1
|
Lesen D, Nillian E, Thung TY. Isolation, characterization, and application of a novel Vibrio parahaemolyticus bacteriophage from retail shrimp in Sarawak, Malaysia. Microb Pathog 2025; 203:107517. [PMID: 40154853 DOI: 10.1016/j.micpath.2025.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/25/2024] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Shrimp farming, a highly profitable sector in global aquaculture, has seen remarkable growth in recent years. This increasing demand and the expansion of farming operations, including in Sarawak, Malaysia, highlight the sector's potential. However, the industry faces significant challenges, particularly the prevalence of vibriosis, a bacterial infection caused by Vibrio species. Contamination of food products has also increased the risk of vibriosis in humans. The widespread use of antibiotics to combat this disease has led to the rapid emergence of antimicrobial resistance (AMR) bacteria. This study specifically focuses on the isolation and characterization of phage EniLVP02, a novel bacteriophage with the potential to combat V. parahaemolyticus infections. EniLVP02 was successfully isolated from shrimp purchased at a retail market and exhibited strong lytic activity against V. parahaemolyticus strains. Structural analysis categorized EniLVP02 within the Straboviridae family, belonging to the class Caudoviricetes. The phage displayed a narrow host range and lytic nature only towards V. parahaemolyticus strains isolated from the Telaga Air shrimp farm. Phage EniLVP02 exhibited long latent period of 120 min and large burst size of 144 phages per infected cells. Stability studies revealed EniLVP02's resilience across various pH (pH 4.0-9.0) and temperature (28 °C-65 °C) conditions, particularly at physiological temperatures. Comparative genome analyses indicated its distinct evolutionary relationship and low homology with other Vibriophages, suggesting its novelty. EniLVP02 demonstrated significant potential in biofilm prevention and destruction, with absorbance (OD600 nm) reduction from 0.592 ± 0.055 to 0.204± 0.016 and from 0.843± 0.003 to 0.174± 0.026 respectively. Moreover, in the treatment of V. parahaemolyticus-contaminated shrimp meat, EniLVP02 effectively inhibit bacterial concentrations by 75.2 % at room temperature and 16.2 % at 4 °C after 24 h. Genomic sequencing revealed low similarity between EniLVP02 with other phages, suggesting its novelty. Importantly, the absence of lysogeny-related, antibiotic resistance, and virulence genes in its genome supports EniLVP02's safety for therapeutic use. This study underscores the importance of exploring phages from retail food products for therapeutic applications and highlights the promising attributes of phage EniLVP02 in combating V. parahaemolyticus infections in aquaculture. Further investigations on its compatibility with other phages and application in diverse food matrices are warranted to assess its full potential.
Collapse
Affiliation(s)
- Dalene Lesen
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Elexson Nillian
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Tze Young Thung
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| |
Collapse
|
2
|
Jiang F, Sun J, Liu K, Li X, Shao Y, Nie Q, Sun D, Ouyang X, Zhao W. Integrated Vibrio load variation and transcriptome profiles provide new insights into the defensive response of Cyclina sinensis under Vibrio parahaemolyticus infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101434. [PMID: 39914264 DOI: 10.1016/j.cbd.2025.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/12/2025]
Abstract
Vibrio parahaemolyticus is the dominant pathogen in mariculture, leading to the bivalves' mass summer mortality. This study investigated the antibacterial defense mechanism of the Cyclina sinensis against V. parahaemolyticus. The immersion challenge revealed that the daily mortality of C. sinensis increased and then decreased gradually, and the mass mortality occurred about a week after V. parahaemolyticus infection. The Vibrio load in the hepatopancreas of C. sinensis was dramatically increased at 12-24 hpi (hours post-infection) and then declined significantly at 2-7 dpi (days post-infection). RNA-Seq generated 866 differentially expressed genes (DEGs), and KEGG analyses enriched multiple innate immune-related and metabolic-related pathways. The expression levels of nine immune-related and metabolic-related DEGs were significantly changed after Vibrio infection, and their temporal expression patterns were multiple. Our results indicated that the immunity and metabolic responses might be reprogrammed to protect the host against pathogens at the early infection phase. This study would expand our knowledge of the pathogenesis mechanisms of clams infected with Vibrio and provide a theoretical basis for healthy shellfish cultivation.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China.
| | - Jiaxiao Sun
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China
| | - Kun Liu
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China
| | - Xin Li
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China
| | - Yanqing Shao
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Qing Nie
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China
| | - Dehui Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Xiuke Ouyang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, China
| | - Weihong Zhao
- Jiangsu Key Laboratory for Exploration and Utilization of Marine Wetland Biological Resources, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
3
|
Zhang B, Qiu Y, Shi C, Zhang J. Development of Multiple Real-Time Fluorescent Quantitative PCR for Vibrio Pathogen Detection in Aquaculture. Vet Sci 2025; 12:327. [PMID: 40284829 PMCID: PMC12030866 DOI: 10.3390/vetsci12040327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The Vibrio genus represents a critical group of bacterial pathogens in the marine environment globally, leading to massive mortality in the aquaculture industry. Diagnosing vibriosis, an infection caused by Vibrio species, in clinical samples poses challenges due to its non-specific clinical manifestations. In this study, we developed a TaqMan probe-based multiplex real-time PCR method for the simultaneous detection and quantification of four Vibrio pathogens: Vibrio anguillarum (Va), Vibrio alginolyticus (Val), Vibrio harveyi (Vh), and Vibrio scophthalmi (Vsc). The assay targets conserved intra-species regions and specific inter-species regions using specific primers and TaqMan probes to ensure specificity. Sensitivity analysis demonstrated that the multiplex real-time PCR assay could simultaneously detect the four different bacteria, with detection limits of 26-60 copies per reaction, making it 100 times more sensitive than conventional PCR assays. Additionally, the assay exhibited high reproducibility, with intra- and inter-group coefficients of variation below 1.4%. A total of 63 clinical samples was analyzed using this established assay, which successfully detected both single and mixed infections. These results demonstrate that the multiplex quantitative PCR assay is a rapid, specific, and sensitive diagnostic tool for the detection of Va, Val, Vh, and Vsc, making it suitable for monitoring these bacteria in both single- and co-infected clinical samples.
Collapse
Affiliation(s)
- Binzhe Zhang
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Yulie Qiu
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Chenxi Shi
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
- Shandong Engineering Research Center of Healthy Land-Sea Relay Farming of Economic Fish, Yantai 264005, China
- Yantai Engineering Research Center of Deep-Sea Aquaculture of Economic Fish, Yantai 264005, China
| |
Collapse
|
4
|
Marques J, Maso ES, das Neves GB, Scheffer EK, Ribeiro BG, Borges GK, de Aguiar Boff L, Nuernberg SS, de Lima Miguel R, Miletti LC, de Quadros RM. Genotypic determination of Vibrio spp. in bivalves from natural environments on the south coast of Santa Catarina, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9094-9102. [PMID: 40108036 DOI: 10.1007/s11356-025-36272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
The microbiota present in the marine environment derives from various sources. The ingestion of raw oysters and mussels contaminated with Vibrio spp., regardless of whether they are wild-caught or farmed, presents health hazards to humans. The consumption of bivalves, particularly oysters and mussels, is an expanding trend in all coastal areas of Brazil. As filter-feeders, they accumulate these bacteria in their tissues, thereby enhancing their concentration in relation to the surrounding aquatic environment. Strains of the genus Vibrio can induce gastroenteritis and infections in open wounds. Between 2021 and 2023, a total of 300 specimens of Perna perna bivalve were collected from the rocky shores of Gravatá and Gi beaches, while 103 oysters were obtained from Noca lagoon in the city of Laguna, situated on the southern coast of Santa Catarina state, Brazil. Bivalve gill samples were cultured on thiosulfate-citrate-bile salts-sucrose agar for a presumptive analysis of Vibrio spp. The multiplex-PCR method was employed to amplify a representative genome sequence of each Vibrio for species-specific gene analysis.. Of the 73 positive samples for Vibrio spp. in P. perna, the species Vibrio parahaemolyticus was predominant in 65.7% (48/73), followed by Vibrio alginolyticus 24.6% (18/73) and Vibrio vulnificus, on the other hand, was only present in one sample (1.36%). Following molecular analysis, it was determined that out of the 65 oyster isolates samples examined, 41 (63.0%) were classified as V. parahaemolyticus, 19 (29.2%) as V. alginolyticus, and 2 (3.08%) as V. vulnificus. V. vulnificus was exclusively identified during the summer season. Histological analyses conducted on the bivalve gills to evaluate tissue damage indicated no alterations This study may offer significant insights for novel research perspectives on the environmental conditions of Vibrio spp. in natural habitats, particularly given a lack of information for the region.
Collapse
Affiliation(s)
- Julia Marques
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Erika Sensolo Maso
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Gabriella Bassi das Neves
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Eduarda Karolyne Scheffer
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Brenda Guedes Ribeiro
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Gabriela Kaiser Borges
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
| | - Larissa de Aguiar Boff
- Centro de Educação Superior da Região Sul (CERES), Universidade Do Estado De Santa Catarina (UDESC), Rua Cel. Fernandes Martins, 270, Progresso, Laguna-SC, 88.790-000, Brazil
| | - Samuel Silvestre Nuernberg
- Centro de Educação Superior da Região Sul (CERES), Universidade Do Estado De Santa Catarina (UDESC), Rua Cel. Fernandes Martins, 270, Progresso, Laguna-SC, 88.790-000, Brazil
| | - Rafael de Lima Miguel
- Universidade Do Planalto Catarinense (UNIPLAC), Av. Castelo Branco, No. 170, Bairro Universitário-Lages-SC, Lages-SC, Brazil
| | - Luiz Claudio Miletti
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil.
| | - Rosiléia Marinho de Quadros
- Universidade Do Estado de Santa Catarina (UDESC), Centro de Ciências Agroveterinárias (CAV). Av. Luís de Camões, 2090-Conta Dinheiro, Lages-SC, 88520-000, Brazil
- Universidade Do Planalto Catarinense (UNIPLAC), Av. Castelo Branco, No. 170, Bairro Universitário-Lages-SC, Lages-SC, Brazil
| |
Collapse
|
5
|
Calcagnile M, Tredici SM, Alifano P. A comprehensive review on probiotics and their use in aquaculture: Biological control, efficacy, and safety through the genomics and wet methods. Heliyon 2024; 10:e40892. [PMID: 39735631 PMCID: PMC11681891 DOI: 10.1016/j.heliyon.2024.e40892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Probiotics, defined as viable microorganisms that enhance host health when consumed through the diet, exert their effects through mechanisms such as strengthening the immune system, enhancing resistance to infectious diseases, and improving tolerance to stressful conditions. Driven by a growing market, research on probiotics in aquaculture is a burgeoning field. However, the identification of new probiotics presents a complex challenge, necessitating careful consideration of both the safety and efficacy of the microorganisms employed. This review aims to delineate the most utilized and effective methods for identifying probiotics. The most effective approach currently combines in silico analysis of genomic sequences with in vitro and in vivo experiments. Two main categories of genetic traits are analyzed using bioinformatic tools: those that could harm the host or humans (e.g., toxin production, antibiotic resistance) and those that offer benefits (e.g., production of helpful compounds, and enzymes). Similarly, in vitro experiments allow us to examine the safety of a probiotic but also its effectiveness (e.g., ability to adhere to epithelia). Finally, in vivo experiments allow us to study the effect of probiotics on fish growth and health, including the ability of the probiotic to manipulate the host's microbiota and the ability to mitigate the infections. This review comprehensively analyzes these diverse aspects, with a particular focus on the potential of studying the interaction between bacterial pathogens and probiotics through these integrated methods.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | | | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| |
Collapse
|
6
|
Zheng Z, Ye L, Xu Y, Chan EWC, Chen S. Dynamics of antimicrobial resistance and genomic characteristics of foodborne Vibrio spp. in Southern China (2013-2022). JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135672. [PMID: 39236546 DOI: 10.1016/j.jhazmat.2024.135672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Vibrio spp., known as significant marine pathogens, have become more prevalent due to global warming. Antibiotics released into the environment drive Vibrio resistance. The increasing consumption of seafood leads to more interactions between Vibrio and humans. Despite this concerning trend, there remains a lack of large-scale surveillance for Vibrio contamination across various types of food. This study isolated 4027 Vibrio strains, primarily comprising V. parahaemolyticus and V. alginolyticus, in 3581 fresh shrimp and meat products from 2013 to 2022. The Vibrio strains showed increased resistance to important antibiotics, especially β-lactams used to treat foodborne bacterial infections. Whole genome sequencing of 591 randomly chosen strains showed a strong correlation between antibiotic resistance and genotypes in Vibrio. Notably, various ESBL genes have evolved over the past 8 years, with blaVEBs being the most dominant. Additionally, carbapenemase genes, such as blaNDM-1, have become increasingly prevalent in recent years. Various mobile genetic elements, including IncQ and IncA/C plasmids, recoverable in Vibrio, facilitate the transmission of crucial β-lactamase genes. These data provide insights into the evolutionary traits of antimicrobial resistance in foodborne Vibrio strains over a decade. Policymakers should consider these findings when devising appropriate strategies to combat bacterial antimicrobial resistance and safeguard human health.
Collapse
Affiliation(s)
- Zhiwei Zheng
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shenzhen Key Lab for Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Lianwei Ye
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yating Xu
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shenzhen Key Lab for Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Deng S, Chang W, Liu Q, Zhao Y, Liu J, Wang H. Development and application of multiplex PCR for the rapid identification of four Fusarium spp. associated with Fusarium crown rot in wheat. PeerJ 2024; 12:e17656. [PMID: 38948216 PMCID: PMC11214737 DOI: 10.7717/peerj.17656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024] Open
Abstract
Fusarium crown rot (FCR), caused by Fusarium spp., is a devastating disease in wheat growing areas. Previous studies have shown that FCR is caused by co-infection of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides in Hubei Province, China. In this study, a method was developed to simultaneously detected DNAs of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides that can efficiently differentiate them. Whole genome sequence comparison of these four Fusarium spp. was performed and a 20 bp sequence was designed as an universal upstream primer. Specific downstream primers of each pathogen was also designed, which resulted in a 206, 482, 680, and 963 bp amplicon for each pathogen, respectively. Multiplex PCR specifically identified F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides but not from other 46 pathogens, and the detection limit of target pathogens is about 100 pg/μl. Moreover, we accurately determined the FCR pathogen species in wheat samples using the optimized multiplex PCR method. These results demonstrate that the multiplex PCR method established in this study can efficiently and rapidly identify F. graminearum, F. pseudograminearum, F. proliferatum, and F. verticillioides, which should provide technical support for timely and targeted prevention and control of FCR.
Collapse
Affiliation(s)
- Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Wei Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Quanke Liu
- General Plant Protection Station of Hubei Province, Wuhan, China
| | - Youfu Zhao
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, United States
| | - Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
8
|
Liu J, Deng S, Chang W, Yu D, Wang H. Development of a Multiplex PCR Assay for the Detection of Tomato Wilt Caused by Coinfection of Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum Based on Comparative Genomics. PLANT DISEASE 2024; 108:1128-1138. [PMID: 37953228 DOI: 10.1094/pdis-05-23-0962-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Tomato is consumed worldwide as fresh or processed food products. However, soilborne diseases of tomato plants caused by coinfection of various pathogens result in great economic losses to the tomato industry. It is difficult to accurately identify and diagnose soilborne diseases of tomato plants caused by pathogen complexes. In this study, we investigated field diseases of tomato plants by pathogen isolation and molecular identification and found that tomato wilt was caused by coinfection of Fusarium brachygibbosum, F. oxysporum, and Ralstonia solanacearum. Therefore, developing a method for simultaneous detection of DNA from F. brachygibbosum, F. oxysporum, and R. solanacearum is of great importance to efficiently and accurately monitor disease development at different growth stages of tomato plants. In this study, we performed a comparative genomic analysis of F. brachygibbosum, F. oxysporum, and R. solanacearum and determined the primer sets for simultaneous detection of DNA from these target pathogens. Then, we tested the reagent and condition parameters of multiplex PCR, including primers, dNTP and Mg2+ concentrations, and annealing temperatures, to determine the optimal parameters of a multiplex PCR system. We evaluated the specificity, sensitivity, and stability of the multiplex PCR system based on the optimized reaction conditions. The multiplex PCR system can specifically identify 13 target pathogens from 57 different fungal and bacterial pathogens, at the lower detection limit of the three target pathogens at concentrations of 100 pg/μl. In addition, we can accurately identify the three pathogens in tomato plants using the optimized multiplex PCR method. These results demonstrated that the multiplex PCR method developed in this study can simultaneously detect DNA from F. brachygibbosum, F. oxysporum, and R. solanacearum in a single PCR system to accurately identify and diagnose the pathogen causing tomato wilt.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Wei Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Dazhao Yu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan 430064, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan 430064, China
| |
Collapse
|
9
|
Dayang Najwa AB, Elexson N, Dalene L, Teng ST. Vibrio Species and Cyanobacteria: Understanding Their Association in Local Shrimp Farm Using Canonical Correspondence Analysis (CCA). MICROBIAL ECOLOGY 2024; 87:51. [PMID: 38488929 PMCID: PMC10943157 DOI: 10.1007/s00248-024-02356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
In aquatic environments, Vibrio and cyanobacteria establish varying relationships influenced by environmental factors. To investigate their association, this study spanned 5 months at a local shrimp farm, covering the shrimp larvae stocking cycle until harvesting. A total of 32 samples were collected from pond A (n = 6), pond B (n = 6), effluent (n = 10), and influent (n = 10). Vibrio species and cyanobacteria density were observed, and canonical correspondence analysis (CCA) assessed their correlation. CCA revealed a minor correlation (p = 0.847, 0.255, 0.288, and 0.304) between Vibrio and cyanobacteria in pond A, pond B, effluent, and influent water, respectively. Notably, Vibrio showed a stronger correlation with pH (6.14-7.64), while cyanobacteria correlated with pH, salinity (17.4-24 ppt), and temperature (30.8-31.5 °C), with salinity as the most influential factor. This suggests that factors beyond cyanobacteria influence Vibrio survival. Future research could explore species-specific relationships, regional dynamics, and multidimensional landscapes to better understand Vibrio-cyanobacteria connections. Managing water parameters may prove more efficient in controlling vibriosis in shrimp farms than targeting cyanobacterial populations.
Collapse
Affiliation(s)
- Awg Baki Dayang Najwa
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Nillian Elexson
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Lesen Dalene
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Sing Tung Teng
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
10
|
Zheng Z, Cheng Q, Ye L, Xu Y, Chen S. Characterization of VIM-71, a novel VIM-type metallo-β-lactamase variant encoded by an integrative and conjugative element recovered from a Vibrio alginolyticus strain in China. Microbiol Res 2024; 278:127532. [PMID: 37879253 DOI: 10.1016/j.micres.2023.127532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
A novel VIM-type metallo-β-lactamase variant, VIM-71, which is encoded by a multidrug-resistant Vibrio alginolyticus strain recovered from a shrimp sample in China, was identified. Compared to VIM-1, VIM-71 differs in 22 amino acid positions based on the primary protein sequence and confers a similar resistance profile to penicillins, but the level of resistance to carbapenems encoded by this enzyme was lower than that of VIM-1. The blaVIM-71 gene was found located in an integrative and conjugative element of the SXT/R391 family in the chromosome. These findings implied that genetic elements that encode clinically important carbapenemases continue to evolve in Vibrio spp.
Collapse
Affiliation(s)
- Zhiwei Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qipeng Cheng
- College of Life Sciences, Anhui Normal University, Wuhu, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yating Xu
- State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China; State Key Lab for Chemical Biology and Drug Discovery, and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Fukuda A, Tsunashima R, Usui M. Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. Food Saf (Tokyo) 2023; 11:65-77. [PMID: 38144894 PMCID: PMC10739313 DOI: 10.14252/foodsafetyfscj.d-23-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 12/26/2023] Open
Abstract
In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood.
Collapse
Affiliation(s)
- Akira Fukuda
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Ryu Tsunashima
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
12
|
Deng S, Liu Q, Chang W, Liu J, Wang H. First specific detection and validation of tomato wilt caused by Fusarium brachygibbosum using a PCR assay. PeerJ 2023; 11:e16473. [PMID: 38047027 PMCID: PMC10693239 DOI: 10.7717/peerj.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
Tomato wilt is a widespread soilborne disease of tomato that has caused significant yield losses in many tomato growing regions of the world. Previously, it was reported that tomato wilt can be caused by many pathogens, such as Fusarium oxysporum, Ralstonia solanacearum, Ralstonia pseudosolanacearum, Fusarium acuminatum, and Plectosphaerella cucumerina. In addition, we have already reported that Fusarium brachygibbosum caused symptomatic disease of tomato wilt for the first time in China. The symptoms of tomato wilt caused by these pathogens are similar, making it difficult to distinguish them in the field. However, F. brachygibbosum specific identification method has not been reported. Therefore, it is of great importance to develop a rapid and reliable diagnostic method for Fusarium brachygibbosum to establish a more effective plan to control the disease. In this study, we designed F. brachygibbosum-specific forward primers and reverse primers with a fragment size of 283bp located in the gene encoding carbamoyl phosphate synthase arginine-specific large chain by whole genome sequence comparison analysis of the genomes of eight Fusarium spp.. We then tested different dNTP, Mg2+ concentrations, and annealing temperatures to determine the optimal parameters for the PCR system. We evaluated the specificity, sensitivity and stability of the PCR system based on the optimized reaction system and conditions. The PCR system can specifically identify the target pathogens from different fungal pathogens, and the lower detection limit of the target pathogens is at concentrations of 10 pg/uL. In addition, we can accurately identify F. brachygibbosum in tomato samples using the optimized PCR method. These results prove that the PCR method developed in this study can accurately identify and diagnose F. brachygibbosum.
Collapse
Affiliation(s)
- Siyi Deng
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei, China
| | - Quanke Liu
- General Plant Protection Station of Hubei Province, Wuhan, Hubei, China
| | - Wei Chang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei, China
| | - Jun Liu
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei, China
| | - Hua Wang
- Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, Hubei, China
- Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Wuhan, Hubei, China
| |
Collapse
|
13
|
Alam MT, Stern SR, Frison D, Taylor K, Tagliamonte MS, Nazmus SS, Paisie T, Hilliard NB, Jones RG, Iovine NM, Cherabuddi K, Mavian C, Myers P, Salemi M, Ali A, Morris JG. Seafood-Associated Outbreak of ctx-Negative Vibrio mimicus Causing Cholera-Like Illness, Florida, USA. Emerg Infect Dis 2023; 29:2141-2144. [PMID: 37735754 PMCID: PMC10521627 DOI: 10.3201/eid2910.230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.
Collapse
Affiliation(s)
| | | | - Devin Frison
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Katie Taylor
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Massimiliano S. Tagliamonte
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - S. Sakib Nazmus
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Taylor Paisie
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole B. Hilliard
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Riley G. Jones
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Nicole M. Iovine
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Kartik Cherabuddi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Carla Mavian
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Paul Myers
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | - Marco Salemi
- University of Florida Emerging Pathogens Institute, Gainesville, Florida, USA (M.T. Alam, M.S. Tagliamonte, S.N. Sakib, T. Paisie, C. Mavian, M. Salemi, A. Ali, J.G Morris, Jr.)
- University of Florida College of Public Health and Health Professions, Gainesville (M.T. Alam, S.S. Nazmus, A. Ali)
- University of Florida College of Medicine, Gainesville (S.R. Stern, K. Taylor, M.S. Tagliamonte, T. Paisie, R.G. Jones, N.M. Iovine, K. Cherabuddi, C. Mavian, M. Salemi, J.G. Morris, Jr.)
- Florida Department of Health in Alachua County, Gainesville (D. Frison, P. Myers)
- University of Florida Health and Shands Hospital, Gainesville (N.B. Hilliard, N.M. Iovine, K. Cherabuddi)
| | | | | |
Collapse
|
14
|
Xu W, Lv Z, Guo Q, Deng Z, Yang C, Cao Z, Li Y, Huang C, Wu Z, Chen S, He Y, Sun J, Liu Y, Gan L. Selective Antagonism of Lactiplantibacillus plantarum and Pediococcus acidilactici against Vibrio and Aeromonas in the Bacterial Community of Artemia nauplii. Microbiol Spectr 2023; 11:e0053323. [PMID: 37428079 PMCID: PMC10434253 DOI: 10.1128/spectrum.00533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Empiric probiotics are commonly consumed by healthy individuals as a means of disease prevention, pathogen control, etc. However, controversy has existed for a long time regarding the safety and benefits of probiotics. Here, two candidate probiotics, Lactiplantibacillus plantarum and Pediococcus acidilactici, which are antagonistic to Vibrio and Aeromonas species in vitro, were tested on Artemia under in vivo conditions. In the bacterial community of Artemia nauplii, L. plantarum reduced the abundance of the genera Vibrio and Aeromonas and P. acidilactici significantly increased the abundance of Vibrio species in a positive dosage-dependent manner, while higher and lower dosages of P. acidilactici increased and decreased the abundance of the genus Aeromonas, respectively. Based on the liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses of the metabolite of L. plantarum and P. acidilactici, pyruvic acid was used in an in vitro test to explain such selective antagonism; the results showed that pyruvic acid was conducive or suppressive to V. parahaemolyticus and beneficial to A. hydrophila. Collectively, the results of this study demonstrate the selective antagonism of probiotics on the bacterial community composition of aquatic organisms and the associated pathogens. IMPORTANCE Over the last decade, the common preventive method for controlling potential pathogens in aquaculture has been the use of probiotics. However, the mechanisms of probiotics are complicated and mostly undefined. At present, less attention has been paid to the potential risks of probiotic use in aquaculture. Here, we investigated the effects of two candidate probiotics, L. plantarum and P. acidilactici, on the bacterial community of Artemia nauplii and the in vitro interactions between these two candidate probiotics and two pathogens, Vibrio and Aeromonas species. The results demonstrated the selective antagonism of probiotics on the bacterial community composition of an aquatic organism and its associated pathogens. This research contributes to providing a basis and reference for the long-term rational use of probiotics and to reducing the inappropriate use of probiotics in aquaculture.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaolin Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Qingqi Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaojie Deng
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Canmin Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yi Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Cuifen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Zizhan Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Jijia Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Yiying Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou, China
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- Guangdong Laboratory for Linnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
16
|
Leighton RE, Correa Vélez KE, Xiong L, Creech AG, Amirichetty KP, Anderson GK, Cai G, Norman RS, Decho AW. Vibrio parahaemolyticus and Vibrio vulnificus in vitro colonization on plastics influenced by temperature and strain variability. Front Microbiol 2023; 13:1099502. [PMID: 36704570 PMCID: PMC9871911 DOI: 10.3389/fmicb.2022.1099502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Marine bacteria often exist in biofilms as communities attached to surfaces, like plastic. Growing concerns exist regarding marine plastics acting as potential vectors of pathogenic Vibrio, especially in a changing climate. It has been generalized that Vibrio vulnificus and Vibrio parahaemolyticus often attach to plastic surfaces. Different strains of these Vibrios exist having different growth and biofilm-forming properties. This study evaluated how temperature and strain variability affect V. parahaemolyticus and V. vulnificus biofilm formation and characteristics on glass (GL), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). All strains of both species attached to GL and all plastics at 25, 30, and 35°C. As a species, V. vulnificus produced more biofilm on PS (p ≤ 0.05) compared to GL, and biofilm biomass was enhanced at 25°C compared to 30° (p ≤ 0.01) and 35°C (p ≤ 0.01). However, all individual strains' biofilm biomass and cell densities varied greatly at all temperatures tested. Comparisons of biofilm-forming strains for each species revealed a positive correlation (r = 0.58) between their dry biomass weight and OD570 values from crystal violet staining, and total dry biofilm biomass for both species was greater (p ≤ 0.01) on plastics compared to GL. It was also found that extracellular polymeric substance (EPS) chemical characteristics were similar on all plastics of both species, with extracellular proteins mainly contributing to the composition of EPS. All strains were hydrophobic at 25, 30, and 35°C, further illustrating both species' affinity for potential attachment to plastics. Taken together, this study suggests that different strains of V. parahaemolyticus and V. vulnificus can rapidly form biofilms with high cell densities on different plastic types in vitro. However, the biofilm process is highly variable and is species-, strain-specific, and dependent on plastic type, especially under different temperatures.
Collapse
Affiliation(s)
- Ryan E. Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Karlen Enid Correa Vélez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Liyan Xiong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Addison G. Creech
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Karishma P. Amirichetty
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Gracie K. Anderson
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Guoshuai Cai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States,*Correspondence: Alan W. Decho,
| |
Collapse
|
17
|
Sudan P, Tyagi A, Dar RA, Sharma C, Singh P, B T NK, Chandra M, Arora AK. Prevalence and antimicrobial resistance of food safety related Vibrio species in inland saline water shrimp culture farms. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00323-7. [PMID: 36609954 DOI: 10.1007/s10123-023-00323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study evaluated the potential pathogenicity and antimicrobial resistance (AMR) of Vibrio species isolated from inland saline shrimp culture farms. Out of 200 Vibrio isolates obtained from 166 shrimp/water samples, 105 isolates were identified as V. parahaemolyticus and 31 isolates were identified as V. alginolyticus and V. cholerae, respectively. During PCR screening of virulence-associated genes, the presence of the tlh gene was confirmed in 70 and 19 isolates of V. parahaemolyticus and V. alginolyticus, respectively. Besides, 10 isolates of V. parahaemolyticus were also found positive for trh gene. During antibiotic susceptibility testing (AST), very high resistance to cefotaxime (93.0%), amoxiclav (90.3%), ampicillin (88.2%), and ceftazidime (73.7%) was observed in all Vibrio species. Multiple antibiotic resistance (MAR) index values of Vibrio isolates ranged from 0.00 to 0.75, with 90.1% of isolates showing resistance to ≥ 3 antibiotics. The AST and MAR patterns did not significantly vary sample-wise or Vibrio species-wise. During the minimum inhibitory concentration (MIC) testing of various antibiotics against Vibrio isolates, the highest MIC values were recorded for amoxiclav followed by kanamycin. These results indicated that multi-drug resistant Vibrio species could act as the reservoirs of antibiotic resistance genes in the shrimp culture environment. The limited host range of 12 previously isolated V. parahaemolyticus phages against V. parahaemolyticus isolates from this study indicated that multiple strains of V. parahaemolyticus were prevalent in inland saline shrimp culture farms. The findings of the current study emphasize that routine monitoring of emerging aquaculture areas is critical for AMR pathogen risk assessment.
Collapse
Affiliation(s)
- Prapti Sudan
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - Rouf Ahmad Dar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Chetna Sharma
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Naveen Kumar B T
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Mudit Chandra
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - A K Arora
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
18
|
Park SB, Chang SKC. Development of Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay To Detect Hemolysin Gene of Vibrio vulnificus in Oysters. J Food Prot 2022; 85:1716-1725. [PMID: 35435978 DOI: 10.4315/jfp-21-455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vibrio vulnificus inhabits estuarine waters around the world and can cause severe infections in people who eat contaminated raw or undercooked oysters. Although current detection methods are sensitive and specific, there are continuous demands for the development of rapid and accurate methods without a trained operator and equipment in the field conditions. Herein, we developed a simple and rapid method by detecting the hemolysin (vvh) gene of V. vulnificus by using recombinase polymerase amplification (RPA) combined with a lateral flow dipstick (LFD). The RPA-LFD could detect 100 fg of DNA (P < 0.05) and 20 CFU of V. vulnificus per reaction within 30 min (P < 0.01) and showed the result with incubation temperature ranges from 30 to 45°C (P < 0.001). The test was specific only to V. vulnificus and was not responsive to 10 other closely related Vibrio species and 18 foodborne pathogenic bacteria. Compared with PCR, quantitative PCR, and colony hybridization assays by using naturally contaminated oyster samples, our RPA-LFD showed the same detection ability as quantitative PCR assay. Therefore, the current RPA-LFD would be a valuable tool to detect V. vulnificus in oysters, especially in field conditions. HIGHLIGHTS
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagula, Mississippi 39567
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagula, Mississippi 39567.,Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
19
|
Neetoo H, Reega K, Manoga ZS, Nazurally N, Bhoyroo V, Allam M, Jaufeerally-Fakim Y, Ghoorah AW, Jaumdally W, Hossen AM, Mayghun F, Ismail A, Hosenally M. Prevalence, Genomic Characterization, and Risk Assessment of Human Pathogenic Vibrio Species in Seafood. J Food Prot 2022; 85:1553-1565. [PMID: 35880931 DOI: 10.4315/jfp-22-064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Pathogenic Vibrio species are largely responsible for human diseases associated with consumption of contaminated seafood. The aim of this study was to determine the prevalence, population densities, species diversity, and molecular characteristics of pathogenic Vibrio in various seafood commodities and the health risks associated with consumption of these contaminated commodities. Samples of finfish and shellfish (oysters and sea urchins) were collected from various regions and analyzed for Vibrio with the most-probable-number (MPN) technique. Genomic DNA of putative Vibrio isolates was analyzed by whole genome sequencing for taxonomic identification and identification of virulence and antimicrobial resistance genes. The risk of Vibrio-related illnesses due to the consumption of contaminated seafood was assessed with Risk Ranger. Populations of presumptive Vibrio were 2.6 to 4.4 log MPN/g and correlated with season; Vibrio levels were significantly higher (P < 0.05) in the summer. Fifteen Vibrio isolates were identified as Vibrio alginolyticus (five isolates), Vibrio parahaemolyticus (six isolates), Vibrio harveyi (two isolates), and Vibrio diabolicus (two isolates). Two of the six V. parahaemolyticus isolates (ST 2504 and ST 2505) from oysters harbored either the tdh gene for thermostable direct hemolysin or the trh gene for thermostable direct hemolysin-related hemolysin. In addition to virulence genes, the shellfish isolates also harbored genes encoding resistance to multiple antibiotics, including tetracycline, penicillin, quinolone, and β-lactams, thus arousing concern. The risk assessment predicted that an estimated 21 cases of V. parahaemolyticus-associated gastroenteritis could occur in the general population annually due to consumption of contaminated oysters. This study highlights both the wide prevalence and diversity of Vibrio in seafood and the potential for certain strains to threaten public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Hudaa Neetoo
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Keshnee Reega
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zishaan Sheik Manoga
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Nadeem Nazurally
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Vishwakalyan Bhoyroo
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Mushal Allam
- College of Medicine & Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Yasmina Jaufeerally-Fakim
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Anisah Wahed Ghoorah
- Department of Digital Technologies, Faculty of Information, Communication and Digital Technologies, National Health Laboratory Services, Johannesburg, South Africa
| | - Wasseem Jaumdally
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Aicha Malleck Hossen
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Farheen Mayghun
- Department of Agricultural & Food Science, Faculty of Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Muzzammil Hosenally
- Department of Economics & Statistics, Faculty of Social Sciences and Humanities, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
20
|
Zheng Z, Xu Y, Ye L, Chan EWC, Chen S. Genomic insights into the emergence and spread of NDM-1-producing Vibrio spp. isolates in China. J Antimicrob Chemother 2022; 77:3039-3049. [PMID: 35978475 DOI: 10.1093/jac/dkac276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Carbapenemase-producing Vibrio spp., which exhibit an XDR phenotype, have become increasingly prevalent and pose a severe threat to public health. OBJECTIVES To investigate the genetic characteristics of NDM-1-producing Vibrio spp. isolates and the dissemination mechanisms of blaNDM-1 in Vibrio. METHODS A total of 1363 non-duplicate Vibrio spp. isolates collected from shrimp samples in China were subjected to antimicrobial susceptibility tests and screened for blaNDM-1. The blaNDM-1-positive isolates were further characterized by PFGE, MLST, conjugation and WGS using Illumina and Nanopore platforms. Plasmid stability and fitness cost were assessed using Escherichia coli J53, Klebsiella pneumoniae Kpt80 and Salmonella spp. SA2051 as recipient strains. RESULTS In total, 13 blaNDM-1-positive isolates were identified, all exhibiting MDR. WGS analysis revealed that the 13 blaNDM-1 genes were all associated with a derivative of Tn125. Plasmid analysis revealed that six blaNDM-1 genes were located in IncC plasmids and the other seven were carried by plasmids of two different novel types. Conjugation and plasmid stability assays showed that only the IncC plasmids could be transferred to all the recipient strains and could be stably maintained in the hosts. CONCLUSIONS The emergence of the novel plasmids has contributed to the variable genetic contexts of blaNDM-1 in Vibrio spp. and IncC plasmids harbouring the blaNDM-1 gene could facilitate the spread of such genes between Vibrio spp. and other zoonotic pathogens, leading to a rapid dissemination of blaNDM-1 in bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yating Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hum Hung, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
21
|
Antibiotic Susceptibility of Bacterial Pathogens That Infect Olive Flounder (Paralichthys olivaceus) Cultivated in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138110. [PMID: 35805768 PMCID: PMC9265876 DOI: 10.3390/ijerph19138110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023]
Abstract
Paralichthys olivaceus (olive flounder) is widely cultivated in Korea. However, data on the antibiotic susceptibility of bacterial pathogens that infect olive flounders in Korea are limited. The susceptibility of 84 strains of 3 pathogenic bacteria (Streptococcus spp., Vibrio spp., and Edwardsiella piscicida) to 18 antibiotics was tested using the minimum inhibitory concentration (MIC) panels, and the distribution of the MIC values for each species was confirmed. Among the panel antibiotics, nine commonly used antibiotics were selected, and the multiple antibiotic resistance (MAR) index and antibiotic resistance pattern were indicated using the disk diffusion method. It was confirmed that most of the isolates had a MAR index greater than 0.2, indicating a high-risk source. The distribution patterns of the MIC values and resistance pattern between gram-positive and gram-negative bacteria showed slightly different results. Ampicillin, erythromycin, and clindamycin were more effective against gram-positive bacteria than gram-negative bacteria. However, the MIC values of flumequine for gram-positive bacteria were higher than those of gram-negative bacteria. Through the distribution patterns of the MIC values and resistance patterns presented in this study, the need for monitoring the multidrug-resistant bacteria in aquaculture is emphasised.
Collapse
|
22
|
Zhu P, Huang Z, Xiong Z, Guo S, Zhang S, Cai T. Development and evaluation of real-time recombinase polymerase amplification assay for rapid and sensitive detection of Vibro mimicus in human plasma samples. J Appl Microbiol 2022; 133:1650-1659. [PMID: 35702884 DOI: 10.1111/jam.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
AIM We aimed at developing a fast and accurate method to detect Vibrio mimicus using real-time recombinase polymerase amplification assay. METHODS AND RESULTS Specific primers and probe were designed to target V. mimicus haemolysin (vmh) gene. Target DNA was successfully amplified at 41°C within 20 min. The method exhibited a high level of specificity and the sensitivity was 2.1 × 102 copies/25 μl or 8.4 copies/μl, which is in line with real-time polymerase chain reaction (PCR). The calibration curve plotted by the second-order polynomial regression showed better than the linear curve, as the correlation coefficient was raised to 0.9907, which suggested that the second-order polynomial regressions might be considered to apply to the quantification of real-time recombinase polymerase amplification (RPA). The limit of detection (LOD) was predicted to be 77 copies/25 μl or 3 copies/μl by a probit model. The limit of quantification (LOQ) was calculated to be 28 copies /25 μl or 1 copies/μl by a receiver operating characteristic (ROC) curve, which firstly make LOQ could be available to real-time RPA. For the performance of the real-time RPA in plasma samples, the detection sensitivity of real-time RPA was as good as the real-time PCR. For pretreatment of plasma samples, the boiling method was better than using kits, as it further shortened the time of the real-time RPA in detecting V. mimicus. CONCLUSIONS The real-time RPA assay developed in our study shows multiple advantages over currently available DNA diagnostic method, including a quicker time-to-result for a single sample, requiring minimal infrastructure and technical support and being tolerant to inhibitors in plasma samples. SIGNIFICANCE AND IMPACT OF THE STUDY The real-time RPA assay developed here is a potentially valuable tool for point-of-care (POC) diagnosis of V. mimicus infection in endemic field, especially in the resources-limited settings, as combined with portable devices.
Collapse
Affiliation(s)
- Peng Zhu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zuoan Huang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zi Xiong
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shiyu Guo
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| |
Collapse
|
23
|
Cheng Q, Zheng Z, Ye L, Chen S. Identification of a Novel Metallo-β-Lactamase, VAM-1, in a Foodborne Vibrio alginolyticus Isolate from China. Antimicrob Agents Chemother 2021; 65:e0112921. [PMID: 34424042 PMCID: PMC8522725 DOI: 10.1128/aac.01129-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
A multidrug-resistant Vibrio alginolyticus isolate recovered from a shrimp sample with reduced carbapenem susceptibility produced a novel metallo-β-lactamase (MBL), VAM-1. That carbapenemase shared 67% to 70% amino acid identity with several VMB family subclass B1 MBLs, which were recently reported among some marine bacteria including Vibrio, Glaciecola, and Thalassomonas. The blaVAM-1 gene was located in a novel conjugative plasmid, namely, pC1579, and multiple copies of blaVAM-1 via an unusual mechanism of gene amplification were detected in pC1579. These findings underline the emergence of marine organisms acting as natural reservoirs for MBL genes and the importance of continuous bacterial antibiotic resistance surveillance.
Collapse
Affiliation(s)
- Qipeng Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Zhiwei Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
24
|
Saiful Islam M, Paul A, Talukder M, Roy K, Abdus Sobur M, Ievy S, Mehedi Hasan Nayeem M, Rahman S, Nazmul Hussain Nazir KHM, Tofazzal Hossain M, Tanvir Rahman M. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J Biol Sci 2021; 28:5963-5970. [PMID: 34588913 PMCID: PMC8459117 DOI: 10.1016/j.sjbs.2021.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major health crisis globally. Migratory birds could be a potential source for antibiotic resistant (ABR) bacteria. Not much is known about their role in the transmission of ABR in Bangladesh. In this study, a total of 66 freshly dropped fecal materials of migratory birds were analyzed. Bacterial isolation and identification were based on cultural properties, biochemical tests, and polymerase chain reaction (PCR). The disk diffusion method was employed to evaluate antibiogram profiles. By PCR, out of 66 samples, the detection rate of Enterococcus spp. (60.61%; 95% confidence interval: 48.55-71.50%) was found significantly higher than Salmonella spp. (21.21%; 95% CI: 13.08-32.51%) and Vibrio spp. (39.40%; 95% CI: 28.50-51.45%). Enterococcus isolates were frequently found resistant (100-40%) to ampicillin, streptomycin, meropenem, erythromycin, and gentamicin; Salmonella isolates were frequently resistant (72-43%) to chloramphenicol, tetracycline, ampicillin, streptomycin, and erythromycin; and Vibrio spp. isolates were frequently resistant (77-31%) to vancomycin, ampicillin, erythromycin, tetracycline, and streptomycin. In addition, 60% (95% CI: 44.60-73.65%) Enterococcus spp., 85.71% (95% CI: 60.06-97.46%) Salmonella spp., and 76.92% (95% CI: 57.95-88.97%) Vibrio spp. isolates were multi-drug resistant (MDR) in nature. Three isolates (one from each bacterium) were found resistant against six classes of antibiotics. The bivariate analysis revealed strong associations (both positive and negative) between several antibiotic pairs which were resistant to isolated organisms. To the best of our knowledge, this is the first study in detecting MDR Enterococcus spp., Salmonella spp., and Vibrio spp. from migratory birds travelling to Bangladesh. Frequent detection of MDR bacteria from migratory birds travelling to Bangladesh suggests that these birds have the potential to carry and spread ABR bacteria and could implicate potential risks to public health. We recommend that these birds should be kept under an AMR surveillance program to minimize the potential risk of contamination of the environment with ABR as well as to reduce their hazardous impacts on health.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Anamika Paul
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mithun Talukder
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Krishna Roy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abdus Sobur
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Samina Ievy
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Mehedi Hasan Nayeem
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - K H M Nazmul Hussain Nazir
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Tofazzal Hossain
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
25
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea. Microb Drug Resist 2021; 28:255-265. [PMID: 34569863 DOI: 10.1089/mdr.2020.0618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi is a significant cause of infection in both marine animals and humans. It has been reported frequently in seafood-borne infections worldwide. This study was conducted to determine the potential health impact of the V. harveyi isolated from marine food fish cultured in Korea concerning their virulence and antimicrobial resistance. A total of 49 V. harveyi samples were isolated by biochemical tests and multiplex PCR. Phenotypic detection of virulence factors resulted DNase activity (81.63%), hemolysis (α = 75.51% and β = 12.25), gelatinase activity (71.43%), protease production (71.43%), phospholipase activity (65.31%), and lipase production (34.69%). Virulence genes, including VPI, tlh, tdh, toxR, VAC, and ctxAB, were detected in 57.14%, 44.90%, 36.73%, 22.45%, 12.24%, and 8.16% of the isolates, respectively. Resistance to ampicillin (77.55%), oxacillin (69.39%), nalidixic acid (53.06%), amoxicillin (46.94%), oxytetracycline (46.94%), colistin sulfate (34.69%), fosfomycin (34.69%), chloramphenicol (32.65%), streptomycin (32.65%), cephalothin (28.57%), oxytetracycline (26.53%), ceftriaxone (20.41%), erythromycin (14.29%), and cefoxitin (12.24%) was detected in disc diffusion assay. Most of the isolates were classified as multidrug resistant as they scored multiple antimicrobial resistance index ≥0.2. Furthermore, antimicrobial resistance genes tetB, qnrA, intI1 (Class 1 integron integrase), aac(6')-Ib, blaSHV, blaCTX-M, strA-strB, tetA, aphAI-IAB, qnrC, qnrS, and blaTEM were found in 81.63%, 67.35%, 61.22%, 46.94%, 44.90%, 44.90%, 36.73%, 18.37%, 10.20%, 10.20%, 8.16% and 6.12% of the isolates, respectively. In conclusion, the development of antimicrobial resistance among V. harveyi will ultimately reduce the efficacy of antimicrobials used for treating and can favor the development of more virulent V. harveyi strains.
Collapse
Affiliation(s)
- Liyana Arachchilage Dinithi S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
26
|
Gxalo O, Digban TO, Igere BE, Olapade OA, Okoh AI, Nwodo UU. Virulence and Antibiotic Resistance Characteristics of Vibrio Isolates From Rustic Environmental Freshwaters. Front Cell Infect Microbiol 2021; 11:732001. [PMID: 34490150 PMCID: PMC8416912 DOI: 10.3389/fcimb.2021.732001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 01/22/2023] Open
Abstract
The study investigated the occurrence of antimicrobial resistance genes and virulence determinants in Vibrio species recovered from different freshwater sheds in rustic milieu. A total of 118 Vibrio isolates comprising Vibrio fluvialis (n=41), Vibrio mimicus (n=40) and V. vulnificus (n=37) was identified by amplification of ToxR, vmh and hsp60 genes. The amplification of virulence genes indicated that V. mimicus (toxR, zot, ctx, VPI, and ompU) genes were detected in 12.5%, 32.5%, 45%, 37.5% and 10% respectively. V. fluvialis genes (stn, hupO and vfh) were harboured in 48.8%, 14.6% and 19.5% isolates congruently. The other virulence genes that include vcgC and vcgE were observed in 63.1% and 29% of isolates belonging to V. vulnificus. With the exceptions of imipenem, meropenem and ciprofloxacin, most isolates exhibited more than 50% resistance to antibiotics. The antimicrobial resistance was more prevalent for polymyxin B (100%), azithromycin (100%) and least in ciprofloxacin (16.1%). Multiple antibiotic resistance index range was 0.3 and 0.8 with most isolates showing MARI of 0.8. The blaTEM, AmpC, blaGES, blaIMP, blaOXA-48 and blaKPC genes were detected in 53.3%, 42%, 29.6%, 16.6%, 15%, 11.3% and 5.6% of the isolates. Non-beta lactamases such as streptomycin resistance (aadA and strA), gentamicin resistance (aphA1) and quinolone resistance gene (qnrVC) were found in 5.2%, 44.3%, 26% and 2.8%. Chloramphenicol resistance genes (cmlA1 and catII) were found in 5.2% and 44.3% among the isolates. Our findings reveal the presence of antimicrobial resistance genes and virulent Vibrio species in aquatic environment which can have potential risk to human and animal's health.
Collapse
Affiliation(s)
- Oyama Gxalo
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Tennison O Digban
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Bright E Igere
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Ola A Olapade
- Biology Department, Albion College, Albion, MI, United States
| | - Anthony I Okoh
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- South Africa Medical Research Center (SAMRC) Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
27
|
Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules 2021; 11:biom11081139. [PMID: 34439804 PMCID: PMC8395022 DOI: 10.3390/biom11081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.
Collapse
|
28
|
Shahimi S, Elias A, Abd Mutalib S, Salami M, Fauzi F, Mohd Zaini NA, Abd Ghani M, Azuhairi A. Antibiotic resistance and determination of resistant genes among cockle (Anadara granosa) isolates of Vibrio alginolyticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44002-44013. [PMID: 33846919 DOI: 10.1007/s11356-021-13665-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
A total of 24 strains of Vibrio alginolyticus were isolated from cockles (Anadara granosa) and identified for VibA and gyrB genes. All V. alginolyticus isolates were then tested against nine different antibiotics. In this study, the highest percentage of antibiotic resistance was obtained against penicillin (37.50%), followed by ampicillin, vancomycin (12.50%) and erythromycin (8.33%). All of V. alginolyticus isolates were susceptible against streptomycin, kanamycin, tetracycline, chloramphenicol and sulfamethoxazole. Polymerase chain reaction (PCR) assay has confirmed the presence of four antibiotic resistance genes of penicillin (pbp2a), ampicillin (blaOXA), erythromycin (ermB) and vancomycin (vanB). Out of 24 V. alginolyticus isolates, 2 isolates possessed the tdh-related hemolysin (trh) (strains VA15 and VA16) and none for the thermostable direct hemolysin (tdh) gene. Both strains of the tdh-related hemolysin (trh) were susceptible to all antibiotics tested. The multiple antibiotic resistance (MAR) index ranging between 0.2 and 0.3 with 5 antibiograms (A1-A5) was observed. Combination of enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and antibiotic resistance indicated 18 genome types which showed genetic heterogeneity of those V. alginolyticus isolates. The results demonstrated the presence of V. alginolyticus strain found in cockles can be a potential risk to consumers and can contribute to the deterioration of human health in the study area. Thus, it is essential for local authority to provide the preventive measures in ensuring the cockles are safe for consumption.
Collapse
Affiliation(s)
- Safiyyah Shahimi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
- Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Aishah Elias
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia.
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia.
| | - Mokry Salami
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Fazlina Fauzi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Ma'aruf Abd Ghani
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Ahmad Azuhairi
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Malaysia
| |
Collapse
|
29
|
Seherler S, Bozdogan A, Ozal Ildeniz TA, Kok FN, Anac Sakir I. Detection of cholera toxin with surface plasmon field-enhanced fluorescent spectroscopy. Biotechnol Appl Biochem 2021; 69:1557-1566. [PMID: 34297408 DOI: 10.1002/bab.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
In this work, a biosensor based on surface plasmon field-enhanced florescence spectroscopy (SPFS) method was successfully constructed to detect the truncated form of cholera toxin, that is, its beta subunit (CTX-B). CTX-B is a relatively small molecule (12 kDa) and it was chosen as model analyte for the detection of protein toxins originated from waterborne pathogens. Recognition layer was prepared on gold-coated LaSFN9 glasses modified with 11-mercaptoundecanoic acid (11-MUA). Biotin-conjugated anti-CTX-B polyclonal antibody (B-Ab) was immobilized on streptavidin (SA) layer constructed on the 11-MUA-modified surface. CTX-B amount was determined with direct assay using B-Ab in surface plasmon resonance (SPR) mode and with sandwich assay in SPFS mode using Cy5-conjugated anti-CTX-B polyclonal antibody. Minimum detected CTX-B concentrations were 10 and 0.01 μg/ml with SPR and SPFS, respectively, showing the sensitivity of the SPFS system over the conventional one. The detection was done in 2-6 h, which was faster than both culture and polymerase chain reaction (PCR)-based methods. Stability tests were performed with SA-coated sensors (excluding B-Ab). In this form, the layer was stable after 30 days of storage in phosphate-buffered saline (PBS; 0.01 M, pH = 7.4) at +4°C. B-Ab layer was formed immediately on them before each measurement.
Collapse
Affiliation(s)
- Sebnem Seherler
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Anil Bozdogan
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, Tulln, Austria
| | - Tugba Arzu Ozal Ildeniz
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Nese Kok
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Ilke Anac Sakir
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
30
|
Zheng Z, Ye L, Li R, Chen S. Whole-genome sequencing of strains of Vibrio spp. from China reveals different genetic contexts of blaCTX-M-14 among diverse lineages. J Antimicrob Chemother 2021; 76:950-956. [PMID: 33394022 DOI: 10.1093/jac/dkaa545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the prevalence and genetic contexts of the blaCTX-M-14 gene harboured by foodborne isolates of Vibrio spp. in China. METHODS A total of 1856 Vibrio spp. isolates collected from raw meat and shrimp samples in Guangdong Province of China were screened for blaCTX-M-14 by PCR. The blaCTX-M-14-positive isolates were characterized by MIC, PFGE, MLST, conjugation, S1-PFGE and Southern blotting and WGS using Illumina and Nanopore platforms. RESULTS A total of 35 (1.9%) Vibrio isolates were positive for blaCTX-M-14, including 33 Vibrio parahaemolyticus strains and two Vibrio alginolyticus strains. MLST showed that most of the blaCTX-M-14-bearing isolates could be assigned into two major STs, with ST163 being more prevalent (n = 23), followed by ST180 (n = 6). Whole-genome analysis of these 35 isolates revealed that the blaCTX-M-14 gene was associated with ISEcp1 in the upstream region, of which 32 blaCTX-M-14 genes were located in the same loci of chromosome I, 1 blaCTX-M-14 gene was located in a novel chromosomal integrative conjugative element (ICE) belonging to the SXT/R391 family and 2 blaCTX-M-14 genes were located in the same type of plasmid, which belonged to the IncP-1 group. Conjugation experiments showed that only the plasmid-borne blaCTX-M-14 gene could be transferred to the recipient strain Escherichia coli J53. CONCLUSIONS The emergence of the novel ICE and IncP-1 plasmids has contributed to the variable genetic contexts of blaCTX-M-14 among strains of Vibrio spp. and facilitated the horizontal transfer of such genes between Vibrio spp. and other zoonotic pathogens, resulting in a rapid increase in the prevalence of blaCTX-M-14-bearing bacterial pathogens worldwide.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, P. R. China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
31
|
Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. ENVIRONMENTAL MICROBIOME 2021; 16:13. [PMID: 34158117 PMCID: PMC8218497 DOI: 10.1186/s40793-021-00382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/01/2021] [Indexed: 06/01/2023]
Abstract
Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
32
|
Isolation and Characterization of Bacteriophages from Inland Saline Aquaculture Environments to Control Vibrio parahaemolyticus Contamination in Shrimp. Indian J Microbiol 2021; 61:212-217. [PMID: 33927462 DOI: 10.1007/s12088-021-00934-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Among the various bacterial pathogens associated with the aquaculture environment, Vibrio parahaemolyticus the important one from shrimp and human health aspects. Though having been around for several decades, phage-based control of bacterial pathogens (phage therapy) has recently re-emerged as an attractive alternative due to the availability of modern phage characterization tools and the global emergence of antibiotic-resistant bacteria. In the present study, a total of 12 V. parahaemolyticus specific phages were isolated from 264 water samples collected from inland saline shrimp culture farms. During the host range analysis against standard/field isolates of V. parahaemolyticus and other bacterial species, lytic activity was observed against 2.3-45.5% of tested V. parahaemolyticus isolates. No lytic activity was observed against other bacterial species. For genomic characterization, high-quality phage nucleic acid with concentrations ranging from 7.66 to 220 ng/µl was isolated from 9 phages. After digestion treatments with DNase, RNase and S1 nuclease, the nature of phage nucleic acid was determined as ssDNA and dsDNA for 7 and 2 phages respectively. During transmission electron microscopy analysis of phage V5, it was found to have a filamentous shape making it a member of the family Inoviridae. During efficacy study of phage against V. parahaemolyticus in shrimp, 78.1% reduction in bacterial counts was observed within 1 h of phage application. These results indicate the potential of phage therapy for the control of V. parahaemoyticus in shrimp. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00934-6.
Collapse
|
33
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Zheng Z, Ye L, Chan EWC, Chen S. Identification and characterization of a conjugative blaVIM-1-bearing plasmid in Vibrio alginolyticus of food origin. J Antimicrob Chemother 2020; 74:1842-1847. [PMID: 30993329 DOI: 10.1093/jac/dkz140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/10/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the genetic features of the blaVIM-1 gene first detected in a cephalosporin-resistant Vibrio alginolyticus isolate, Vb1978. METHODS The MICs of V. alginolyticus strain Vb1978 were determined, and the β-lactamases produced were screened and analysed using conjugation, S1-PFGE and Southern blotting. The complete sequence of the blaVIM-1-encoding plasmid was also obtained using the Illumina and MinION sequencing platforms. RESULTS V. alginolyticus strain Vb1978, isolated from a retail shrimp sample, was resistant to cephalosporins and exhibited reduced susceptibility to carbapenems. A novel blaVIM-1-carrying conjugative plasmid, designated pVb1978, was identified in this strain. Plasmid pVb1978 had 50 001 bp and comprised 59 predicted coding sequences (CDSs). The plasmid backbone of pVb1978 was homologous to those of IncP-type plasmids, while its replication region was structurally similar to non-IncP plasmids. The blaVIM-1 gene was found to be carried by the class 1 integron In70 and associated with a defective Tn402-like transposon. CONCLUSIONS A novel blaVIM-1-carrying conjugative plasmid, pVb1978, was reported for the first time in V. alginolyticus, which warrants further investigation in view of its potential pathogenicity towards humans and widespread occurrence in the environment.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
35
|
Yu J, Zhu B, Zhou T, Wei Y, Li X, Liu Y. Species-specific Identification of Vibrio sp. based on 16S-23S rRNA gene internal transcribed spacer. J Appl Microbiol 2020; 129:738-752. [PMID: 32155682 DOI: 10.1111/jam.14637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
AIMS To explore a prokaryotic species-specific DNA marker, 16S-23S rRNA gene internal transcribed spacer (ITS) sequence for identification and classification of Vibrio. METHODS AND RESULTS Five hundred and seventy four ITS sequences from 60 Vibrio strains were collected, then the primary and secondary structures of ITS sequence were analysed. The ITS was divided into several subunits, and the species-specificity of these subunits were evaluated by blast. The variable subunit of ITS showed high species-specificity. A protocol to identify a Vibrio species based on ITS analysis was developed and verified. Both the specificity and sensitivity were 100%. The phylogeny analysis of Vibrio based on ITS showed that ITS devised a better classification than 16S rDNA. Finally, an identification method of Vibrio based on ITS sequencing in food samples was developed and evaluated. The results of ITS sequencing were (100%) consistent with the results identified by ISO standard. CONCLUSIONS Vibrio could be accurately identified at the species level by using the ITS sequences. SIGNIFICANCE AND IMPACT OF THE STUDY The present study suggests that the ITS can be considered as a significant DNA marker for identification and classification of Vibrio species, and it posed a new path to screen the Vibrio in food sample.
Collapse
Affiliation(s)
- J Yu
- College of Life Sciences, Qingdao University, Qingdao, P.R. China
| | - B Zhu
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - T Zhou
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Y Wei
- College of Life Sciences, Qingdao University, Qingdao, P.R. China
| | - X Li
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Y Liu
- School of Medicine, Nankai University, Tianjin, P.R. China
| |
Collapse
|
36
|
Dong Y, Zhao P, Chen L, Wu H, Si X, Shen X, Shen H, Qiao Y, Zhu S, Chen Q, Jia W, Dong J, Li J, Gao S. Fast, simple and highly specific molecular detection of Vibrio alginolyticus pathogenic strains using a visualized isothermal amplification method. BMC Vet Res 2020; 16:76. [PMID: 32131821 PMCID: PMC7057676 DOI: 10.1186/s12917-020-02297-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background Vibrio alginolyticus is an important pathogen that has to be closely monitored and controlled in the mariculture industry because of its strong pathogenicity, quick onset after infection and high mortality rate in aquatic animals. Fast, simple and specific methods are needed for on-site detection to effectively control outbreaks and prevent economic losses. The detection specificity towards the pathogenic strains has to be emphasized to facilitate pointed treatment and prevention. Polymerase chain reaction (PCR)-based molecular approaches have been developed, but their application is limited due to the requirement of complicated thermal cycling machines and trained personnel. Results A fast, simple and highly specific detection method for V. alginolyticus pathogenic strains was established based on isothermal recombinase polymerase amplification (RPA) and lateral flow dipsticks (LFD). The method targeted the virulence gene toxR, which is reported to have good coverage for V. alginolyticus pathogenic strains. To ensure the specificity of the method, the primer-probe set of the RPA system was carefully designed to recognize regions in the toxR gene that diverge in different Vibrio species but are conserved in V. alginolyticus pathogenic strains. The primer-probe set was determined after a systematic screening of amplification performance, primer-dimer formation and false positive signals. The RPA-LFD method was confirmed to have high specificity for V. alginolyticus pathogenic strains without any cross reaction with other Vibrio species or other pathogenic bacteria and was able to detect as little as 1 colony forming unit (CFU) per reaction without DNA purification, or 170 fg of genomic DNA, or 6.25 × 103 CFU/25 g in spiked shrimp without any enrichment. The method finishes detection within 30 min at temperatures between 35 °C and 45 °C, and the visual signal on the dipstick can be directly read by the naked eye. In an application simulation, randomly spiked shrimp homogenate samples were 100% accurately detected. Conclusions The RPA-LFD method developed in this study is fast, simple, highly specific and does not require complicated equipment. This method is applicable for on-site detection of V. alginolyticus pathogenic strains for the mariculture industry.
Collapse
Affiliation(s)
- Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huahua Wu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Yi Qiao
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, 226007, China
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Qiong Chen
- Wuhan Institute for Food and Cosmetic Control, Wuhan, 430000, China
| | - Weiwei Jia
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, 430000, China.
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
37
|
Jiang W, Ren Y, Han X, Xue J, Shan T, Chen Z, Liu Y, Wang Q. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters. Anal Bioanal Chem 2020; 412:2903-2914. [PMID: 32128642 DOI: 10.1007/s00216-020-02532-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
This study was the first attempt to optimize a recombinase polymerase amplification (RPA) and lateral flow (LF) assay combined with immunomagnetic separation (IMS) for the detection of Vibrio parahaemolyticus in raw oysters. The newly developed IMS-RPA-LF assay effectively combines sample preparation, amplification, and detection into a single platform. Under optimal conditions, the average capture efficiency (CE) for 104 colony forming units (CFU)/mL of four V. parahaemolyticus strains with 0.4 mg of immunomagnetic beads within 45 min was 80.3%. After optimization, the RPA-LF assay was able to detect V. parahaemolyticus within 15 min, comprising DNA amplification with RPA for 10 min at 37 °C and visualization of the amplicons through LF strips for 5 min. The RPA-LF assay exhibited good specificity by showing a test line for eight V. parahaemolyticus strains with different serotypes but no cross-reaction with 12 non-V. parahaemolyticus bacteria. RPA-LF assay was found to be sensitive and detected as low as 10 pg genomic DNA of V. parahaemolyticus. For spiked oyster samples, the detection sensitivity of V. parahaemolyticus was improved to 2 CFU/g by IMS-RPA-LF after enrichment for 4 h; in contrast, the IMS-PCR method required 8 h. Hence, even when V. parahaemolyticus was present in very low numbers in samples, the IMS-RPA-LF assay could be completed within half a workday. Because of the high sensitivity, specificity, and speed of the IMS-RPA-LF assay, this newly developed method opens a novel pathway for rapid diagnostic screening of V. parahaemolyticus in seafood, which is an increasingly important health issue worldwide. Graphical abstract.
Collapse
Affiliation(s)
- Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Yaling Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Junxin Xue
- Shanghai Customs, Shanghai, 200135, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Minhang, Shanghai, 200241, China.
| |
Collapse
|
38
|
Zheng Z, Cheng Q, Chan EWC, Chen S. Genetic and Biochemical Characterization of VMB-1, a Novel Metallo-β-Lactamase Encoded by a Conjugative, Broad-Host Range IncC Plasmid from Vibrio spp. ACTA ACUST UNITED AC 2020; 4:e1900221. [PMID: 32293144 DOI: 10.1002/adbi.201900221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Indexed: 11/12/2022]
Abstract
The increasing incidence of phenotypic resistance to carbapenems in recent years is mainly attributed to acquisition of mobile carbapenemase-encoding genetic elements by major bacterial pathogens. Here, a novel carbapenemase known as Vibrio metallo-β-lactamase 1 (VMB-1), which is encoded by a gene (blaVMB-1 ) located in an integron-bearing, highly transmissible IncC type plasmid, namely pVB1796, is identified and characterized, both genetically and functionally. Recovered from a foodborne Vibrio alginolyticus strain that exhibits resistance to all known β-lactam antibiotics, pVB1796 is found to possess a hybrid backbone that exhibits unique features of both type 1 and type 2 IncC elements. VMB-1 exhibits 94% sequence homology with several recently reported but poorly characterized metallo-β-lactamases (MBLs) produced by the marine organisms Alteromonadaceae, Glaciecola, and Thalassomonas actiniarum. Sequence alignment analysis shows that VMB-1 shares a structurally identical active site with subclass B1 MBLs. Importantly, pVB1796 is found to be efficiently transferred from Vibrio to other Gram-negative bacterial pathogens, including Salmonella typhimurium, Klebsiella pneumoniae, and Acinetobacter baumanni, via conjugation. These findings suggest that blaVMB-1 -bearing plasmids have the potential to be disseminated to other Gram-negative bacterial pathogens in the near future and render carbapenems useless in treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, 518052, P. R. China.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Qipeng Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong.,State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
39
|
Gyraite G, Katarzyte M, Schernewski G. First findings of potentially human pathogenic bacteria Vibrio in the south-eastern Baltic Sea coastal and transitional bathing waters. MARINE POLLUTION BULLETIN 2019; 149:110546. [PMID: 31543486 DOI: 10.1016/j.marpolbul.2019.110546] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Vibrio spp. are bacteria that inhabit fresh and marine waters throughout the world and can cause severe infections in humans. This study aimed to investigate the presence of potentially pathogenic Vibrio bacteria in the coastal waters of the Lithuanian Baltic Sea and the Curonian Lagoon. The results of cultivation on TCBS media showed that total abundance of Vibrio spp. varied from 1.2 × 102 to 6 × 104 CFU L-1. Real-time PCR revealed that the V. vulnificus vvhA gene varied from 2.8 × 103 to 3.7 × 104 copies L-1, with the highest amounts in sites with average water salinity of 7.1 PSU. Both green and blue-green algae and lower salinity play a role in the growth and spread of total Vibrio spp. Although potential infection risk was low at the time of this study, regular monitoring of Vibrio spp. and infection risk assessments are recommended.
Collapse
Affiliation(s)
- Greta Gyraite
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania; Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock, Germany.
| | - Marija Katarzyte
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania
| | - Gerald Schernewski
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania; Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock, Germany
| |
Collapse
|
40
|
Pinto PIS, Guerreiro CC, Costa RA, Martinez-Blanch JF, Carballo C, Codoñer FM, Manchado M, Power DM. Understanding pseudo-albinism in sole (Solea senegalensis): a transcriptomics and metagenomics approach. Sci Rep 2019; 9:13604. [PMID: 31541115 PMCID: PMC6754371 DOI: 10.1038/s41598-019-49501-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudo-albinism is a pigmentation disorder observed in flatfish aquaculture with a complex, multi-factor aetiology. We tested the hypothesis that pigmentation abnormalities are an overt signal of more generalised modifications in tissue structure and function, using as a model the Senegalese sole and two important innate immune barriers, the skin and intestine, and their microbiomes. Stereological analyses in pseudo-albino sole revealed a significantly increased mucous cell number in skin (P < 0.001) and a significantly thicker muscle layer and lamina propria in gut (P < 0.001). RNA-seq transcriptome analysis of the skin and gut identified 573 differentially expressed transcripts (DETs, FDR < 0.05) between pseudo-albino and pigmented soles (one pool/tissue from 4 individuals/phenotype). DETs were mainly linked to pigment production, skin structure and regeneration and smooth muscle contraction. The microbiome (16 S rRNA analysis) was highly diverse in pigmented and pseudo-albino skin but in gut had low complexity and diverged between the two pigmentation phenotypes. Quantitative PCR revealed significantly lower loads of Mycoplasma (P < 0.05) and Vibrio bacteria (P < 0.01) in pseudo-albino compared to the control. The study revealed that pseudo-albinism in addition to pigmentation changes was associated with generalised changes in the skin and gut structure and a modification in the gut microbiome.
Collapse
Affiliation(s)
- Patricia I S Pinto
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cláudia C Guerreiro
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita A Costa
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Juan F Martinez-Blanch
- LifeSequencing-ADM Nutrition, Parc Cientific Universidad De Valencia, Edif. 2, C/Catedrático Agustín Escardino Benlloch, 9, 46980, Paterna, Spain
| | - Carlos Carballo
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro El Toruño, Camino Tiro de Pichon s/n, 11500, Cadiz, Spain
| | - Francisco M Codoñer
- LifeSequencing-ADM Nutrition, Parc Cientific Universidad De Valencia, Edif. 2, C/Catedrático Agustín Escardino Benlloch, 9, 46980, Paterna, Spain
| | - Manuel Manchado
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Centro El Toruño, Camino Tiro de Pichon s/n, 11500, Cadiz, Spain.
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
41
|
Zheng Z, Li R, Ye L, Wai-Chi Chan E, Xia X, Chen S. Genetic Characterization of bla CTX-M-55 -Bearing Plasmids Harbored by Food-Borne Cephalosporin-Resistant Vibrio parahaemolyticus Strains in China. Front Microbiol 2019; 10:1338. [PMID: 31275270 PMCID: PMC6591265 DOI: 10.3389/fmicb.2019.01338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate and compare the complete nucleotide sequences of the multidrug resistance plasmids pVb0267 and pVb0499, which were recovered from foodborne Vibrio parahaemolyticus isolates, and analyze the genetic environment of blaCTX–M–55 to provide insight into the dissemination mechanisms of this resistance element. Analysis of the sequences of plasmids pVb0267 (166,467 bp) and pVb0499 (192,739 bp) revealed that the backbones of these two plasmids exhibited a high degree of similarity with pR148, a recognized type 1a IncC plasmid recovered from Aeromonas hydrophila (99% identity). The resistance genes, found in both plasmids, included qacH, aadB, arr2, blaOXA–10, aadA1, sul1, tet(A), and blaCTX–M–55, which were mostly arranged in a specific region designated ARI-A. Plasmid pVb0499 was found to possess a larger size of ARI-A than pVb0267, which lacked a mer determination region, a qnr A segment, an aacC3 gene and several mobility-encoding genes. Comparative analysis of resistance island (RI) of these plasmids and others revealed the potential evolution route of these RI sequences. In conclusion, plasmids harboring the blaCTX–M–55 gene has been recovered in Vibrio parahaemolyticus strains of food origin. It is alarming to find that IncC plasmids harboring resistance islands are disseminating in aquatic bacterial strains. The continuous evolution of resistance genes in conjugative plasmid in aquatic bacteria could be due to bacterial adaption to aquaculture environment, where antibiotics were increasingly used.
Collapse
Affiliation(s)
- Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Ruichao Li
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lianwei Ye
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China.,State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
42
|
Ahmed SA, Raabe CA, Cheah HL, Hoe CH, Rozhdestvensky TS, Tang TH. Utilization of Small RNA Genes to Distinguish Vibrio cholerae Biotypes via Multiplex Polymerase Chain Reaction. Am J Trop Med Hyg 2019; 100:1328-1334. [PMID: 30963989 PMCID: PMC6553896 DOI: 10.4269/ajtmh.18-0525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
The diarrheal disease "cholera" is caused by Vibrio cholerae, and is primarily confined to endemic regions, mostly in Africa and Asia. It is punctuated by outbreaks and creates severe challenges to public health. The disease-causing strains are most-often members of serogroups O1 and O139. PCR-based methods allow rapid diagnosis of these pathogens, including the identification of their biotypes. However, this necessitates the selection of specific target sequences to differentiate even the closely related biotypes of V. cholerae. Oligonucleotides for selective amplification of small RNA (sRNA) genes that are specific to these V. cholerae subtypes were designed. The resulting multiplex PCR assay was validated using V. cholerae cultures (i.e., 19 V. cholerae and 22 non-V. cholerae isolates) and spiked stool samples. The validation using V. cholerae cultures and spiked stool suspensions revealed detection limits of 10-100 pg DNA per reaction and 1.5 cells/mL suspension, respectively. The multiplex PCR assay that targets sRNA genes for amplification enables the sensitive and specific detection, as well as the differentiation of V. cholerae-O1 classical, O1 El Tor, and O139 biotypes. Most importantly, the assay enables fast and cheaper diagnosis compared with classic culture-based methods.
Collapse
Affiliation(s)
- Siti Aminah Ahmed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Carsten A. Raabe
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
- Brandenburg Medical School (Medizinische Hochschule Brandenburg [MHB]), Neuruppin, Germany
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| | - Hong Leong Cheah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Chee Hock Hoe
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kelantan, Malaysia
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| |
Collapse
|
43
|
Hash S, Martinez-Viedma MP, Fung F, Han JE, Yang P, Wong C, Doraisamy L, Menon S, Lightner D. Nuclear magnetic resonance biosensor for rapid detection of Vibrio parahaemolyticus. Biomed J 2019; 42:187-192. [PMID: 31466712 PMCID: PMC6717750 DOI: 10.1016/j.bj.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a Gram-negative bacterium widely distributed in marine environments and a well-recognized invertebrate pathogen frequently isolated from seafood. V. parahaemolyticus may also spread into humans, via contaminated, raw, or undercooked seafood, causing gastroenteritis and diarrhea. METHODS A Nuclear Magnetic Resonance (NMR)-based detection system was used to detect pathogenic levels of this microorganism (105 CFU/ml) with Molecular Mirroring using iron nanoparticles coated with target-specific biomarkers capable of binding to DNA of the target microorganism. The NMR system generates a signal (in milliseconds) by measuring NMR spin-spin relaxation time T2, which correlates with the amount of microorganism DNA. RESULTS Compared with conventional microbiology techniques such as real-time PCR (qPCR), the NMR biosensor showed similar limits of detection (LOD) at different concentrations (105-108 CFU/ml) using two DNA extraction methods. In addition, the NMR biosensor system can detect a wide range of microorganism DNAs in different matrices within a short period of time. CONCLUSION NMR biosensor represents a potential tool for diagnostic and quality control to ensure microbial pathogens such as V. parahaemolyticus are not the cause of infection. The "hybrid" technology (NMR and nanoparticle application) opens a new platform for detecting other microbial pathogens that have impacted human health, animal health and food safety.
Collapse
Affiliation(s)
- Sara Hash
- Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA
| | | | - Fred Fung
- Division of Occupational Environmental Medicine, University of California Irvine and Sharp HealthCare, San Diego, CA, USA
| | - Jee Eun Han
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, USA
| | - Paul Yang
- Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA
| | - Charlene Wong
- Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA
| | - Loganathan Doraisamy
- Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA
| | - Suresh Menon
- Department of Research and Development, Menon Biosensors Inc., Escondido, CA, USA.
| | - Donald Lightner
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
|
45
|
A multiplex PCR assay for detection of Vibrio vulnificus, Aeromonas hydrophila, methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus agalactiae from the isolates of patients with necrotizing fasciitis. Int J Infect Dis 2019; 81:73-80. [PMID: 30690211 DOI: 10.1016/j.ijid.2019.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vibrio vulnificus, Aeromonas hydrophila, methicillin-resistant Staphylococcus aureus (MRSA), group A Streptococcus, and group B Streptococcus are commonly detected causative agents of necrotizing fasciitis (NF) in Chia-Yi Chang Gung Memorial Hospital. The aim of this study was to develop and evaluate a multiplex PCR method for the simultaneous detection of five of the most important human pathogens involved in NF by using a novel combination of species-specific genes. METHODS The samples used were collected from 99 patients with surgically confirmed NF of the extremities who were hospitalized consecutively between June 2015 and November 2017. Two sets of blood and tissue samples were collected from all patients; one set was sent to a microbiology laboratory for bacterial identification and the other set was sent to an immunohistochemistry laboratory for PCR amplification. RESULTS The multiplex PCR results for the blood samples showed negative findings. The multiplex PCR results for the tissue specimens showed 28 positive findings. Fourteen (87.5%) of the 16 V. vulnificus culture-positive tissue specimens, six (75%) of the eight A. hydrophila culture-positive tissue specimens, and four (100%) of the four MRSA culture-positive tissue specimens were positive by PCR. Similarly, two (100%) of the group A Streptococcus and two (100%) of the group B Streptococcus were PCR-positive. CONCLUSIONS The accuracy rate of the multiplex PCR presenting positive results in these culture-positive tissue samples was 87.5% (28/32). This suggests that multiplex PCR of tissue specimens may be a useful and rapid diagnostic tool for the detection of these lethal microorganisms in patients with NF.
Collapse
|
46
|
Han YJ, Jo A, Kim SW, Lee HE, Kim YC, Jeong HD, Choi YH, Kim S, Cha HJ, Kim HS. Multiplex PCR using YeaD and 16S rRNA gene to identify major pathogens in vibriosis of Litopenaeus vannamei. Genes Genomics 2018; 41:35-42. [DOI: 10.1007/s13258-018-0736-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
|
47
|
Identification of VPA1327 (vopT) as a Novel Genetic Marker for Detecting Pathogenic Vibrio parahaemolyticus. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Menezes FGR, Barbosa WE, Vasconcelos LS, Rocha RS, Maggioni R, Sousa OV, Hofer E, Vieira RHSF. Genotypic assessment of a dichotomous key to identify Vibrio coralliilyticus, a coral pathogen. DISEASES OF AQUATIC ORGANISMS 2018; 128:87-92. [PMID: 29565257 DOI: 10.3354/dao03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vibrio coralliilyticus is a known pathogen to corals and larvae of bivalves. Its identification is made based on phenotypic and genotypic characters of isolated strains. To evaluate the efficiency of the phenotypic identification, 21 strains identified as V. coralliilyticus using a widely used dichotomous key were analyzed by qualitative PCR and sequencing of the 16S rDNA region. The results obtained by the behavioral test, amino acids usage, allow us to distinguish 3 A/L/O profiles: (1) A+/L-/O+; (2) A+/L+/O+; and (3) A-/L+/O+. In the genotypic tests, all strains tested positive with primers specific for the Vibrio genus. However, when primers were used for species identification, the results did not match those obtained with the dichotomous key chosen. The phenotypic characteristics taken into account to set apart V. coralliilyticus and other species were not proven to be efficient. More information about the morphological diversity of colonies and enzymatic activities should be considered in the formulation of phenotypic keys for V. coralliilyticus and related species.
Collapse
|
49
|
Kim HW, Hong YJ, Jo JI, Ha SD, Kim SH, Lee HJ, Rhee MS. Raw ready-to-eat seafood safety: microbiological quality of the various seafood species available in fishery, hyper and online markets. Lett Appl Microbiol 2016; 64:27-34. [PMID: 27747902 DOI: 10.1111/lam.12688] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022]
Abstract
Microbiological quality of 206 raw ready-to-eat seafood samples was investigated according to species (gizzard shad, halibut, rockfish, tuna, oyster and squid) and distribution channels (fishery, hyper and online market). Enumeration of aerobic plate count and total coliforms (TC) and pathogenic bacteria (Bacillus cereus, Staphylococcus aureus and Vibrio parahaemolyticus) was performed, and level of microbiological quality was classified into four groups: satisfactory, acceptable, unsatisfactory and unacceptable. Qualitative analysis was also performed for Escherichia coli and eight foodborne pathogens (B. cereus, E. coli O157:H7, Listeria monocytogenes, Salmonella spp., S. aureus, Vibrio cholerae, V. parahaemolyticus, and Vibrio vulnificus). Raw ready-to-eat seafood products revealed 0·5% at an unsatisfactory level and 4·9% at an unacceptable level due to ≥4 log CFU g-1 of TC in squid and ≥3 log CFU g-1 of V. parahaemolyticus in gizzard shad respectively. Gizzard shad was shown to be potentially hazardous, as its sashimi is eaten with its skin attached. Bacillus cereus, E. coli, S. aureus, V. parahaemolyticus and V. vulnificus were qualitatively detected. Samples from the fishery market showed higher detection rate especially in V. parahaemolyticus (21·6%) and V. vulnificus (1·7%) which indicates the need to improve microbiological safety of raw ready-to-eat seafood products in fishery market. SIGNIFICANCE AND IMPACT OF THE STUDY Raw ready-to-eat seafood products like sashimi can be easily contaminated with various bacteria from aquatic environments and human reservoirs, which subsequently bring about a risk in food poisoning due to no heating process before consumption. The results of this study provide comprehensive microbiological data on various species of raw ready-to-eat seafood from various distribution channels. It may contribute to establish reasonable standard and effective strategies to ensure a good microbiological quality of raw ready-to-eat seafood for the safety of meals, like sashimi and sushi.
Collapse
Affiliation(s)
- H W Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Y J Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - J I Jo
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, North Chungcheong Province, Korea
| | - S D Ha
- School of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Korea
| | - S H Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, North Chungcheong Province, Korea
| | - H J Lee
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, North Chungcheong Province, Korea
| | - M S Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|