventura T, Mykles DL. Characterization of Shed genes encoding ecdysone 20-monooxygenase (CYP314A1) in the Y-organ of the blackback land crab, Gecarcinus lateralis. Gen Comp Endocrinol 2021; 301:113658. [PMID: 33159911 DOI: 10.1016/j.ygcen.2020.113658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/23/2022]
Abstract
Molting in decapod crustaceans is controlled by ecdysteroid hormones synthesized and secreted by the molting gland, or Y-organ (YO). Halloween genes encode cytochrome P450 enzymes in the ecdysteroid synthetic pathway. The current paradigm is that YOs secrete an inactive precursor (e.g., ecdysone or E), which is hydroxylated at the #20 carbon to form an active hormone (20-hydroxyecdysone or 20E) by a mitochonrial 20-monooxygenase (CYP314A1) in peripheral tissues. 20-Monooxygenase is encoded by Shed in decapods and Shade in insects. We used eastern spiny lobster Shed sequences to extract six orthologs in the G. lateralis YO transcriptome. Phylogenetic analysis of the deduced amino acid sequences from six decapod species organized the Sheds into seven classes (Sheds 1-7), resulting in the assignment of the G. lateralis Sheds to Gl-Shed1, 2, 4A, 4B, 5A, and 5B. The mRNA levels of the six Gl-Sheds in the YO of intermolt animals were comparable to those in nine other tissues that included hepatopancreas and muscle. qPCR was used to compare the effects of molt induction by multiple leg autotomy (MLA) and eyestalk ablation (ESA) on Gl-Shed mRNA levels in the YO. Molt stage had little effect on Gl-Shed1 and Gl-Shed5B expression in the YO of MLA animals. Gl-Shed5A was expressed at the highest mRNA levels in the YO and was significantly increased during early and mid premolt stages. By contrast, ESA ± SB431542 had no effect on Gl-Shed expression at 1, 3, 5, and 7 days post-ESA. SB431542, which inhibits Transforming Growth Factor-β/activin signaling and blocks YO commitment, decreased Gl-Shed2 and Gl-Shed4A mRNA levels at 14 days post-ESA. A targeted metabolomic analysis showed that YOs cultured in vitro secreted E and 20E to the medium. These data suggest that the YO expresses 20-monooygenases that can convert E to 20E, which may contribute to the increase in active hormone in the hemolymph during premolt.
Collapse
Affiliation(s)
- Madeleine E Swall
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Samiha A M Benrabaa
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nhut M Tran
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Trong D Tran
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Tomer Ventura
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
37
|
Knigge T, LeBlanc GA, Ford AT. A Crab Is Not a Fish: Unique Aspects of the Crustacean Endocrine System and Considerations for Endocrine Toxicology. Front Endocrinol (Lausanne) 2021; 12:587608. [PMID: 33737907 PMCID: PMC7961072 DOI: 10.3389/fendo.2021.587608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Crustaceans-and arthropods in general-exhibit many unique aspects to their physiology. These include the requirement to moult (ecdysis) in order to grow and reproduce, the ability to change color, and multiple strategies for sexual differentiation. Accordingly, the endocrine regulation of these processes involves hormones, receptors, and enzymes that differ from those utilized by vertebrates and other non-arthropod invertebrates. As a result, environmental chemicals known to disrupt endocrine processes in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that disrupt endocrine processes in crustaceans are often not endocrine disruptors in vertebrates. In this review, we present an overview of the evolution of the endocrine system of crustaceans, highlight endocrine endpoints known to be a target of disruption by chemicals, and identify other components of endocrine signaling that may prove to be targets of disruption. This review highlights that crustaceans need to be evaluated for endocrine disruption with consideration of their unique endocrine system and not with consideration of the endocrine system of vertebrates.
Collapse
Affiliation(s)
- Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, Le Havre, France
- *Correspondence: Thomas Knigge,
| | - Gerald A. LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Alex T. Ford
- School of Biological Sciences, Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
38
|
Ancestral Role of Ecdysis-Related Neuropeptides in Animal Life Cycle Transitions. Curr Biol 2021; 31:207-213.e4. [DOI: 10.1016/j.cub.2020.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
|
39
|
Christie AE, Rivera CD, Call CM, Dickinson PS, Stemmler EA, Hull JJ. Multiple transcriptome mining coupled with tissue specific molecular cloning and mass spectrometry provide insights into agatoxin-like peptide conservation in decapod crustaceans. Gen Comp Endocrinol 2020; 299:113609. [PMID: 32916171 PMCID: PMC7747469 DOI: 10.1016/j.ygcen.2020.113609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species. Transcripts encoding putative ALP precursors were identified from one or more members of the Penaeoidea (penaeid shrimp), Sergestoidea (sergestid shrimps), Caridea (caridean shrimp), Astacidea (clawed lobsters and freshwater crayfish), Achelata (spiny/slipper lobsters), and Brachyura (true crabs), suggesting a broad, and perhaps ubiquitous, conservation of ALPs in decapods. Comparison of the predicted mature structures of decapod ALPs revealed high levels of amino acid conservation, including eight identically conserved cysteine residues that presumably allow for the formation of four identically positioned disulfide bridges. All decapod ALPs are predicted to have amidated carboxyl-terminals. Two isoforms of ALP appear to be present in most decapod species, one 44 amino acids long and the other 42 amino acids in length, both likely generated by alternative splicing of a single gene. In carideans, a gene or terminal exon duplication appears to have occurred, with alternative splicing producing four ALPs, two 44 and two 42 amino acid isoforms. The identification of ALP precursor-encoding transcripts in nervous system-specific transcriptomes (e.g., Homarus americanus brain, eyestalk ganglia, and cardiac ganglion assemblies, finding confirmed using RT-PCR) suggests that members of this peptide family may serve as locally-released and/or hormonally-delivered neuromodulators in decapods. Their detection in testis- and hepatopancreas-specific transcriptomes suggests that members of the ALP family may also play roles in male reproduction and innate immunity/detoxification.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Catherine M Call
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| |
Collapse
|
40
|
Hull JJ, Stefanek MA, Dickinson PS, Christie AE. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. INVERTEBRATE NEUROSCIENCE 2020; 20:24. [PMID: 33244646 DOI: 10.1007/s10158-020-00257-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023]
Abstract
Over the past decade, many new peptide families have been identified via in silico analyses of genomic and transcriptomic datasets. While various molecular and biochemical methods have confirmed the existence of some of these new groups, others remain in silico discoveries of computationally assembled sequences only. An example of the latter are the CCRFamides, named for the predicted presence of two pairs of disulfide bonded cysteine residues and an amidated arginine-phenylalanine carboxyl-terminus in family members, which have been identified from annelid, molluscan, and arthropod genomes/transcriptomes, but for which no precursor protein-encoding cDNAs have been cloned. Using routine transcriptome mining methods, we identified four Homarus americanus (American lobster) CCRFamide transcripts that share high sequence identity across the predicted open reading frames but more limited conservation in their 5' terminal ends, suggesting the Homarus gene undergoes alternative splicing. RT-PCR profiling using primers designed to amplify an internal fragment common to all of the transcripts revealed expression in the supraoesophageal ganglion (brain), eyestalk ganglia, and cardiac ganglion. Variant specific profiling revealed a similar profile for variant 1, eyestalk ganglia specific expression of variant 2, and an absence of variant 3 expression in the cDNAs examined. The broad distribution of CCRFamide transcript expression in the H. americanus nervous system suggests a potential role as a locally released and/or circulating neuropeptide. This is the first report of the cloning of a CCRFamide-encoding cDNA from any species, and as such, provides the first non-in silico support for the existence of this invertebrate peptide family.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA.
| | - Melissa A Stefanek
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, 21881 North Cardon Lane, Maricopa, AZ, 85138, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
41
|
Viet Nguyen T, Ryan LW, Nocillado J, Le Groumellec M, Elizur A, Ventura T. Transcriptomic changes across vitellogenesis in the black tiger prawn (Penaeus monodon), neuropeptides and G protein-coupled receptors repertoire curation. Gen Comp Endocrinol 2020; 298:113585. [PMID: 32822704 DOI: 10.1016/j.ygcen.2020.113585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022]
Abstract
The black tiger prawn (Penaeus monodon) is one of the most commercially important prawn species world-wide, yet there are currently key issues that hinder aquaculture of this species, such as low spawning capacity of captive-reared broodstock females and lack of globally available fully domesticated strains. In this study, we analysed the molecular changes that occur from vitellogenesis to spawning of a fully domesticated population of P.monodon (Madagascar) using four tissues [brain and thoracic ganglia (central nervous system - CNS), eyestalks, antennal gland, and ovary] highlighting differentially expressed genes that could be involved in the sexual maturation. In addition, due to their key role in regulating multiple physiological processes including reproduction, transcripts encoding P.monodon neuropeptides and G protein-coupled receptors (GPCRs) were identified and their expression pattern was assessed. A few neuropeptides and their putative GPCRs which were previously implicated in reproduction are discussed. We identified 573 differentially expressed transcripts between previtellogenic and vitellogenic stages, across the four analysed tissues. Multiple transcripts that have been linked to ovarian maturation were highlighted throughout the study, these include vitellogenin, Wnt, heat shock protein 21, heat shock protein 90, teneurin, Fs(1)M3, hemolymph clottable proteins and some other candidates. Seventy neuropeptide transcripts were also characterized from our de novo assembly. In addition, a hybrid approach that involved clustering and phylogenetics analysis was used to annotate all P. monodon GPCRs, revealing 223 Rhodopsin, 100 Secretin and 27 Metabotropic glutamate GPCRs. Given the key commercial significance of P.monodon and the industry requirements for developing better genomic tools to control reproduction in this species, our findings provide a foundation for future gene-based studies, setting the scene for developing innovative tools for reproduction and/or sexual maturation control in P. monodon.
Collapse
Affiliation(s)
- Tuan Viet Nguyen
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria 3083, Australia
| | - Luke W Ryan
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Josephine Nocillado
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | | | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| |
Collapse
|
42
|
Minh Nhut T, Mykles DL, Elizur A, Ventura T. Ecdysis triggering hormone modulates molt behaviour in the redclaw crayfish Cherax quadricarinatus, providing a mechanistic evidence for conserved function in molt regulation across Pancrustacea. Gen Comp Endocrinol 2020; 298:113556. [PMID: 32687930 DOI: 10.1016/j.ygcen.2020.113556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Molting enables growth and development across ecdysozoa. The molting process is strictly controlled by hormones - ecdysteroids. Ecdysteroidogenesis occurs in theprothoracic glands and stimulated by prothoracicotropic hormone in insects, while it ensues in the Y-organ and regulated by the molt inhibiting hormone in crustaceans. A peak in ecdysteroids in the hemolymph induces a cascade of multiple neuropeptides including Ecdysis Triggering Hormone (ETH) and Corazonin. The role of ETH is well defined in controlling the molt process in insects, but it is yet to be defined in crustaceans. In this study, we investigated the behavioral response of intermolt crayfish to ETH and Corazonin injections as well as the impact of ETH on the molt period using in vivo assays. Injection of Corazonin and ETH resulted in a clear and immediate eye twitching response to these two neuropeptides. The Corazonin injection induced eye twitching in slow and asynchronous manner, while ETH injection caused eye twitching in a relatively fast and synchronous way. A single injection of ETH to crayfish resulted in a remarkable prolong molt period, at twice the normal molting cycle, suggesting that ETH plays a key role in controlling the molt cycle in decapod crustaceans. Given the key significance of ETH in molt regulation and its plausible application in pest control, we characterized ETH across the pancrustacean orders. Bioinformatic analysis shows the mature ETH sequence is identical in all studied decapod species. ETH can be classified into specific groups based on the associated motif in each insect order and shows an insect motif -KxxPRx to be conserved in crustaceans.
Collapse
Affiliation(s)
- Tran Minh Nhut
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Abigail Elizur
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia.
| |
Collapse
|
43
|
Alexander JL, Oliphant A, Wilcockson DC, Brendler-Spaeth T, Dircksen H, Webster SG. Pigment Dispersing Factors and Their Cognate Receptors in a Crustacean Model, With New Insights Into Distinct Neurons and Their Functions. Front Neurosci 2020; 14:595648. [PMID: 33192283 PMCID: PMC7658428 DOI: 10.3389/fnins.2020.595648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
Abstract
Pigment dispersing factors (PDFs, or PDHs in crustaceans) form a structurally related group of neuropeptides found throughout the Ecdysozoa and were first discovered as pigmentary effector hormones in crustaceans. In insects PDFs fulfill crucial neuromodulatory roles, most notably as output regulators of the circadian system, underscoring their central position in physiological and behavioral organization of arthropods. Intriguingly, decapod crustaceans express multiple isoforms of PDH originating from separate genes, yet their differential functions are still to be determined. Here, we functionally define two PDH receptors in the crab Carcinus maenas and show them to be selectively activated by four PDH isoforms: PDHR 43673 was activated by PDH-1 and PDH-2 at low nanomolar doses whilst PDHR 41189 was activated by PDH-3 and an extended 20 residue e-PDH. Detailed examination of the anatomical distribution of all four peptides and their cognate receptors indicate that they likely perform different functions as secreted hormones and/or neuromodulators, with PDH-1 and its receptor 43,673 implicated in an authentic hormonal axis. PDH-2, PDH-3, and e-PDH were limited to non-neurohemal interneuronal sites in the CNS; PDHR 41189 was largely restricted to the nervous system suggesting a neuromodulatory function. Notably PDH-3 and e-PDH were without chromatophore dispersing activity. This is the first report which functionally defines a PDHR in an endocrine system in a crustacean and to indicate this and other putative roles of this physiologically pivotal peptide group in these organisms. Thus, our findings present opportunities to further examine the endocrine and circadian machinery in this important arthropod phylum.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | - Timothy Brendler-Spaeth
- Institute of Biological Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Simon G. Webster
- School of Natural Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
44
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
45
|
Mykles DL, Chang ES. Hormonal control of the crustacean molting gland: Insights from transcriptomics and proteomics. Gen Comp Endocrinol 2020; 294:113493. [PMID: 32339519 DOI: 10.1016/j.ygcen.2020.113493] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Endocrine control of molting in decapod crustaceans involves the eyestalk neurosecretory center (X-organ/sinus gland complex), regenerating limbs, and a pair of Y-organs (YOs), as molting is induced by eyestalk ablation or multiple leg autotomy and suspended in early premolt by limb bud autotomy. Molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), produced in the X-organ/sinus gland complex, inhibit the YO. The YO transitions through four physiological states over the molt cycle: basal in intermolt; activated in early premolt; committed in mid- and late premolt; and repressed in postmolt. We assembled the first comprehensive YO transcriptome over the molt cycle in the land crab, Gecarcinus lateralis, showing that as many as 23 signaling pathways may interact in controlling ecdysteroidogenesis. A proposed model of the MIH/cyclic nucleotide pathway, which maintains the basal YO, consists of cAMP/Ca2+ triggering and nitric oxide (NO)/cGMP summation phases. Mechanistic target of rapamycin (mTOR) signaling is required for YO activation in early premolt and affects the mRNA levels of thousands of genes. Transforming Growth Factor-β (TGFβ)/Activin signaling is required for YO commitment in mid-premolt and high ecdysteroid titers at the end of premolt may trigger YO repression. The G. lateralis YO expresses 99 G protein-coupled receptors, three of which are putative receptors for MIH/CHH. Proteomic analysis shows the importance of radical oxygen species scavenging, cytoskeleton, vesicular secretion, immune response, and protein homeostasis and turnover proteins associated with YO function over the molt cycle. In addition to eyestalk ganglia, MIH mRNA and protein are present in brain, optic nerve, ventral nerve cord, and thoracic ganglion, suggesting that they are secondary sources of MIH. Down-regulation of mTOR signaling genes, in particular Ras homolog enriched in brain or Rheb, compensates for the effects of elevated temperature in the YO, heart, and eyestalk ganglia in juvenile Metacarcinus magister. Rheb expression increases in the activated and committed YO. These data suggest that mTOR plays a central role in mediating molt regulation by physiological and environmental factors.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| | - Ernest S Chang
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA 94923, USA
| |
Collapse
|
46
|
Hyde CJ, Nguyen T, Fitzgibbon QP, Elizur A, Smith GG, Ventura T. Neural remodelling in spiny lobster larvae is characterized by broad neuropeptide suppression. Gen Comp Endocrinol 2020; 294:113496. [PMID: 32360560 DOI: 10.1016/j.ygcen.2020.113496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 02/05/2023]
Abstract
Neuropeptides are ancient endocrine components which have evolved to regulate many aspects of biology across the animal kingdom including behaviour, development and metabolism. To supplement current knowledge, we have utilized a transcriptome series describing larval development in the ornate spiny lobster, Panulirus ornatus. The biology of this animal has been leveraged to provide insights into the roles of molting, metamorphosis and metabolism across the neuropeptide family. We report an extensive list of neuropeptides across three distinct life phases of the animal. We show distinct groups of neuropeptides with differential expression between larval phases, indicating phase-specific roles for these peptides. For selected neuropeptides, we describe and discuss expression profiles throughout larval development and report predicted peptide cleavage sites and mature peptide sequences. We also report the neuropeptide nesfatin for the first time in a crustacean, and report secondary peptide products with a level of evolutionary conservation similar to the conventional mature peptide nesfatin-1, indicating a conserved role in these secondary products which are widely regarded as biologically inactive. In addition, we report a trend of downregulation in the neuropeptides as the animal undergoes extensive neural remodelling in fulfillment of metamorphosis. We suggest that this downregulation in neuropeptides relates to the brief, yet dramatic changes in morphology experienced by the central nervous system in the process of metamorphosis.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Tuan Nguyen
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Quinn P Fitzgibbon
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Gregory G Smith
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Tomer Ventura
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia.
| |
Collapse
|
47
|
Zou E. Invisible endocrine disruption and its mechanisms: A current review. Gen Comp Endocrinol 2020; 293:113470. [PMID: 32234298 DOI: 10.1016/j.ygcen.2020.113470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
The research on impacts of environmental chemicals on crustacean molting dates back to the 1970s when ground-breaking studies investigated the disruption of molting in Crustacea by organochlorines. With the emergence of a new scientific inquiry, termed environmental endocrine disruption, in the early 1990s, increasing attention has been attracted to the possibility that environmental chemicals capable of wreaking havoc on sex steroid-regulated processes in vertebrates can also adversely affect ecdysteroid-mediated processes, e.g. molting, in crustaceans. Given the fact that many molting-disrupting chemicals accumulate in crustacean tissues and that the effect on molting is not readily visible in the field, the disruption of molting by environmental chemicals has been dubbed the invisible endocrine disruption. In recent years, much advancement has been made in both the documentation of the phenomenon of molting disruption and the search for mechanisms, by which molting disruption occurs. This review provides an overview of the current status of the field of invisible endocrine disruption, and perspectives on future directions are also presented.
Collapse
Affiliation(s)
- Enmin Zou
- Department of Biological Sciences, Nicholls State University, Thibodaux, LA 70310, USA.
| |
Collapse
|
48
|
Oliphant A, Hawkes MKN, Cridge AG, Dearden PK. Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. Gen Comp Endocrinol 2020; 292:113443. [PMID: 32097662 DOI: 10.1016/j.ygcen.2020.113443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
We de novo assembled a transcriptome for early life-stages of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus, establishing the first genetic resource for this under-developed aquaculture species and for the Paranephrops genus. Mining of this transcriptome for neuropeptides and their putative cognate G protein-coupled receptors (GPCRs) yielded a comprehensive catalogue of neuropeptides, but few putative neuropeptide GPCRs. Of the neuropeptides commonly identified from decapod transcriptomes, only crustacean female sex hormone and insulin-like peptide were absent from our trinity de novo transcriptome assembly, and also RNA-sequence reads. We identified 63 putative neuropeptide precursors from 43 families, predicted to yield 122 active peptides. Transcripts encoding 26 putative neuropeptide GPCRs were identified but were often incomplete. Putative GPCRs for 15 of the neuropeptides identified here were absent from our transcriptome and RNAseq reads. These data highlight the diverse neuropeptide systems already present at the early development life stages sampled here for P. zealandicus.
Collapse
Affiliation(s)
- Andrew Oliphant
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| | - Mary K N Hawkes
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Andrew G Cridge
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
49
|
Odekunle EA, Elphick MR. Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates. Front Endocrinol (Lausanne) 2020; 11:225. [PMID: 32362874 PMCID: PMC7181382 DOI: 10.3389/fendo.2020.00225] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
The identification of structurally related hypothalamic hormones that regulate blood pressure and diuresis (vasopressin, VP; CYFQNCPRG-NH2) or lactation and uterine contraction (oxytocin, OT; CYIQNCPLG-NH2) was a major advance in neuroendocrinology, recognized in the award of the Nobel Prize for Chemistry in 1955. Furthermore, the discovery of central actions of VP and OT as regulators of reproductive and social behavior in humans and other mammals has broadened interest in these neuropeptides beyond physiology into psychology. VP/OT-type neuropeptides and their G-protein coupled receptors originated in a common ancestor of the Bilateria (Urbilateria), with invertebrates typically having a single VP/OT-type neuropeptide and cognate receptor. Gene/genome duplications followed by gene loss gave rise to variety in the number of VP/OT-type neuropeptides and receptors in different vertebrate lineages. Recent advances in comparative transcriptomics/genomics have enabled discovery of VP/OT-type neuropeptides in an ever-growing diversity of invertebrate taxa, providing new opportunities to gain insights into the evolution of VP/OT-type neuropeptide function in the Bilateria. Here we review the comparative physiology of VP/OT-type neuropeptides in invertebrates, with roles in regulation of reproduction, feeding, and water/salt homeostasis emerging as common themes. For example, we highlight recent reports of roles in regulation of oocyte maturation in the sea-squirt Ciona intestinalis, extraoral feeding behavior in the starfish Asterias rubens and energy status and dessication resistance in ants. Thus, VP/OT-type neuropeptides are pleiotropic regulators of physiological processes, with evolutionarily conserved roles that can be traced back to Urbilateria. To gain a deeper understanding of the evolution of VP/OT-type neuropeptide function it may be necessary to not only determine the actions of the peptides but also to characterize the transcriptomic/proteomic/metabolomic profiles of cells expressing VP/OT-type precursors and/or VP/OT-type receptors within the framework of anatomically and functionally identified neuronal networks. Furthermore, investigation of VP/OT-type neuropeptide function in a wider range of invertebrate species is now needed if we are to determine how and when this ancient signaling system was recruited to regulate diverse physiological and behavioral processes in different branches of animal phylogeny and in contrasting environmental contexts.
Collapse
Affiliation(s)
| | - Maurice R. Elphick
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Liu J, Liu A, Liu F, Huang H, Ye H. Role of neuroparsin 1 in vitellogenesis in the mud crab, Scylla paramamosain. Gen Comp Endocrinol 2020; 285:113248. [PMID: 31430448 DOI: 10.1016/j.ygcen.2019.113248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Neuroparsin (NP) is an important neuropeptide in invertebrates. It is well-known that NP displays multiple biological activities, including antidiuretic and inhibition of vitellogenesis in insects. However, the information about its effect in crustaceans is scarce. In this study, the sequence of Sp-NP1 was selected from the transcriptome database from the mud crab, Scylla paramamosain. Sequence analyses indicate that the Sp-NP1 amino acid (AA) sequences consist of a 27 AA signal peptide and a 74 AA mature peptide, which contains 12 cysteine residues. qRT-PCR analysis has revealed that the expressions of Sp-NP1 gene are high in the nervous tissues and extremely low in the ovary and hepatopancreas. In situ hybridization has shown that the positive signals are localized in cell cluster 6 of protocerebrum and cell clusters 10 and 11 of deutocerebrum. The presence of Sp-NP1 in the haemolymph has been detected in S. paramamosain through western blot, which indicates that Sp-NP1 serves as an endocrine factor in the regulation of physiological activities. In vitro experiments have further shown that the mRNA level of vitellogenin in the hepatopancreas notably decreases following administration of recombinant Sp-NP1, while the mRNA level of vitellogenin receptor and cyclin B in the ovary shows no significant differences. Collectively, Sp-NP1 possibly can inhibit the production of vitellogenin in the hepatopancreas and has no direct effect on the ovary in S. paramamosain.
Collapse
Affiliation(s)
- Jing Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|