1
|
Lu BT, Wang YJ, Wang L, Wu D, Lin YL, Xu JX, Zhang JN, Liu BW, Liu HY, Meng H, Gao Y, Wang HL, Kang K. Shenfu injection alleviates lipopolysaccharide-induced liver injury in septic mice. Sci Rep 2025; 15:14004. [PMID: 40263344 PMCID: PMC12015584 DOI: 10.1038/s41598-025-98740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Shenfu injection (SFI) is a traditional Chinese medicine (TCM) for treating sepsis. The purpose of this study was to evaluate the protective effect of SFI on lipopolysaccharide (LPS)-induced liver injury in septic mice. The results showed that SFI intervention reduced liver/body weight and significantly improved the survival rate of septic mice. SFI could relieve the apoptosis of liver cells and ameliorate liver function in LPS-induced septic mice. SFI also diminished the serum and liver levels of the inflammatory factors IL-1β, IL-6, IL-18, IL-12, and TNF-α in a dose-dependent manner. SFI enhanced the mitochondrial membrane potential and alleviated the mitochondrial damage of liver in septic mice. Western blot revealed that the phosphorylation levels of IκB and NF-κB p65 increased significantly in the liver of LPS-induced septic mice. After SFI intervention, the phosphorylation levels of IκB and NF-κB p65 gradually recovered, especially at high concentration. SFI treatment reduced nuclear transduction, thus reducing transcriptional activity, which indicated that NF-κB p65 signal pathway might contribute to the anti-inflammatory and anti-apoptotic activities of SFI in the liver of LPS-induced septic mice. In addition, the metabolic profile of liver tissue in the model group was different from that in the control group, and SFI significantly regulated liver purine metabolism. These valuable findings suggested that SFI could improve mitochondrial function and mitigate inflammation and apoptosis, and thus alleviate LPS-induced liver injury in septic mice. SFI may be a promising drug to treat septic liver injury.
Collapse
Affiliation(s)
- Bai-Tao Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Ya-Jun Wang
- Department of Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150027, Heilongjiang Province, China
| | - Lei Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Di Wu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Yi-Lu Lin
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Jia-Xi Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Jia-Ning Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Bo-Wen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Hui-Ying Liu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Huan Meng
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, No.998 Aiying Road, Harbin, 150027, Heilongjiang Province, China.
| | - Hong-Liang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Harbin, 150086, Heilongjiang Province, China.
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Xiong W, Zhan Y, Xiao R, Liu F. Advancing sepsis diagnosis and immunotherapy machine learning-driven identification of stable molecular biomarkers and therapeutic targets. Sci Rep 2025; 15:8333. [PMID: 40065038 PMCID: PMC11894075 DOI: 10.1038/s41598-025-93010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sepsis represents a significant global health challenge, necessitating early detection and effective treatment for improved outcomes. While traditional inflammatory markers facilitate the diagnosis of sepsis, the aspect of immune suppression remains poorly addressed. This study aimed to identify critical immune-related genes (IIRGs) associated with sepsis through genomic analysis and machine learning techniques, thereby enhancing diagnostic and treatment response predictions. Analyses of two extensive datasets were conducted, identifying significant immune genes using the ESTIMATE algorithm, Weighted Gene Correlation Network Analysis (WGCNA), and five machine learning methods. Prediction models were constructed and validated using six machine learning algorithms, achieving high accuracy (AUC > 0.75). Eleven key IIRGs were identified as active in immune pathways, such as the JAK-STAT signaling pathway, and were significantly correlated with immune cell infiltration in sepsis. Additionally, drug sensitivity analysis indicated that IIRGs correlated with responses to anticancer drugs. These results underscore the potential of these genes in enhancing sepsis diagnosis and treatment, highlighting the imperative for further validation across diverse populations.
Collapse
Affiliation(s)
- Weichuan Xiong
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330200, Jiangxi, China
| | - Yian Zhan
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330200, Jiangxi, China
| | - Rui Xiao
- The Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Fangpeng Liu
- Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- China-Japan Friendship Jiangxi Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
3
|
Di Flumeri G, Giaccari LG, Pace MC, Passavanti MB, Pota V, Riccardi V, Brunetti S, Sansone P, Coppolino F, Aurilio C. The Role of Corticosteroids in Non-Bacterial and Secondary Encephalitis. Life (Basel) 2024; 14:1699. [PMID: 39768405 PMCID: PMC11679550 DOI: 10.3390/life14121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Encephalitis affects 1.9 to 14.3 people per 100,000 each year, and the mortality rate varies but can be up to 40%. After the identification of a particular microorganism in a patient with encephalitis, appropriate antimicrobial therapy should be initiated. Corticosteroid therapy represents a therapeutic option in the treatment of primary central nervous system diseases due to its ability to reduce the inflammatory commitment of CNS and consequently reduce mortality rates regardless of the causative agent of injury. Corticosteroid therapy represents a therapeutic option in the treatment of primary central nervous system diseases. Their use is also recommended in meningitis with autoimmune etiology. While corticosteroids have repeatedly been used as adjunctive treatment in encephalitis of viral etiology, the scientific evidence supporting their effectiveness remains scarce. The use of standard doses recommended by the guidelines seems reasonable as an initial setting, especially when a definitive diagnosis of the causal agent is still awaited. The subsequent adjustment should be personalized based on the individual clinical response.
Collapse
Affiliation(s)
- Giusy Di Flumeri
- UOC Emerging Infectious Disease with High Contagiousness, AORN Ospedali dei Colli P.O. C Cotugno, 80131 Naples, Italy;
| | - Luca Gregorio Giaccari
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Maria Caterina Pace
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Maria Beatrice Passavanti
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Vincenzo Pota
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Vincenzo Riccardi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Simona Brunetti
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Pasquale Sansone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Francesco Coppolino
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| | - Caterina Aurilio
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy; (L.G.G.); (M.C.P.); (M.B.P.); (V.P.); (V.R.); (S.B.); (F.C.); (C.A.)
| |
Collapse
|
4
|
Kim J, Kim JH, Kim Y, Lee J, Lee HJ, Koh SJ, Im JP, Kim JS. iRhom2 deficiency reduces sepsis-induced mortality associated with the attenuation of lung macrophages in mice. Histochem Cell Biol 2024; 162:415-428. [PMID: 39134731 PMCID: PMC11393161 DOI: 10.1007/s00418-024-02318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/13/2024]
Abstract
Sepsis has a high mortality rate and leads to multi-organ failure, including lung injury. Inactive rhomboid protease family protein (iRhom2) has been identified as accountable for the release of TNF-α, a crucial mediator in the development of sepsis. This study aimed to evaluate the role of iRhom2 in sepsis and sepsis-induced acute lung injury (ALI). TNF-α and IL-6 secretion in vitro by peritoneal macrophages from wild-type (WT) and iRhom2 knoukout (KO) mice was assessed by enzyme-linked immunosorbent assay. Cecal ligation and puncture (CLP)-induced murine sepsis model was used for in vivo experiments. To evaluate the role of iRhom2 deficiency on survival during sepsis, both WT and iRhom2 KO mice were monitored for 8 consecutive days following the CLP. For histologic and biochemical examination, the mice were killed 18 h after CLP. iRhom2 deficiency improved the survival of mice after CLP. iRhom2 deficiency decreased CD68+ macrophage infiltration in lung tissues. Multiplex immunohistochemistry revealed that the proportion of Ki-67+ CD68+ macrophages was significantly lower in iRhom2 KO mice than that in WT mice after CLP. Moreover, CLP-induced release of TNF-α and IL-6 in the serum were significantly inhibited by iRhom2 deficiency. iRhom2 deficiency reduced NF-kB p65 and IκBα phosphorylation after CLP. iRhom2 deficiency reduces sepsis-related mortality associated with attenuated macrophage infiltration and proliferation in early lung injury. iRhom2 may play a pivotal role in the pathogenesis of sepsis and early stage of sepsis-induced ALI. Thus, iRhom2 may be a potential therapeutic target for the management of sepsis and sepsis-induced ALI.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
- Center for Health Promotion and Optimal Aging, Seoul National University Hospital, Seoul, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Younghoon Kim
- Department of Pathology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jooyoung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
5
|
Garcia Lopez A, Schäuble S, Sae-Ong T, Seelbinder B, Bauer M, Giamarellos-Bourboulis EJ, Singer M, Lukaszewski R, Panagiotou G. Risk assessment with gene expression markers in sepsis development. Cell Rep Med 2024; 5:101712. [PMID: 39232497 PMCID: PMC11528229 DOI: 10.1016/j.xcrm.2024.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Infection is a commonplace, usually self-limiting, condition but can lead to sepsis, a severe life-threatening dysregulated host response. We investigate the individual phenotypic predisposition to developing uncomplicated infection or sepsis in a large cohort of non-infected patients undergoing major elective surgery. Whole-blood RNA sequencing analysis was performed on preoperative samples from 267 patients. These patients developed postoperative infection with (n = 77) or without (n = 49) sepsis, developed non-infectious systemic inflammatory response (n = 31), or had an uncomplicated postoperative course (n = 110). Machine learning classification models built on preoperative transcriptomic signatures predict postoperative outcomes including sepsis with an area under the curve of up to 0.910 (mean 0.855) and sensitivity/specificity up to 0.767/0.804 (mean 0.746/0.769). Our models, confirmed by quantitative reverse-transcription PCR (RT-qPCR), potentially offer a risk prediction tool for the development of postoperative sepsis with implications for patient management. They identify an individual predisposition to developing sepsis that warrants further exploration to better understand the underlying pathophysiology.
Collapse
Affiliation(s)
- Albert Garcia Lopez
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Tongta Sae-Ong
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Bastian Seelbinder
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | | | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Roman Lukaszewski
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Faculty of Biological Sciences, 07743 Jena, Germany; Department of Medicine, University of Hong Kong, Hong Kong SAR, China; Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
6
|
Jiang WX, Li HH. Circulating inflammatory cytokines and the risk of sepsis: a bidirectional mendelian randomization analysis. BMC Infect Dis 2024; 24:793. [PMID: 39112975 PMCID: PMC11304706 DOI: 10.1186/s12879-024-09689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that is characterized by multiorgan dysfunction and caused by dysregulated cytokine networks, which are closely associated with sepsis progression and outcomes. However, currently available treatment strategies that target cytokines have failed. Thus, this study aimed to investigate the interplay between genetically predicted circulating concentrations of cytokines and the outcomes of sepsis and to identify potential targets for sepsis treatment. METHODS Data related to 35 circulating cytokines in 31,112 individuals (including 11,643 patients with sepsis) were included in genome-wide association studies (GWASs) from the UK Biobank and FinnGen consortia. A bidirectional two-sample Mendelian randomization (MR) analysis was performed using single nucleotide polymorphisms (SNPs) to evaluate the causal effects of circulating cytokines on sepsis outcomes and other cytokines. RESULTS A total of 35 inflammatory cytokine genes were identified in the GWASs, and 11 cytokines, including Interleukin-1 receptor antagonist (IL-1ra), macrophage inflammatory protein 1 (MIP1α), IL-16, et al., were associated with sepsis outcome pairs according to the selection criteria of the cis-pQTL instrument. Multiple MR methods verified that genetically predicted high circulating levels of IL-1ra or MIP1α were negatively correlated with genetic susceptibility to risk of sepsis, including sepsis (28-day mortality), septicaemia, streptococcal and pneumonia-derived septicaemia (P ≤ 0.01). Furthermore, genetic susceptibility of sepsis outcomes except sepsis (28-day mortality) markedly associated with the circulating levels of five cytokines, including active plasminogen activator inhibitor (PAI), interleukin 7 (IL-7), tumour necrosis factor alpha (TNF-α), beta nerve growth factor (NGF-β), hepatic growth factor (HGF) (P < 0.05). Finally, we observed that the causal interaction network between MIP1α or IL-1ra and other cytokines (P < 0.05). CONCLUSIONS This comprehensive MR analysis provides insights into the potential causal mechanisms that link key cytokines, particularly MIP1α, with risk of sepsis, and the findings suggest that targeting MIP1α may be a potential strategy for preventing sepsis.
Collapse
Affiliation(s)
- Wen-Xi Jiang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
7
|
Elendu C. The evolution of ancient healing practices: From shamanism to Hippocratic medicine: A review. Medicine (Baltimore) 2024; 103:e39005. [PMID: 38996102 PMCID: PMC11245246 DOI: 10.1097/md.0000000000039005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the ever-evolving healthcare landscape, ancient healing traditions cast a profound shadow, offering insights and inspirations that resonate with modern medical practice. This paper explores the enduring influence of shamanic and Hippocratic healing traditions on contemporary healthcare, examining their contributions to holistic health approaches, diagnostic techniques, and ethical standards. The Hippocratic emphasis on observation, clinical experience, and ethical principles laid the foundation for modern Western medicine, while shamanic practices highlight the importance of spiritual and psychological dimensions in healing. The comparative analysis reveals both commonalities and distinctions among various ancient practices, such as Ayurveda, Traditional Chinese Medicine, and indigenous healing systems, emphasizing their holistic understanding of health and the use of natural remedies. Cross-cultural exchanges, from the Silk Road to the Islamic Golden Age and beyond, facilitated the integration and dissemination of medical knowledge, enriching global medical traditions. The paper also discusses the impact of these ancient practices on contemporary healthcare systems, highlighting the resurgence of holistic and integrative medicine, the validation and incorporation of herbal remedies, and the challenges of cultural appropriation and scientific validation. By embracing the wisdom of ancient healing traditions and fostering collaboration between traditional and modern medicine, contemporary healthcare can enhance therapeutic options, promote patient-centered care, and address global health challenges with a more inclusive and compassionate approach. This integration holds promise for the future of healthcare, benefiting individuals and communities worldwide.
Collapse
|
8
|
Kumar DR, Banaś A, Krukiewicz K. Challenges and Advances in Biomarker Detection for Rapid and Accurate Sepsis Diagnosis: An Electrochemical Approach. BIOSENSORS 2024; 14:309. [PMID: 38920613 PMCID: PMC11202072 DOI: 10.3390/bios14060309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Sepsis is a life-threatening condition with high mortality rates due to delayed treatment of patients. The conventional methodology for blood diagnosis takes several hours, which suspends treatment, limits early drug administration, and affects the patient's recovery. Thus, rapid, accurate, bedside (onsite), economical, and reliable sepsis biomarker reading of the clinical sample is an emergent need for patient lifesaving. Electrochemical label-free biosensors are specific and rapid devices that are able to perform analysis at the patient's bedside; thus, they are considered an attractive methodology in a clinical setting. To reveal their full diagnostic potential, electrode architecture strategies of fabrication are highly desirable, particularly those able to preserve specific antibody-antigen attraction, restrict non-specific adsorption, and exhibit high sensitivity with a low detection limit for a target biomarker. The aim of this review is to provide state-of-the-art methodologies allowing the fabrication of ultrasensitive and highly selective electrochemical sensors for sepsis biomarkers. This review focuses on different methods of label-free biomarker sensors and discusses their advantages and disadvantages. Then, it highlights effective ways of avoiding false results and the role of molecular labels and functionalization. Recent literature on electrode materials and antibody grafting strategies is discussed, and the most efficient methodology for overcoming the non-specific attraction issues is listed. Finally, we discuss the existing electrode architecture for specific biomarker readers and promising tactics for achieving quick and low detection limits for sepsis biomarkers.
Collapse
Affiliation(s)
- Deivasigamani Ranjith Kumar
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Angelika Banaś
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| | - Katarzyna Krukiewicz
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland;
| |
Collapse
|
9
|
Akther F, Fallahi H, Zhang J, Nguyen NT, Ta HT. Evaluating thrombosis risk and patient-specific treatment strategy using an atherothrombosis-on-chip model. LAB ON A CHIP 2024; 24:2927-2943. [PMID: 38591995 DOI: 10.1039/d4lc00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Platelets play an essential role in thrombotic processes. Recent studies suggest a direct link between increased plasma glucose, lipids, and inflammatory cytokines with platelet activation and aggregation, resulting in an increased risk of atherothrombotic events in cardiovascular patients. Antiplatelet therapies are commonly used for the primary prevention of atherosclerosis. Transitioning from a population-based strategy to patient-specific care requires a better understanding of the risks and advantages of antiplatelet therapy for individuals. This proof-of-concept study evaluates the potential to assess an individual's risk of forming atherothrombosis using a dual-channel microfluidic model emulating multiple atherogenic factors in vitro, including high glucose, high cholesterol, and inflammatory cytokines along with stenosis vessel geometry. The model shows precise sensitivity toward increased plasma glucose, cholesterol, and tumour necrosis factor-alpha (TNF-α)-treated groups in thrombus formation. An in vivo-like dose-dependent increment in platelet aggregation is observed in different treated groups, benefiting the evaluation of thrombosis risk in the individual condition. Moreover, the model could help decide the effective dosing of aspirin in multi-factorial complexities. In the high glucose-treated group, a 50 μM dose of aspirin could significantly reduce platelet aggregation, while a 100 μM dose of aspirin was required to reduce platelet aggregation in the glucose-TNF-α-treated group, which proves the model's potentiality as a tailored tool for customised therapy.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
10
|
Liu D, Langston JC, Prabhakarpandian B, Kiani MF, Kilpatrick LE. The critical role of neutrophil-endothelial cell interactions in sepsis: new synergistic approaches employing organ-on-chip, omics, immune cell phenotyping and in silico modeling to identify new therapeutics. Front Cell Infect Microbiol 2024; 13:1274842. [PMID: 38259971 PMCID: PMC10800980 DOI: 10.3389/fcimb.2023.1274842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a global health concern accounting for more than 1 in 5 deaths worldwide. Sepsis is now defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can develop from bacterial (gram negative or gram positive), fungal or viral (such as COVID) infections. However, therapeutics developed in animal models and traditional in vitro sepsis models have had little success in clinical trials, as these models have failed to fully replicate the underlying pathophysiology and heterogeneity of the disease. The current understanding is that the host response to sepsis is highly diverse among patients, and this heterogeneity impacts immune function and response to infection. Phenotyping immune function and classifying sepsis patients into specific endotypes is needed to develop a personalized treatment approach. Neutrophil-endothelium interactions play a critical role in sepsis progression, and increased neutrophil influx and endothelial barrier disruption have important roles in the early course of organ damage. Understanding the mechanism of neutrophil-endothelium interactions and how immune function impacts this interaction can help us better manage the disease and lead to the discovery of new diagnostic and prognosis tools for effective treatments. In this review, we will discuss the latest research exploring how in silico modeling of a synergistic combination of new organ-on-chip models incorporating human cells/tissue, omics analysis and clinical data from sepsis patients will allow us to identify relevant signaling pathways and characterize specific immune phenotypes in patients. Emerging technologies such as machine learning can then be leveraged to identify druggable therapeutic targets and relate them to immune phenotypes and underlying infectious agents. This synergistic approach can lead to the development of new therapeutics and the identification of FDA approved drugs that can be repurposed for the treatment of sepsis.
Collapse
Affiliation(s)
- Dan Liu
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
- Department of Mechanical Engineering, Temple University, Philadelphia, PA, United States
- Department of Radiation Oncology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Huang J, Ren K, Huang L. Coptisine attenuates sepsis lung injury by suppressing LPS-induced lung epithelial cell inflammation and apoptosis. Allergol Immunopathol (Madr) 2023; 51:30-36. [PMID: 37937493 DOI: 10.15586/aei.v51i6.972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE This study aimed to investigate the functioning and mechanism of coptisine in acute lung injury (ALI). METHODS Murine Lung Epithelial 12 (MLE-12) cells were stimulated with lipopolysaccharide (LPS) to construct an in vitro pulmonary injury model to study the functioning of coptisine in sepsis-induced ALI. The viability of MLE-12 cells was assessed by the cell counting kit-8 assay. The cytokine release of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-1β was measured by enzyme-linked-immunosorbent serologic assay. The relative expression levels of TNF-α, IL-6, and IL-1β mRNA were examined by reverse transcription-quantitative polymerase chain reaction. The cell apoptosis of MLE-12 cells was determined by Annexin V/propidium iodide staining and analyzed by flow cytometry. The expressions of apoptosis-related proteins Bax and cleaved Caspase-3 were observed by Western blot analysis. The activation of nuclear factor kappa B (NF-κB) signaling pathway was discovered by the determination of phospho-p65, p65, phospho-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and IκBα through Western blot analysis. RESULTS Coptisine treatment could significantly restore decrease in MLE-12 cell viability caused by LPS stimulation. The release of TNF-α, IL-6, and IL-1β was significantly inhibited by coptisine treatment. Coptisine treatment inhibited MLE-12 cell apoptosis induced by LPS, and also inhibited the expression levels of Bax and cleaved Caspase-3. Coptisine treatment along with LPS stimulation, significantly reduced the protein level of phospho-IκBα, increased the level of IκBα, and reduced phospho-p65-p65 ratio. CONCLUSION These results indicated that coptisine attenuated sepsis lung injury by suppressing lung epithelial cell inflammation and apoptosis through NF-κB pathway. Therefore, coptisine may have potential to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Junjun Huang
- Department of Intensive Care Unit, Affiliated Nantong Third Hospital of Nantong University (Nantong Third People's Hospital), Nantong City, Jiangsu Province, China
| | - Ke Ren
- Department of Intensive Care Unit, Affiliated Nantong Third Hospital of Nantong University (Nantong Third People's Hospital), Nantong City, Jiangsu Province, China
| | - Lili Huang
- Department of Respiratory Medicine, Affiliated Nantong Third Hospital of Nantong University (Nantong Third People's Hospital), Nantong City, Jiangsu Province, China;
| |
Collapse
|
12
|
Bird MF, Hebbes CP, Tamang A, Willets JM, Thompson JP, Guerrini R, Calo G, Lambert DG. In vitro sepsis up-regulates Nociceptin/Orphanin FQ receptor expression and function on human T- but not B-cells. Br J Pharmacol 2023; 180:2298-2314. [PMID: 37021779 PMCID: PMC10953342 DOI: 10.1111/bph.16088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In animal models of sepsis, increased activation of the Nociceptin/Orphanin FQ (N/OFQ) receptor NOP is associated with mortality and NOP antagonists improved survival. We have explored the role of the N/OFQ-NOP system in freshly isolated volunteer human B- and T-cells incubated with lipopolysaccharide (LPS) and peptidoglycan G (PepG) as a model of in vitro sepsis. EXPERIMENTAL APPROACH B- and T-cell NOP expression was measured using the NOP fluorescent probe N/OFQATTO594 , N/OFQ content was measured using immunofluorescence, N/OFQ release was tracked using a CHOhNOPGαiq5 biosensor assay and NOP function was measured using transwell migration and cytokine/chemokine release using a 25-plex assay format. Cells were challenged with LPS/PepG. KEY RESULTS CD19-positive B-cells bound N/OFQATTO594 ; they also contain N/OFQ. Stimulation with CXCL13/IL-4 increased N/OFQ release. N/OFQ trended to reduced migration to CXCL13/IL-4. Surface NOP expression was unaffected by LPS/PepG, but this treatment increased GM-CSF release in an N/OFQ sensitive manner. CD3-positive T-cells did not bind N/OFQATTO594 ; they did contain N/OFQ. Stimulation with CXCL12/IL-6 increased N/OFQ release. When incubated with LPS/PepG, NOP surface expression was induced leading to N/OFQATTO594 binding. In LPS/PepG-treated cells, N/OFQ reduced migration to CXCL12/IL-6. LPS/PepG increased GM-CSF release in an N/OFQ sensitive manner. CONCLUSIONS AND IMPLICATIONS We suggest both a constitutive and sepsis-inducible N/OFQ-NOP receptor autocrine regulation of B- and T-cell function, respectively. These NOP receptors variably inhibit migration and reduce GM-CSF release. These data provide mechanistic insights to the detrimental role for increased N/OFQ signalling in sepsis and suggest a potential role for NOP antagonists as treatments.
Collapse
Affiliation(s)
- Mark F. Bird
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | - Christopher P. Hebbes
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | | | | | - Jonathan P. Thompson
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPaduaItaly
| | - David G. Lambert
- Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain ManagementUniversity of LeicesterLeicesterUK
| |
Collapse
|
13
|
Sari MI, Jusuf NK, Munir D, Putra A, Bisri T, Ilyas S, Farhat F, Muhar AM, Rusda M, Amin MM. The Role of Mesenchymal Stem Cell Secretome in the Inflammatory Mediators and the Survival Rate of Rat Model of Sepsis. Biomedicines 2023; 11:2325. [PMID: 37626822 PMCID: PMC10452511 DOI: 10.3390/biomedicines11082325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
In sepsis, simultaneously elevated levels of pro-inflammatory cytokines and interleukin (IL)-10 indicate immune response dysregulation, increasing the mortality of the host. As mesenchymal stem cell (MSC) secretome is known to have immunomodulatory effects, we aim to assess the role of MSC secretome in the inflammatory mediators (NF-κB p65 and p50, TNF-α, IL-10) and the survival rate of a rat model of sepsis. In this study, forty-eight male Rattus norvegicus rats were divided into one sham group and three groups with sepsis induction: the control group and the sepsis-induced rat groups treated with 150 μL (T1) and 300 μL (T2) of secretome. The survival rate was observed per 6 h for 48 h and plotted using the Kaplan-Meier method. Compared to the control group, T2 showed a significant decrease in the relative expression of NF-κB and the serum TNF-α level, and a significant increase in the serum IL-10 level. Meanwhile, T1 showed a significant decrease in the serum TNF-α level compared to the control group. The Kaplan-Meier Log Rank test did not show significance in the distribution of survival between T1, T2, and the control group. However, from the 18th to the 36th hour, the survival rate of T2 was lower than the survival rate of the control group and T1, with a noticeable difference between T2 and the control group, as well as T1 at the 36th hour. At the 42nd hour, the survival rate of T2 was the same as the control group and remained lower than T1. In conclusion, MSC secretome regulated the inflammatory mediators in rat model of sepsis, with a dose of 150 μL being more effective.
Collapse
Affiliation(s)
- Mutiara Indah Sari
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.R.); (M.M.A.)
| | - Nelva Karmila Jusuf
- Department of Dermatology & Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Delfitri Munir
- Department of Ear, Nose & Throat, Head & Neck, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.); (F.F.)
| | - Agung Putra
- Stem Cell and Cancer Research, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang 50112, Indonesia;
| | - Tatang Bisri
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Jenderal Achmad Yani, Bandung 40513, Indonesia;
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Farhat Farhat
- Department of Ear, Nose & Throat, Head & Neck, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.); (F.F.)
| | - Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Muhammad Rusda
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.R.); (M.M.A.)
| | - Mustafa Mahmud Amin
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.R.); (M.M.A.)
| |
Collapse
|
14
|
Fodor R. Fluid Therapy from Friend to Foe. J Crit Care Med (Targu Mures) 2023; 9:135-137. [PMID: 37588185 PMCID: PMC10425928 DOI: 10.2478/jccm-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023] Open
Affiliation(s)
- Raluca Fodor
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| |
Collapse
|
15
|
Jeffrey M, Denny KJ, Lipman J, Conway Morris A. Differentiating infection, colonisation, and sterile inflammation in critical illness: the emerging role of host-response profiling. Intensive Care Med 2023; 49:760-771. [PMID: 37344680 DOI: 10.1007/s00134-023-07108-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023]
Abstract
Infection results when a pathogen produces host tissue damage and elicits an immune response. Critically ill patients experience immune activation secondary to both sterile and infectious insults, with overlapping clinical phenotypes and underlying immunological mechanisms. Patients also undergo a shift in microbiota with the emergence of pathogen-dominant microbiomes. Whilst the combination of inflammation and microbial shift has long challenged intensivists in the identification of true infection, the advent of highly sensitive molecular diagnostics has further confounded the diagnostic dilemma as the number of microbial detections increases. Given the key role of the host immune response in the development and definition of infection, profiling the host response offers the potential to help unravel the conundrum of distinguishing colonisation and sterile inflammation from true infection. This narrative review provides an overview of current approaches to distinguishing colonisation from infection using routinely available techniques and proposes matrices to support decision-making in this setting. In searching for new tools to better discriminate these states, the review turns to the understanding of the underlying pathobiology of the host response to infection. It then reviews the techniques available to assess this response in a clinically applicable context. It will cover techniques including profiling of transcriptome, protein expression, and immune functional assays, detailing the current state of knowledge in diagnostics along with the challenges and opportunities. The ultimate infection diagnostic tool will likely combine an assessment of both host immune response and sensitive pathogen detection to improve patient management and facilitate antimicrobial stewardship.
Collapse
Affiliation(s)
- Mark Jeffrey
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kerina J Denny
- Department of Intensive Care, Gold Coast University Hospital, Southport, QLD, Australia
- School of Medicine, University of Queensland, Herston, Brisbane, Australia
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Nimes University Hospital, University of Montpellier, Nimes, France
| | - Andrew Conway Morris
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Sun L, Chen Z, Ni Y, He Z. Network pharmacology-based approach to explore the underlying mechanism of sinomenine on sepsis-induced myocardial injury in rats. Front Pharmacol 2023; 14:1138858. [PMID: 37388447 PMCID: PMC10303801 DOI: 10.3389/fphar.2023.1138858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Sepsis, a systemic disease, usually induces myocardial injury (MI), and sepsis-induced MI has become a significant contributor to sepsis-related deaths in the intensive care unit. The objective of this study is to investigate the role of sinomenine (SIN) on sepsis-induced MI and clarify the underlying mechanism based on the techniques of network pharmacology. Methods: Cecum ligation and puncture (CLP) was adopted to induce sepsis in male Sprague-Dawley (SD) rats. Serum indicators, echocardiographic cardiac parameters, and hematoxylin and eosin (H&E) staining were conducted to gauge the severity of cardiac damage. The candidate targets and potential mechanism of SIN against sepsis-induced MI were analyzed via network pharmacology. Enzyme-linked immunosorbent assay was performed for detecting the serum concentration of inflammatory cytokines. Western blot was applied for evaluating the levels of protein expression. Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay was applied to assess cardiomyocyte apoptosis. Results: SIN significantly improved the cardiac functions, and attenuated myocardial structural damage of rats as compared with the CLP group. In total, 178 targets of SIN and 945 sepsis-related genes were identified, and 33 overlapped targets were considered as candidate targets of SIN against sepsis. Enrichment analysis results demonstrated that these putative targets were significantly associated with the Interleukin 17 (IL-17) signal pathway, inflammatory response, cytokines-mediated signal pathway, and Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) pathway. Molecular docking suggested that SIN had favorable binding affinities with Mitogen-Activated Protein Kinase 8 (MAPK8), Janus Kinase 1 (JAK1), Janus Kinase 2 (JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), and nuclear factor kappa-B (NF-κB). SIN significantly reduced the serum concentration of Tumor Necrosis Factor-α (TNF-α), Interleukin 1 Beta (IL-1β), Interleukin 6 (IL-6), Interferon gamma (IFN-γ), and C-X-C Motif Chemokine Ligand 8 (CXCL8), lowered the protein expression of phosphorylated c-Jun N-terminal kinase 1 (JNK1), JAK1, JAK2, STAT3, NF-κB, and decreased the proportion of cleaved-caspase3/caspase3. In addition, SIN also significantly inhibited the apoptosis of cardiomyocytes as compared with the CLP group. Conclusion: Based on network pharmacology analysis and corresponding experiments, it was concluded that SIN could mediate related targets and pathways to protect against sepsis-induced MI.
Collapse
|
17
|
Hwang SJ, Wang JH, Lee JS, Kang JY, Baek DC, Kim GH, Ahn YC, Son CG. Ginseng Sprouts Attenuate Mortality and Systemic Inflammation by Modulating TLR4/NF-κB Signaling in an LPS-Induced Mouse Model of Sepsis. Int J Mol Sci 2023; 24:1583. [PMID: 36675101 PMCID: PMC9860726 DOI: 10.3390/ijms24021583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis leads to multi-organ failure due to aggressive systemic inflammation, which is one of the main causes of death clinically. This study aimed to evaluate whether ginseng sprout extracts (GSE) can rescue sepsis and explore its underlying mechanisms. C57BL/6J male mice (n = 15/group) were pre-administered with GSE (25, 50, and 100 mg/kg, p.o) for 5 days, and a single injection of lipopolysaccharide (LPS, 30 mg/kg, i.p) was administered to construct a sepsis model. Additionally, RAW264.7 cells were treated with LPS with/without GSE/its main components (Rd and Re) to explain the mechanisms corresponding to the animal-derived effects. LPS injection led to the death of all mice within 38 h, while GSE pretreatment delayed the time to death. GSE pretreatment also notably ameliorated LPS-induced systemic inflammation such as histological destruction in both the lung and liver, along with reductions in inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, in both tissues and serum. Additionally, GSE markedly diminished the drastic secretion of nitric oxide (NO) by suppressing the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) in both tissues. Similar changes in TNF-α, IL-1β, NO, iNOS, and COX2 were observed in LPS-stimulated RAW264.7 cells, and protein expression data and nuclear translocation assays suggested GSE could modulate LPS-binding protein (LBP), Toll-like receptor 4 (TLR4), and NF-κB. Ginsenoside Rd could be a major active component in GSE that produces the anti-sepsis effects. Our data support that ginseng sprouts could be used as an herbal resource to reduce the risk of sepsis. The corresponding mechanisms may involve TLR4/NF-κB signaling and a potentially active component.
Collapse
Affiliation(s)
- Seung-Ju Hwang
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| | - Jing-Hua Wang
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| | - Ji-Yun Kang
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| | - Dong-Cheol Baek
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
| | - Geon-Ho Kim
- Department of Korean Medicine, Korean Medical College of Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
| | - Yo-Chan Ahn
- Department of Health Service Management, Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Institute of Bioscience & Integrative Medicine, Daejeon University, Daedukdae-ro 176 bun-gil 75, Seo-gu, Daejeon 35235, Republic of Korea
- Department of Korean Medicine, Korean Medical College of Daejeon University, Daehak-ro 62, Dong-gu, Daejeon 34520, Republic of Korea
| |
Collapse
|
18
|
Ballambattu VB, Gurugubelli KR. Neonatal sepsis: Recent advances in pathophysiology and management. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:503-513. [DOI: 10.1016/b978-0-323-85730-7.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Kulkarni AP, Mishra RC. Can we Reconcile Evidence-based Medicine with Personalized Medicine: Poised on a Cusp! Indian J Crit Care Med 2022; 26:S1-S2. [PMID: 36896357 PMCID: PMC9989873 DOI: 10.5005/jp-journals-10071-24354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
How to cite this article: Kulkarni AP, Mishra RC. Can we Reconcile Evidence-based Medicine with Personalized Medicine: Poised on a Cusp! Indian J Crit Care Med 2022;26(S2):S1-S2.
Collapse
Affiliation(s)
- Atul Prabhakar Kulkarni
- Department of Anesthesia, Critical Care and Pain, Division of Critical Care Medicine, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | |
Collapse
|
20
|
Personalized Physiological Medicine as the Future of Intensive Care Medicine. J Crit Care Med (Targu Mures) 2022; 8:143-144. [PMID: 36062040 PMCID: PMC9396950 DOI: 10.2478/jccm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022] Open
|
21
|
Abdalhabib EK, Algarni A, Saboor M, Alanazi F, Ibrahim IK, Alfeel AH, Alanazi AM, Alanazi AM, Alruwaili AM, Alanazi MH, Alshaikh NA. Association of TNF-α rs1800629 with Adult Acute B-Cell Lymphoblastic Leukemia. Genes (Basel) 2022; 13:genes13071237. [PMID: 35886021 PMCID: PMC9320751 DOI: 10.3390/genes13071237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
TNF−α influences lymphomagenesis by upregulating proinflammatory and antiapoptotic pathways. In this study, we evaluated the frequency of TNF−α rs1800629 (−308 G>A) polymorphism in newly diagnosed adult patients with acute lymphoblastic leukemia (ALL) and its correlation with age at diagnosis, gender and subtype of ALL. In this case control study, a total of 330 individuals were recruited, including 165 newly diagnosed adult patients with ALL, from the Radiation and Isotope Center in Khartoum (RICK) and 165 healthy normal controls. TNF−α rs1800629 polymorphism was tested through allele-specific polymerase chain reaction (PCR) assay. The frequency of the rs1800629 GA genotype was high (70.9% vs. 60%, OR = 1.84) in the patient group as compared to healthy controls, whereas GG and AA genotypes did not exhibit any statistically significant difference between controls and patients. Based on subtype, GG and GA rs1800629 genotypes showed increased risk of B-ALL (OR 0.46 and 2.12, respectively), whereas rs1800629 GG, GA and AA genotypes did not show any disease association with T-ALL (p > 0.05). Age at diagnosis and gender did not exhibit any association of rs1800629 with ALL in the patient group. In conclusion, rs1800629 is associated with high risk of adult B-ALL, with an insignificant effect of age at diagnosis and gender.
Collapse
Affiliation(s)
- Ezeldine K. Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah P.O. Box 42421, Saudi Arabia; (E.K.A.); (F.A.)
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar P.O. Box 91431, Saudi Arabia;
| | - Muhammad Saboor
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan P.O. Box 45142, Saudi Arabia;
- Medical Research Center, Jazan University, Jazan P.O. Box 45142, Saudi Arabia
- Correspondence: (M.S.); (A.H.A.); Tel.: +966-54-495-9029 (M.S.); +971-52-540-1334 (A.H.A.)
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakakah P.O. Box 42421, Saudi Arabia; (E.K.A.); (F.A.)
| | - Ibrahim K. Ibrahim
- Department of Hematology, Faculty of Medical Laboratory Sciences, Al Neelain University, Khartoum P.O. Box 12702, Sudan;
| | - Ayman H. Alfeel
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- Correspondence: (M.S.); (A.H.A.); Tel.: +966-54-495-9029 (M.S.); +971-52-540-1334 (A.H.A.)
| | - Abdullah M. Alanazi
- Gurayyat Health Affair, Regional Laboratory and Central Blood Bank, Ministry of Health, Gurayyat P.O. Box 77413, Saudi Arabia; (A.M.A.); (A.M.A.); (A.M.A.); (M.H.A.)
| | - Abdulmajeed M. Alanazi
- Gurayyat Health Affair, Regional Laboratory and Central Blood Bank, Ministry of Health, Gurayyat P.O. Box 77413, Saudi Arabia; (A.M.A.); (A.M.A.); (A.M.A.); (M.H.A.)
| | - Abdulaziz M. Alruwaili
- Gurayyat Health Affair, Regional Laboratory and Central Blood Bank, Ministry of Health, Gurayyat P.O. Box 77413, Saudi Arabia; (A.M.A.); (A.M.A.); (A.M.A.); (M.H.A.)
| | - Muath H. Alanazi
- Gurayyat Health Affair, Regional Laboratory and Central Blood Bank, Ministry of Health, Gurayyat P.O. Box 77413, Saudi Arabia; (A.M.A.); (A.M.A.); (A.M.A.); (M.H.A.)
| | - Nahla A. Alshaikh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan P.O. Box 45142, Saudi Arabia;
| |
Collapse
|
22
|
Lv ZY, Shi YL, Bassi GS, Chen YJ, Yin LM, Wang Y, Ulloa L, Yang YQ, Xu YD. Electroacupuncture at ST36 ( Zusanli) Prevents T-Cell Lymphopenia and Improves Survival in Septic Mice. J Inflamm Res 2022; 15:2819-2833. [PMID: 35535053 PMCID: PMC9078867 DOI: 10.2147/jir.s361466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Sepsis is the main cause of death in intensive care unit. Maladaptive cytokine storm and T-cell lymphopenia are critical prognosis predictors of sepsis. Electroacupuncture (EA) is expected to be an effective intervention to prevent sepsis. This study aims to determine the potential of EA at ST36 (Zusanli) to prevent experimental septic mice. Methods Mice were randomly assigned into PBS, LPS, or EA+LPS group. EA (0.1 mA, continuous wave, 10 Hz) was performed stimulating the ST36 for 30 min, once a day for 3 days. After the third day, all mice were challenged with PBS or LPS (4 mg/kg) simultaneously. Mice were evaluated for survival, ear temperature, and other clinical symptoms. Lung and small intestine tissue injuries were analyzed by hematoxylin and eosin staining. Bio-Plex cytokine assay was used to analyze the concentration of cytokines. T lymphocytes were analyzed by flow cytometry and Western blot assays. The role of T cells in preventing sepsis by EA was analyzed by using nude mice lacking T lymphocytes. Results EA at ST36 improved survival, symptom scores, and ear temperature of endotoxemic mice. EA also improved dramatically pulmonary and intestinal injury by over 50% as compared to untreated mice. EA blunted the inflammatory cytokine storm by inducing a lasting inhibition of the production of major inflammatory factors (TNF-α, IL-1β, IL-5, IL-6, IL-10, IL-17A, eotaxin, IFN-γ, MIP-1β and KC). Flow cytometry and Western blot analyses showed EA significantly reduced T-lymphocyte apoptosis and pyroptosis. Furthermore, T lymphocytes were critical for the effects of EA at ST36 stimulation blunted serum TNF-α levels in wild-type but not in nude mice. Conclusion EA halted systemic inflammation and improved survival in endotoxemic mice. These effects are associated with the protective effect of EA on T lymphocytes, and T cells are required in the anti-inflammatory effects of EA in sepsis.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Gabriel Shimizu Bassi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Luis Ulloa
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
23
|
Neumann A. Rapid release of sepsis markers heparin-binding protein and calprotectin triggered by anaerobic cocci poses an underestimated threat. Anaerobe 2022; 75:102584. [DOI: 10.1016/j.anaerobe.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
24
|
Kyriakoudi A, Rovina N, Koltsida O, Kostakou E, Konstantelou E, Kardara M, Kompoti M, Palamidas A, Kaltsakas G, Koutsoukou A. Weaning Failure in Critically Ill Patients Is Related to the Persistence of Sepsis Inflammation. Diagnostics (Basel) 2021; 12:diagnostics12010092. [PMID: 35054259 PMCID: PMC8774440 DOI: 10.3390/diagnostics12010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: Septic patients undergoing mechanical ventilation (MV) often experience difficulty in weaning. Th aim of this study was to determine whether inflammatory biomarkers of sepsis could be indicative of the failure or success of spontaneous breathing trial (SBT) in these patients. Methods: Sixty-five patients on MV (42 septic and 23 intubated for other reasons) fulfilling the criteria for SBT were included in the study. Blood samples were collected right before, at the end of (30 min) and 24 h after the SBT. Serum inflammatory mediators associated with sepsis (IL-18, IL-18BP, TNF) were determined and correlated with the outcome of SBT. Results: A successful SBT was achieved in 45 patients (69.2%). Septic patients had a higher percentage of SBT failure as compared to non-septic patients (85% vs. 15%, p = 0.026), with an odds ratio for failing 4.5 times (OR = 4.5 95%CI: 1.16–17.68, p 0.022). IL-18 levels and the relative mRNA expression in serum were significantly higher in septic as compared to non-septic patients (p < 0.05). Sepsis was independently associated with higher serum IL-18 and TNF levels in two time-point GEE models (53–723, p = 0.023 and 0.3–64, p = 0.048, respectively). IL-18BP displayed independent negative association with rapid shallow breathing index (RSBI) (95% CI: −17.6 to −4, p = 0.002). Conclusion: Sustained increased levels of IL-18 and IL-18BP, acknowledged markers of sepsis, were found to be indicative of SBT failure in patients recovering from sepsis. Our results show that, although subclinical, remaining septic inflammation that sustaines for a long time complicates the weaning procedure. Biomarkers for the estimation of the septic burden and the right time for weaning are needed.
Collapse
Affiliation(s)
- Anna Kyriakoudi
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
- Correspondence: ; Tel.: +30-210-7763650
| | - Ourania Koltsida
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Eirini Kostakou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Elissavet Konstantelou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Matina Kardara
- 1st Department of Critical Care Medicine & Pulmonary Services, National and Kapodistrian University of Athens, Medical School, Evangelismos Hospital, 10676 Athens, Greece;
| | - Maria Kompoti
- Intensive Care Unit, General Hospital of Eleusis Thriasio, 13674 Athens, Greece;
| | - Anastasios Palamidas
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Georgios Kaltsakas
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| | - Antonia Koutsoukou
- 1st Department of Respiratory Medicine, Medical School, National and Kapodistrian University of Athens and “Sotiria” Chest Disease Hospital, 11527 Athens, Greece; (A.K.); (O.K.); (E.K.); (E.K.); (A.P.); (G.K.); (A.K.)
| |
Collapse
|
25
|
D Somogyi R, C Sheridan D. Recent Advances in Bedside Device-Based Early Detection of Sepsis. J Intensive Care Med 2021; 37:849-856. [PMID: 34967252 DOI: 10.1177/08850666211044124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early detection of sepsis is challenging to achieve with current diagnostic methods, leading to expenditures of $27 billion annually in the United States with significant associated mortality. Various scoring systems have been proposed such as the sequential organ failure assessment (SOFA) and systemic inflammatory response syndrome (SIRS) criteria for identification of sepsis, but their sensitivities range from 60% to 70% when used in the emergency department triage. Other methods for the recognition of sepsis may rely on laboratory work, in addition to vitals monitoring, and are often outpaced by the development of sepsis. Automated alerts have not shown any reduction in mortality thus far. New technology may fill a critical gap in the early detection of sepsis. The ideal bedside screening device for would demonstrate rapid time to result, high portability, and high sensitivity to not miss cases, but also reasonable specificity to prevent provider fatigue from excessive false alerts. Non-invasive end-organ perfusion devices analyzing lactate and capillary refill time (CRT) tend to perform well in speed and portability, but may be less sensitive. Biomarker devices demonstrate a wider array of performance metrics. Those analyzing a single biomarker tend to be more sensitive but are less specific to the diagnosis of sepsis than technologies that assess multiple biomarkers, which in turn have lower sensitivity. Additionally, biomarker devices are generally invasive requiring blood samples, which may or may not be feasible in all patients especially when serial draws are needed. Sepsis is a complex disease process and most likely will require a combination of improved technology in addition to vital signs and high-risk patient history for better recognition. This review examines recent advances in the device-based early detection of sepsis between 2017 and 2020 with emphasis on bedside diagnostics, divided into markers of perfusion and biomarkers commonly implicated in sepsis.
Collapse
Affiliation(s)
- Rita D Somogyi
- 6684Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
26
|
Zhai GH, Zhang W, Xiang Z, He LZ, Wang WW, Wu J, Shang AQ. Diagnostic Value of sIL-2R, TNF-α and PCT for Sepsis Infection in Patients With Closed Abdominal Injury Complicated With Severe Multiple Abdominal Injuries. Front Immunol 2021; 12:741268. [PMID: 34745113 PMCID: PMC8569904 DOI: 10.3389/fimmu.2021.741268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the diagnostic value of soluble interleukin-2 receptor (sIL-2R), tumor necrosis factor-α (TNF-α), procalcitonin (PCT), and combined detection for sepsis infection in patients with closed abdominal injury complicated with severe multiple abdominal injuries. PATIENTS AND METHODS One hundred forty patients with closed abdominal injury complicated with severe multiple abdominal injuries who were diagnosed and treated from 2015 to 2020 were divided into a sepsis group (n = 70) and an infection group (n = 70). RESULTS The levels of sIL-2R, TNF-α, and PCT in the sepsis group were higher than those in the infection group (p < 0.05). The receiver operating characteristic (ROC) curve showed that the areas under the ROC curve (AUCs) of sIL-2R, TNF-α, PCT and sIL-2R+TNF-a+PCT were 0.827, 0.781, 0.821, and 0.846, respectively, which were higher than those of white blood cells (WBC, 0.712), C-reactive protein (CRP, 0.766), serum amyloid A (SAA, 0.666), and IL-6 (0.735). The AUC of the three combined tests was higher than that of TNF-α, and the difference was statistically significant (p < 0.05). There was no significant difference in the AUCs of sIL-2R and TNF-α, sIL-2R and PCT, TNF-α and PCT, the three combined tests and sIL-2R, and the three combined tests and PCT (p > 0.05). When the median was used as the cut point, the corrected sIL-2R, TNF-α, and PCT of the high-level group were not better than those of the low-level group (p > 0.05). When the four groups were classified by using quantile as the cut point, the OR risk values of high levels of TNF-α and PCT (Q4) and the low level of PCT (Q1) after correction were 7.991 and 21.76, respectively, with statistical significance (p < 0.05). CONCLUSIONS The detection of sIL-2R, TNF-α, and PCT has good value in the diagnosis of sepsis infection in patients with closed abdominal injury complicated with severe multiple abdominal injuries. The high concentrations of PCT and TNF-α can be used as predictors of the risk of septic infection.
Collapse
Affiliation(s)
- Guang-hua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Zhang
- Department of Laboratory Medicine, Jiaozuo Fifth People’s Hospital, Jiaozuo, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Zhen He
- Department of Laboratory, Jiaozuo Second People’s Hospital, Jiaozuo, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan Polytechnic University, Henan, China
| | - Wei-wei Wang
- Department of Pathology, Tinghu People’s Hospital of Yancheng City, Yancheng, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - An-quan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Al-Amodi HS, Abdelsattar S, Kasemy ZA, Bedair HM, Elbarbary HS, Kamel HFM. Potential Value of TNF-α (-376 G/A) Polymorphism and Cystatin C (CysC) in the Diagnosis of Sepsis Associated Acute Kidney Injury (S-AK I) and Prediction of Mortality in Critically Ill patients. Front Mol Biosci 2021; 8:751299. [PMID: 34692772 PMCID: PMC8526786 DOI: 10.3389/fmolb.2021.751299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis Associated Kidney Injury represents a major health concern as it is frequently associated with increased risk of mortality and morbidity. We aimed to evaluate the potential value of TNF-α (-376 G/A) and cystatin C in the diagnosis of S-AKI and prediction of mortality in critically ill patients. This study included 200 critically ill patients and 200 healthy controls. Patients were categorized into 116 with acute septic shock and 84 with sepsis, from which 142 (71%) developed S-AKI. Genotyping of TNF-α (-376 G/A) was performed by RT-PCR and serum CysC was assessed by Enzyme Linked Immunosorbent Assay. Our results showed a highly significant difference in the genotype frequencies of TNF-α (-376 G/A) SNP between S-AKI and non-AKI patients (p < 0.001). Additionally, sCysC levels were significantly higher in the S-AKI group (p = 0.011). The combination of both sCysC and TNF-α (-376 G/A) together had a better diagnostic ability for S-AKI than sCysC alone (AUC = 0.610, 0.838, respectively). Both GA and AA genotypes were independent predictors of S-AKI (p= < 0.001, p = 0.002 respectively). Additionally, sCysC was significantly associated with the risk of S-AKI development (Odds Ratio = 1.111). Both genotypes and sCysC were significant predictors of non-survival (p < 0.001), suggesting their potential role in the diagnosis of S-AKI and prediction of mortality.
Collapse
Affiliation(s)
- Hiba S Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Zeinab A. Kasemy
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
| | - Hanan M. Bedair
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebine Elkoum, Egypt
| | - Hany S. Elbarbary
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, Menoufia University, Shebine Elkoum, Egypt
- Department of Internal Medicine, Renal Unit, Faculty of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hala F. M. Kamel
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Abstract
Abstract
The innate immune system is mandatory for the activation of antiviral host defense and eradication of the infection. In this regard, dendritic cells, natural killer cells, macrophages, neutrophils representing the cellular component, and cytokines, interferons, complement or Toll-Like Receptors, representing the mediators of unspecific response act together for both activation of the adaptive immune response and viral clearance. Of great importance is the proper functioning of the innate immune response from the very beginning. For instance, in the early stages of viral infection, the defective interferon response leads to uncontrolled viral replication and pathogen evasion, while hypersecretion during the later stages of infection generates hyperinflammation. This cascade activation of systemic inflammation culminates with cytokine storm syndrome and hypercoagulability state, due to a close interconnection between them. Thus an unbalanced reaction, either under- or over- stimulation of the innate immune system will lead to an uncoordinated response and unfavorable disease outcomes. Since both cellular and humoral factors are involved in the time-course of the innate immune response, in this review we aimed to address their gradual involvement in the antiviral response with emphasis on key steps in SARS-CoV-2 infection.
Collapse
|
29
|
Hugo Montes A, Valle-Garay E, Martin G, Collazos J, Alvarez V, Meana A, Pérez-Is L, Carton JA, Taboada F, Asensi V. The TNF-α ( -238 G/A) polymorphism could protect against development of severe sepsis. Innate Immun 2021; 27:409-420. [PMID: 34472396 PMCID: PMC8419297 DOI: 10.1177/17534259211036186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Primary responses in sepsis-mediated inflammation are regulated by pro-inflammatory cytokines. Variations in the cytokine genes might modify their transcription or expression, plasma cytokines levels and response to sepsis. Activation protein-1 (AP-1) and NF-κB regulate cytokines gene expression in sepsis. A total of 90 severely septic and 91 non-infected patients were prospectively studied. IL-1α (-889 C/T), IL-1β (+3954 C/T), IL-6 (-174 G/C), TNF-α (-238 G/A), TNF-α (-308G/A), IL-8 (-251A/T) and IL-10 (-1082 G/A) SNPs, plasma IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13, IFN-γ, TNF-α and monocyte chemoattractant protein 1 (MCP-1) levels, and AP-1 and NF-κB gene expression by neutrophils were assessed. A allele carriers of TNF-α (-238 G/A) SNP were less frequent among septic patients. IL-6, IL-8, IL-10, TNF-α and MCP-1 levels were higher, and AP-1 and NF-κB gene expressions lower in septic patients. Sepsis was independently associated with higher fibrinogen, neutrophils counts and IL-8 levels, lower prothrombin, absence of the variant A allele of the TNF-α (-238 G/A) SNP, and haemodynamic failure. Death was independently associated with a higher APACHE II score, higher IL-8 levels, and the diagnosis of sepsis. TNF-a (-238 G/A) SNP could protect against sepsis development. Higher IL-8 levels are predictive of sepsis and mortality.
Collapse
Affiliation(s)
- A. Hugo Montes
- Biochemistry and Molecular Biology, Oviedo University School of Medicine, Spain
- Group of Translational Research in Infectious Diseases, Instituto de investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Eulalia Valle-Garay
- Biochemistry and Molecular Biology, Oviedo University School of Medicine, Spain
- Group of Translational Research in Infectious Diseases, Instituto de investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Guadalupe Martin
- Critical Care, Hospital Universitario Central de Asturias (HUCA), Spain
| | | | - Victoria Alvarez
- Molecular Genetics Unit-Nephrology Research Institute, Hospital Universitario Central de Asturias (HUCA), Spain
| | - Alvaro Meana
- Community Centre for Blood and Tissues of Asturias, CIBERER U714, Spain
| | - Laura Pérez-Is
- Biochemistry and Molecular Biology, Oviedo University School of Medicine, Spain
- Group of Translational Research in Infectious Diseases, Instituto de investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - José A. Carton
- Group of Translational Research in Infectious Diseases, Instituto de investigación Sanitaria del Principado de Asturias (ISPA), Spain
- Infectious Diseases Unit, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Spain
| | - Francisco Taboada
- Critical Care, Hospital Universitario Central de Asturias (HUCA), Spain
| | - Víctor Asensi
- Group of Translational Research in Infectious Diseases, Instituto de investigación Sanitaria del Principado de Asturias (ISPA), Spain
- Infectious Diseases Unit, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Spain
| |
Collapse
|
30
|
Ma H, Liu J, Du Y, Zhang S, Cao W, Jia Z, Gong W, Zhang A. Estrogen-Related Receptor γ Agonist DY131 Ameliorates Lipopolysaccharide-Induced Acute Liver Injury. Front Pharmacol 2021; 12:626166. [PMID: 33967760 PMCID: PMC8104008 DOI: 10.3389/fphar.2021.626166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated liver dysfunction remains a challenge in clinical practice with high mortality and limited specific therapies. DY131 is a pharmacological agonist of the orphan receptor estrogen-related receptor (ERR) γ which plays a crucial role in regulating energy generation, oxidative metabolism, cell apoptosis, inflammatory responses, etc. However, its role in acute liver injury is unknown. In this study, we evaluated the effect of DY131 on lipopolysaccharide (LPS)-induced liver injury. Mice were pretreated with DY131 through intraperitoneal injection at a dose of 5 mg/kg/day for 3 days prior to LPS challenge (10 mg/kg). 24 h later, they were anesthetized and sacrificed. Blood and liver tissues were collected for further studies. In a separate experiment, mice were treated with saline (vehicle) or DY131 for 3 days to evaluate the toxicity of DY131. We found that ERRγ was downregulated in the liver tissues from LPS-treated mice. Pretreatment with DY131 ameliorated LPS-induced liver injury as demonstrated by reduced liver enzyme release (ALT, AST, and LDH), improved liver morphological damage, and attenuated oxidative stress, inflammation and apoptosis. Meanwhile, DY131 had no significant side effects on hepatic and renal functions in mice. Finally, transcriptomics analysis revealed that the dysregulated pathways associated with inflammation and metabolism were significantly reversed by DY131 in LPS-treated mice, providing more evidence in favor of the protective effect of DY131 against LPS-induced liver injury. Altogether, these findings highlighted the protective effect of DY131 on LPS-induced hepatotoxicity possibly via suppressing oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Haoyang Ma
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaye Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weidong Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Zeng X, Feng J, Yang Y, Zhao R, Yu Q, Qin H, Wei L, Ji P, Li H, Wu Z, Zhang J. Screening of Key Genes of Sepsis and Septic Shock Using Bioinformatics Analysis. J Inflamm Res 2021; 14:829-841. [PMID: 33737824 PMCID: PMC7962593 DOI: 10.2147/jir.s301663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Sepsis is a disease associated with high mortality. We performed bioinformatic analysis to identify key biomarkers associated with sepsis and septic shock. Methods The top 20% of genes showing the greatest variance between sepsis and controls in the GSE13904 dataset (children) were screened by co-expression network analysis. The differentially expressed genes (DEGs) were identified through analyzing differential gene expression between sepsis patients and control in the GSE13904 (children) and GSE154918 (adult) data sets. Intersection analysis of module genes and DEGs was performed to identify common DEGs for enrichment analysis, protein-protein interaction network (PPI network) analysis, and Short Time-series Expression Miner (STEM) analysis. The PPI network genes were ranked by degree of connectivity, and the top 100 sepsis-associated genes were identified based on the area under the receiver operating characteristic curve (AUC). In addition, we evaluated differences in immune cell infiltration between sepsis patients and controls in children (GSE13904, GSE25504) and adults (GSE9960, GSE154918). Finally, we analyzed differences in DNA methylation levels between sepsis patients and controls in GSE138074 (adults). Results The common genes were associated mainly with up-regulated inflammatory and metabolic responses, as well as down-regulated immune responses. Sepsis patients showed lower infiltration by most types of immune cells. Genes in the PPI network with AUC values greater than 0.9 in both GSE13904 (children) and GSE154918 (adults) were screened as key genes for diagnosis. These key genes (MAPK14, FGR, RHOG, LAT, PRKACB, UBE2Q2, ITK, IL2RB, and CD247) were also identified in STEM analysis to be progressively dysregulated across controls, sepsis patients and patients with septic shock. In addition, the expression of MAPK14, FGR, and CD247 was modified by methylation. Conclusion This study identified several potential diagnostic genes and inflammatory and metabolic responses mechanisms associated with the development of sepsis.
Collapse
Affiliation(s)
- Xiaoliang Zeng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Yanli Yang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Ruzhi Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qiao Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Han Qin
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Lile Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|