1
|
Xue Y, Wang W, Sheng X, Zheng Z, Wang Z, Ding F, Li J, Sun Z, Cai Y, Wang X, Xue J. Peroxisomal biogenesis factor 11 as a novel target to trigger lipid biosynthesis and salt stress resistance in oleaginous Tetradesmus obliquus. BIORESOURCE TECHNOLOGY 2025; 421:132209. [PMID: 39938603 DOI: 10.1016/j.biortech.2025.132209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
To overcome economic challenges in microalgal biofuel production, this study investigates the overexpression of peroxisome-localized peroxisomal biogenesis factor 11 (PEX11) to enhance lipid biosynthesis and improve salt stress resistance in Tetradesmus obliquus, aiming to advance microalgal biofuel production. Transgenic strains PEX11-2-1 and PEX11-2-2 exhibited a 2.13- and 2.51-fold increase in neutral lipid content and more cellular lipid droplets compared to WT, along with lipid yield and biomass escalating to 255.45 and 815.15 mg/L, respectively. This enhancement resulted from the redistribution of carbon precursors, increased intracellular reactive oxygen species, enhanced NADPH synthesis, and upregulation of lipid synthesis genes. Additionally, PEX11 improved salt stress tolerance by upregulating the expression of stress-responsive genes, including SnRK2 and PYRC. Fatty acid profile alterations, with increases in saturated fatty acids C16:0 and monounsaturated fatty acids C18:1, and decreases in polyunsaturated fatty acids, facilitated high-quality biofuel production. These findings highlight novel insights for advancing microalgae-based biorefinery.
Collapse
Affiliation(s)
- Yunzhuan Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Wei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xiajule Sheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Zexu Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zihan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Fangling Ding
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Jinjin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China
| | - Zhiwei Sun
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Yu'ang Cai
- Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China
| | - Xianhua Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi 710069, China; Shaanxi Provincial Key Laboratory of Biotechnology, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, China.
| |
Collapse
|
2
|
Karimi-Fard A, Saidi A, Tohidfar M, Emami SN. CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions. Arch Microbiol 2025; 207:41. [PMID: 39847105 DOI: 10.1007/s00203-025-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments. Through meta-analysis of microarray data, we revealed the key genes in T. thermophilus HB8 that respond to various environmental stresses. The analysis revealed 20 differentially expressed genes (DEGs), including 13 upregulated and seven downregulated genes, with a threshold of|log fold change| > 1 and an adjusted p-value < 0.05. Several genes identified as up-regulated in our analysis belonged to the CRISPR-associated protein (Cas) family. To validate these findings, we further evaluated the relative expression levels of TTHB188 (cas1/casA), TTHB189 (cas2/casB), TTHB190 (cas7/casC), TTHB191 (cas5/casD), TTHB192 (cas6/casE), and TTHB193 (cas1e) using RT-qPCR under H2O2 and salt stress conditions. The RT-qPCR analysis revealed significant up-regulation of transcripts, casA, casB, casC, casD, casE, and cas1e under salt stress. However, under H2O2 stress, only, casA, casB, and casC exhibited substantial increases in expression. Our findings may indicate that the CRISPR-associated proteins significantly impact the adaptive response of T. thermophilus HB8 to various environmental stresses, particularly salt stress, highlighting its significance in extremophile survival and adaptation. This research offers an important understanding of the complex strategies used by extremophiles to survive in challenging conditions.
Collapse
Affiliation(s)
- Abbas Karimi-Fard
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyede Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden
| |
Collapse
|
3
|
Wang D, Li J, Li S, Fu J, Liu B, Cao D. Multi-omics analysis of hexaploid triticale that show molecular responses to salt stress during seed germination. FRONTIERS IN PLANT SCIENCE 2025; 15:1529961. [PMID: 39906235 PMCID: PMC11790569 DOI: 10.3389/fpls.2024.1529961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
The development of a salt-tolerant hexaploid triticale cultivar offers an economical and efficient solution for utilizing marginal land. Understanding how hexaploid triticales respond to salt stress is essential if this goal is to be achieved. A genome-wide association study (GWAS), along with transcriptome and proteome analyses, were used in the present study to determine the molecular responses to salt stress in hexaploid triticale. In total, 81 marker-trait associations for 10 salt-tolerance traits were identified in 153 hexaploid triticale accessions, explaining 0.71% to 56.98% of the phenotypic variation, and 54 GWAS-associated genes were uncovered. A total of 67, 88, and 688 differential expression genes were co-expressed at both the transcriptomic and proteomic levels after 4, 12, and 18 h of salt stress, respectively. Among these differentially expressed genes, six appeared in the coincident expression trends for both the transcriptomic and proteomic levels at the seed germination stage. A total of nine common KEGG pathways were enriched at both the transcriptomic and proteomic levels at 4, 12, and 18 h. After integrating GWAS-target genes with transcriptomics and proteomics approaches that the candidate gene late embryogenesis abundant protein 14 (LEA14) was up-regulated at the transcriptomic and proteomic levels. LEA14 contained important stress-responsive cis-acting regulatory elements that could be dynamically regulated by the binding of transcription factors (TFs). This suggested that LEA14 was a key gene associated with salt tolerance in hexaploid triticale and could respond quickly to salt stress. This study improved understanding about the potential molecular mechanisms associated with hexaploid triticale salt tolerance and contributed to the breeding of salt-tolerant germplasms and the utilization of saline soils.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Jiedong Li
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Jiongjie Fu
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Sun Y, Shu H, Lu D, Zhang T, Li M, Guo J, Shi L. Wild soybean cotyledons at the emergence stage tolerate alkali stress by maintaining carbon and nitrogen metabolism, and accumulating organic acids. PHYSIOLOGIA PLANTARUM 2025; 177:e70117. [PMID: 39956781 DOI: 10.1111/ppl.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
Soil alkalization is a global ecological problem that constrains food security and sustainable socio-economic development. As a wild relative of soybean, wild soybean (Glycine soja) exhibits strong salt and alkali stress resistance and its cotyledons play a key role during the emergence (VE) stage. This study aimed to compare variations in growth parameters, cotyledon ultrastructure, photosynthetic physiology, mineral ion and metabolite contents, and gene expression in two ecotypes of wild soybean to elucidate the regulatory mechanisms underlying alkali stress resistance in salt-tolerant wild soybean cotyledons during the VE stage. The results showed that salt-tolerant wild soybean cotyledons exhibited relatively stable growth parameters, dense and orderly chloroplast structure, high photosynthetic rates, as well as high K+ and Ca2+ contents under alkali stress. Metabolomics, transcriptomics, and weighted gene co-expression network analyses revealed that salt-tolerant wild soybean cotyledons adapted to alkali stress during the VE stage by enhancing photosynthetic carbon assimilation pathways, increasing methionine and proline biosynthesis, and enhancing gamma-aminobutyric acid biosynthesis, thereby maintaining a stable carbon and nitrogen balance. In addition, upregulation of the expression of ICL, MS, and ACO2 led to the accumulation of various organic acids, such as pyruvic, aconitic, succinic, oxalic, malic, and fumaric acids, thereby promoting the synthesis of organic acid metabolism modules. This study provides novel insights into the key metabolic modules by which wild soybeans resist alkali stress.
Collapse
Affiliation(s)
- Yang Sun
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Hang Shu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Duo Lu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Tao Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
5
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Busoms S, da Silva AC, Escolà G, Abdilzadeh R, Curran E, Bollmann-Giolai A, Bray S, Wilson M, Poschenrieder C, Yant L. Local cryptic diversity in salinity adaptation mechanisms in the wild outcrossing Brassica fruticulosa. Proc Natl Acad Sci U S A 2024; 121:e2407821121. [PMID: 39316046 PMCID: PMC11459175 DOI: 10.1073/pnas.2407821121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
It is normally supposed that populations of the same species should evolve shared mechanisms of adaptation to common stressors due to evolutionary constraint. Here, we describe a system of within-species local adaptation to coastal habitats, Brassica fruticulosa, and detail surprising strategic variability in adaptive responses to high salinity. These different adaptive responses in neighboring populations are evidenced by transcriptomes, diverse physiological outputs, and distinct genomic selective landscapes. In response to high salinity Northern Catalonian populations restrict root-to-shoot Na+ transport, favoring K+ uptake. Contrastingly, Central Catalonian populations accumulate Na+ in leaves and compensate for the osmotic imbalance with compatible solutes such as proline. Despite contrasting responses, both metapopulations were salinity tolerant relative to all inland accessions. To characterize the genomic basis of these divergent adaptive strategies in an otherwise non-saline-tolerant species, we generate a long-read-based genome and population sequencing of 18 populations (nine inland, nine coastal) across the B. fruticulosa species range. Results of genomic and transcriptomic approaches support the physiological observations of distinct underlying mechanisms of adaptation to high salinity and reveal potential genetic targets of these two very recently evolved salinity adaptations. We therefore provide a model of within-species salinity adaptation and reveal cryptic variation in neighboring plant populations in the mechanisms of adaptation to an important natural stressor highly relevant to agriculture.
Collapse
Affiliation(s)
- Silvia Busoms
- Department of Plant Physiology, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Ana C. da Silva
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Glòria Escolà
- Department of Plant Physiology, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Raziyeh Abdilzadeh
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Emma Curran
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Anita Bollmann-Giolai
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Sian Bray
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Michael Wilson
- School of Computer Sciences, Faculty of Science, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | | | - Levi Yant
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, NottinghamNG7 2RD, United Kingdom
- Department of Botany, Faculty of Science, Charles University, Prague128 01, Czech Republic
| |
Collapse
|
7
|
Ousalem F, Ngo S, Oïffer T, Omairi-Nasser A, Hamon M, Monlezun L, Boël G. Global regulation via modulation of ribosome pausing by the ABC-F protein EttA. Nat Commun 2024; 15:6314. [PMID: 39060293 PMCID: PMC11282234 DOI: 10.1038/s41467-024-50627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Having multiple rounds of translation of the same mRNA creates dynamic complexities along with opportunities for regulation related to ribosome pausing and stalling at specific sequences. Yet, mechanisms controlling these critical processes and the principles guiding their evolution remain poorly understood. Through genetic, genomic, physiological, and biochemical approaches, we demonstrate that regulating ribosome pausing at specific amino acid sequences can produce ~2-fold changes in protein expression levels which strongly influence cell growth and therefore evolutionary fitness. We demonstrate, both in vivo and in vitro, that the ABC-F protein EttA directly controls the translation of mRNAs coding for a subset of enzymes in the tricarboxylic acid (TCA) cycle and its glyoxylate shunt, which modulates growth in some chemical environments. EttA also modulates expression of specific proteins involved in metabolically related physiological and stress-response pathways. These regulatory activities are mediated by EttA rescuing ribosomes paused at specific patterns of negatively charged residues within the first 30 amino acids of nascent proteins. We thus establish a unique global regulatory paradigm based on sequence-specific modulation of translational pausing.
Collapse
Affiliation(s)
- Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- Biomarqueurs et nouvelles cibles thérapeutiques en oncologie, INSERM U981, Université Paris Saclay, Institut de Cancérologie Gustave Roussy, Villejuif Cedex, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Thomas Oïffer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Amin Omairi-Nasser
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marion Hamon
- CNRS, Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, Paris, France
| | - Laura Monlezun
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
8
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
9
|
Nagappan J, Ooi SE, Chan KL, Kadri F, Nurazah Z, Halim MAA, Angel LPL, Sundram S, Chin CF, May ST, Low ETL. Transcriptional effects of carbon and nitrogen starvation on Ganoderma boninense, an oil palm phytopathogen. Mol Biol Rep 2024; 51:212. [PMID: 38273212 DOI: 10.1007/s11033-023-09054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/24/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.
Collapse
Affiliation(s)
- Jayanthi Nagappan
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Siew-Eng Ooi
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Faizun Kadri
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zain Nurazah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Amin Ab Halim
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Lee Pei Lee Angel
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Shamala Sundram
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Chiew-Foan Chin
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Sean T May
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD, UK
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
10
|
Lu Z, He S, Kashif M, Zhang Z, Mo S, Su G, Du L, Jiang C. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis. BMC Genomics 2023; 24:550. [PMID: 37723472 PMCID: PMC10506230 DOI: 10.1186/s12864-023-09559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Phosphorus is one of the essential nutrients for plant growth. Phosphate-solubilizing microorganisms (PSMs) can alleviate available P deficiency and enhance plant growth in an eco-friendly way. Although ammonium toxicity is widespread, there is little understanding about the effect of ammonium stress on phosphorus solubilization (PS) of PSMs. RESULTS In this study, seven PSMs were isolated from mangrove sediments. The soluble phosphate concentration in culture supernatant of Bacillus aryabhattai NM1-A2 reached a maximum of 196.96 mg/L at 250 mM (NH4)2SO4. Whole-genome analysis showed that B. aryabhattai NM1-A2 contained various genes related to ammonium transporter (amt), ammonium assimilation (i.e., gdhA, gltB, and gltD), organic acid synthesis (i.e., ackA, fdhD, and idh), and phosphate transport (i.e., pstB and pstS). Transcriptome data showed that the expression levels of amt, gltB, gltD, ackA and idh were downregulated, while gdhA and fdhD were upregulated. The inhibition of ammonium transporter and glutamine synthetase/glutamate synthase (GS/GOGAT) pathway contributed to reducing energy loss. For ammonium assimilation under ammonium stress, accompanied by protons efflux, the glutamate dehydrogenase pathway was the main approach. More 2-oxoglutarate (2-OG) was induced to provide abundant carbon skeletons. The downregulation of formate dehydrogenase and high glycolytic rate resulted in the accumulation of formic acid and acetic acid, which played key roles in PS under ammonium stress. CONCLUSIONS The accumulation of 2-OG and the inhibition of GS/GOGAT pathway played a key role in ammonium detoxification. The secretion of protons, formic acid and acetic acid was related to PS. Our work provides new insights into the PS mechanism, which will provide theoretical guidance for the application of PSMs.
Collapse
Affiliation(s)
- Zhaomei Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defect prevention, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, 530033, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Linfang Du
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory for Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
11
|
Pasandideh Arjmand M, Samizadeh Lahiji H, Mohsenzadeh Golfazani M, Biglouei MH. Evaluation of protein's interaction and the regulatory network of some drought-responsive genes in Canola under drought and re-watering conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1085-1102. [PMID: 37829706 PMCID: PMC10564702 DOI: 10.1007/s12298-023-01345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 10/14/2023]
Abstract
Drought stress is one of the most important environmental stresses that severely limits the growth and yield of Canola. The re-watering can compensate for the damage caused by drought stress. Investigation of protein's interaction of genes involved in important drought-responsive pathways and their regulatory network by microRNAs (miRNAs) under drought and re-watering conditions are helpful approaches to discovering drought-stress tolerance and recovery mechanisms. In this study, the protein's interaction and functional enrichment analyses of glycolysis, pentose phosphate, glyoxylate cycle, fatty acid biosynthesis, heat shock factor main genes, and the regulatory network of key genes by miRNAs were investigated by in silico analysis. Then, the relative expression of key genes and their related miRNAs were investigated in tolerant and susceptible genotypes of Canola under drought and re-watering conditions by Real-time PCR technique. The bna-miR156b/c/g, bna-miR395d/e/f, bna-miR396a, and all the studied key genes except HSFA1E and PK showed changes in expression levels in one or both genotypes after re-watering. The PPC1 and HSFB2B expression decreased, whereas the MLS and CAC3 expression increased in both genotypes under re-watering treatment after drought stress. It could cause the regulation of oxaloacetate production, the increase of the glyoxylate cycle, lipid biosynthesis, and the reduction of the negative regulation of HSFs under re-watering conditions. It seems that PPC1, G6PD2, MLS, CAC3, and HSFB2B were involved in the recovery mechanisms after drought stress of Canola. They were regulated by drought-responsive miRNAs to respond appropriately to drought stress. Therefore, regulating these genes could be important in plant recovery mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01345-1.
Collapse
Affiliation(s)
- Maryam Pasandideh Arjmand
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | | | - Mohammad Hassan Biglouei
- Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
12
|
Sharma K, Kapoor R. Arbuscular mycorrhiza differentially adjusts central carbon metabolism in two contrasting genotypes of Vigna radiata (L.) Wilczek in response to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111706. [PMID: 37054921 DOI: 10.1016/j.plantsci.2023.111706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The study aimed at investigating Arbuscular Mycorrhiza (AM) mediated metabolic changes in two genotypes of mungbean (Vigna radiata) differing in their salt tolerance in presence of salt stress (100 mM NaCl). Colonisation by Claroideoglomus etunicatum resulted in higher growth, photosynthetic efficiency, total protein content, and lower levels of stress markers, indicating alleviation of stress in mungbean plants. AM differentially upregulated the components of Tricarboxylic acid (TCA) cycle in salt tolerant (ST) and salt sensitive (SS) genotypes that could be correlated to AM-mediated moderation in nutrient uptake. Under salt stress, while maximum increase in the activity of α-ketoglutarate dehydrogenase (65%) was observed in mycorrhizal (M)-ST; the increase in isocitrate dehydrogenase (79%) and fumarase (133%) activities was maximum in M-SS plants over their non-mycorrhizal (NM) counterparts. Apart from TCA, AM also affected gamma-aminobutyric acid (GABA) and glyoxylate pathways. Activities of enzymes implicated in GABA shunt increased in both the genotypes under stress resulting in increase in GABA concentration (46%). Notably, glyoxylate pathway was induced by AM in SS only, wherein M-SS exhibited significantly higher isocitrate lyase (49%) and malate synthase (104%) activities, reflected in higher malic acid concentration (84%), than NM under stress. The results suggest that AM moderates the central carbon metabolism and strategizes towards boosting the formation of stress-alleviating metabolites such as GABA and malic acid, especially in SS, bypassing the steps catalysed by salt-sensitive enzymes in TCA cycle. The study, therefore, advances the understanding on mechanisms by which AM ameliorates salt stress.
Collapse
Affiliation(s)
- Karuna Sharma
- Department of Botany, University of Delhi, 110007 Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, 110007 Delhi, India.
| |
Collapse
|
13
|
Barratt LJ, Reynolds IJ, Franco Ortega S, Harper AL. Transcriptomic and co-expression network analyses on diverse wheat landraces identifies candidate master regulators of the response to early drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1212559. [PMID: 37426985 PMCID: PMC10326901 DOI: 10.3389/fpls.2023.1212559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Collapse
|
14
|
Le XH, Millar AH. The diversity of substrates for plant respiration and how to optimize their use. PLANT PHYSIOLOGY 2023; 191:2133-2149. [PMID: 36573332 PMCID: PMC10069909 DOI: 10.1093/plphys/kiac599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Plant respiration is a foundational biological process with the potential to be optimized to improve crop yield. To understand and manipulate the outputs of respiration, the inputs of respiration-respiratory substrates-need to be probed in detail. Mitochondria house substrate catabolic pathways and respiratory machinery, so transport into and out of these organelles plays an important role in committing substrates to respiration. The large number of mitochondrial carriers and catabolic pathways that remain unidentified hinder this process and lead to confusion about the identity of direct and indirect respiratory substrates in plants. The sources and usage of respiratory substrates vary and are increasing found to be highly regulated based on cellular processes and environmental factors. This review covers the use of direct respiratory substrates following transport through mitochondrial carriers and catabolism under normal and stressed conditions. We suggest the introduction of enzymes not currently found in plant mitochondria to enable serine and acetate to be direct respiratory substrates in plants. We also compare respiratory substrates by assessing energetic yields, availability in cells, and their full or partial oxidation during cell catabolism. This information can assist in decisions to use synthetic biology approaches to alter the range of respiratory substrates in plants. As a result, respiration could be optimized by introducing, improving, or controlling specific mitochondrial transporters and mitochondrial catabolic pathways.
Collapse
Affiliation(s)
- Xuyen H Le
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
15
|
Tang W, Arisha MH, Zhang Z, Yan H, Kou M, Song W, Li C, Gao R, Ma M, Wang X, Zhang Y, Li Z, Li Q. Comparative transcriptomic and proteomic analysis reveals common molecular factors responsive to heat and drought stresses in sweetpotaoto ( Ipomoea batatas). FRONTIERS IN PLANT SCIENCE 2023; 13:1081948. [PMID: 36743565 PMCID: PMC9892860 DOI: 10.3389/fpls.2022.1081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Crops are affected by various abiotic stresses, among which heat (HT) and drought (DR) stresses are the most common in summer. Many studies have been conducted on HT and DR, but relatively little is known about how drought and heat combination (DH) affects plants at molecular level. Methods Here, we investigated the responses of sweetpotato to HT, DR, and DH stresses by RNA-seq and data-independent acquisition (DIA) technologies, using controlled experiments and the quantification of both gene and protein levels in paired samples. Results Twelve cDNA libraries were created under HT, DR, and DH conditions and controls. We identified 536, 389, and 907 DEGs in response to HT, DR, and DH stresses, respectively. Of these, 147 genes were common and 447 were specifically associated with DH stress. Proteomic analysis identified 1609, 1168, and 1535 DEPs under HT, DR, and DH treatments, respectively, compared with the control, of which 656 were common and 358 were exclusive to DH stress. Further analysis revealed the DEGs/DEPs were associated with heat shock proteins, carbon metabolism, phenylalanine metabolism, starch and cellulose metabolism, and plant defense, amongst others. Correlation analysis identified 6465, 6607, and 6435 co-expressed genes and proteins under HT, DR, and DH stresses respectively. In addition, a combined analysis of the transcriptomic and proteomic data identified 59, 35, and 86 significantly co-expressed DEGs and DEPs under HT, DR, and DH stresses, respectively. Especially, top 5 up-regulated co-expressed DEGs and DEPs (At5g58770, C24B11.05, Os04g0679100, BACOVA_02659 and HSP70-5) and down-regulated co-expressed DEGs and DEPs (AN3, PMT2, TUBB5, FL and CYP98A3) were identified under DH stress. Discussion This is the first study of differential genes and proteins in sweetpotato under DH stress, and it is hoped that the findings will assist in clarifying the molecular mechanisms involved in sweetpotato resistance to heat and drought stress.
Collapse
Affiliation(s)
- Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mohamed Hamed Arisha
- Department of Horticulture, Faculty of Agriculture, Zagazig University, Zagazig, Sharkia, Egypt
| | - Zhenyi Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Kou
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Weihan Song
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Chen Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Runfei Gao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Meng Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Yungang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou, China
| |
Collapse
|
16
|
Thanabut S, Sornplerng P, Buaboocha T. Ectopic expression of rice malate synthase in Arabidopsis revealed its roles in salt stress responses. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153863. [PMID: 36423447 DOI: 10.1016/j.jplph.2022.153863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Expression of rice malate synthase (OsMS), one of the two key genes in the glyoxylate cycle, is highly upregulated under salt stress. In this study, we aimed to investigate the role of OsMS in salt stress responses using the Arabidopsis T-DNA insertional mutant line of malate synthase (AtMS), an OsMS orthologous gene, for ectopic expression. Germination of the Atms mutant under salt stress was lower than that of Arabidopsis Col-0 wildtype (WT); furthermore, the two Atms mutant lines ectopically expressing OsMS reversed the salt-sensitive phenotype. Atms mutants salt-treated for 3 days exhibited higher electrolyte leakage, higher Na+/K+ ratio, lower expression of stress-responsive genes, and lower soluble sugar content than WT and the two OsMS-expressing Atms mutant lines. Consistently, Atms mutants salt-treated for 3 days followed by a 5-day recovery period displayed greater fresh-weight reduction. Notably, leaf greenness and chlorophyll and total carotenoid contents were higher in the Atms mutant lines than in the WT under stress. OsMS-expressing Atms mutants exhibited a change in pigment content closer to that of WT. During dark-induced senescence, an Atms mutant, Aticl, mutant (the other key gene in the glyoxylate cycle), and three double mutant lines of Atms and Aticl exhibited lower decreases in leaf greenness than the WT and OsMS-expressing Atms mutant lines. Furthermore, SAG12 expression levels in the Atms mutant, Aticl mutant, and three double mutant lines were lower than those in OsMS-expressing Atms mutant lines. Altogether, our data indicate that OsMS likely plays a key role in salt stress responses, possibly through the induction of leaf senescence.
Collapse
Affiliation(s)
- Supisara Thanabut
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pinmanee Sornplerng
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Teerapong Buaboocha
- Center of Excellence for Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Zhi Y, Li X, Lian F, Wang C, White JC, Wang Z, Xing B. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157536. [PMID: 35878859 DOI: 10.1016/j.scitotenv.2022.157536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Humic acids (HAs), kinds of valuable active carbon, are critical for improving soil fertility. However, the majority of soils are poor in HAs, arousing the development of artificial HAs. In this study, two iron-based catalysts (nanoscale iron trioxide (nFe2O3) and FeCl3) were used to catalyze the hydrothermal humification of waste corn straw. With the help of ultra-performance liquid chromatography-mass spectrometry, we proposed the specific humification process with the action of catalysis for the first time, which is of great significance for the design, synthesis and application of artificial HAs in the future. Moreover, the growth-promoting effect and mechanisms of the artificial HAs were determined by rice planting in a greenhouse. Results showed that compared to no catalyst treatment, the FeCl3 and nFe2O3 catalysts increased the decomposition rate of macromolecular biomass by 39 and 14 %, respectively, increasing the yield of artificial HAs. During the humification process, nFe2O3 catalysts benefit the formation of many aromatic structure monomers including furfural and hydroxycaproic acids. These monomers were condensed into growth hormone analogs such as vanillin and methionine sulfoxide and were further built in the artificial HAs. Therefore, the artificial HAs from nFe2O3 catalytic treatment promoted the rice growth the best, showing that the resultant germination rate, root activity, and photosynthetic rate of rice increased by 50, 167, and 72 %, respectively; moreover, the uptake and accumulation of water and nutrient by roots as well as the contents of soluble protein and sugar of rice are also significantly increased. This could be ascribed to the upregulated expression of functional genes including OsRHL1, OsZPT5-07, OsSHR2 and OsDCL. Considering both the economic and environmental benefits, we suggested that the artificial HAs, especially that produced with the action of nFe2O3 catalysis, are promising in alleviating environmental stress from waste biomass and sustainably improving agricultural production.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
18
|
Kumar S, Kumar S, Krishnan GS, Mohapatra T. Molecular basis of genetic plasticity to varying environmental conditions on growing rice by dry/direct-sowing and exposure to drought stress: Insights for DSR varietal development. FRONTIERS IN PLANT SCIENCE 2022; 13:1013207. [PMID: 36352870 PMCID: PMC9638133 DOI: 10.3389/fpls.2022.1013207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/28/2022] [Indexed: 06/01/2023]
Abstract
Rice requires plenty of water for its cultivation by transplanting. This poses several challenges to its cultivation due to erratic rainfall resulting in drought, flood, and other abiotic stresses of varying intensity. Dry/direct-sown rice (DSR) has emerged as a water-saving/climate-smart alternative to transplanted rice (TPR). The performance of a rice cultivar on growing by different methods of planting under varying environmental conditions varies considerably. However, the molecular basis of the observed phenotypic plasticity of rice to varying environmental conditions is still elusive. Resilience to various environmental fluctuations is important to ensure sustainable rice production in the present era of global climate change. Our observations on exclusively up-regulated genes in leaf of Nagina 22 (N 22) grown by dry/direct-sowing and subjected to drought stress at panicle initiation stage (compared to that in leaf of IR 64), and another set of genes exclusively down-regulated in leaf of N 22 (compared to that in leaf of IR 64) indicate important roles of leaf in stress resilience. A large number of genes down-regulated exclusively in root of N 22 on dry/direct-sowing subjected to drought stress indicates a major contribution of roots in stress tolerance. The genes for redox-homeostasis, transcription factors, stress signaling, carbohydrate metabolism, and epigenetic modifications play important roles in making N 22 better adapted to DSR conditions. More importantly, the involvement of genes in rendering genetic plasticity to N 22 under changing environmental conditions was confirmed by reversal of the method of planting. To the best of our knowledge, this is the first report on decoding the molecular basis of genetic plasticity of rice grown by two different methods of planting subjected to drought stress at the reproductive stage of plant growth. This might help in DSR varietal development program to enhance water-productivity, conserve natural resources, and minimize the emission of greenhouse gases, thus achieving the objectives of negative-emission agriculture.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gopala S. Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
19
|
Obermeyer S, Stöckl R, Schnekenburger T, Moehle C, Schwartz U, Grasser KD. Distinct role of subunits of the Arabidopsis RNA polymerase II elongation factor PAF1C in transcriptional reprogramming. FRONTIERS IN PLANT SCIENCE 2022; 13:974625. [PMID: 36247629 PMCID: PMC9558118 DOI: 10.3389/fpls.2022.974625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII) is dynamic and highly regulated, thereby contributing to the implementation of gene expression programs during plant development or in response to environmental cues. The heterohexameric polymerase-associated factor 1 complex (PAF1C) stabilizes the RNAPII elongation complex promoting efficient transcript synthesis. In addition, PAF1C links transcriptional elongation with various post-translational histone modifications at transcribed loci. We have exposed Arabidopsis mutants deficient in the PAF1C subunits ELF7 or CDC73 to elevated NaCl concentrations to provoke a transcriptional response. The growth of elf7 plants was reduced relative to that of wildtype under these challenging conditions, whereas cdc73 plants exhibited rather enhanced tolerance. Profiling of the transcriptional changes upon NaCl exposure revealed that cdc73 responded similar to wildtype. Relative to wildtype and cdc73, the transcriptional response of elf7 plants was severely reduced in accord with their greater susceptibility to NaCl. The data also imply that CDC73 is more relevant for the transcription of longer genes. Despite the fact that both ELF7 and CDC73 are part of PAF1C the strikingly different transcriptional response of the mutants upon NaCl exposure suggests that the subunits have (partially) specific functions.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Klaus D. Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Shojaee S, Ravash R, Shiran B, Ebrahimie E. Meta-analysis highlights the key drought responsive genes in genes: PEPC and TaSAG7 are hubs response networks. J Genet Eng Biotechnol 2022; 20:127. [PMID: 36053361 PMCID: PMC9468207 DOI: 10.1186/s43141-022-00395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Background Wheat is the most important cereal. One of the environmental stresses is drought that harm the production of many cereals and every year due to low rainfall and frequent droughts, the need to produce plants resistant to this stress is felt. Therefore, identification and evaluation of the genes involved in the production of this resistance in plants are of great importance. By identifying these genes and changing their expression, it is possible to produce resistant plants that can tolerate dehydration and drought, with at least a qualitative and quantitative reduction in yield. Results Based on the meta-analysis results obtained in this study, in resistant cultivars ~ 4% (2394/61290) of the probe IDs decreased and ~ 4.5% (2670/61290) increased expression, furthermore in susceptible cultivars ~ 7% (4183/61290) of probe IDs decreased and ~ 6% (3591/61290) increased expression (P value ≤ 0.05). List of up- and downregulated genes was revealed, among the expressed genes of transcription factors Myb3, ethylene-responsive 5a, MIKC-type MADS-box WM24B, and salinity inducible ERF4 in resistant cultivars and transcription factors WRKY15, MADS-box TaAGL8, WRKY39, and Myb in susceptible cultivars, they showed a significant increase in expression, these transcription factors are of great importance in drought stress. Among them, ethylene responsive 5a in resistant cultivars by 3 times and Myb in susceptible cultivars by 2.6 times have shown the highest expression change. Using Cytoscape Hub software, the Phosphoenolpyruvate carboxylase (PEPC) and lyase isocitrate (TaSAG7) genes, which have significantly different expressions in resistant and susceptible wheat cultivars. PEPC and TaSAG7 genes were upregulated in resistant wheat cultivars as well as down regulated in susceptible cultivars. Also, the qPCR results of selected genes were consistent with the outcomes of the meta-analysis. Conclusions All microarray data were collected from the NCBI Gene Expression Omnibus site. Libraries with drought-tolerant and susceptible cultivars for wheat were considered under the stress and control conditions from whole leaf tissue. By meta-analysis combined the purposeful results of multiple experiments, and found list of genes expressed in reverse between the two cultivars. These genes can distinguish between different susceptible and resistant wheat cultivars. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00395-4.
Collapse
Affiliation(s)
- Sahar Shojaee
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahr-e Kord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran.
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, Melbourne, La Trobe University, Victoria, 3086, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| |
Collapse
|
21
|
Teh KY, Loh SH, Aziz A, Takahashi K, Toda T, Wahid MEA, Cha TS. Transcriptome analysis of mangrove-isolated Chlorella vulgaris UMT-M1 reveals insights for vigorous growth and lipid accumulation through reduced salinity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
22
|
A Large-Scale Genomic Association Analysis Identifies the Candidate Genes Regulating Salt Tolerance in Cucumber ( Cucumis sativus L.) Seedlings. Int J Mol Sci 2022; 23:ijms23158260. [PMID: 35897836 PMCID: PMC9332819 DOI: 10.3390/ijms23158260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Salt stress seriously restricts plant growth and development, affects yield and quality, and thus becomes an urgent problem to be solved in cucumber stress resistance breeding. Mining salt tolerance genes and exploring the molecular mechanism of salt tolerance could accelerate the breeding of cucumber germplasm with excellent salt stress tolerance. In this study, 220 cucumber core accessions were used for Genome-Wide Association Studies (GWAS) and the identification of salt tolerance genes. The salinity injury index that was collected in two years showed significant differences among the core germplasm. A total of seven loci that were associated with salt tolerance in cucumber seedlings were repeatedly detected, which were located on Chr.2 (gST2.1), Chr.3 (gST3.1 and gST3.2), Chr.4 (gST4.1 and gST4.2), Chr.5 (gST5.1), and Chr.6 (gST6.1). Within these loci, 62 genes were analyzed, and 5 candidate genes (CsaV3_2G035120, CsaV3_3G023710, CsaV3_4G033150, CsaV3_5G023530, and CsaV3_6G009810) were predicted via the functional annotation of Arabidopsis homologous genes, haplotype of extreme salt-tolerant accessions, and qRT-PCR. These results provide a guide for further research on salt tolerance genes and molecular mechanisms of cucumber seedlings.
Collapse
|
23
|
Shi J, He H, Hu D, Song B. Defense Mechanism of Capsicum annuum L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3618-3632. [PMID: 35297641 DOI: 10.1021/acs.jafc.2c00659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pepper mild mottle virus (PMMoV), an RNA virus, is one of the most devastating pathogens in pepper crops and has a significant influence on global crop yields. PMMoV poses a major threat to the global shortage of pepper plants and other Solanaceae crops due to the lack of an effective antiviral agent. In this study, we have developed a plant immune inducer (vanisulfane), as a "plant vaccine" that boosts plant immunity against PMMoV, and studied its resistance mechanism. The protective activity of vanisulfane against PMMoV was 59.4%. Vanisulfane can enhance the activity of defense enzymes and improve the content of chlorophyll, flavonoids, and total phenols for removing harmful free radicals from plants. Furthermore, vanisulfane was found to enhance defense genes. Label-free quantitative proteomics would tackle disease resistance pathways of vanisulfane. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, differentially abundant proteins (DAPs) are mainly involved in starch and sucrose metabolism, photosynthesis, MAPK signaling pathway, and oxidative phosphorylation pathway. These results are crucial for the discovery of new pesticides, understanding the improvement of plant immunity and the antiviral activity of plant immune inducers.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
24
|
Mauceri A, Aci MM, Toppino L, Panda S, Meir S, Mercati F, Araniti F, Lupini A, Panuccio MR, Rotino GL, Aharoni A, Abenavoli MR, Sunseri F. Uncovering Pathways Highly Correlated to NUE through a Combined Metabolomics and Transcriptomics Approach in Eggplant. PLANTS 2022; 11:plants11050700. [PMID: 35270170 PMCID: PMC8912549 DOI: 10.3390/plants11050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.
Collapse
Affiliation(s)
- Antonio Mauceri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Meriem Miyassa Aci
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Laura Toppino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Francesco Mercati
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milano, 20133 Milan, Italy;
| | - Antonio Lupini
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Maria Rosaria Panuccio
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Giuseppe Leonardo Rotino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Maria Rosa Abenavoli
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| |
Collapse
|
25
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Marriboina S, Sekhar KM, Subramanyam R, Reddy AR. Physiological, Biochemical, and Root Proteome Networks Revealed New Insights Into Salt Tolerance Mechanisms in Pongamia pinnata (L.) Pierre. FRONTIERS IN PLANT SCIENCE 2022; 12:771992. [PMID: 35140728 PMCID: PMC8818674 DOI: 10.3389/fpls.2021.771992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cultivation of potential biofuel tree species such as Pongamia pinnata would rehabilitate saline marginal lands toward economic gains. We carried out a physiological, biochemical, and proteomic analysis to identify key regulatory responses which are associated with salt tolerance mechanisms at the shoot and root levels. Pongamia seedlings were grown at 300 and 500 mM NaCl (∼3% NaCl; sea saline equivalent) concentrations for 15 and 30 days, gas exchange measurements including leaf net photosynthetic rate (A sat ), stomatal conductance (g s ), and transpiration rate (E), and varying chlorophyll a fluorescence kinetics were recorded. The whole root proteome was quantified using the free-labeled nanoLC-MS/MS technique to investigate crucial proteins involved in signaling pathways associated with salt tolerance. Pongamia showed no visible salt-induced morphological symptoms. However, Pongamia showed about 50% decline in gas exchange parameters including A sat , E, and g s 15 and 30 days after salt treatment (DAS). The maximum potential quantum efficiency of photosystem (PS) II (Fv/Fm) was maintained at approximately 0.8 in salt-treated plants. The thermal component of PSII (DIo) was increased by 1.6-fold in the salt-treated plants. A total of 1,062 protein species were identified with 130 commonly abundant protein species. Our results also elucidate high abundance of protein species related to flavonoid biosynthesis, seed storage protein species, and carbohydrate metabolism under salt stress. Overall, these analyses suggest that Pongamia exhibited sustained leaf morphology by lowering net photosynthetic rates and emitting most of its light energy as heat. Our root proteomic results indicated that these protein species were most likely recruited from secondary and anaerobic metabolism, which could provide defense for roots against Na+ toxicity under salt stress conditions.
Collapse
|
27
|
Joshi V, Penalosa A, Joshi M, Rodriguez S. Regulation of Oxalate Metabolism in Spinach Revealed by RNA-Seq-Based Transcriptomic Analysis. Int J Mol Sci 2021; 22:ijms22105294. [PMID: 34069886 PMCID: PMC8157348 DOI: 10.3390/ijms22105294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/12/2023] Open
Abstract
Although spinach (Spinacia oleracea L.) is considered to be one of the most nutrient-rich leafy vegetables, it is also a potent accumulator of anti-nutritional oxalate. Reducing oxalate content would increase the nutritional value of spinach by enhancing the dietary bioavailability of calcium and other minerals. This study aimed to investigate the proposed hypothesis that a complex network of genes associated with intrinsic metabolic and physiological processes regulates oxalate homeostasis in spinach. Transcriptomic (RNA-Seq) analysis of the leaf and root tissues of two spinach genotypes with contrasting oxalate phenotypes was performed under normal physiological conditions. A total of 2308 leaf- and 1686 root-specific differentially expressed genes (DEGs) were identified in the high-oxalate spinach genotype. Gene Ontology (GO) analysis of DEGs identified molecular functions associated with various enzymatic activities, while KEGG pathway analysis revealed enrichment of the metabolic and secondary metabolite pathways. The expression profiles of genes associated with distinct physiological processes suggested that the glyoxylate cycle, ascorbate degradation, and photorespiratory pathway may collectively regulate oxalate in spinach. The data support the idea that isocitrate lyase (ICL), ascorbate catabolism-related genes, and acyl-activating enzyme 3 (AAE3) all play roles in oxalate homeostasis in spinach. The findings from this study provide the foundation for novel insights into oxalate metabolism in spinach.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
- Correspondence: ; Tel.: +1-830-988-6137
| | - Arianne Penalosa
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA;
| | - Sierra Rodriguez
- College of Science, University of Texas, Arlington, TX 76019, USA; (A.P.); (S.R.)
| |
Collapse
|
28
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
29
|
Xiao X, Lv J, Xie J, Feng Z, Ma N, Li J, Yu J, Calderón-Urrea A. Transcriptome Analysis Reveals the Different Response to Toxic Stress in Rootstock Grafted and Non-Grafted Cucumber Seedlings. Int J Mol Sci 2020; 21:ijms21030774. [PMID: 31991638 PMCID: PMC7037640 DOI: 10.3390/ijms21030774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Autotoxicity of root exudates is one of the main reasons for consecutive monoculture problem (CMP) in cucumber under greenhouse cultivation. Rootstock grafting may improve the tolerance of cucumber plants to autotoxic stress. To verify the enhanced tolerance to autotoxic stress and illuminate relevant molecular mechanism, a transcriptomic comparative analysis was performed between rootstock grafted (RG) and non-grafted (NG) cucumber plants by a simulation of exogenous cinnamic acid (CA). The present study confirmed that relatively stable plant growth, biomass accumulation, chlorophyll content, and photosynthesis was observed in RG than NG under CA stress. We identified 3647 and 2691 differentially expressed genes (DEGs) in NG and RG cucumber plants when compared to respective control, and gene expression patterns of RNA-seq was confirmed by qRT-PCR. Functional annotations revealed that DEGs response to CA stress were enriched in pathways of plant hormone signal transduction, MAPK signaling pathway, phenylalanine metabolism, and plant-pathogen interaction. Interestingly, the significantly enriched pathway of photosynthesis-related, carbon and nitrogen metabolism only identified in NG, and most of DEGs were down-regulated. However, most of photosynthesis, Calvin cycle, glycolysis, TCA cycle, and nitrogen metabolism-related DEGs exhibited not or slightly down-regulated in RG. In addition, several stress-related transcription factor families of AP2/ERF, bHLH, bZIP, MYB. and NAC were uniquely triggered in the grafted cucumbers. Overall, the results of this study suggest that rootstock grafting improve the tolerance of cucumber plants to autotoxic stress by mediating down-regulation of photosynthesis, carbon, and nitrogen metabolism-related DEGs and activating the function of stress-related transcription factor. The transcriptome dataset provides an extensive sequence resource for further studies of autotoxic mechanism at molecular level.
Collapse
Affiliation(s)
- Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ning Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-0931-7632188
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China;
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 97340, USA
| |
Collapse
|
30
|
Campobenedetto C, Grange E, Mannino G, van Arkel J, Beekwilder J, Karlova R, Garabello C, Contartese V, Bertea CM. A Biostimulant Seed Treatment Improved Heat Stress Tolerance During Cucumber Seed Germination by Acting on the Antioxidant System and Glyoxylate Cycle. FRONTIERS IN PLANT SCIENCE 2020; 11:836. [PMID: 32625226 PMCID: PMC7311796 DOI: 10.3389/fpls.2020.00836] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 05/14/2023]
Abstract
Seed enhancement technologies have the potential to improve germination and seedling growth under environmental stress. The effects of KIEM®, an innovative biostimulant based on lignin derivatives and containing plant-derived amino acids and molybdenum, were investigated on cucumber (Cucumis sativus L.) seed germination. To determine the metabolic targets of this product, biometric, transcriptional and biochemical analyses were carried out on both non-treated and KIEM®-treated seeds incubated for 24 and 48 h under standard (28°C) and heat stress (35°C) conditions. The application of the biostimulant as a seed treatment increased the percent germination (+6.54%) and fresh biomass (+13%) at 48 h, and decreased the content of H2O2 in treated seeds at 28°C (-70%) and at 35°C (-80%). These changes in biometric and biochemical properties were accompanied by changes in expression levels of the genes coding for ROS-producing (RBOH) and scavenging (SOD, CAT, GST) enzymes and their specific activity. In general, the treatment with KIEM® in heat-stress condition appeared to stimulate a higher accumulation of three scavenger gene transcripts: CuZnSOD (+1.78), MnSOD (+1.75), and CAT (+3.39), while the FeSOD isoform was dramatically downregulated (0.24). Moreover, the amount of non-protein thiols, important antioxidant molecules, was increased by the biostimulant after 48 h (+20%). Taken together these results suggest that KIEM® acts through mitigation of the effects of the oxidative stress. Moreover, after 48 h, the pre-sowing treatment with KIEM® increased the transcription levels (+1.5) and the activity of isocitrate lyase (+37%), a key enzyme of the glyoxylate cycle, suggesting a potential effect of this product in speeding up the germination process. Finally, the chemical characterization of KIEM® identified five essential and three non-essential amino acids, and others bioactive compounds, including five organic and inorganic acids that might be potentially involved in its activity. Based on these data, insights on the potential mechanism of action of the biostimulant, suggested that there are broader applications as a product able to increase seed tolerance to different abiotic stress typical of adverse environmental conditions.
Collapse
Affiliation(s)
- Cristina Campobenedetto
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Green Has Italia S.p.A, Canale, Italy
| | - Eric Grange
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Jeroen van Arkel
- BU Bioscience, Wageningen University & Research, Wageningen, Netherlands
| | - Jules Beekwilder
- BU Bioscience, Wageningen University & Research, Wageningen, Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Cinzia M. Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Cinzia M. Bertea,
| |
Collapse
|