1
|
Taguchi A, Misumi F, Teraguchi S, Nagamatsu T, Sakakibara S, Otani T, Ichinose M, Priest D, Nakajima K, Nakamura J, Sawada R, Suzutani T, Ikeda T, Nagura Y, Iriyama T, Okuzaki D, Okazaki H, Wing JB, Hirota Y, Osuga Y. Multifaceted profiling of virus-specific CD8 T cells reveals distinct immune signatures against cytomegalovirus infection states during pregnancy. iScience 2025; 28:112416. [PMID: 40343282 PMCID: PMC12059710 DOI: 10.1016/j.isci.2025.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Anti-cytomegalovirus (CMV) serological testing, including the IgG avidity index (AI), is used to assess CMV infection phases during pregnancy. However, little is known about anti-CMV cellular immunity during pregnancy, particularly its relation to serological diagnosis. Herein, using MHC-dextramer single-cell RNA sequencing and flow cytometry, we characterized IE1 and pp65 CMV-antigen specific CD8 T cells from pregnant women with different anti-CMV serological patterns, including IgG+IgM+/AI-low, IgG+IgM+/AI-high, and IgG+IgM-. In IgG+IgM+/AI-low and IgG+IgM+/AI-high specimens, CMV-specific T cells consisted largely of effectors, with a minor but characteristic proportion of memory T cells, including HLA-DR-positive memory precursors and granzyme K-high memory cells reactive to IE1. Conversely, IgG+IgM- cases had a distinctive expansion of pp65-specific terminally differentiated T effector memory with a signature of convergent clonal selection. Our findings revealed that different CMV infection phases have characteristic patterns of CD8 cell phenotype and antigen recognition, potentially offering a new approach for assessing congenital infection risk.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Fumi Misumi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shunsuke Teraguchi
- Faculty of Data Science, Shiga University, Shiga 522-8522, Japan
- Department of Genome Informatics, Research Institute for Microbial Diseases, The University of Osaka, Osaka 565-0871, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Obstetrics and Gynecology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Shuhei Sakakibara
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka 532-0003, Japan
| | - Tomohiro Otani
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Mari Ichinose
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - David Priest
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
| | - Kazuki Nakajima
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Junko Nakamura
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Laboratory Sciences, Department of Health Sciences, School of Health and Social Service, Saitama Prefectural University, Saitama 343-0036, Japan
| | - Ryoko Sawada
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Toshiyuki Ikeda
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Nagura
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, The University of Osaka, Osaka 565-0871, Japan
| | - Hitoshi Okazaki
- Department of Transfusion Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - James B. Wing
- Laboratory of Human Single Cell Immunology, WPI Immunology Frontier Research Center, The University of Osaka, Osaka 565-0871, Japan
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, The University of Osaka, Osaka 565-0871, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
2
|
Yang Y, Durbin R, Iversen AKN, Lawson DJ. Sparse haplotype-based fine-scale local ancestry inference at scale reveals recent selection on immune responses. Nat Commun 2025; 16:2742. [PMID: 40113767 PMCID: PMC11926123 DOI: 10.1038/s41467-025-57601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain insights into genetic function and history as biobanks grow in scale. Here we describe two near-linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler Transform. SparsePainter is a faster, sparse replacement of previous model-based 'chromosome painting' algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further approximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation. The computational efficiency gains of these tools for fine-scale local ancestry inference offer the possibility to analyse large-scale genomic datasets using different approaches. Application to the UK Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many genomic regions associated with immune responses, suggesting avenues for understanding the pathogen-immune system interplay on a historical timescale.
Collapse
Affiliation(s)
- Yaoling Yang
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Astrid K N Iversen
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel J Lawson
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Iino T, Hasegawa A, Matsutani T, Akashi K, Kannagi M, Suehiro Y. Elimination of residual adult T-cell leukaemia clones by Tax-targeted dendritic cell vaccine. EJHAEM 2025; 6:e1072. [PMID: 39917357 PMCID: PMC11800367 DOI: 10.1002/jha2.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 02/09/2025]
Abstract
Background A pilot clinical study of a Tax peptide-pulsed dendritic cell (DC) vaccine for adult T-cell leukaemia/lymphoma (ATL) indicated favourable clinical outcomes. Methods We investigated its anti-tumour effect by T cell receptor (TCR) repertoire analysis in samples from an enrolled ATL patient who achieved a 10-year complete remission after DC vaccination. Results In this patient, the dominant residual ATL clones that had persisted following previous treatment entirely disappeared within 3 years after DC vaccination. Additionally, the DC vaccine restored TCR repertoire diversity of normal T cells and newly induced functional Tax-specific CD8+ T cell clones. Conclusions The recovery of normal T cell immunity mediated by the DC vaccine may contribute to this long-lasting remission.
Collapse
Affiliation(s)
- Tadafumi Iino
- Center for Advanced Medical InnovationKyushu UniversityFukuokaJapan
- Present address:
Department of HematologySaga‐Ken Medical Centre KoseikanSagaJapan
| | - Atsuhiko Hasegawa
- Department of ImmunotherapeuticsTokyo Medical and Dental UniversityTokyoJapan
- Department of Cancer BiologyClinical Research InstituteNHO Kyushu Cancer CenterFukuokaJapan
| | - Takaji Matsutani
- Osaka LaboratoryRepertoire Genesis IncorporationIbarakiJapan
- Present address:
Translational Research DepartmentMaruho Co., LtdKyotoJapan
| | - Koichi Akashi
- Center for Advanced Medical InnovationKyushu UniversityFukuokaJapan
- Department of Medicine and Biosystemic ScienceFaculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Mari Kannagi
- Department of ImmunotherapeuticsTokyo Medical and Dental UniversityTokyoJapan
- Present address:
Department of MicrobiologyKansai Medical UniversityOsakaJapan
| | - Youko Suehiro
- Department of Hematology and Cell TherapyNHO Kyushu Cancer CenterFukuokaJapan
| |
Collapse
|
4
|
Tsimberidou AM, Alayli FA, Okrah K, Drakaki A, Khalil DN, Kummar S, Khan SA, Hodi FS, Oh DY, Cabanski CR, Gautam S, Meier SL, Amouzgar M, Pfeiffer SM, Kageyama R, Yang E, Spasic M, Tetzlaff MT, Foo WC, Hollmann TJ, Li Y, Adamow M, Wong P, Moore JS, Velichko S, Chen RO, Kumar D, Bucktrout S, Ibrahim R, Dugan U, Salvador L, Hubbard-Lucey VM, O’Donnell-Tormey J, Santulli-Marotto S, Butterfield LH, Da Silva DM, Fairchild J, LaVallee TM, Padrón LJ, Sharma P. Immunologic signatures of response and resistance to nivolumab with ipilimumab in advanced metastatic cancer. J Exp Med 2024; 221:e20240152. [PMID: 39190534 PMCID: PMC11349049 DOI: 10.1084/jem.20240152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Identifying pan-tumor biomarkers that predict responses to immune checkpoint inhibitors (ICI) is critically needed. In the AMADEUS clinical trial (NCT03651271), patients with various advanced solid tumors were assessed for changes in intratumoral CD8 percentages and their response to ICI. Patients were grouped based on tumoral CD8 levels: those with CD8 <15% (CD8-low) received nivolumab (anti-PD-1) plus ipilimumab (anti-CTLA4) and those with CD8 ≥15% (CD8-high) received nivolumab monotherapy. 79 patients (72 CD8-low and 7 CD8-high) were treated. The disease control rate was 25.0% (18/72; 95% CI: 15.8-35.2) in CD8-low and 14.3% (1/7; 95% CI: 1.1-43.8) in CD8-high. Tumors from 35.9% (14/39; 95% CI: 21.8-51.4) of patients converted from CD8 <15% pretreatment to ≥15% after treatment. Multiomic analyses showed that CD8-low responders had an inflammatory tumor microenvironment pretreatment, enhanced by an influx of CD8 T cells, CD4 T cells, B cells, and macrophages upon treatment. These findings reveal crucial pan-cancer immunological features for ICI response in patients with metastatic disease.
Collapse
Affiliation(s)
- Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farah A. Alayli
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kwame Okrah
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | - F. Stephen Hodi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Y. Oh
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Shikha Gautam
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Stefanie L. Meier
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford University, Stanford, CA, USA
| | - Meelad Amouzgar
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Robin Kageyama
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - EnJun Yang
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Marko Spasic
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael T. Tetzlaff
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wai Chin Foo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis J. Hollmann
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, New York, NY, USA
| | - Yanyun Li
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Adamow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Wong
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Dinesh Kumar
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Ute Dugan
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | | | | | - Justin Fairchild
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Lacey J. Padrón
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Immunotherapy Platform, James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
6
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
7
|
Chen L, Hu Y, Zheng B, Luo L, Su Z. Human TCR repertoire in cancer. Cancer Med 2024; 13:e70164. [PMID: 39240157 PMCID: PMC11378360 DOI: 10.1002/cam4.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND T cells, the "superstar" of the immune system, play a crucial role in antitumor immunity. T-cell receptors (TCR) are crucial molecules that enable T cells to identify antigens and start immunological responses. The body has evolved a unique method for rearrangement, resulting in a vast diversity of TCR repertoires. A healthy TCR repertoire is essential for the particular identification of antigens by T cells. METHODS In this article, we systematically summarized the TCR creation mechanisms and analysis methodologies, particularly focusing on the application of next-generation sequencing (NGS) technology. We explore the TCR repertoire in health and cancer, and discuss the implications of TCR repertoire analysis in understanding carcinogenesis, cancer progression, and treatment. RESULTS The TCR repertoire analysis has enormous potential for monitoring the emergence and progression of malignancies, as well as assessing therapy response and prognosis. The application of NGS has dramatically accelerated our comprehension of TCR diversity and its role in cancer immunity. CONCLUSIONS To substantiate the significance of TCR repertoires as biomarkers, more thorough and exhaustive research should be conducted. The TCR repertoire analysis, enabled by advanced sequencing technologies, is poised to become a crucial tool in the future of cancer diagnosis, monitoring, and therapy evaluation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Bohao Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Suzuki S, Tsuzuki T, Saito M, Ishii T, Takahara T, Satou A, Inukai D, Yamanaka S, Yoshikawa K, Ueda R, Ogawa T. Regulatory T-cells activated in metastatic draining lymph nodes possibly suppress cancer immunity in cancer tissues of head and neck squamous cell cancer. Pathol Int 2024; 74:327-336. [PMID: 38712798 DOI: 10.1111/pin.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Regulatory T cells (Tregs) play an important role in creating an immunosuppressive microenvironment in cancer tissues. However, the mechanisms by which Tregs are activated and suppress cancer immunity remain unclear. To elucidate these mechanisms, we performed a T cell receptor (TCR) repertoire analysis of Tregs and conventional T cells in peripheral blood, draining lymph nodes (DLNs), and cancer tissues of patients with head and neck squamous cell cancer (HNSCC). We found that the TCR repertoire was skewed in cancer tissue and metastatic DLNs (M-DLNs) compared with non-metastatic DLNs, and TCR repertoire similarities in Tregs and CD8+ T cells between M-DLNs and cancer tissue were high compared with those at other sites. These results suggest that Tregs and CD8+ T cells are activated in M-DLNs and cancer tissues by cancer antigens, such as neoantigens, and shared antigens and Tregs suppress CD8+ T cell function in a cancer antigen-specific manner in M-DLNs and cancer tissue. Moreover, M-DLNs might be a source of Tregs and CD8+ T cells recruited into the cancer tissue. Therefore, targeting Tregs in M-DLNs in an antigen-specific manner is expected to be a novel immunotherapeutic strategy for HNSCCs.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Masato Saito
- Translational Research Unit, R&D Division, Kyowa Kirin, Tokyo, Japan
| | | | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shunpei Yamanaka
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
9
|
Hoang MH, Skidmore ZL, Rindt H, Chu S, Fisk B, Foltz JA, Fronick C, Fulton R, Zhou M, Bivens NJ, Reinero CN, Fehniger TA, Griffith M, Bryan JN, Griffith OL. Single-cell T-cell receptor repertoire profiling in dogs. Commun Biol 2024; 7:484. [PMID: 38649520 PMCID: PMC11035579 DOI: 10.1038/s42003-024-06174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.
Collapse
Affiliation(s)
- My H Hoang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Hans Rindt
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Shirley Chu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Robert Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Mingyi Zhou
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core, University of Missouri, Columbia, MO, USA
| | - Carol N Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA.
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
10
|
Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, Sato H, Machida N, Yamada T, Watanabe Y, Tamaki T, Fujikawa H, Inokuchi Y, Hayase S, Hanayama H, Saze Z, Katoh H, Takahashi F, Oshima T, Goel A, Nardin A, Suzuki Y, Kono K. Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer 2024; 12:e008385. [PMID: 38290769 PMCID: PMC10828861 DOI: 10.1136/jitc-2023-008385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor-associated antigen (TAA)-specific CD8(+) T cells are essential for nivolumab therapy, and irradiation has been reported to have the potential to generate and activate TAA-specific CD8(+) T cells. However, mechanistic insights of T-cell response during combinatorial immunotherapy using radiotherapy and nivolumab are still largely unknown. METHODS Twenty patients included in this study were registered in the CIRCUIT trial (ClinicalTrials.gov, NCT03453164). All patients had multiple distant metastases and were intolerance or had progressed after primary and secondary chemotherapy without any immune checkpoint inhibitor. In the CIRCUIT trial, eligible patients were treated with a total of 22.5 Gy/5 fractions/5 days of radiotherapy to the largest or symptomatic lesion prior to receiving nivolumab every 2 weeks. In these 20 patients, T-cell responses during the combinatorial immunotherapy were monitored longitudinally by high-dimensional flow cytometry-based, multiplexed major histocompatibility complex multimer analysis using a total of 46 TAAs and 10 virus epitopes, repertoire analysis of T-cell receptor β-chain (TCRβ), together with circulating tumor DNA analysis to evaluate tumor mutational burden (TMB). RESULTS Although most TAA-specific CD8(+) T cells could be tracked longitudinally, several TAA-specific CD8(+) T cells were detected de novo after irradiation, but viral-specific CD8(+) T cells did not show obvious changes during treatment, indicating potential irradiation-driven antigen spreading. Irradiation was associated with phenotypical changes of TAA-specific CD8(+) T cells towards higher expression of killer cell lectin-like receptor subfamily G, member 1, human leukocyte antigen D-related antigen, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, CD160, and CD45RO together with lower expression of CD27 and CD127. Of importance, TAA-specific CD8(+) T cells in non-progressors frequently showed a phenotype of CD45RO(+)CD27(+)CD127(+) central memory T cells compared with those in progressors. TCRβ clonality (inverted Pielou's evenness) increased and TCRβ diversity (Pielou's evenness and Diversity Evenness score) decreased during treatment in progressors (p=0.029, p=0.029, p=0.012, respectively). TMB score was significantly lower in non-progressors after irradiation (p=0.023). CONCLUSION Oligo-fractionated irradiation induces an immune-modulating effect with potential antigen spreading and the combination of radiotherapy and nivolumab may be effective in a subset of patients with gastric cancer.
Collapse
Affiliation(s)
- Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | | | - Souvick Roy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
| | | | - Yate-Ching Yuan
- Division of Translational Bioinformatics, Center for Informatics, City of Hope National Medical Center, Duarte, California, USA
- Department of Computational Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | | | - Yuya Yoshimoto
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Sato
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nozomu Machida
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Takanobu Yamada
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Watanabe
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirohito Fujikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yasuhiro Inokuchi
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Suguru Hayase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Fumiaki Takahashi
- Department of Information Science, Iwate Medical University, Yahaba, Japan
| | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
11
|
Zhang J, Wang Y, Huang Y, Tan X, Xu J, Yan Q, Tan J, Zhang Y, Zhang J, Ma Q, Zhu H, Ye J, Zhu Z, Lan W. Characterization of T cell receptor repertoire in penile cancer. Cancer Immunol Immunother 2024; 73:24. [PMID: 38280010 PMCID: PMC10822009 DOI: 10.1007/s00262-023-03615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 01/29/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) play a key role in regulating the host immune response and shaping tumor microenvironment. It has been previously shown that T cell infiltration in penile tumors was associated with clinical outcomes. However, few studies have reported the T cell receptor (TCR) repertoire in patients with penile cancer. In the present study, we evaluated the TCR repertoires in tumor and adjacent normal tissues from 22 patients with penile squamous cell carcinoma (PSCC). Analysis of the T cell receptor beta-variable (TRBV) and joining (TRBJ) genes usage and analysis of complementarity determining region 3 (CDR3) length distribution did not show significant differences between tumor and matched normal tissues. Moreover, analysis of the median Jaccard index indicated a limited overlap of TCR repertoire between these groups. Compared with normal tissues, a significantly lower diversity and higher clonality of TCR repertoire was observed in tumor samples, which was associated with clinical characteristics. Further analysis of transcriptional profiles demonstrated that tumor samples with high clonality showed increased expression of genes associated with CD8 + T cells. In addition, we analyzed the TCR repertoire of CD4 + T cells and CD8 + T cells isolated from tumor tissues. We identified that expanded clonotypes were predominantly in the CD8 + T cell compartment, which presented with an exhausted phenotype. Overall, we comprehensively compared TCR repertoire between penile tumor and normal tissues and demonstrated the presence of distinct T cell immune microenvironments in patients with PSCC.
Collapse
Affiliation(s)
- Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jiao Tan
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jin Ye
- Urinary Nephropathy Center, The Thirteenth People's Hospital of Chongqing, Chongqing, 400053, People's Republic of China.
| | - Zhaojing Zhu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
12
|
Blanco G, López‐Aventín D, Pujol RM, Gómez‐Llonín A, Puiggros A, López‐Sánchez M, Estrach T, García‐Muret MP, López‐Lerma I, Servitje O, Bellosillo B, Muro M, Espinet B, Rabionet R, Gallardo F. High-throughput RNA sequencing of the T cell receptor alpha and beta chains for simultaneous clonality and biological analyses in Sezary syndrome. J Clin Lab Anal 2023; 37:e24982. [PMID: 38115685 PMCID: PMC10756948 DOI: 10.1002/jcla.24982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/17/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Previous investigations pointed out a role for antigen stimulation in Sezary syndrome (SS). High-throughput sequencing of the T cell receptor (TR) offers several applications beyond diagnostic purposes, including the study of T cell pathogenesis. METHODS We performed high-throughput RNA sequencing of the TR alpha (TRA) and beta (TRB) genes focusing on the complementarity-determining region 3 (CDR3) in 11 SS and one erythrodermic mycosis fungoides (MF) patients. Five psoriasis patients were employed as controls. Peripheral blood CD4+ cells were isolated and RNA sequenced (HiSeq2500). High-resolution HLA typing was performed in neoplastic patients. RESULTS Highly expanded predominant TRA and TRB CDR3 were only found in SS patients (median frequency: 94.4% and 93.7%). No remarkable CDR3 expansions were observed in psoriasis patients (median frequency of predominant TRA and TRB CDR3: 0.87% and 0.69%, p < 0.001 compared to SS). CDR3 almost identical to the predominant were identified within each SS patient and were exponentially correlated with frequencies of the predominant CDR3 (R2 = 0.918, p < 0.001). Forty-six different CDR3 were shared between SS patients displaying HLA similarities, including predominant TRA and TRB CDR3 in one patient that were found in other three patients. Additionally, 351 antigen matches were detected (Cytomegalovirus, Epstein-Barr, Influenza virus, and self-antigens), and the predominant CDR3 of two different SS patients matched CDR3 with specificity for Influenza and Epstein-Barr viruses. CONCLUSIONS Besides detecting clonality, these findings shed light on the nature of SS-related antigens, pointing to RNA sequencing as a useful tool for simultaneous clonality and biological analysis in SS.
Collapse
Affiliation(s)
- Gonzalo Blanco
- Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Laboratori de Citogenètica Molecular, Servei de PatologiaHospital del MarBarcelonaSpain
- Karches Center for Oncology ResearchThe Feinstein Institutes for Medical Research, Northwell HealthManhassetNew YorkUSA
| | - Daniel López‐Aventín
- Servei de DermatologiaHospital del MarBarcelonaSpain
- Programa de Doctorat en Medicina, Departament de MedicinaUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Ramon M. Pujol
- Servei de DermatologiaHospital del MarBarcelonaSpain
- Grup de Recerca en Malalties Inflamatòries i Neoplàsiques Dermatològiques, Inflammation and Cardiovascular Disorders Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
| | - Andrea Gómez‐Llonín
- Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Laboratori de Citogenètica Molecular, Servei de PatologiaHospital del MarBarcelonaSpain
- Laboratori de Recerca Translacional en Microambient TumoralCancer Research ProgrammeBarcelonaSpain
| | - Anna Puiggros
- Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Laboratori de Citogenètica Molecular, Servei de PatologiaHospital del MarBarcelonaSpain
| | - Manuela López‐Sánchez
- Servicio de InmunologíaHospital Clínico Universitario Virgen de la Arrixaca‐IMIBMurciaSpain
| | - Teresa Estrach
- Servei de Dermatologia, Hospital Clínic, IDIBAPSUniversitat de BarcelonaBarcelonaSpain
| | | | | | | | - Beatriz Bellosillo
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Laboratori de Biologia Molecular, Servei de PatologiaHospital del MarBarcelonaSpain
| | - Manuel Muro
- Servicio de InmunologíaHospital Clínico Universitario Virgen de la Arrixaca‐IMIBMurciaSpain
| | - Blanca Espinet
- Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Laboratori de Citogenètica Molecular, Servei de PatologiaHospital del MarBarcelonaSpain
| | - Raquel Rabionet
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuHospital Sant Joan de DéuBarcelonaSpain
- Institut de Biomedicina (IBUB)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)Instituto de Salud Carlos III (ISCIII)MadridSpain
| | - Fernando Gallardo
- Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research ProgrammeIMIM‐Hospital del MarBarcelonaSpain
- Servei de DermatologiaHospital del MarBarcelonaSpain
| |
Collapse
|
13
|
Sato Y, Yamashita H, Kobayashi Y, Nagaoka K, Hisayoshi T, Kawahara T, Kuroda A, Saito N, Iwata R, Okumura Y, Yagi K, Aiko S, Nomura S, Kakimi K, Seto Y. Alterations in Intratumoral Immune Response before and during Early-On Nivolumab Treatment for Unresectable Advanced or Recurrent Gastric Cancer. Int J Mol Sci 2023; 24:16602. [PMID: 38068925 PMCID: PMC10706573 DOI: 10.3390/ijms242316602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
We investigated the tumor immune response in gastric cancer patients receiving third-line nivolumab monotherapy to identify immune-related biomarkers for better patient selection. Nineteen patients (10 males, median age 67 years) who received nivolumab as a third- or later-line therapy were enrolled. We analyzed the tumor immune response in durable clinical benefit (DCB) and non-DCB patients. Pre-treatment and early-on-treatment tumor transcriptomes were examined, and gene expression profiles, immunograms, and T cell receptor (TCR) repertoire were analyzed. DCB was observed in 15.8% of patients, with comparable secondary endpoints (ORR; objective response rate, OS; overall survival, PFS; progression-free survival) to previous trials. The immunograms of individual subjects displayed no significant changes before or early in the treatment, except for the regulatory T cell (Treg) score. Moreover, there were no consistent alterations observed among cases experiencing DCB. The intratumoral immune response was suppressed by previous treatments in most third- or later-line nivolumab recipients. TCR repertoire analysis revealed newly emerged clonotypes in early-on-treatment tumors, but clonal replacement did not impact efficacy. High T cell/Treg ratios and a low UV-radiation-response gene signature were linked to DCB and treatment response. This study emphasizes the tumor immune response's importance in nivolumab efficacy for gastric cancer. High T cell/Treg ratios and specific gene expression signatures show promise as potential biomarkers for treatment response. The tumor-infiltrating immune response was compromised by prior treatments in third-line therapy, implying that, to enhance immunotherapeutic outcomes, commencing treatment at an earlier stage might be preferable. Larger cohort validation is crucial to optimize immune-checkpoint inhibitors in gastric cancer treatment.
Collapse
Affiliation(s)
- Yasuyoshi Sato
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
- Department of Chemotherapy and Cancer Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroharu Yamashita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Digestive Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | | | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Akihiro Kuroda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
| | - Noriyuki Saito
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Ryohei Iwata
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
- Department of Digestive Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yasuhiro Okumura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Susumu Aiko
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.K.); (K.N.)
- Department of Immunology, Kindai University Faculty of Medicine, Osakasayama-shi 589-8511, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.S.); (H.Y.); (A.K.); (N.S.); (R.I.); (Y.O.); (K.Y.); (S.A.); (S.N.); (Y.S.)
| |
Collapse
|
14
|
Kobayashi T, Nagata M, Ikehata Y, Nagashima Y, Nagaya N, Lu Y, Horie S. T-Cell Receptor Repertoire as a Predictor of Immune-Related Adverse Events in Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:8939-8949. [PMID: 37998738 PMCID: PMC10670264 DOI: 10.3390/cimb45110561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are effective in treating renal cell carcinoma (RCC) but can also cause immune-related adverse events (irAEs). The relationship between irAEs and the T-cell receptor (TCR) repertoire in RCC patients treated with ICIs remains unclear. We analyzed the relationship between the severity and diversity of irAEs and the TCR repertoire in RCC patients who received dual checkpoint inhibitors (ipilimumab + nivolumab). The TCRβ (TRB) repertoires were characterized in peripheral blood samples from six patients with RCC before the initiation of ICI therapy. The diversity and clonality of the TCR repertoire were compared between patients with grade 2 and grade 3 irAEs. The median proportion of top 10 unique reads in the TCR repertoire was significantly higher in grade 3 compared with grade 2 irAEs in RCC patients receiving immune checkpoint inhibitors (grade 2: 0.196%; grade 3: 0.346%; p = 0.0038). We provide insight into the relationship between TCR repertoire and irAEs in RCC patients treated with ICIs. TCR repertoire clonality may be associated with the development of irAEs in RCC patients.
Collapse
Affiliation(s)
- Takuro Kobayashi
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
| | - Masayoshi Nagata
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
| | - Yoshihiro Ikehata
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
| | - Yuki Nagashima
- Department of Urology, Shizuoka Hospital, Juntendo University, Shizuoka 410-2211, Japan
| | - Naoya Nagaya
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
- Department of Urology, Shizuoka Hospital, Juntendo University, Shizuoka 410-2211, Japan
| | - Yan Lu
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
| | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (T.K.)
- Department of Advanced Informatics for Genetic Diseases, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
15
|
Heimli M, Tennebø Flåm S, Sagsveen Hjorthaug H, Bjørnstad PM, Chernigovskaya M, Le QK, Tekpli X, Greiff V, Lie BA. Human thymic putative CD8αα precursors exhibit a biased TCR repertoire in single cell AIRR-seq. Sci Rep 2023; 13:17714. [PMID: 37853083 PMCID: PMC10584817 DOI: 10.1038/s41598-023-44693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Quy Khang Le
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway.
| |
Collapse
|
16
|
Imai H, Kawase T, Yoshida S, Mese T, Roh S, Fujita A, Uchiki T, Sasaki A, Nagamatsu S, Takazawa A, Ichinohe T, Koshima I. Peripheral T cell profiling reveals downregulated exhaustion marker and increased diversity in lymphedema post-lymphatic venous anastomosis. iScience 2023; 26:106822. [PMID: 37250774 PMCID: PMC10212982 DOI: 10.1016/j.isci.2023.106822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lymphedema is a progressive condition accompanying cellulitis and angiosarcoma, suggesting its association with immune dysfunction. Lymphatic venous anastomosis (LVA) can provide relief from cellulitis and angiosarcoma. However, the immune status of peripheral T cells during lymphedema and post-LVA remains poorly understood. Using peripheral blood T cells from lymphedema, post-LVA, and healthy controls (HCs), we compared the profile of T cell subsets and T cell receptor (TCR) diversity. PD-1+ Tim-3 + expression was downregulated in post-LVA compared with lymphedema. IFN-γ levels in CD4+PD-1+ T cells and IL-17A levels in CD4+ T cells were downregulated in post-LVA compared with lymphedema. TCR diversity was decreased in lymphedema compared with HCs; such TCR skewing was drastically improved in post-LVA. T cells in lymphedema were associated with exhaustion, inflammation, and diminished diversity, which were relieved post-LVA. The results provide insights into the peripheral T cell population in lymphedema and highlight the immune modulatory importance of LVA.
Collapse
Affiliation(s)
- Hirofumi Imai
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shuhei Yoshida
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshiro Mese
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Solji Roh
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Asuka Fujita
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Atsushi Takazawa
- Department of Orthopaedic Surgery, Hiroshima Hiramatsu Hospital, Hiroshima 732-0816, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Isao Koshima
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
17
|
Li Y, Qi J, Liu Y, Zheng Y, Zhu H, Zang Y, Guan X, Xie S, Zhao H, Fu Y, Xiang H, Zhang W, Chen H, Liu H, Zhao Y, Feng Y, Bu F, Liang Y, Li Y, Xu Q, He Y, Sun L, Liu L, Gu Y, Xu X, Hou Y, Dong X, Liu Y. High-Throughput Screening of Functional Neo-Antigens and Their Specific T-Cell Receptors via the Jurkat Reporter System Combined with Droplet Microfluidics. Anal Chem 2023. [PMID: 37300490 DOI: 10.1021/acs.analchem.3c01754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.
Collapse
Affiliation(s)
- Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518116, China
| | | | | | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huan Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yu Feng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yanling Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Li Sun
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
18
|
Nasu K, Kumagai K, Yoshizawa T, Kitaura K, Matsubara R, Suzuki M, Suzuki R, Hamada Y. Type IVb Hypersensitivity Reaction in the Novel Murine Model of Palladium-Induced Intraoral Allergic Contact Mucositis. Int J Mol Sci 2023; 24:ijms24043137. [PMID: 36834546 PMCID: PMC9959297 DOI: 10.3390/ijms24043137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Palladium (Pd) is a component of several alloy types that are widely used in our environment, including several dental alloy types that cause adverse reactions such as hypersensitivity in the oral mucosa. However, the pathological mechanism of intraoral Pd allergies remains unclear because its animal model in the oral mucosa has not been established. In this study, we established a novel murine model of Pd-induced allergies in the oral mucosa, and explored the immune response of cytokine profiles and T cell diversity in terms of the T cell receptor. The Pd-induced allergy mouse was generated by two sensitizations with PdCl2, plus a lipopolysaccharide solution into the postauricular skin followed by a single Pd challenge of the buccal mucosa. Significant swelling and pathological features were histologically evident at five days after the challenge, and CD4-positive T cells producing high levels of T helper 2 type cytokines had accumulated in the allergic oral mucosa. Characterization of the T cell receptor repertoire in Palladium allergic mice indicated that Pd-specific T cell populations were limited in V and J genes but were diverse at the clonal level. Our model demonstrated that a Pd-specific T cell population with Th2 type response tendencies may be involved in the Pd-induced intraoral metal contact allergy.
Collapse
Affiliation(s)
- Keisuke Nasu
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
| | - Kenichi Kumagai
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
- Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Takamasa Yoshizawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
| | - Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
- Repertoire Genesis Inc., Osaka 567-0085, Japan
| | - Ryota Matsubara
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
- Department of Oral and Maxillofacial Surgery, Sendai Tokushukai Hospital, Sendai 981-3116, Japan
| | - Motoaki Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara 252-0392, Japan
- Repertoire Genesis Inc., Osaka 567-0085, Japan
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, Yokohama 230-8501, Japan
- Correspondence: ; Tel./Fax: +81-45-580-8327
| |
Collapse
|
19
|
Characterization of Metal-Specific T-Cells in Inflamed Oral Mucosa in a Novel Murine Model of Chromium-Induced Allergic Contact Dermatitis. Int J Mol Sci 2023; 24:ijms24032807. [PMID: 36769119 PMCID: PMC9917800 DOI: 10.3390/ijms24032807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The element chromium (Cr) is a component of several types of alloys found in the environment, or utilized in dentistry, that may cause intraoral metal contact allergy. However, the pathological mechanism of intraoral Cr allergy remains unclear because there is no established animal model of Cr allergy in the oral mucosa. In this study, we established a novel murine model of Cr-induced intraoral metal contact allergy and elucidated the immune response in terms of cytokine profiles and T-cell receptor repertoire. Two sensitizations with Cr plus lipopolysaccharide solution into the postauricular skin were followed by a single Cr challenge of the oral mucosa to generate the intraoral metal contact allergy model. Histological examination revealed that CD3+ T-cells had infiltrated the allergic oral mucosa one day after exposure to the allergen. The increase in T-cell markers and cytokines in allergic oral mucosa was also confirmed via quantitative PCR analysis. We detected Cr-specific T-cells bearing TRAV12D-1-TRAJ22 and natural killer (NK) T-cells in the oral mucosa and lymph nodes. Our model demonstrated that Cr-specific T-cells and potent NKT-cell activation may be involved in the immune responses of Cr-induced intraoral metal contact allergy.
Collapse
|
20
|
Joseph M, Wu Y, Dannebaum R, Rubelt F, Zlatareva I, Lorenc A, Du ZG, Davies D, Kyle-Cezar F, Das A, Gee S, Seow J, Graham C, Telman D, Bermejo C, Lin H, Asgharian H, Laing AG, del Molino del Barrio I, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Davis R, Sofra V, Cano F, Theodoridis E, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Edgeworth J, Cason J, Mant C, Doores KJ, Vantourout P, Luong K, Berka J, Hayday AC. Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2201541119. [PMID: 35943978 PMCID: PMC9407655 DOI: 10.1073/pnas.2201541119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) β and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRβ and TCRδ loci, including some TCRβ sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.
Collapse
Affiliation(s)
- Magdalene Joseph
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Yin Wu
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- cBreast Cancer Now Research Unit, King’s College London, London, SE1 9RT, United Kingdom
- dDepartment of Medical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, SE1 9RT, United Kingdom
- eUCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| | | | | | - Iva Zlatareva
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Anna Lorenc
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | | | - Daniel Davies
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- gDepartment of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, NW3 2QG, United Kingdom
| | - Fernanda Kyle-Cezar
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Abhishek Das
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- hLondon School of Hygiene & Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Sarah Gee
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jeffrey Seow
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Carl Graham
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | | | | | - Hai Lin
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | | | - Adam G. Laing
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Irene del Molino del Barrio
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- eUCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| | - Leticia Monin
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Miguel Muñoz-Ruiz
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Duncan R. McKenzie
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Thomas S. Hayday
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Isaac Francos-Quijorna
- jRegeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AB, United Kingdom
| | - Shraddha Kamdar
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Richard Davis
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Vasiliki Sofra
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Florencia Cano
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Efstathios Theodoridis
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Lauren Martinez
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Blair Merrick
- lCentre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Karen Bisnauthsing
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Kate Brooks
- kResearch and Development Department, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - Jonathan Edgeworth
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
- lCentre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, SE1 7EH, United Kingdom
| | - John Cason
- mInfectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Christine Mant
- mInfectious Diseases Biobank, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Katie J. Doores
- iDepartment of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Pierre Vantourout
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Khai Luong
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | - Jan Berka
- fRoche Diagnostics Solutions, Pleasanton, CA, 94588
| | - Adrian C. Hayday
- aPeter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, SE1 9RT, United Kingdom
- bImmunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- 2To whom correspondence may be addressed.
| |
Collapse
|
21
|
Cullen JN, Martin J, Vilella AJ, Treeful A, Sargan D, Bradley A, Friedenberg SG. Development and application of a next-generation sequencing protocol and bioinformatics pipeline for the comprehensive analysis of the canine immunoglobulin repertoire. PLoS One 2022; 17:e0270710. [PMID: 35802654 PMCID: PMC9269486 DOI: 10.1371/journal.pone.0270710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Profiling the adaptive immune repertoire using next generation sequencing (NGS) has become common in human medicine, showing promise in characterizing clonal expansion of B cell clones through analysis of B cell receptors (BCRs) in patients with lymphoid malignancies. In contrast, most work evaluating BCR repertoires in dogs has employed traditional PCR-based approaches analyzing the IGH locus only. The objectives of this study were to: (1) describe a novel NGS protocol to evaluate canine BCRs; (2) develop a bioinformatics pipeline for processing canine BCR sequencing data; and (3) apply these methods to derive insights into BCR repertoires of healthy dogs and dogs undergoing treatment for B-cell lymphoma. RNA from peripheral blood mononuclear cells of healthy dogs (n = 25) and dogs newly diagnosed with intermediate-to-large B-cell lymphoma (n = 18) with intent to pursue chemotherapy was isolated, converted into cDNA and sequenced by NGS. The BCR repertoires were identified and quantified using a novel analysis pipeline. The IGK repertoires of the healthy dogs were far less diverse compared to IGL which, as with IGH, was highly diverse. Strong biases at key positions within the CDR3 sequence were identified within the healthy dog BCR repertoire. For a subset of the dogs with B-cell lymphoma, clonal expansion of specific IGH sequences pre-treatment and reduction post-treatment was observed. The degree of expansion and reduction correlated with the clinical outcome in this subset. Future studies employing these techniques may improve disease monitoring, provide earlier recognition of disease progression, and ultimately lead to more targeted therapeutics.
Collapse
Affiliation(s)
- Jonah N. Cullen
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - Jolyon Martin
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Albert J. Vilella
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Amy Treeful
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - David Sargan
- Department of Veterinary Medicine, Madingley Road, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
- Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kockelbergh H, Evans S, Deng T, Clyne E, Kyriakidou A, Economou A, Luu Hoang KN, Woodmansey S, Foers A, Fowler A, Soilleux EJ. Utility of Bulk T-Cell Receptor Repertoire Sequencing Analysis in Understanding Immune Responses to COVID-19. Diagnostics (Basel) 2022; 12:1222. [PMID: 35626377 PMCID: PMC9140453 DOI: 10.3390/diagnostics12051222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Measuring immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), can rely on antibodies, reactive T cells and other factors, with T-cell-mediated responses appearing to have greater sensitivity and longevity. Because each T cell carries an essentially unique nucleic acid sequence for its T-cell receptor (TCR), we can interrogate sequence data derived from DNA or RNA to assess aspects of the immune response. This review deals with the utility of bulk, rather than single-cell, sequencing of TCR repertoires, considering the importance of study design, in terms of cohort selection, laboratory methods and analysis. The advances in understanding SARS-CoV-2 immunity that have resulted from bulk TCR repertoire sequencing are also be discussed. The complexity of sequencing data obtained by bulk repertoire sequencing makes analysis challenging, but simple descriptive analyses, clonal analysis, searches for specific sequences associated with immune responses to SARS-CoV-2, motif-based analyses, and machine learning approaches have all been applied. TCR repertoire sequencing has demonstrated early expansion followed by contraction of SARS-CoV-2-specific clonotypes, during active infection. Maintenance of TCR repertoire diversity, including the maintenance of diversity of anti-SARS-CoV-2 response, predicts a favourable outcome. TCR repertoire narrowing in severe COVID-19 is most likely a consequence of COVID-19-associated lymphopenia. It has been possible to follow clonotypic sequences longitudinally, which has been particularly valuable for clonotypes known to be associated with SARS-CoV-2 peptide/MHC tetramer binding or with SARS-CoV-2 peptide-induced cytokine responses. Closely related clonotypes to these previously identified sequences have been shown to respond with similar kinetics during infection. A possible superantigen-like effect of the SARS-CoV-2 spike protein has been identified, by means of observing V-segment skewing in patients with severe COVID-19, together with structural modelling. Such a superantigen-like activity, which is apparently absent from other coronaviruses, may be the basis of multisystem inflammatory syndrome and cytokine storms in COVID-19. Bulk TCR repertoire sequencing has proven to be a useful and cost-effective approach to understanding interactions between SARS-CoV-2 and the human host, with the potential to inform the design of therapeutics and vaccines, as well as to provide invaluable pathogenetic and epidemiological insights.
Collapse
Affiliation(s)
- Hannah Kockelbergh
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK;
| | - Shelley Evans
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Tong Deng
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Ella Clyne
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Anna Kyriakidou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1QP, UK; (A.K.); (A.E.)
| | - Andreas Economou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1QP, UK; (A.K.); (A.E.)
| | - Kim Ngan Luu Hoang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Stephen Woodmansey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
- Department of Respiratory Medicine, University Hospitals of Morecambe Bay, Kendal LA9 7RG, UK
| | - Andrew Foers
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7YF, UK;
| | - Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK;
| | - Elizabeth J. Soilleux
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| |
Collapse
|
23
|
Okamura T, Hamaguchi M, Tominaga H, Kitagawa N, Hashimoto Y, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Shichino S, Fukui M. Characterization of Peripheral Blood TCR in Patients with Type 1 Diabetes Mellitus by BD RhapsodyTM VDJ CDR3 Assay. Cells 2022; 11:cells11101623. [PMID: 35626661 PMCID: PMC9139223 DOI: 10.3390/cells11101623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in patients with T1DM and healthy subjects.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroyuki Tominaga
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
24
|
Kawanabe-Matsuda H, Takeda K, Nakamura M, Makino S, Karasaki T, Kakimi K, Nishimukai M, Ohno T, Omi J, Kano K, Uwamizu A, Yagita H, Boneca IG, Eberl G, Aoki J, Smyth MJ, Okumura K. Dietary Lactobacillus-Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discov 2022; 12:1336-1355. [PMID: 35180303 PMCID: PMC9662940 DOI: 10.1158/2159-8290.cd-21-0929] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/20/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Microbes and their byproducts have been reported to regulate host health and immune functions. Here we demonstrated that microbial exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 (EPS-R1) induced CCR6+ CD8+ T cells of mice and humans. In mice, ingestion of EPS-R1 augmented antitumor effects of anti-CTLA-4 or anti-PD-1 monoclonal antibody against CCL20-expressing tumors, in which infiltrating CCR6+ CD8+ T cells were increased and produced IFNγ accompanied by a substantial immune response gene expression signature maintaining T-cell functions. Of note, the antitumor adjuvant effect of EPS-R1 was also observed in germ-free mice. Furthermore, the induction of CCR6 expression was mediated through the phosphorylated structure in EPS-R1 and a lysophosphatidic acid receptor on CD8+ T cells. Overall, we find that dietary EPS-R1 consumption induces CCR6+ CD8+ T cells in Peyer's patches, favoring a tumor microenvironment that augments the therapeutic effect of immune-checkpoint blockade depending on CCL20 production by tumors. SIGNIFICANCE Gut microbiota- and probiotic-derived metabolites are attractive agents to augment the efficacy of immunotherapies. Here we demonstrated that dietary consumption of Lactobacillus-derived exopolysaccharide induced CCR6+ CD8+ T cells in Peyer's patches and improved the tumor microenvironment to augment the therapeutic effects of immune-checkpoint blockade against CCL20-producing tumors. See related commentary by Di Luccia and Colonna, p. 1189. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Hirotaka Kawanabe-Matsuda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Corresponding Author: Kazuyoshi Takeda, Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: 81-3-5802-1591; E-mail:
| | - Marie Nakamura
- Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Seiya Makino
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit of Biology and Genetics of Bacterial Cell Wall, Paris, France. INSERM, Équipe Avenir, Paris, France
| | - Gérard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
25
|
Shiozawa S, Tsumiyama K, Miyazaki Y, Uto K, Sakurai K, Nakashima T, Matsuyama H, Doi A, Tarui M, Izumikawa M, Kimura M, Fujita Y, Satonaka C, Horiuchi T, Matsubara T, Oribe M, Yamane T, Kagawa H, Li QZ, Mizuno K, Mukai Y, Murakami K, Enya T, Tsukimoto S, Hakata Y, Miyazawa M, Shiozawa K. DOCK8-expressing T follicular helper cells newly generated beyond self-organized criticality cause systemic lupus erythematosus. iScience 2022; 25:103537. [PMID: 34977502 PMCID: PMC8689056 DOI: 10.1016/j.isci.2021.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Pathogens including autoantigens all failed to induce systemic lupus erythematosus (SLE). We, instead, studied the integrity of host's immune response that recognized pathogen. By stimulating TCR with an antigen repeatedly to levels that surpass host's steady-state response, self-organized criticality, SLE was induced in mice normally not prone to autoimmunity, wherein T follicular helper (Tfh) cells expressing the guanine nucleotide exchange factor DOCK8 on the cell surface were newly generated. DOCK8+Tfh cells passed through TCR re-revision and induced varieties of autoantibody and lupus lesions. They existed in splenic red pulp and peripheral blood of active lupus patients, which subsequently declined after therapy. Autoantibodies and disease were healed by anti-DOCK8 antibody in the mice including SLE-model (NZBxNZW) F1 mice. Thus, DOCK8+Tfh cells generated after repeated TCR stimulation by immunogenic form of pathogen, either exogenous or endogenous, in combination with HLA to levels that surpass system's self-organized criticality, cause SLE. Autoimmunity seldom takes place under integrated steady-state immune response Repeated invasion by pathogen, such as measles virus, is not exceptional but routine in life DOCK8+Tfh is generated upon TCR overstimulation by pathogen beyond self-organized criticality Newly generated DOCK8+Tfh induces autoantibodies and SLE, i.e., autoimmunity
Collapse
Affiliation(s)
- Shunichi Shiozawa
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Ken Tsumiyama
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan.,Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Yumi Miyazaki
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan.,Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Kenichi Uto
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Keiichi Sakurai
- Institute for Rheumatic Diseases, 944-25 Fujita, Katoshi 673-1462, Japan.,Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Toshie Nakashima
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Hiroko Matsuyama
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Ai Doi
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Miho Tarui
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Manabu Izumikawa
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Mai Kimura
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Yuko Fujita
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Chisako Satonaka
- Division of Bioregulation, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe 654-0142, Japan
| | - Takahiko Horiuchi
- Department of Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874-0838, Japan
| | - Tsukasa Matsubara
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan
| | - Motohiro Oribe
- Oribe Clinic, 1-8-15 Higashi-Odori, Oita 870-0823, Japan
| | - Takashi Yamane
- Department of Rheumatology, Kakogawa City Hospital, 439 Honmachi, Kakogawa 675-8611, Japan
| | - Hidetoshi Kagawa
- Department of Medicine, Red Cross Society Himeji Hospital, 1-12-1 Shimoteno, Himeji 670-8540, Japan
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, 6001 Forest Park Road/ND 6.504, Dallas, TX 75390-8814, USA
| | - Keiko Mizuno
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Yohei Mukai
- Drug Discovery Platform, KAN Research Institute, Inc., 6-8-2 Minatojimaminamicho, Kobe 650-0047, Japan
| | - Kazuhiro Murakami
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsujima, Aobaku 981-8558, Japan
| | - Takuji Enya
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Pediatrics, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shota Tsukimoto
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Department of Anesthesiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.,Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuko Shiozawa
- Department of Medicine, Rheumatology and Orthopedic Surgery, Matsubara Mayflower Hospital, 944-25 Fujita, Katoshi 673-1462, Japan.,Rheumatology and Collagen Disease Center, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno, Kakogawa 675-8555, Japan
| |
Collapse
|
26
|
Moore MJ, Zhong M, Hansen J, Gartner H, Grant C, Huang M, Harris FM, Tu N, Bowerman NA, Edelmann KH, Barry T, Herbin O, Tay CS, DiLillo DJ, Decker CE, Levenkova N, Shevchuk J, Dhanik A, Meagher KA, Karr A, Roos J, Lee WY, Suh D, Eckersdorff M, Meagher TC, Koss M, Esau L, Sleeman MA, Babb R, Chen G, Kyratsous CA, Poueymirou WT, McWhirter JR, Voronina VA, Guo C, Gurer C, Yancopoulos GD, Murphy AJ, Macdonald LE. Humanization of T cell-mediated immunity in mice. Sci Immunol 2021; 6:eabj4026. [PMID: 34919442 DOI: 10.1126/sciimmunol.abj4026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael J Moore
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Maggie Zhong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Johanna Hansen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Hans Gartner
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Craig Grant
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mei Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Faith M Harris
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Naxin Tu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natalie A Bowerman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Kurt H Edelmann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Thomas Barry
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chin-Siean Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David J DiLillo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Corinne E Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Natasha Levenkova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - James Shevchuk
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Ankur Dhanik
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Karoline A Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Amanda Karr
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Jan Roos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Wen-Yi Lee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - David Suh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Mark Eckersdorff
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - T Craig Meagher
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew Koss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lakeisha Esau
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | | | - John R McWhirter
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Vera A Voronina
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | | | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Lynn E Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| |
Collapse
|
27
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
28
|
Wahl I, Hoffmann S, Hundsdorfer R, Puchan J, Hoffman SL, Kremsner PG, Mordmüller B, Busse CE, Wardemann H. An efficient single-cell based method for linking human T cell phenotype to T cell receptor sequence and specificity. Eur J Immunol 2021; 52:237-246. [PMID: 34710239 DOI: 10.1002/eji.202149392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
Single-cell antigen-receptor gene amplification and sequencing platforms have been used to characterize T cell receptor (TCR) repertoires but typically fail to generate paired full-length gene products for direct expression cloning and do not enable linking this data to cell phenotype information. To overcome these limitations, we established a high-throughput platform for the quantitative and qualitative analysis of human TCR repertoires that provides insights into the clonal and functional composition of human CD4+ and CD8+ αβ T cells at the molecular and cellular level. The strategy is a powerful tool to qualitatively assess differences between antigen receptors of phenotypically defined αβ T cell subsets, e.g. in immune responses to cancer, vaccination, or infection, and in autoimmune diseases.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Julia Puchan
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian E Busse
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
29
|
Torii K, Okada Y, Morita A. Determining the immune environment of cutaneous T-cell lymphoma lesions through the assessment of lesional blood drops. Sci Rep 2021; 11:19629. [PMID: 34608214 PMCID: PMC8490448 DOI: 10.1038/s41598-021-98804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Detailed analysis of the cells that infiltrate lesional skin cannot be performed in skin biopsy specimens using immunohistochemistry or cell separation techniques because enzyme treatments applied during the isolation step can destroy small amounts of protein and minor cell populations in the biopsy specimen. Here, we describe a method for isolating T cells from drops of whole blood obtained from lesions during skin biopsy in patients with cutaneous T-cell lymphoma. Lesional blood is assumed to contain lesional resident cells, cells from capillary vessels, and blood overflowing from capillary vessels into the lesion area. The lesional blood showed substantial increases in distinct cell populations, chemokines, and the expression of various genes. The proportion of CD8+CD45RO+ T cells in the lesional blood negatively correlated with the modified severity-weighted assessment tool scores. CD4+CD45RO+ T cells in the lesional blood expressed genes associated with the development of cancer and progression of cutaneous T-cell lymphoma. In addition, CD8+CD45RO+ T cells in lesional blood had unique T-cell receptor repertoires in lesions of each stage. Assessment of lesional blood drops might provide new insight into the pathogenesis of mycosis fungoides and facilitate evaluation of the treatment efficacy for mycosis fungoides as well as other skin inflammatory diseases.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Disease Management
- Disease Susceptibility
- Female
- Humans
- Immunohistochemistry
- Immunophenotyping
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphoma, T-Cell, Cutaneous/blood
- Lymphoma, T-Cell, Cutaneous/diagnosis
- Lymphoma, T-Cell, Cutaneous/etiology
- Male
- Middle Aged
- Neoplasm Staging
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kan Torii
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
30
|
Itamura H, Shindo T, Muranushi H, Kitaura K, Okada S, Shin-I T, Suzuki R, Takaori-Kondo A, Kimura S. Pharmacological MEK inhibition promotes polyclonal T-cell reconstitution and suppresses xenogeneic GVHD. Cell Immunol 2021; 367:104410. [PMID: 34274730 DOI: 10.1016/j.cellimm.2021.104410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Rapid immune reconstitution without developing graft-versus-host disease (GVHD) is required for the success of allogeneic hematopoietic stem cell transplantation. Here, we analyzed the effects of pharmacological MEK inhibition on human polyclonal T-cell reconstitution in a humanized mouse GVHD model utilizing deep sequencing-based T-cell receptor (TCR) repertoire analysis. GVHD mice exhibited a skewed TCR repertoire with a common clone within target organs. The MEK inhibitor trametinib ameliorated GVHD and enabled engraftment of diverse T-cell clones. Furthermore, trametinib also ameliorated GVHD sparing diverse T cell repertoire, even when it was given from day 15 through 28. Although tacrolimus also reduced development of GVHD, it disturbed diverse T cell reconstitution and resulted in skewed TCR repertoire. Thus, trametinib not only suppresses GVHD-inducing T cells but also promotes human T cell reconstitution in vivo, providing a novel rationale for translational studies targeting human GVHD.
Collapse
Affiliation(s)
- Hidekazu Itamura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Takero Shindo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hiroyuki Muranushi
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc., Ibaraki, Japan; Department of Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
31
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
32
|
Kimura K, Lin Y, Yamaguchi H, Sato W, Takewaki D, Minote M, Doi Y, Okamoto T, Takahashi R, Kondo T, Yamamura T. Th1 - CD11c + B Cell Axis Associated with Response to Plasmapheresis in Multiple Sclerosis. Ann Neurol 2021; 90:595-611. [PMID: 34424567 PMCID: PMC9293420 DOI: 10.1002/ana.26202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022]
Abstract
Objective Although plasmapheresis is a treatment option for patients with autoimmune neurological diseases, treatment response varies greatly among patients. The main objective of this study was to find out if biological/immune traits correlate with a beneficial response. Methods We thoroughly analyzed immune phenotypes in paired blood samples from a cohort of 31 patients with multiple sclerosis before and after plasmapheresis, in parallel with clinical evaluation of treatment response. Results The frequency of IFN‐γ+ Th1 cells was persistently higher in those who obtained benefit from plasmapheresis (responders) than nonresponders. The Th1 cell frequency before plasmapheresis provided a high predictive value for beneficial response, achieving area under the curve (AUC) of 0.902. Plasmapheresis treatment decreased inflammation‐related gene expressions in Th1 cells. Meanwhile, IFNG expression in Th1 cells positively correlated with the frequency of CD11c+ B cells, of which a pathogenic role has been suggested in several autoimmune diseases. In line with this, in vitro experiments showed that CD11c+ B cells would increase in response to exogenous IFN‐γ compared to IL‐4, and secrete high amounts of IgG. B cell receptor analysis indicated that clonal expansion of CD11c+ B cells takes place in patients with multiple sclerosis. Interestingly, CD11c+ B cells, which showed unique gene expression profile, decreased after plasmapheresis treatment along with all the immunoglobulin subsets in the circulation. Interpretation Taken together, we postulate that Th1 cell ‐ CD11c+ B cell axis is involved in treatment response to plasmapheresis, giving us clues to better understanding of complicated pathogenesis of autoimmune diseases, and getting closer to a personalized therapy. ANN NEUROL 2021;90:595–611
Collapse
Affiliation(s)
- Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiromi Yamaguchi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daiki Takewaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Misako Minote
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshimitsu Doi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Okamoto
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kondo
- Department of Neurology, Kansai Medical University Medical Center, Osaka, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
33
|
Validation of the EuroClonality-NGS DNA capture panel as an integrated genomic tool for lymphoproliferative disorders. Blood Adv 2021; 5:3188-3198. [PMID: 34424321 DOI: 10.1182/bloodadvances.2020004056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
Current diagnostic standards for lymphoproliferative disorders include multiple tests for detection of clonal immunoglobulin (IG) and/or T-cell receptor (TCR) rearrangements, translocations, copy-number alterations (CNAs), and somatic mutations. The EuroClonality-NGS DNA Capture (EuroClonality-NDC) assay was designed as an integrated tool to characterize these alterations by capturing IGH switch regions along with variable, diversity, and joining genes of all IG and TCR loci in addition to clinically relevant genes for CNA and mutation analysis. Diagnostic performance against standard-of-care clinical testing was assessed in a cohort of 280 B- and T-cell malignancies from 10 European laboratories, including 88 formalin-fixed paraffin-embedded samples and 21 reactive lesions. DNA samples were subjected to the EuroClonality-NDC protocol in 7 EuroClonality-NGS laboratories and analyzed using a bespoke bioinformatic pipeline. The EuroClonality-NDC assay detected B-cell clonality in 191 (97%) of 197 B-cell malignancies and T-cell clonality in 71 (97%) of 73 T-cell malignancies. Limit of detection (LOD) for IG/TCR rearrangements was established at 5% using cell line blends. Chromosomal translocations were detected in 145 (95%) of 152 cases known to be positive. CNAs were validated for immunogenetic and oncogenetic regions, highlighting their novel role in confirming clonality in somatically hypermutated cases. Single-nucleotide variant LOD was determined as 4% allele frequency, and an orthogonal validation using 32 samples resulted in 98% concordance. The EuroClonality-NDC assay is a robust tool providing a single end-to-end workflow for simultaneous detection of B- and T-cell clonality, translocations, CNAs, and sequence variants.
Collapse
|
34
|
Liu H, Pan W, Tang C, Tang Y, Wu H, Yoshimura A, Deng Y, He N, Li S. The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics 2021; 11:8945-8963. [PMID: 34522220 PMCID: PMC8419057 DOI: 10.7150/thno.61390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The adaptive immune response is a powerful tool, capable of recognizing, binding to, and neutralizing a vast number of internal and external threats via T or B lymphatic receptors with widespread sets of antigen specificities. The emergence of high-throughput sequencing technology and bioinformatics provides opportunities for research in the fields of life sciences and medicine. The analysis and annotation for immune repertoire data can reveal biologically meaningful information, including immune prediction, target antigens, and effective evaluation. Continuous improvements of the immunological repertoire sequencing methods and analysis tools will help to minimize the experimental and calculation errors and realize the immunological information to meet the clinical requirements. That said, the clinical application of adaptive immune repertoire sequencing requires appropriate experimental methods and standard analytical tools. At the population cell level, we can acquire the overview of cell groups, but the information about a single cell is not obtained accurately. The information that is ignored may be crucial for understanding the heterogeneity of each cell, gene expression and drug response. The combination of high-throughput sequencing and single-cell technology allows us to obtain single-cell information with low-cost and high-throughput. In this review, we summarized the current methods and progress in this area.
Collapse
Affiliation(s)
- Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Congli Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yujie Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hu-nan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
35
|
Sudo T, Kawahara A, Ishi K, Mizoguchi A, Nagasu S, Nakagawa M, Fujisaki M, Hino H, Saisho K, Kaku H, Matono S, Mori N, Akiba J, Yamada A, Akagi Y. Diversity and shared T-cell receptor repertoire analysis in esophageal squamous cell carcinoma. Oncol Lett 2021; 22:618. [PMID: 34257726 PMCID: PMC8243081 DOI: 10.3892/ol.2021.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune response is dependent on the interaction between tumor cells and the T-cell subset expressing the T-cell receptor (TCR) repertoire that infiltrates into the tumor microenvironment. The present study explored the diversity and shared TCR repertoires expressed on the surface of locoregional T cells and identified the T lymphocyte subsets infiltrating into esophageal squamous cell carcinoma (ESCC), in order to provide insight into the efficiency of immunotherapy and the development of a novel immune-oriented therapeutic strategy. A total of 53 patients with ESCC were enrolled in the present study, and immunohistochemical analysis of CD3, CD8, CD45RO, FOXP3, CD274, HLA class I and AE1/AE3 was performed. Digital pathological assessment was performed to evaluate the expression level of each marker. The clinicopathological significance of the immuno relation high (IR-Hi) group was assessed. Adaptor ligation PCR and next-generation sequencing were performed to explore the diversity of the TCR repertoire and to investigate the shared TCR repertoire in the IR-Hi group. Repertoire dissimilarity index (RDI) analysis was performed to assess the diversity of TCR, and the existence of shared TCRα and TCRβ was also investigated. Further stratification was performed according to the expression of markers of different T-cell subsets. Patients were stratified into IR-Hi and immuno relation low (IR-Lo) groups. Cancer-specific survival and recurrence-free survival rates were significantly improved in the IR-Hi group compared with in the IT-Lo group. The diversity of the TCR repertoire was significantly higher in the IR-Hi group. TCR repertoire analysis revealed 27 combinations of TCRα and 23 combinations of TCRβ VJ regions that were shared among the IR-Hi group. The IR-Hi group was divided into three clusters. Overall, the current findings revealed that the IR-Hi group maintained the diversity of TCR, and a portion of the IR-Hi cases held the T cells with shared TCR repertoires, implying recognition of shared antigens. The prognosis of patients with ESCC was affected by the existence of immune response cells and may possibly be stratified by the T-cell subsets.
Collapse
Affiliation(s)
- Tomoya Sudo
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Akihiko Kawahara
- Department of Hospital Diagnosis, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kazuo Ishi
- Biostatistics Center, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Sachiko Nagasu
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Masashi Nakagawa
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Masahiro Fujisaki
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Haruhiro Hino
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kouhei Saisho
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hideaki Kaku
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Satoru Matono
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Naoki Mori
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Jun Akiba
- Department of Hospital Diagnosis, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Akira Yamada
- Cancer Vaccine Development Division, Research for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoshito Akagi
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
36
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
37
|
Sakuragi T, Yamada H, Haraguchi A, Kai K, Fukushi JI, Ikemura S, Akasaki Y, Fujiwara T, Tsushima H, Tsutsui T, Kondo M, Yoshikai Y, Okada S, Nakashima Y. Autoreactivity of Peripheral Helper T Cells in the Joints of Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2021; 206:2045-2051. [PMID: 33846228 DOI: 10.4049/jimmunol.2000783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Autoreactive CD4 T cells are thought to play pivotal roles in the pathogenesis of rheumatoid arthritis (RA). Recently, a subset of CD4 T cells that express high levels of programmed death-1 (PD-1) but are distinct from follicular helper T cells have been identified in the joints of RA patients and named peripheral helper T (Tph) cells. Because PD-1 is expressed on T cells chronically stimulated with the Ags, we tested a hypothesis that Tph cells are the pathogenic autoreactive CD4 T cells in RA. We found that human Tph cells in RA joints produce proinflammatory effector cytokines, including IFN-γ, TNF-α, and GM-CSF, in addition to B cell-helping cytokines, such as IL-21 and CXCL13. Flow cytometric analysis showed different bias of TCR Vβ usage between PD-1high Tph cells and PD-1low/neg CD4 T cells, including Th1 cells, in the joint or memory CD4 T cells in the peripheral blood, whereas there was little difference between the latter two subsets. In line with this, deep sequencing of TCR demonstrated an overlap of expanded clones between peripheral blood memory CD4 T cells and PD-1low/neg CD4 T cells but not Tph cells in the joint. Interestingly, Tph cells preferentially exhibited autologous MLR in vitro, which required recognition of self-MHC class II and was pronounced by blocking PD-1 signaling. Taken together, these results suggest that Tph cells are the pathogenic autoreactive CD4 T cells in RA, which expand locally in the joints and are regulated by PD-1 signaling.
Collapse
Affiliation(s)
| | - Hisakata Yamada
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan; .,Department of Arthritis and Immunology, Kyushu University, Fukuoka, Japan.,Clinical Research Center, Kyushu Medical Center, Fukuoka, Japan
| | - Akihisa Haraguchi
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan.,Department of Arthritis and Immunology, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Kai
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Fukushi
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan.,Department of Arthritis and Immunology, Kyushu University, Fukuoka, Japan
| | - Satoshi Ikemura
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | - Yukio Akasaki
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | | | | | - Tomoko Tsutsui
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | - Masakazu Kondo
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | | | - Seiji Okada
- Department of Orthopedic Surgery, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
38
|
Nakahara Y, Matsutani T, Igarashi Y, Matsuo N, Himuro H, Saito H, Yamada K, Murotani K, Hoshino T, Azuma K, Sasada T. Clinical significance of peripheral TCR and BCR repertoire diversity in EGFR/ALK wild-type NSCLC treated with anti-PD-1 antibody. Cancer Immunol Immunother 2021; 70:2881-2892. [PMID: 33751180 DOI: 10.1007/s00262-021-02900-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION TCR and BCR repertoire diversity plays a critical role in tumor immunity. Thus, analysis of TCR and BCR repertoires might help predict the clinical efficacy of anti-PD-1 treatment. METHODS Blood samples from 30 patients with non-small cell lung cancer (NSCLC) treated with anti-PD-1 antibody were collected before and six weeks after treatment initiation. The clinical significance of TCR and BCR repertoire diversity in peripheral blood was evaluated in all the enrolled patients (n = 30) or in the subset with (n = 10) or without (n = 20) EGFR/ALK mutation. RESULTS TCR and BCR diversity was significantly correlated at baseline (R = 0.65; P = 1.6 × 10-4) and on treatment (R = 0.72; P = 1.2 × 10-5). Compared to non-responders (SD or PD), responders (PR) showed significantly decreased TCR and BCR diversity after treatment in the EGFR/ALK wild-type subset (P = 0.0014 and P = 0.034, respectively), but not in all the enrolled patients. The post-treatment reduction in TCR and BCR repertoire diversity was also significantly associated with the occurrence of adverse events in the EGFR/ALK wild-type subset (P = 0.022 and P = 0.014, respectively). Patients with more reduced TCR diversity showed better progression-free survival (PFS) in the EGFR/ALK wild-type subset (P = 0.011) but not in the mutant subset. CONCLUSIONS These findings suggest the clinical significance of changes in peripheral TCR and BCR repertoire diversity after anti-PD-1 treatment in patients with NSCLC without EGFR/ALK mutation. Monitoring of the peripheral TCR and BCR repertoires may serve as a surrogate marker for the early detection of EGFR/ALK wild-type NSCLC patients who would benefit from anti-PD-1 treatment.
Collapse
Affiliation(s)
- Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kouzo Yamada
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kenta Murotani
- Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan. .,Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan.
| |
Collapse
|
39
|
Sato Y, Shimoda M, Sota Y, Miyake T, Tanei T, Kagara N, Naoi Y, Kim SJ, Noguchi S, Shimazu K. Enhanced humoral immunity in breast cancer patients with high serum concentration of anti-HER2 autoantibody. Cancer Med 2021; 10:1418-1430. [PMID: 33506656 PMCID: PMC7926031 DOI: 10.1002/cam4.3742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Humoral immunity plays a substantial role in the suppression of breast cancer. We have revealed that a high serum concentration of anti‐HER2 autoantibody (HER2‐AAb) is associated with favorable outcomes in patients with invasive breast cancer. Thus, we aimed to clarify the association between high serum concentration of HER2‐AAb and humoral immune response in the tumor microenvironment. Out of 500 consecutive patients with invasive breast cancer, we selected those whose HER2‐AAb values were high (n = 33) or low (n = 20) based on the distribution of HER2‐AAb values of 100 healthy individuals. Tumor and regional lymph node formalin‐fixed paraffin‐embedded samples prepared from the surgical specimens were subjected to immunohistochemistry. We confirmed that the recurrence‐free survival of the high HER2‐AAb group was significantly longer than that of the low HER2‐AAb group (p = 0.015). The numbers of tumor‐infiltrating CD20+ immune cells (ICs) (p < 0.001), IGKC+ICs (p = 0.023), and CXCL13+ ICs (p = 0.044) were significantly higher in the high HER2‐AAb group than in the low HER2‐AAb group. The number of CD4+ ICs in the B‐cell follicles of the regional lymph nodes was also significantly greater in the high HER2‐AAb group than in the low HER2‐AAb group (p = 0.026). Our findings indicate that a high level of HER2‐AAb is associated with enhanced humoral immunity against breast cancer and thus may provide a rationale for the association of HER2‐AAb with favorable prognosis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Hyogo, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
40
|
Mori T, Kumagai K, Nasu K, Yoshizawa T, Kuwano K, Hamada Y, Kanazawa H, Suzuki R. Clonal Expansion of Tumor-Infiltrating T Cells and Analysis of the Tumor Microenvironment within Esophageal Squamous Cell Carcinoma Relapsed after Definitive Chemoradiation Therapy. Int J Mol Sci 2021; 22:ijms22031098. [PMID: 33499345 PMCID: PMC7865796 DOI: 10.3390/ijms22031098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Comparable prognoses after definitive chemoradiation therapy (CRT) to surgery alone for esophageal squamous cell carcinoma (ESCC) have been previously reported; however, no robust prognostic markers have been established. The clonality of tumor-infiltrating lymphocytes (TILs) and tumor microenvironments (TMEs) in ESCC relapsed after CRT were examined to explore prognostic markers. (2) Methods: Clonality of TIL and TME were examined in ESCC with and without preceding CRT, as well as oral squamous cell carcinoma (OSCC) and healthy volunteers as controls. The clonality of TIL was assessed by T-cell receptor (TCR) α and β repertoire analyses and evaluated by diversity indices. The TME was assessed by quantitative polymerase chain reaction evaluating PD-L1 and CD8B. (3) Results: The clonal expansion of TIL was significantly induced within ESCCs and OSCCs, when compared to healthy volunteers, and was mostly induced within ESCCs after definitive CRT. Diversity indices of TIL were not associated with the prognosis, but the ratio of PD-L1 mRNA to CD8B mRNA in TME was significantly associated with a poor prognosis after salvage surgery (p = 0.007). (4) Conclusions: The clonal expansion of TIL is induced after definitive CRT for ESCC, and the ratio of PD-L1 mRNA to CD8B mRNA within tumor tissues is a prognostic marker candidate for salvage esophagectomy after CRT.
Collapse
Affiliation(s)
- Takahiro Mori
- Departments of Clinical Oncology and Gastroenterological Surgery, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0392, Japan
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
- Correspondence:
| | - Kenichi Kumagai
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
- Department of Surgery, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0392, Japan;
- Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | - Keisuke Nasu
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
- Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | - Takamasa Yoshizawa
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
- Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | - Koji Kuwano
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiki Hamada
- Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | - Hideki Kanazawa
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara 252-0385, Japan; (K.K.); (K.N.); (T.Y.); (K.K.); (R.S.)
| |
Collapse
|
41
|
Hayashi F, Isobe N, Glanville J, Matsushita T, Maimaitijiang G, Fukumoto S, Watanabe M, Masaki K, Kira JI. A new clustering method identifies multiple sclerosis-specific T-cell receptors. Ann Clin Transl Neurol 2021; 8:163-176. [PMID: 33400858 PMCID: PMC7818280 DOI: 10.1002/acn3.51264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To characterize T-cell receptors (TCRs) and identify target epitopes in multiple sclerosis (MS). METHODS Peripheral blood mononuclear cells were obtained from 39 MS patients and 19 healthy controls (HCs). TCR repertoires for α/β/δ/γ chains, TCR diversity, and V/J usage were determined by next-generation sequencing. TCR β chain repertoires were compared with affectation status using a novel clustering method, Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH). Cytomegalovirus (CMV)-IgG was measured in an additional 113 MS patients and 93 HCs. Regulatory T cells (Tregs) were measured by flow cytometry. RESULTS TCR diversity for all four chains decreased with age. TCRα and TCRβ diversity was higher in MS patients (P = 0.0015 and 0.024, respectively), even after age correction. TRAJ56 and TRBV4-3 were more prevalent in MS patients than in HCs (pcorr = 0.027 and 0.040, respectively). GLIPH consolidated 208,674 TCR clones from MS patients into 1,294 clusters, among which two candidate clusters were identified. The TRBV4-3 cluster was shared by HLA-DRB1*04:05-positive patients (87.5%) and predicted to recognize CMV peptides (CMV-TCR). MS Severity Score (MSSS) was lower in patients with CMV-TCR than in those without (P = 0.037). CMV-IgG-positivity was associated with lower MSSS in HLA-DRB1*04:05 carriers (P = 0.0053). HLA-DRB1*04:05-positive individuals demonstrated higher CMV-IgG titers than HLA-DRB1*04:05-negative individuals (P = 0.017). CMV-IgG-positive patients had more Tregs than CMV-IgG-negative patients (P = 0.054). INTERPRETATION High TCRα/TCRβ diversity, regardless of age, is characteristic of MS. Association of a CMV-recognizing TCR with mild disability indicates CMV's protective role in HLA-DRB1*04:05-positive MS.
Collapse
Affiliation(s)
- Fumie Hayashi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jacob Glanville
- Computational and Systems Immunology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Takuya Matsushita
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shoko Fukumoto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
T-cell receptor repertoire of cytomegalovirus-specific cytotoxic T-cells after allogeneic stem cell transplantation. Sci Rep 2020; 10:22218. [PMID: 33335252 PMCID: PMC7747720 DOI: 10.1038/s41598-020-79363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (CMV) infection is a major complication during allogeneic stem cell transplantation (allo-SCT). However, mechanisms of adaptive immunity that drive this remain unclear. To define early immunological responses to CMV after transplantation, we using next-generation sequencing to examine the repertoire of T-cell receptors in CD8+/CMV pp65 tetramer+ cells (CMV-CTLs) in peripheral blood samples obtained from 16 allo-SCT recipients with HLA-A*24:02 at the time of CMV reactivation. In most patients, TCR beta repertoire of CMV-CTLs was highly skewed (median Inverse Simpson's index: 1.595) and, 15 of 16 patients shared at least one TCR-beta clonotype with ≥ 2 patients. The shared TCRs were dominant in 12 patients and, two clonotypes were shared by about half of the patients. Similarity analysis showed that CDR3 sequences of shared TCRs were more similar than unshared TCRs. TCR beta repertoires of CMV-CTLs in 12 patients were also analyzed after 2-4 weeks to characterize the short-term dynamics of TCR repertoires. In ten patients, we observed persistence of prevailing clones. In the other two patients, TCR repertoires became more diverse, major clones declined, and new private clones subsequently emerged. These results provided the substantive clue to understand the immunological behavior against CMV reactivation after allo-SCT.
Collapse
|
43
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
44
|
Kakimi K, Matsushita H, Masuzawa K, Karasaki T, Kobayashi Y, Nagaoka K, Hosoi A, Ikemura S, Kitano K, Kawada I, Manabe T, Takehara T, Ebisudani T, Nagayama K, Nakamura Y, Suzuki R, Yasuda H, Sato M, Soejima K, Nakajima J. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J Immunother Cancer 2020; 8:jitc-2020-001185. [PMID: 32948652 PMCID: PMC7511646 DOI: 10.1136/jitc-2020-001185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Not all non-small cell lung cancer (NSCLC) patients possess drug-targetable driver mutations, and response rates to immune checkpoint blockade therapies also remain unsatisfactory. Therefore, more effective treatments are still needed. Here, we report the results of a phase 2 clinical trial of adoptive cell therapy using zoledronate-expanded autologous Vγ9Vδ2 T-cells for treatment-refractory NSCLC. METHODS NSCLC patients who had undergone at least two regimens of standard chemotherapy for unresectable disease or had had at least one treatment including chemotherapy or radiation for recurrent disease after surgery were enrolled in this open-label, single-arm, multicenter, phase 2 study. After preliminary testing of Vγ9Vδ2 T-cell proliferation, autologous peripheral blood mononuclear cells were cultured with zoledronate and IL-2 to expand the Vγ9Vδ2 T-cells. Cultured cells (>1×109) were intravenously administered every 2 weeks for six injections. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints included overall survival (OS), best objective response rate (ORR), disease control rate (DCR), safety and immunomonitoring. Clinical efficacy was defined as median PFS significantly >4 months. RESULTS Twenty-five patients (20 adenocarcinoma, 4 squamous cell carcinoma and 1 large cell carcinoma) were enrolled. Autologous Vγ9Vδ2 T-cell therapy was administered to all 25 patients, of which 16 completed the foreseen course of 6 injections of cultured cells. Median PFS was 95.0 days (95% CI 73.0 to 132.0 days); median OS was 418.0 days (179.0-479.0 days), and best overall responses were 1 partial response, 16 stable disease (SD) and 8 progressive disease. ORR and DCR were 4.0% (0.1%-20.4%) and 68.0% (46.5%-85.1%), respectively. Severe adverse events developed in nine patients, mostly associated with disease progression. In one patient, pneumonitis and inflammatory responses resulted from Vγ9Vδ2 T-cell infusions, together with the disappearance of a massive tumor. CONCLUSIONS Although autologous Vγ9Vδ2 T-cell therapy was well tolerated and may have an acceptable DCR, this trial did not meet its primary efficacy endpoint. TRIAL REGISTRATION NUMBER UMIN000006128.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc, Ibaraki-Shi, Osaka, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Soejima
- Clinical and Translational Research Center, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
T-cell repertoire analysis and metrics of diversity and clonality. Curr Opin Biotechnol 2020; 65:284-295. [PMID: 32889231 DOI: 10.1016/j.copbio.2020.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The recent developments of high-throughput bulk and single-cell sequencing technologies accelerated the understanding of the complexity of immune repertoire dynamics combined to transcriptomics. Also, profiling of cellular repertoires in health or disease requires statistical metrics to capture clonal diversity characterized by clones frequency, repertoire richness and convergence. Here we present the common technologies of bulk and single-cell sequencing of T-cell receptors (TCRs), discuss current knowledge regarding computational tools clustering and predicting specificity of TCR repertoires based on shared structural motifs and review main indices for repertoire diversity and convergence analyses. These tools represent potential biomarkers to decipher the fitness of immune repertoires in diseased or treated patients but also the presages and promises of computational approaches to revolutionize personalized immunotherapy.
Collapse
|
46
|
Stringhini M, Probst P, Neri D. Immunotherapy of CT26 murine tumors is characterized by an oligoclonal response of tissue-resident memory T cells against the AH1 rejection antigen. Eur J Immunol 2020; 50:1591-1597. [PMID: 32470143 DOI: 10.1002/eji.201948433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Mice bearing CT26 tumors can be cured by administration of L19-mIL12 or F8-mTNF, two antibody fusion proteins which selectively deliver their cytokine payload to the tumor. In both settings, cancer cures crucially depended on CD8+ T cells and the AH1 peptide (derived from the gp70 protein of the murine leukemia virus) acted as the main tumor-rejection antigen, with ∼50% of CD8+ T cells in the neoplastic mass being AH1-specific after therapy. In order to characterize the clonality of the T cell response, its phenotype, and activation status, we isolated CD8+ T cells from tumors and secondary lymphoid organs and submitted them to T cell receptor (TCR) and total mRNA sequencing. We found an extremely diverse repertoire of more than 40 000 unique TCR sequences, but the ten most abundant TCRs accounted for >60% of CD8+ T-cell clones in the tumor. AH1-specific TCRs were consistently found among the most abundant sequences. AH1-specific T cells in the tumor had a tissue-resident memory phenotype. Treatment with L19-mIL12 led to overexpression of IL-12 receptor and of markers of cell activation and proliferation. These data suggest that the antitumor response driven by antibody-cytokine fusions proceeds through an oligoclonal expansion and activation of tumor-infiltrating CD8+ T cells.
Collapse
Affiliation(s)
- Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Philipp Probst
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
47
|
Adaptive immune receptor repertoires, an overview of this exciting field. Immunol Lett 2020; 221:49-55. [PMID: 32113899 DOI: 10.1016/j.imlet.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
Abstract
The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Collapse
|
48
|
Kakuta Y, Nakano T, Naito T, Watanabe K, Izumiyama Y, Okamoto D, Ichikawa R, Moroi R, Kuroha M, Kanazawa Y, Kimura T, Shiga H, Naitoh T, Kinouchi Y, Unno M, Masamune A. Repertoire analysis of memory T-cell receptors in Japanese patients with inflammatory bowel disease. JGH OPEN 2020; 4:624-631. [PMID: 32782948 PMCID: PMC7411559 DOI: 10.1002/jgh3.12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/11/2020] [Indexed: 01/07/2023]
Abstract
Background and Aim The T‐cell receptor (TCR) repertoire was assessed in response to various antigens and was considered to be associated with the pathogenesis of inflammatory bowel disease (IBD). Thus, we performed TCR repertoire analysis to examine the pathology of IBD from changes in the TCR repertoire of memory T cells in the intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs) of patients with IBD. Methods LPMCs in the surgical specimens and PBMCs were isolated from 12 patients with IBD (5 patients with ulcerative colitis [UC] and 7 patients with Crohn's disease [CD]). PBMCs were collected from 10 healthy individuals as controls. Comprehensive TCR sequence analyses of adaptor‐ligation polymerase chain reaction (PCR) products were performed using MiSeq. Results The diversity of TCR‐α and TCR‐β in PBMCs was significantly lower in patients with IBD than that in controls (P = 0.00084 and 0.0013, respectively). Comparisons of TCR diversity in LPMCs and PBMCs between CD and UC showed that the diversity in LPMC was not affected by diseases, whereas that in PBMCs was significantly lower in CD than in UC (P = 0.045 and 0.049, respectively). Some TCR clones may have shown a specific increase or decrease in CD and UC, and many clones were common to both LPMCs and PBMCs in the same patients. Conclusion The diversity of TCR clones in LPMCs and PBMCs in patients with IBD was significantly lower than that of PBMCs in controls. TCR diversity in PBMCs was particularly low in patients with CD.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Takeru Nakano
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Takeo Naito
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Kazuhiro Watanabe
- Department of Surgery Tohoku University Graduate School of Medicine Sendai Japan
| | - Yasuhiro Izumiyama
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Daisuke Okamoto
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Ryo Ichikawa
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Rintaro Moroi
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Masatake Kuroha
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Tomoya Kimura
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Hisashi Shiga
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| | - Takeshi Naitoh
- Department of Surgery Tohoku University Graduate School of Medicine Sendai Japan
| | - Yoshitaka Kinouchi
- Student Health Care Center, Institute for Excellence in Higher Education Tohoku University Sendai Japan
| | - Michiaki Unno
- Department of Surgery Tohoku University Graduate School of Medicine Sendai Japan
| | - Atsushi Masamune
- Division of Gastroenterology Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
49
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
50
|
Miyasaka A, Yoshida Y, Wang T, Takikawa Y. Next-generation sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination. Hum Vaccin Immunother 2019; 15:2738-2753. [PMID: 30945971 PMCID: PMC6930056 DOI: 10.1080/21645515.2019.1600987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B (HB) vaccine effectively prevents the incidence of hepatitis B virus (HBV) infection. However, vaccine failure occurs in 5-10% of the recipients. The precise mechanisms leading to responsiveness to the HB vaccine are poorly understood. High-throughput sequencing (HTS) may help clarify the immune response to the HB vaccine, so we applied this method to investigate whether the HB vaccine induced a specific change in the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires. We conducted HTS of the TCR β chain and BCR IgG heavy (H) chain complementary determining region 3 (CDR3) repertoires in five volunteers before and after the second and third immunizations with the HB vaccine. The HB surface antibody (HBsAb) levels were >10 mIU/ml after the third vaccination in all five participants. The TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased after the second vaccination. Although there was no marked inter-individual variation in terms of the numbers of unique reads, it is possible that the TCR β chain and BCR IgG H chain CDR3 repertoires may have changed within the same numbers of unique reads. Our data failed to identify the specific dominant clones that responded to the HB vaccine. In summary, the TCR β chain CDR3 repertoire diversity significantly increased, while the BCR IgG H chain CDR3 repertoire diversity significantly decreased, after the second HB vaccination. These diversity changes might be associated with a better response to the HB vaccine.
Collapse
Affiliation(s)
- Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yuichi Yoshida
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ting Wang
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|