1
|
García E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the "Suicidal Tendencies" of Streptococcus pneumoniae-A Review. Microorganisms 2025; 13:827. [PMID: 40284663 PMCID: PMC12029793 DOI: 10.3390/microorganisms13040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, vaccine coverage gaps, and antibiotic resistance. This review highlights the role of LytA, a key autolysin (N-acetylmuramoyl-l-alanine amidase), in pneumococcal biology. LytA regulates autolysis, contributes to inflammation, and biofilm formation, and impairs bacterial clearance. It also modulates complement activation, aiding immune evasion. LytA expression is influenced by environmental signals and genetic regulation and is tied to competence for genetic transformation, which is an important virulence trait, particularly in meningitis. With the increase in antibiotic resistance, LytA has emerged as a potential therapeutic target. Current research explores its use in bacteriolytic therapies, vaccine development, and synergistic antibiotic strategies. Various compounds, including synthetic peptides, plant extracts, and small molecules, have been investigated for their ability to trigger LytA-mediated bacterial lysis. Future directions include the development of novel anti-pneumococcal interventions leveraging LytA's properties while overcoming vaccine efficacy and resistance-related challenges. Human challenge models and animal studies continue to deepen our understanding of pneumococcal pathogenesis and potential treatment strategies.
Collapse
Affiliation(s)
- Ernesto García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| |
Collapse
|
2
|
Ashtiwi NM, Kim SO, Chandler JD, Rada B. The therapeutic potential of thiocyanate and hypothiocyanous acid against pulmonary infections. Free Radic Biol Med 2024; 219:104-111. [PMID: 38608822 PMCID: PMC11088529 DOI: 10.1016/j.freeradbiomed.2024.04.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Hypothiocyanous acid (HOSCN) is an endogenous oxidant produced by peroxidase oxidation of thiocyanate (SCN-), an ubiquitous sulfur-containing pseudohalide synthesized from cyanide. HOSCN serves as a potent microbicidal agent against pathogenic bacteria, viruses, and fungi, functioning through thiol-targeting mechanisms, independent of currently approved antimicrobials. Additionally, SCN- reacts with hypochlorous acid (HOCl), a highly reactive oxidant produced by myeloperoxidase (MPO) at sites of inflammation, also producing HOSCN. This imparts both antioxidant and antimicrobial potential to SCN-. In this review, we discuss roles of HOSCN/SCN- in immunity and potential therapeutic implications for combating infections.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Susan O Kim
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Joshua D Chandler
- Pediatrics, Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis, and Sleep Medicine, Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Bazant J, Weiss A, Baldauf J, Schermuly RT, Hain T, Lucas R, Mraheil MA. Pneumococcal hydrogen peroxide regulates host cell kinase activity. Front Immunol 2024; 15:1414195. [PMID: 38903521 PMCID: PMC11188345 DOI: 10.3389/fimmu.2024.1414195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Protein kinases are indispensable reversible molecular switches that adapt and control protein functions during cellular processes requiring rapid responses to internal and external events. Bacterial infections can affect kinase-mediated phosphorylation events, with consequences for both innate and adaptive immunity, through regulation of antigen presentation, pathogen recognition, cell invasiveness and phagocytosis. Streptococcus pneumoniae (Spn), a human respiratory tract pathogen and a major cause of community-acquired pneumoniae, affects phosphorylation-based signalling of several kinases, but the pneumococcal mediator(s) involved in this process remain elusive. In this study, we investigated the influence of pneumococcal H2O2 on the protein kinase activity of the human lung epithelial H441 cell line, a generally accepted model of alveolar epithelial cells. Methods We performed kinome analysis using PamGene microarray chips and protein analysis in Western blotting in H441 lung cells infected with Spn wild type (SpnWT) or with SpnΔlctOΔspxB -a deletion mutant strongly attenuated in H2O2 production- to assess the impact of pneumococcal hydrogen peroxide (H2O2) on global protein kinase activity profiles. Results Our kinome analysis provides direct evidence that kinase activity profiles in infected H441 cells significantly vary according to the levels of pneumococcal H2O2. A large number of kinases in H441 cells infected with SpnWT are significantly downregulated, whereas this no longer occurs in cells infected with the mutant SpnΔlctOΔspxB strain, which lacks H2O2. In particular, we describe for the first time H2O2-mediated downregulation of Protein kinase B (Akt1) and activation of lymphocyte-specific tyrosine protein kinase (Lck) via H2O2-mediated phosphorylation.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Astrid Weiss
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Julia Baldauf
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary, Sleep and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Yamamoto Y. Roles of flavoprotein oxidase and the exogenous heme- and quinone-dependent respiratory chain in lactic acid bacteria. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:183-191. [PMID: 38966056 PMCID: PMC11220326 DOI: 10.12938/bmfh.2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are a type of bacteria that convert carbohydrates into lactate through fermentation metabolism. While LAB mainly acquire energy through this anaerobic process, they also have oxygen-consuming systems, one of which is flavoprotein oxidase and the other is exogenous heme- or heme- and quinone-dependent respiratory metabolism. Over the past two decades, research has contributed to the understanding of the roles of these oxidase machineries, confirming their suspected roles and uncovering novel functions. This review presents the roles of these oxidase machineries, which are anticipated to be critical for the future applications of LAB in industry and comprehending the virulence of pathogenic streptococci.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
5
|
Jennert F, Schaaf D, Nau R, Kohler TP, Hammerschmidt S, Häusler D, Valentin-Weigand P, Seele J. Hydrogen peroxide is responsible for the cytotoxic effects of Streptococcus pneumoniae on primary microglia in the absence of pneumolysin. J Innate Immun 2024; 16:000536514. [PMID: 38569474 PMCID: PMC11060703 DOI: 10.1159/000536514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/25/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). METHODS Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. RESULTS We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. CONCLUSION Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.
Collapse
Affiliation(s)
- Franziska Jennert
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Désirée Schaaf
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Roland Nau
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| | - Thomas P. Kohler
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Sven Hammerschmidt
- Greifswald University, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Darius Häusler
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Peter Valentin-Weigand
- University of Veterinary Medicine Hannover, Institute for Microbiology, Center for Infection Medicine, Hannover, Germany
| | - Jana Seele
- University Medical Center Göttingen, Department of Neuropathology, Göttingen, Germany
- Evangelisches Krankenhaus Göttingen-Weende, Department of Geriatrics, Göttingen, Germany
| |
Collapse
|
6
|
Womack E, Alibayov B, Vidal JE, Eichenbaum Z. Endogenously produced H 2O 2 is intimately involved in iron metabolism in Streptococcus pneumoniae. Microbiol Spectr 2024; 12:e0329723. [PMID: 38038454 PMCID: PMC10783112 DOI: 10.1128/spectrum.03297-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Heme degradation provides pathogens with growth essential iron, leveraging on the host heme reservoir. Bacteria typically import and degrade heme enzymatically, and here, we demonstrated a significant deviation from this dogma. We found that Streptococcus pneumoniae liberates iron from met-hemoglobin extracellularly, in a hydrogen peroxide (H2O2)- and cell-dependent manner; this activity serves as a major iron acquisition mechanism for S. pneumoniae. Inhabiting oxygen-rich environments is a major part of pneumococcal biology, and hence, H2O2-mediated heme degradation likely supplies iron during infection. Moreover, H2O2 reaction with ferrous hemoglobin but not with met-hemoglobin is known to result in heme breakdown. Therefore, the ability of pneumococci to degrade heme from met-hemoglobin is a new paradigm. Lastly, this study will inform other research as it demonstrates that extracellular degradation must be considered in the interpretations of experiments in which H2O2-producing bacteria are given heme or hemoproteins as an iron source.
Collapse
Affiliation(s)
- Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Alibayov B, Scasny A, Vidal AGJ, Murin L, Wong S, Edwards KS, Eichembaun Z, Punshon T, Jackson BP, Hopp MT, McDaniel LS, Akerley BJ, Imhof D, Vidal JE. Oxidation of hemoglobin in the lung parenchyma facilitates the differentiation of pneumococci into encapsulated bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567109. [PMID: 38014009 PMCID: PMC10680745 DOI: 10.1101/2023.11.14.567109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by Streptococcus pneumoniae (Spn-H 2 O 2 ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci. In the absence of capsule and Spn-H 2 O 2 , host intracellular heme exhibited toxicity towards pneumococci, thus acting as an antibacterial mechanism. Further investigation revealed that heme-mediated toxicity required the ABC transporter GlnPQ. In vivo experiments demonstrated that pneumococci release H 2 O 2 to cause cytotoxicity in bronchi and alveoli through the non-proteolytic degradation of intracellular proteins such as actin, tubulin and GAPDH. Overall, our findings uncover a mechanism of lung toxicity mediated by oxidative stress that favor the growth of encapsulated pneumococci suggesting a therapeutic potential by targeting oxidative reactions. Graphical abstract Highlights Oxidation of hemoglobin by Streptococcus pneumoniae facilitates differentiation to encapsulated pneumococci in vivo Differentiated S. pneumoniae produces capsule and hydrogen peroxide (Spn-H 2 O 2 ) as defense mechanism against host heme-mediated toxicity. Spn-H 2 O 2 -induced lung toxicity causes the oxidation and non-proteolytic degradation of intracellular proteins tubulin, actin, and GAPDH. The ABC transporter GlnPQ is a heme-binding complex that makes Spn susceptible to heme toxicity.
Collapse
|
8
|
Bazant J, Ott B, Hudel M, Hain T, Lucas R, Mraheil MA. Impact of Endogenous Pneumococcal Hydrogen Peroxide on the Activity and Release of Pneumolysin. Toxins (Basel) 2023; 15:593. [PMID: 37888624 PMCID: PMC10611280 DOI: 10.3390/toxins15100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia. The pore-forming cholesterol-dependent cytolysin (CDC) pneumolysin (PLY) and the physiological metabolite hydrogen peroxide (H2O2) can greatly increase the virulence of pneumococci. Although most studies have focused on the contribution of both virulence factors to the course of pneumococcal infection, it is unknown whether or how H2O2 can affect PLY activity. Of note, S. pneumoniae exploits endogenous H2O2 as an intracellular signalling molecule to modulate the activity of several proteins. Here, we demonstrate that H2O2 negatively affects the haemolytic activity of PLY in a concentration-dependent manner. Prevention of cysteine-dependent sulfenylation upon substitution of the unique and highly conserved cysteine residue to serine in PLY significantly reduces the toxin's susceptibility to H2O2 treatment and completely abolishes the ability of DTT to activate PLY. We also detect a clear gradual correlation between endogenous H2O2 generation and PLY release, with decreased H2O2 production causing a decline in the release of PLY. Comparative transcriptome sequencing analysis of the wild-type S. pneumoniae strain and three mutants impaired in H2O2 production indicates enhanced expression of several genes involved in peptidoglycan (PG) synthesis and in the production of choline-binding proteins (CPBs). One explanation for the impact of H2O2 on PLY release is the observed upregulation of the PG bridge formation alanyltransferases MurM and MurN, which evidentially negatively affect the PLY release. Our findings shed light on the significance of endogenous pneumococcal H2O2 in controlling PLY activity and release.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Benjamin Ott
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Martina Hudel
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Torsten Hain
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research, Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (J.B.); (B.O.); (M.H.); (T.H.)
| |
Collapse
|
9
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Meng Y, Mao Y, Tang Z, Qiu X, Bajinka O, Tan Y, Song Z. Crosstalk between the lung microbiome and lung cancer. Microb Pathog 2023; 178:106062. [PMID: 36914054 DOI: 10.1016/j.micpath.2023.106062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The human microbiome is a complex ecosystem that mediates interaction between the human host and the environment. All of the human body is colonized by microorganisms. The lung as an organ used to be considered sterile. Recently, however, there has been a growing number of reports with evidence that the lungs are also in a state of carrying bacteria. The pulmonary microbiome is associated with many lung diseases and is increasingly reported in current studies. These include; chronic obstructive pulmonary disease (COPD), asthma, acute chronic respiratory infections, and cancers. These lung diseases are associated with reduced diversity and dysbiosis. It directly or indirectly affects the occurrence and development of lung cancer. Very few microbes directly cause cancer, while many are complicit in cancer growth, usually working through the host's immune system. This review focuses on the correlation between lung microbiota and lung cancer, and investigates the mechanism of action of lung microorganisms on lung cancer, which will provide new and reliable treatments and diagnosis of lung cancer in the future.
Collapse
Affiliation(s)
- Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Zhi Song
- Department of General Surgery, the third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
11
|
Geerts N, De Vooght L, Passaris I, Delputte P, Van den Bergh B, Cos P. Antibiotic Tolerance Indicative of Persistence Is Pervasive among Clinical Streptococcus pneumoniae Isolates and Shows Strong Condition Dependence. Microbiol Spectr 2022; 10:e0270122. [PMID: 36374111 PMCID: PMC9769776 DOI: 10.1128/spectrum.02701-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen, being one of the most common causes of community-acquired pneumonia and otitis media. Antibiotic resistance in S. pneumoniae is an emerging problem, as it depletes our arsenal of effective drugs. In addition, persistence also contributes to the antibiotic crisis in many other pathogens, yet for S. pneumoniae, little is known about antibiotic-tolerant persisters and robust experimental means are lacking. Persister cells are phenotypic variants that exist as a subpopulation within a clonal culture. Being tolerant to lethal antibiotics, they underly the chronic nature of a variety of infections and even help in acquiring genetic resistance. In this study, we set out to identify and characterize persistence in S. pneumoniae. Specifically, we followed different strategies to overcome the self-limiting nature of S. pneumoniae as a confounding factor in the prolonged monitoring of antibiotic survival needed to study persistence. Under optimized conditions, we identified genuine persisters in various growth phases and for four relevant antibiotics through biphasic survival dynamics and heritability assays. Finally, we detected a high variety in antibiotic survival levels across a diverse collection of S. pneumoniae clinical isolates, which assumes that a high natural diversity in persistence is widely present in S. pneumoniae. Collectively, this proof of concept significantly progresses the understanding of the importance of antibiotic persistence in S. pneumoniae infections, which will set the stage for characterizing its relevance to clinical outcomes and advocates for increased attention to the phenotype in both fundamental and clinical research. IMPORTANCE S. pneumoniae is considered a serious threat by the Centers for Disease Control and Prevention because of rising antibiotic resistance. In addition to resistance, bacteria can also survive lethal antibiotic treatment by developing antibiotic tolerance, more specifically, antibiotic tolerance through persistence. This phenotypic variation seems omnipresent among bacterial life, is linked to therapy failure, and acts as a catalyst for resistance development. This study gives the first proof of the presence of persister cells in S. pneumoniae and shows a high variety in persistence levels among diverse strains, suggesting that persistence is a general trait in S. pneumoniae cultures. Our work advocates for higher interest for persistence in S. pneumoniae as a contributing factor for therapy failure and resistance development.
Collapse
Affiliation(s)
- Nele Geerts
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | | | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| | - Bram Van den Bergh
- Centre of Microbial and Plant Genetics, Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
- Center for Microbiology, Flanders Institute for Biotechnology, VIB, Leuven, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Wilrijk, Belgium
| |
Collapse
|
12
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Induction of the macrolide-resistance efflux pump Mega inhibits intoxication of Staphylococcus aureus strains by Streptococcus pneumoniae. Microbiol Res 2022; 263:127134. [PMID: 35905580 DOI: 10.1016/j.micres.2022.127134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Streptococcus pneumoniae (Spn) kills Staphylococcus aureus (Sau) through a contact-dependent mechanism that is catalyzed by cations, including iron, to convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). There are two well-characterized ABC transporters that contribute to the pool of iron in Spn, named Pia and Piu. Some Spn strains have acquired genes mef(E)/mel encoding another ABC trasporter (Mega) that produces an inducible efflux pump for resistance to macrolides. In macrolide-resistant Spn clinical isolates the insertion of Mega class 1. IV and 2. IVc deleted the locus piaABCD and these strains were attenuated for intoxicating Sau. The goal of this study was to investigate if the disruption of iron acquisition, or the antimicrobial-resistance activity of Mega, contributed to inhibiting the killing mechanism. Neither depletion of iron with 2,2'-dipyridyl-d8 (DP) nor incubating with a double knockout mutant SpnΔpiaAΔpiuA, inhibited killing of Sau. Clinical Spn strains carrying Mega1. IV or Mega2. IVc showed a significant delay for killing Sau. An ex vivo recombination system was used to transfer Mega1. IV or Mega2. IVc to reference Spn strains, which was confirmed by whole genome sequencing, and recombinants TIGR4Mega2. IVc, D39Mega2. IVc, and D39Mega1. IV were delayed for killing Sau. We then compared Sau killing of selected Mega-carrying Spn strains when incubated with sub-inhibitory erythromycin (Mega-induced) or sub-inhibitory cefuroxime. Remarkably, killing of Sau was completely inhibited under the Mega-induced condition whereas incubation with cefuroxime did not interfere with killing. Both mef(E) and mel were upregulated > 400-fold, and spxB (encoding an enzyme responsible for production of most H2O2) was upregulated 14.2-fold, whereas transcription of the autolysin (lytA) gene was downregulated when incubated with erythromycin. We demonstrated that erythromycin induction of Mega inhibits the •OH-mediated intoxication of Sau and that the inhibition occurred at the post-translational level suggesting that an imbalance of ions in the membrane inhibits these reactions.
Collapse
|
14
|
Vidal JE, Wier MN, A. Angulo-Zamudio U, McDevitt E, Jop Vidal AG, Alibayov B, Scasny A, Wong SM, Akerley BJ, McDaniel LS. Prophylactic Inhibition of Colonization by Streptococcus pneumoniae with the Secondary Bile Acid Metabolite Deoxycholic Acid. Infect Immun 2021; 89:e0046321. [PMID: 34543118 PMCID: PMC8594607 DOI: 10.1128/iai.00463-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.
Collapse
Affiliation(s)
- Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Meagan N. Wier
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Erin McDevitt
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J. Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
15
|
Dhungel L, Burcham L, Park JY, Sampathkumar HD, Cudjoe A, Seo KS, Jordan H. Responses to chemical cross-talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus. Sci Rep 2021; 11:11746. [PMID: 34083568 PMCID: PMC8175560 DOI: 10.1038/s41598-021-89177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens' colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Lindsey Burcham
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Joo Youn Park
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Harshini Devi Sampathkumar
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | | | - Keun Seok Seo
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA.
| |
Collapse
|
16
|
Park SS, Gonzalez-Juarbe N, Martínez E, Hale JY, Lin YH, Huffines JT, Kruckow KL, Briles DE, Orihuela CJ. Streptococcus pneumoniae Binds to Host Lactate Dehydrogenase via PspA and PspC To Enhance Virulence. mBio 2021; 12:e00673-21. [PMID: 33947761 PMCID: PMC8437407 DOI: 10.1128/mbio.00673-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC, also called CbpA) are major virulence factors of Streptococcus pneumoniae (Spn). These surface-exposed choline-binding proteins (CBPs) function independently to inhibit opsonization, neutralize antimicrobial factors, or serve as adhesins. PspA and PspC both carry a proline-rich domain (PRD) whose role, other than serving as a flexible connector between the N-terminal and C-terminal domains, was up to this point unknown. Herein, we demonstrate that PspA binds to lactate dehydrogenase (LDH) released from dying host cells during infection. Using recombinant versions of PspA and isogenic mutants lacking PspA or specific domains of PspA, this property was mapped to a conserved 22-amino-acid nonproline block (NPB) found within the PRD of most PspAs and PspCs. The NPB of PspA had specific affinity for LDH-A, which converts pyruvate to lactate. In a mouse model of pneumonia, preincubation of Spn carrying NPB-bearing PspA with LDH-A resulted in increased bacterial titers in the lungs. In contrast, incubation of Spn carrying a version of PspA lacking the NPB with LDH-A or incubation of wild-type Spn with enzymatically inactive LDH-A did not enhance virulence. Preincubation of NPB-bearing Spn with lactate alone enhanced virulence in a pneumonia model, indicating exogenous lactate production by Spn-bound LDH-A had an important role in pneumococcal pathogenesis. Our observations show that lung LDH, released during the infection, is an important binding target for Spn via PspA/PspC and that pneumococci utilize LDH-A derived lactate for their benefit in vivoIMPORTANCEStreptococcus pneumoniae (Spn) is the leading cause of community-acquired pneumonia. PspA and PspC are among its most important virulence factors, and these surface proteins carry the proline-rich domain (PRD), whose role was unknown until now. Herein, we show that a conserved 22-amino-acid nonproline block (NPB) found within most versions of the PRD binds to host-derived lactate dehydrogenase A (LDH-A), a metabolic enzyme which converts pyruvate to lactate. PspA-mediated binding of LDH-A increased Spn titers in the lungs and this required LDH-A enzymatic activity. Enhanced virulence was also observed when Spn was preincubated with lactate, suggesting LDH-A-derived lactate is a vital food source. Our findings define a role for the NPB of the PRD and show that Spn co-opts host enzymes for its benefit. They advance our understanding of pneumococcal pathogenesis and have key implications on the susceptibility of individuals with preexisting airway damage that results in LDH-A release.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, USA
| | - Eriel Martínez
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joanetha Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, USA
| | - Joshua T Huffines
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine L Kruckow
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
18
|
Dong W, Rasid O, Chevalier C, Connor M, Eldridge MJG, Hamon MA. Streptococcus pneumoniae Infection Promotes Histone H3 Dephosphorylation by Modulating Host PP1 Phosphatase. Cell Rep 2021; 30:4016-4026.e4. [PMID: 32209465 DOI: 10.1016/j.celrep.2020.02.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/15/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
Abstract
Pathogenic bacteria can alter host gene expression through post-translational modifications of histones. We show that a natural colonizer, Streptococcus pneumoniae, induces specific histone modifications, including robust dephosphorylation of histone H3 on serine 10 (H3S10), during infection of respiratory epithelial cells. The bacterial pore-forming toxin pneumolysin (PLY), along with the pyruvate oxidase SpxB responsible for H2O2 production, play important roles in the induction of this modification. The combined effects of PLY and H2O2 trigger host signaling that culminates in H3S10 dephosphorylation, which is mediated by the host cell phosphatase PP1. Strikingly, S. pneumoniae infection induces dephosphorylation and subsequent activation of PP1 catalytic activity. Colonization of PP1 catalytically deficient cells results in impaired intracellular S. pneumoniae survival and infection. Interestingly, PP1 activation and H3S10 dephosphorylation are not restricted to S. pneumoniae and appear to be general epigenomic mechanisms favoring intracellular survival of pathogenic bacteria.
Collapse
Affiliation(s)
- Wenyang Dong
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Orhan Rasid
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France
| | | | - Michael Connor
- G5 Chromatine et Infection, Institut Pasteur, Paris 75015, France
| | | | | |
Collapse
|
19
|
Hydrogen Peroxide Production by Streptococcus pneumoniae Results in Alpha-hemolysis by Oxidation of Oxy-hemoglobin to Met-hemoglobin. mSphere 2020; 5:5/6/e01117-20. [PMID: 33298575 PMCID: PMC7729260 DOI: 10.1128/msphere.01117-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is a misconception that alpha-hemolysis observed on blood agar plate cultures of Streptococcus pneumoniae and other alpha-hemolytic streptococci is produced by a hemolysin or, alternatively, by lysis of erythrocytes caused by hydrogen peroxide. We noticed in the course of our investigations that wild-type S. pneumoniae strains and hemolysin (e.g., pneumolysin) knockout mutants produced the alpha-hemolytic halo on blood agar plates. Streptococcus pneumoniae and other streptococci produce a greenish halo on blood agar plates referred to as alpha-hemolysis. This phenotype is utilized by clinical microbiology laboratories to report culture findings of alpha-hemolytic streptococci, including S. pneumoniae, and other bacteria. The alpha-hemolysis halo on blood agar plates has been related to the hemolytic activity of pneumococcal pneumolysin (Ply) or, to a lesser extent, to lysis of erythrocytes by S. pneumoniae-produced hydrogen peroxide. We investigated the molecular basis of the alpha-hemolysis halo produced by S. pneumoniae. Wild-type strains TIGR4, D39, R6, and EF3030 and isogenic derivative Δply mutants produced similar alpha-hemolytic halos on blood agar plates, while cultures of hydrogen peroxide knockout ΔspxB ΔlctO mutants lacked this characteristic halo. Moreover, in the presence of catalase, the alpha-hemolysis halo was absent in cultures of the wild-type (wt) and Δply mutant strains. Spectroscopic studies demonstrated that culture supernatants of TIGR4 released hemoglobin-bound heme (heme-hemoglobin) from erythrocytes and oxidized oxy-hemoglobin to met-hemoglobin within 30 min of incubation. As expected, given Ply hemolytic activity and that hydrogen peroxide contributes to the release of Ply, TIGR4Δply and ΔspxB ΔlctO isogenic mutants had significantly decreased release of heme-hemoglobin from erythrocytes. However, TIGR4Δply that produces hydrogen peroxide oxidized oxy-hemoglobin to met-hemoglobin, whereas TIGR4ΔspxB ΔlctO failed to produce oxidation of oxy-hemoglobin. Studies conducted with all other wt strains and isogenic mutants resulted in similar findings. We demonstrated that the so-called alpha-hemolysis halo is caused by the oxidation of oxy-hemoglobin (Fe+2) to a non-oxygen-binding met-hemoglobin (Fe+3) by S. pneumoniae-produced hydrogen peroxide. IMPORTANCE There is a misconception that alpha-hemolysis observed on blood agar plate cultures of Streptococcus pneumoniae and other alpha-hemolytic streptococci is produced by a hemolysin or, alternatively, by lysis of erythrocytes caused by hydrogen peroxide. We noticed in the course of our investigations that wild-type S. pneumoniae strains and hemolysin (e.g., pneumolysin) knockout mutants produced the alpha-hemolytic halo on blood agar plates. In contrast, hydrogen peroxide-defective mutants prepared in four different strains lacked the characteristic alpha-hemolysis halo. We also demonstrated that wild-type strains and pneumolysin mutants oxidized oxy-hemoglobin to met-hemoglobin. Hydrogen peroxide knockout mutants, however, failed to oxidize oxy-hemoglobin. Therefore, the greenish halo formed on cultures of S. pneumoniae and other so-called alpha-hemolytic streptococci is caused by the oxidation of oxy-hemoglobin produced by hydrogen peroxide. Oxidation of oxy-hemoglobin to the nonbinding oxygen form, met-hemoglobin, might occur in the lungs during pneumococcal pneumonia.
Collapse
|
20
|
Gingerich AD, Doja F, Thomason R, Tóth E, Bradshaw JL, Douglass MV, McDaniel LS, Rada B. Oxidative killing of encapsulated and nonencapsulated Streptococcus pneumoniae by lactoperoxidase-generated hypothiocyanite. PLoS One 2020; 15:e0236389. [PMID: 32730276 PMCID: PMC7392276 DOI: 10.1371/journal.pone.0236389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Pneumococcus) infections affect millions of people worldwide, cause serious mortality and represent a major economic burden. Despite recent successes due to pneumococcal vaccination and antibiotic use, Pneumococcus remains a significant medical problem. Airway epithelial cells, the primary responders to pneumococcal infection, orchestrate an extracellular antimicrobial system consisting of lactoperoxidase (LPO), thiocyanate anion and hydrogen peroxide (H2O2). LPO oxidizes thiocyanate using H2O2 into the final product hypothiocyanite that has antimicrobial effects against a wide range of microorganisms. However, hypothiocyanite’s effect on Pneumococcus has never been studied. Our aim was to determine whether hypothiocyanite can kill S. pneumoniae. Bactericidal activity was measured in a cell-free in vitro system by determining the number of surviving pneumococci via colony forming units on agar plates, while bacteriostatic activity was assessed by measuring optical density of bacteria in liquid cultures. Our results indicate that hypothiocyanite generated by LPO exerted robust killing of both encapsulated and nonencapsulated pneumococcal strains. Killing of S. pneumoniae by a commercially available hypothiocyanite-generating product was even more pronounced than that achieved with laboratory reagents. Catalase, an H2O2 scavenger, inhibited killing of pneumococcal by hypothiocyanite under all circumstances. Furthermore, the presence of the bacterial capsule or lytA-dependent autolysis had no effect on hypothiocyanite-mediated killing of pneumococci. On the contrary, a pneumococcal mutant deficient in pyruvate oxidase (main bacterial H2O2 source) had enhanced susceptibility to hypothiocyanite compared to its wild-type strain. Overall, results shown here indicate that numerous pneumococcal strains are susceptible to LPO-generated hypothiocyanite.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Fayhaa Doja
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Rachel Thomason
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Eszter Tóth
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Jessica L. Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Martin V. Douglass
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
22
|
Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. THE ISME JOURNAL 2020; 14:1074-1088. [PMID: 31988475 PMCID: PMC7174352 DOI: 10.1038/s41396-020-0592-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
Abstract
Many commensal oral streptococci generate H2O2 via pyruvate oxidase (SpxB) to inhibit the growth of competing bacteria like Streptococcus mutans, a major cariogenic species. In Streptococcus sanguinis SK36 (SK36) and Streptococcus gordonii DL1 (DL1), spxB expression and H2O2 release are subject to carbon catabolite repression by the catabolite control protein A (CcpA). Surprisingly, ccpA deletion mutants of SK36 and DL1 fail to inhibit S. mutans despite their production of otherwise inhibitory levels of H2O2. Using H2O2-deficient spxB deletion mutants of SK36 and DL1, it was subsequently discovered that both strains confer protection in trans to other bacteria when H2O2 is added exogenously. This protective effect depends on the direct detoxification of H2O2 by the release of pyruvate. The pyruvate dependent protective effect is also present in other spxB-encoding streptococci, such as the pneumococcus, but is missing from spxB-negative species like S. mutans. Targeted and transposon-based mutagenesis revealed Nox (putative H2O-forming NADH dehydrogenase) as an essential component required for pyruvate release and oxidative protection, while other genes such as sodA and dps play minor roles. Furthermore, pyruvate secretion is only detectable in aerobic growth conditions at biofilm-like cell densities and is responsive to CcpA-dependent catabolite control. This ability of spxB-encoding streptococci reveals a new facet of the competitive interactions between oral commensals and pathobionts and provides a mechanistic basis for the variable levels of inhibitory potential observed among H2O2-producing strains of commensal oral streptococci.
Collapse
|
23
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
24
|
Wu X, Gordon O, Jiang W, Antezana BS, Angulo-Zamudio UA, Del Rio C, Moller A, Brissac T, Tierney ARP, Warncke K, Orihuela CJ, Read TD, Vidal JE. Interaction between Streptococcus pneumoniae and Staphylococcus aureus Generates ·OH Radicals That Rapidly Kill Staphylococcus aureus Strains. J Bacteriol 2019; 201:e00474-19. [PMID: 31405914 PMCID: PMC6779455 DOI: 10.1128/jb.00474-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae rapidly kills Staphylococcus aureus by producing membrane-permeable hydrogen peroxide (H2O2). The mechanism by which S. pneumoniae-produced H2O2 mediates S. aureus killing was investigated. An in vitro model that mimicked S. pneumoniae-S. aureus contact during colonization of the nasopharynx demonstrated that S. aureus killing required outcompeting densities of S. pneumoniae Compared to the wild-type strain, isogenic S. pneumoniae ΔlctO and S. pneumoniae ΔspxB, both deficient in production of H2O2, required increased density to kill S. aureus While residual H2O2 activity produced by single mutants was sufficient to eradicate S. aureus, an S. pneumoniae ΔspxB ΔlctO double mutant was unable to kill S. aureus A collection of 20 diverse methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains showed linear sensitivity (R2 = 0.95) for S. pneumoniae killing, but the same strains had different susceptibilities when challenged with pure H2O2 (5 mM). There was no association between the S. aureus clonal complex and sensitivity to either S. pneumoniae or H2O2 To kill S. aureus, S. pneumoniae produced ∼180 μM H2O2 within 4 h of incubation, while the killing-defective S. pneumoniae ΔspxB and S. pneumoniae ΔspxB ΔlctO mutants produced undetectable levels. Remarkably, a sublethal dose (1 mM) of pure H2O2 incubated with S. pneumoniae ΔspxB eradicated diverse S. aureus strains, suggesting that S. pneumoniae bacteria may facilitate conversion of H2O2 to a hydroxyl radical (·OH). Accordingly, S. aureus killing was completely blocked by incubation with scavengers of ·OH radicals, dimethyl sulfoxide (Me2SO), thiourea, or sodium salicylate. The ·OH was detected in S. pneumoniae cells by spin trapping and electron paramagnetic resonance. Therefore, S. pneumoniae produces H2O2, which is rapidly converted to a more potent oxidant, hydroxyl radicals, to rapidly intoxicate S. aureus strains.IMPORTANCEStreptococcus pneumoniae strains produce hydrogen peroxide (H2O2) to kill bacteria in the upper airways, including pathogenic Staphylococcus aureus strains. The targets of S. pneumoniae-produced H2O2 have not been discovered, in part because of a lack of knowledge about the underlying molecular mechanism. We demonstrated that an increased density of S. pneumoniae kills S. aureus by means of H2O2 produced by two enzymes, SpxB and LctO. We discovered that SpxB/LctO-produced H2O2 is converted into a hydroxyl radical (·OH) that rapidly intoxicates and kills S. aureus We successfully inhibited the toxicity of ·OH with three different scavengers and detected ·OH in the supernatant. The target(s) of the hydroxyl radicals represents a new alternative for the development of antimicrobials against S. aureus infections.
Collapse
Affiliation(s)
- Xueqing Wu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Infectious Disease, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Oren Gordon
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Wenxin Jiang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Brenda S Antezana
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Uriel A Angulo-Zamudio
- Regional Program for the Doctorate in Biotechnology, Faculty of Chemical Sciences Biological, Autonomous University of Sinaloa, Sinaloa, Mexico
| | - Carlos Del Rio
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Abraham Moller
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aimee R P Tierney
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timothy D Read
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
- Antibiotic Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Zhao W, Pan F, Wang B, Wang C, Sun Y, Zhang T, Shi Y, Zhang H. Epidemiology Characteristics of Streptococcus pneumoniae From Children With Pneumonia in Shanghai: A Retrospective Study. Front Cell Infect Microbiol 2019; 9:258. [PMID: 31380301 PMCID: PMC6657011 DOI: 10.3389/fcimb.2019.00258] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Streptococcus pneumoniae is the most common pathogen causing death in children under 5 years old. This retrospective surveillance aimed to analyze serotype distribution, drug resistance, virulence factors, and molecular characteristics of pneumonia isolates from children in Shanghai, China. Methods: A total of 287 clinical pneumococcal isolates were collected from January to December in 2018 and were divided into community-acquired pneumonia (CAP) and healthcare-associated pneumonia (HAP) two groups according to where someone contracts the infection. All isolates were serotyped by multiplex sequential PCR and antimicrobial susceptibility testing was performed using E-test or disk diffusion method. The molecular epidemiology was analyzed using multilocus sequence typing and seven housekeeping genes were sequenced to identified the sequence types (STs). In addition, we investigated the presence of virulence genes via PCR. Results: The most common serotypes were 19F, 6A, 19A, 23F, 14, and 6B, and the coverage rates of the 7-, 10- and 13-valent pneumococcal conjugate vaccines were 58.9, 58.9, and 80.5%, respectively. More PCV13/non-PCV7 serotypes and higher rate of penicillin non-susceptible S. pneumoniae were seen in HAP. Molecular epidemiological typing showed a high level of diversity and five international antibiotic-resistant clones were found, including Taiwan19F-14, Spain23F-1, Spain6B-2, Taiwan23F-15 and Sweden15A-25. No significant difference was observed in the presence of virulence genes among the isolates obtained from CAP and HAP. All of the S. pneumoniae isolates carried lytA, ply, psaA, pavA, spxB, htrA, and clpP, and the carriage rate of nanA and piaA were 96.2 and 99.0%. Conversely, cps2A, cbpA, and pspA were present in 33.8-44.3% of the isolates. Conclusions: Serotype changes and emerging multidrug-resistant international clones were found in current study. lytA, ply, psaA, pavA, spxB, htrA, and clpP may be good protein vaccine candidates. Long-term high-quality surveillance should be conducted to assess impact and effectiveness brought by vaccines, and provide a foundation for prevention strategies and vaccine policies.
Collapse
Affiliation(s)
- Wantong Zhao
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Sun
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Tiandong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Bonnet J, Durmort C, Mortier-Barrière I, Campo N, Jacq M, Moriscot C, Straume D, Berg KH, Håvarstein L, Wong YS, Vernet T, Di Guilmi AM. Nascent teichoic acids insertion into the cell wall directs the localization and activity of the major pneumococcal autolysin LytA. ACTA ACUST UNITED AC 2018; 2:24-37. [PMID: 32743129 PMCID: PMC7389264 DOI: 10.1016/j.tcsw.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
Peptidoglycan which sustains bacterial growth is targeted by b-lactam antibiotics. Spread of antibiotic resistance requires the development of new antibacterial drugs. The cell wall of Gram-positive bacteria carries teichoic acids and virulence factors. Function and surface localization of virulence factors are regulated by teichoic acids. Anti-bacterial strategy should target the localization of surface virulence factors.
The bacterial cell wall is in part composed of the peptidoglycan (PG) layer that maintains the cell shape and sustains the basic cellular processes of growth and division. The cell wall of Gram-positive bacteria also carries teichoic acids (TAs). In this work, we investigated how TAs contribute to the structuration of the PG network through the modulation of PG hydrolytic enzymes in the context of the Gram-positive Streptococcus pneumoniae bacterium. Pneumococcal TAs are decorated by phosphorylcholine residues which serve as anchors for the Choline-Binding Proteins, some of them acting as PG hydrolases, like the major autolysin LytA. Their binding is non covalent and reversible, a property that allows easy manipulation of the system. In this work, we show that the release of LytA occurs independently from its amidase activity. Furthermore, LytA fused to GFP was expressed in pneumococcal cells and showed different localization patterns according to the growth phase. Importantly, we demonstrate that TAs modulate the enzymatic activity of LytA since a low level of TAs present at the cell surface triggers LytA sensitivity in growing pneumococcal cells. We previously developed a method to label nascent TAs in live cells revealing that the insertion of TAs into the cell wall occurs at the mid-cell. In conclusion, we demonstrate that nascent TAs inserted in the cell wall at the division site are the specific receptors of LytA, tuning in this way the positioning of LytA at the appropriate place at the cell surface.
Collapse
Affiliation(s)
- J Bonnet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - C Durmort
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - I Mortier-Barrière
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - N Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - M Jacq
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - C Moriscot
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - D Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - K H Berg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - L Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas, Norway
| | - Y-S Wong
- Département de Pharmacochimie Moléculaire (DPM), Univ. Grenoble Alpes, UMR 5063 CNRS, ICMG FR 2607, 38 041 Grenoble, France
| | - T Vernet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - A M Di Guilmi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
27
|
Espinoza JL, Minami M. Sensing Bacterial-Induced DNA Damaging Effects via Natural Killer Group 2 Member D Immune Receptor: From Dysbiosis to Autoimmunity and Carcinogenesis. Front Immunol 2018; 9:52. [PMID: 29422899 PMCID: PMC5788971 DOI: 10.3389/fimmu.2018.00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human genome is constantly exposed to exogenous and endogenous DNA damaging factors that frequently cause DNA damages. Unless repaired, damaged DNA can result in deleterious mutations capable of causing malignant transformation. Accordingly, cells have developed an advanced and effective surveillance system, the DNA damage response (DDR) pathway, which maintains genetic integrity. In addition to well-defined outcomes, such as cell cycle arrest, apoptosis, and senescence, another consequence of DDR activation is the induction of natural killer group 2 member D ligands (NKG2D-Ls) on the surface of stressed cells. Consequently, NKG2D-Ls-expressing cells are recognized and eliminated by NKG2D receptor-expressing immune cells, including NK cells, and various subsets of T-cells. Recent pieces of evidence indicate that commensal microbial imbalance (known as dysbiosis) can trigger DDR activation in host cells, which may result in sustained inflammatory responses. Therefore, dysbiosis can be seen as an important source of DNA damage agents that may be partially responsible for the overexpression of NKG2D-Ls on intestinal epithelial cells that is frequently observed in patients with inflammatory bowel disease and other disorders associated with altered human microbiota, including the development of colorectal cancer. In this article, we discuss recent evidence that appears to link an altered human microbiota with autoimmunity and carcinogenesis via the activation of DDR signals and the induction of NKG2D-Ls in stressed cells.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Mika Minami
- Faculty of Medicine, Kindai University, Higashi-osaka, Japan
| |
Collapse
|
28
|
Mucosal Infections and Invasive Potential of Nonencapsulated Streptococcus pneumoniae Are Enhanced by Oligopeptide Binding Proteins AliC and AliD. mBio 2018; 9:mBio.02097-17. [PMID: 29339428 PMCID: PMC5770551 DOI: 10.1128/mbio.02097-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonencapsulated Streptococcus pneumoniae (NESp) is an emerging human pathogen that colonizes the nasopharynx and is associated with noninvasive diseases such as otitis media (OM), conjunctivitis, and nonbacteremic pneumonia. Since capsule expression was previously thought to be necessary for establishment of invasive pneumococcal disease (IPD), serotype-specific polysaccharide capsules are targeted by currently licensed pneumococcal vaccines. Yet, NESp expressing oligopeptide binding proteins AliC and AliD have been isolated during IPD. Thus, we hypothesize AliC and AliD are major NESp virulence determinants that facilitate persistence and development of IPD. Our study reveals that NESp expressing AliC and AliD have intensified virulence compared to isogenic mutants. Specifically, we demonstrate AliC and AliD enhance murine nasopharyngeal colonization and pulmonary infection and are required for OM in a chinchilla model. Furthermore, AliC and AliD increase pneumococcal survival in chinchilla whole blood and aid in resistance to killing by human leukocytes. Comparative proteome analysis revealed significant alterations in protein levels when AliC and AliD were absent. Virulence-associated proteins, including a pneumococcal surface protein C variant (CbpAC), were significantly downregulated, while starvation response indicators were upregulated in the double mutant relative to wild-type levels. We also reveal that differentially expressed CbpAC was essential for NESp adherence to epithelial cells, virulence during OM, reduction of C3b deposition on the NESp surface, and binding to nonspecific IgA. Altogether, the rise in NESp prevalence urges the need to understand how NESp establishes disease and persists in a host. This study highlights the roles of AliC, AliD, and CbpAC in the pathogenesis of NESp. Despite the effective, widespread use of licensed pneumococcal vaccines over many decades, pneumococcal infections remain a worldwide burden resulting in high morbidity and mortality. NESp subpopulations are rapidly rising in the wake of capsule-targeted vaccine strategies, yet there is very little knowledge on NESp pathogenic potential and virulence mechanisms. Although NESp lacks a protective capsule, NESp lineages expressing AliC and AliD have been associated with systemic infections. Furthermore, higher antibiotic resistance rates and transformation efficiencies associated with emerging NESp threaten treatment strategies needed to control pneumococcal infections and transmission. Elucidating how NESp survives within a host and establishes disease is necessary for development of broadened pneumococcal prevention methods. Our study identifies virulence determinants and host survival mechanisms employed by NESp with a high pathogenic potential. Moreover, our study also identifies virulence determinants shared by NESp and encapsulated strains that may serve as broad prevention and therapeutic targets.
Collapse
|
29
|
Cell Invasion and Pyruvate Oxidase-Derived H 2O 2 Are Critical for Streptococcus pneumoniae-Mediated Cardiomyocyte Killing. Infect Immun 2017; 86:IAI.00569-17. [PMID: 29061707 DOI: 10.1128/iai.00569-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of community-acquired pneumonia and is now recognized to be a direct contributor to adverse acute cardiac events. During invasive pneumococcal disease, S. pneumoniae can gain access to the myocardium, kill cardiomyocytes, and form bacterium-filled "microlesions" causing considerable acute and long-lasting cardiac damage. While the molecular mechanisms responsible for bacterial translocation into the heart have been elucidated, the initial interactions of heart-invaded S. pneumoniae with cardiomyocytes remain unclear. In this study, we used a model of low multiplicity of S. pneumoniae infection with HL-1 mouse cardiomyocytes to investigate these early events. Using adhesion/invasion assays and immunofluorescent and transmission electron microscopy, we showed that S. pneumoniae rapidly adhered to and invaded cardiomyocytes. What is more, pneumococci existed as intravacuolar bacteria or escaped into the cytoplasm. Pulse-chase assays with BrdU confirmed intracellular replication of pneumococci within HL-1 cells. Using endocytosis inhibitors, bacterial isogenic mutants, and neutralizing antibodies against host proteins recognized by S. pneumoniae adhesins, we showed that S. pneumoniae uptake by cardiomyocytes is not through the well-studied canonical interactions identified for vascular endothelial cells. Indeed, S. pneumoniae invasion of HL-1 cells occurred through clathrin-mediated endocytosis (CME) and independently of choline binding protein A (CbpA)/laminin receptor, CbpA/polymeric immunoglobulin receptor, or cell wall phosphorylcholine/platelet-activating factor receptor. Subsequently, we determined that pneumolysin and streptococcal pyruvate oxidase-derived H2O2 production were required for cardiomyocyte killing. Finally, we showed that this cytotoxicity could be abrogated using CME inhibitors or antioxidants, attesting to intracellular replication of S. pneumoniae as a key first step in pneumococcal pathogenesis within the heart.
Collapse
|
30
|
Brown LA, Mitchell AM, Mitchell TJ. Streptococcus pneumoniae and lytic antibiotic therapy: are we adding insult to injury during invasive pneumococcal disease and sepsis? J Med Microbiol 2017; 66:1253-1256. [PMID: 28792379 DOI: 10.1099/jmm.0.000545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae), otherwise known as 'the pneumococcus', is a fascinating microbe that continues to pose a significant problem to public health. Currently there are no specific National Institute for Clinical Excellence (NICE) or British Thoracic Society (BTS) clinical guidelines referring to the treatment of invasive pneumococcal infection. NICE clinical guidelines suggest the use of lytic β-lactam antibiotic regimens for the management of community-acquired pneumonia and bacterial meningitis; infections for which S. pneumoniae is a likely causative organism. Lytic antibiotics have been shown to increase the release of pneumolysin (the highly inflammatory and damaging toxin of the pneumococcus), thus theoretically increasing host damage, which may lead to a decline of clinical outcomes in vulnerable patients. In light of this information, should the use of non-lytic antibiotics, such as quinolones, rifamycins and macrolides, be considered for the treatment of invasive pneumococcal disease?
Collapse
Affiliation(s)
| | - Andrea M Mitchell
- Pneumococcal Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - Tim J Mitchell
- Pneumococcal Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Effect of decreased BCAA synthesis through disruption of ilvC gene on the virulence of Streptococcus pneumoniae. Arch Pharm Res 2017; 40:921-932. [PMID: 28735462 DOI: 10.1007/s12272-017-0931-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is responsible for significant morbidity and mortality worldwide. It causes a variety of life-threatening infections such as pneumonia, bacteremia, and meningitis. In bacterial physiology, the metabolic pathway of branched-chain amino acids (BCAAs) plays an important role in virulence. Nonetheless, the function of IlvC, one of the enzymes involved in the biosynthesis of BCAAs, in S. pneumoniae remains unclear. Here, we demonstrated that downregulation of BCAA biosynthesis by ilvC ablation can diminish BCAA concentration and expression of pneumolysin (Ply) and LytA, and subsequently attenuate virulence. Infection with an ilvC mutant showed significantly reduced mortality and colonization in comparison with strain D39 (serotype 2, wild type), suggesting that ilvC can potentiate S. pneumoniae virulence due to adequate BCAA synthesis. Taken together, these results suggest that the function of ilvC in BCAA synthesis is essential for virulence factor and could play an important role in the pathogenesis of respiratory infections.
Collapse
|
32
|
Bandara M, Skehel JM, Kadioglu A, Collinson I, Nobbs AH, Blocker AJ, Jenkinson HF. The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect 2017; 19:402-412. [PMID: 28456649 PMCID: PMC5526788 DOI: 10.1016/j.micinf.2017.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023]
Abstract
In Streptococcus pneumoniae TIGR4, genes encoding a SecY2A2 accessory Sec system are present within a locus encoding a serine-rich repeat surface protein PsrP. Mutant strains deleted in secA2 or psrP were deficient in biofilm formation, while the ΔsecA2 mutant was reduced in binding to airway epithelial cells. Cell wall protein (CWP) fractions from the ΔsecA2 mutant, but not from the ΔpsrP mutant, were reduced in haemolytic (pneumolysin) activity. Contact-dependent pneumolysin (Ply) activity of wild type TIGR4 cells was ten-fold greater than that of ΔsecA2 mutant cells suggesting that Ply was not active at the ΔsecA2 cell surface. Ply protein was found to be present in the CWP fraction from the ΔsecA2 mutant, but showed aberrant electrophoretic migration indicative of protein modification. Proteomic analyses led to the discovery that the ΔsecA2 mutant CWP fraction was deficient in two glycosidases as well as other enzymes involved in carbohydrate metabolism. Taken collectively the results suggest that positioning of Ply into the cell wall compartment in active form, together with glycosyl hydrolases and adhesins, requires a functional accessory Sec system.
Collapse
Affiliation(s)
- Mikaila Bandara
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK; School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Ariel J Blocker
- School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|