1
|
Al-Lbban AM. Role of zinc oxide nanoparticles supplementation on alleviate side effects of cisplatin induced cardiotoxicity in rats. BRAZ J BIOL 2025; 84:e287764. [PMID: 40008690 DOI: 10.1590/1519-6984.287764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/06/2024] [Indexed: 02/27/2025] Open
Abstract
Cisplatin is one of the most potent chemotherapeutics for treating a wide range of tumor forms. Its use is severely limited due to cause cardiotoxicity. The goal of this investigate estimated the proactive effect of ZnONPs against cardiotoxicity induced by cisplatin (CP). The rats were classed as control-positive (group two), and different groups from third to seventh were given one milliliter of individually dosed ZnONPs at 10, 20, 30, 40, and 50 mg/kg daily and compared with control negative group (group one). Atherogenic indices (AC, CRR, and AI), lipid peroxidation, heart tissue antioxidant enzymes, cytokines, and specific serum biomarkers lipid profiles (TC, TG, HDL, and LDL), and kidney functions were assessed in serum at the ending of the biological experimental. Findings were in view that these parameters improved gradually when the doses of ZnONPs in the various rat groups were increased to 50 mg/kg/day/bw. Measurements of pro-inflammatory, antioxidant, and oxidant biomarkers in heart tissue also showed that, at a dose of 50 mg/kg/day, the various rat groups progressively recovered to a level equivalent to that of the healthy control group. This clarifies why ZnONPs guard against heart tissue injury. It was determined that ZnONPs, with a more marked improvement, considerably reduced oxidative stress, suppressed inflammation, and inhibited apoptosis, thereby improving cisplatin-induced heart damage.
Collapse
Affiliation(s)
- A M Al-Lbban
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makka Al-Mukarama, Saudi Arabia
| |
Collapse
|
2
|
Ciftel E, Mercantepe F, Mercantepe T, Akyildiz K, Yilmaz A, Ciftel S. Comparative Analysis of Epigallocatechin-3-Gallate and TNF-Alpha Inhibitors in Mitigating Cisplatin-Induced Pancreatic Damage Through Oxidative Stress and Apoptosis Pathways. Biol Trace Elem Res 2024; 202:5190-5207. [PMID: 38776022 PMCID: PMC11442533 DOI: 10.1007/s12011-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress and inflammation caused by cisplatin, which is frequently used in the treatment of many cancers, damage healthy tissues as well as cancer cells. In this study, we aimed to investigate the effect of epigallocatechin-3-gallate (EGCG) and infliximab (INF) administration on pancreatic endocrine cells in rats treated with systemic cisplatin (CDDP). The rats were randomly divided into 6 groups: group 1 (control group), group 2 (EGCG group), group 3 (CDDP group), group 4 (EGCG + CDDP group), group 5 (CDDP + INF group), and group 6 (EGCG + CDDP + INF group). The study's findings demonstrated that EGCG and INF effectively reduced the cellular damage induced by CDDP in histopathologic investigations of the pancreas. EGCG and INF, whether used individually or in combination, demonstrated a significant reduction in malondialdehyde (MDA) levels and an increase in glutathione (GSH) levels in the rat pancreas compared to the CDDP group. Immunohistochemically, the enhanced presence of insulin and glucagon positivity in the EGCG and INF groups, along with the absence of TUNEL immunopositivity, indicate that both treatments reduced CDDP-induced apoptosis. Furthermore, the observed lack of immunopositivity in TNF-α and 8-OHdG in the groups treated with EGCG and INF, compared to those treated with CDDP, indicates that these substances can inhibit inflammation. EGCG and INF, whether provided alone or together, can potentially reduce the damage caused to pancreatic islet cells by cisplatin. This effect is achieved through their anti-inflammatory and antioxidant properties during the early stages of the condition.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Turkey
| |
Collapse
|
3
|
Yalçın T, Kaya S, Yiğin A, Ağca CA, Özdemir D, Kuloğlu T, Boydak M. The Effect of Thymoquinone on the TNF-α/OTULIN/NF-κB Axis Against Cisplatin-İnduced Testicular Tissue Damage. Reprod Sci 2024; 31:2433-2446. [PMID: 38658488 PMCID: PMC11289327 DOI: 10.1007/s43032-024-01567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
One of the adverse effects of the antineoplastic drug cisplatin (CS) is damage to testicular tissue. This study aimed to examine the potential therapeutic effect of thymoquinone (TQ), a strong antioxidant, against testicular damage caused by CS. In the experiment, 28 rats were used, and the rats were randomly divided into four groups: control (n = 7), CS (n = 7), CS + TQ (n = 7), and TQ (n = 7). The experiment was called off after all treatments were finished on day 15. Blood serum and testicular tissues were utilized for biochemical, histological, immunohistochemical, mRNA expression, and gene protein investigations. The testosterone level decreased and oxidative stress, histopathological damage, dysregulation in mitochondrial dynamics, inflammation and apoptotic cells increased in testicular tissue due to CS administration. TQ supplementation showed anti-inflammatory, antioxidant, and anti-apoptotic effects in response to CS-induced testicular damage. In addition, TQ contributed to the reduction of CS-induced toxic effects by regulating the TNF-α/OTULIN/NF-κB pathway. TQ supplementation may be a potential therapeutic strategy against CS-induced testicular damage by regulating the TNF-α/OTULIN/NF-κB axis, inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Main Campus, Health Services Vocational School, Room 217, Kültür Neighborhood, Batman, Turkey
| | - Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Main Campus, Health Services Vocational School, Room 217, Kültür Neighborhood, Batman, Turkey.
| | - Akın Yiğin
- Department of Geneticy, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Can Ali Ağca
- Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | - Deniz Özdemir
- Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Murat Boydak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
4
|
Gad F, Abdelghaffar Emam M, Eldeeb AA, Abdelhameed AA, Soliman MM, Alotaibi KS, Albattal SB, Abughrien B. Mitigative Effects of l-Arginine and N-Acetyl Cysteine against Cisplatin-Induced Testicular Dysfunction and Toxicity through the Regulation of Antioxidant, Anti-inflammatory, and Antiapoptotic Markers: Role of miR-155 and miR-34c Expression. ACS OMEGA 2024; 9:27680-27691. [PMID: 38947789 PMCID: PMC11209920 DOI: 10.1021/acsomega.4c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Testicular dysfunction is a common adverse effect of cisplatin (CIS) administration as a chemotherapeutic drug. The current study has outlined the role of micro-RNAs (miR-155 and 34c) in CIS-induced testicular dysfunction and evaluated the protective effect of N-acetyl cysteine (NAC) and/or l-arginine (LA). Seven groups of Albino rats were used for this study. The control (C) group received physiological saline; the CIS group was injected CIS (7 mg/kg IP, once) on day 21 of the experiment; the NAC group was administered NAC (150 mg/kg intragastric, for 28 days); and the LA group was injected LA (50 mg/kg IP, for 28 days). NAC+CIS, LA+CIS, and NAC+LA+CIS groups received the above regime. CIS significantly reduced serum testosterone, LH, and FSH concentrations with decline of testicular enzyme activities. CIS caused significant elevation in testicular oxidative-stress biomarkers, inflammation-associated cytokines, and apoptosis markers, along with overexpression of miR-155 and low miR-34c expression. Additionally, marked testicular degenerative changes were observed in the examined histological section; a significant decrease in the expression of PCNA with significant increase in expressions of F4/80 and BAX was confirmed. The administration of NAC or LA upregulated testicular functions and improved histopathological and immunohistochemical changes as well as miRNA expression compared with the CIS-administered group. Rats receiving both NAC and LA showed a more significant ameliorative effect compared with groups receiving NAC or LA alone. In conclusion, NAC or LA showed an ameliorative effect against CIS-induced testicular toxicity and dysfunction through the regulation of antioxidant, anti-inflammatory, and antiapoptotic markers and via modulating miR-155 and miR-34c expression.
Collapse
Affiliation(s)
- Fatma
A. Gad
- Clinical
Pathology Department, Faculty of Veterinary Medicine, Benha University, P.O. Box13736 Benha, Egypt
| | - Mahmoud Abdelghaffar Emam
- Histology
Department., Faculty of Veterinary Medicine, Benha University, P.O. Box 13736 Benha, Egypt
| | - Abeer A. Eldeeb
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Abeer A. Abdelhameed
- Clinical
Pharmacology Department, Faculty of Medicine, Benha University, 13511 Benha, Egypt
| | - Mohamed Mohamed Soliman
- Department
of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O.
Box 11099, Taif 21944, Saudi Arabia
| | - Khalid S. Alotaibi
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Shatha B. Albattal
- General
Science and English Language Department, College of Applied Sciences, AlMaarefa University, Riyadh 71666, Saudi Arabia
| | - Badia Abughrien
- Anatomy and
Histology Department, Faculty of Veterinary Medicine, Tripoli University, 15673 Tripoli, Libya
| |
Collapse
|
5
|
Priya, Kumar A, Ali M, Srivastava A, Kumar R, Ghosh AK. Endosulfan induces reproductive & genotoxic effect in male and female Swiss albino mice. Lab Anim Res 2024; 40:22. [PMID: 38773665 PMCID: PMC11110251 DOI: 10.1186/s42826-024-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Toxicity by pesticide has become a global health issue and leaves a harmful impact on human health via various ways. The people exposed to pesticides in the rural population get affected by the harmful effects of it as they enter the human body system through skin, inhalation, oral administration, food chain and many more ways. The present work is designed to study the toxic effect of endosulfan in male (n=30) and female (n=30) Swiss albino mice. Endosulfan was administered by oral gavage (oral administration) method, at the dose of 3.5 mg/Kg body weight daily for period of 3 weeks, 5 weeks and 7 weeks. After the completion of the treatment, the mice were sacrificed and their ovary and testis tissues were dissected out to check the degeneration. The blood was collected for karyotyping, biochemical and hormonal analysis of pesticide induced genotoxicity. After 7 weeks of administration with Endosulfan, various abnormalities were observed in male and female mice. RESULTS Treatment with endosulfan at the dose of 3.5 mg/Kg body weight caused a higher degree of degeneration in the reproductive organ of Swiss albino mice . Treatment by this pesticide generated degeneration in long duration of dosage for 3,5 and 7 weeks. Ovaries of endosulfan administered groups showed degenerated germinal epithelium, Graffian follicles and corpus luteum. In testis of endosulfan treated mice, microscopic examination showed that there is significant damage and reduction in the tissue of seminiferous tubules and primordial germ cells. High degree of degeneration caused the disarrangement and deformation of spermatogonia with the decrease in the number of Sertoli cells. Biochemical and hormonal properties was also affected by endosulfan treatment. There was significant 5 folds decrease in the testosterone value of endosulfan in 7 weeks treated mice in comparison to control (p < 0.0001) and similarly there was significant elevation in the estrogen levels found in 7th week endosulfan treated mice. It also influenced the level of free radicals as there was significant decrease (p < 0.0001) in the value in catalase levels in 7 weeks endosulfan treated male and female mice, while significant (p < 0.0001) increase in the values of lipid peroxidation levels as 8 folds and 10 folds in 7 weeks endosulfan treated male and female Swiss albino mice respectively. This study hence speculates that the endosulfan exposed population are at the risk of reproductive health hazards. CONCLUSIONS The present study thus concludes that, endosulfan after 7 weeks of exposure caused significant reproductive damage to both male and female Swiss albino mice groups. Moreover, the karyotyping study also correlated the genotoxic damage in the mice.
Collapse
Affiliation(s)
- Priya
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India.
| | - Mohammad Ali
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | - Abhinav Srivastava
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| | | | - Ashok Kumar Ghosh
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, 801505, India
| |
Collapse
|
6
|
AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem Toxicol 2024; 184:114436. [PMID: 38211767 DOI: 10.1016/j.fct.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Cyclophosphamide (CP) is broadly used to kill various tumor cells; however, its repeated uses have been reported to cause reproductive dysfunction and infertility. Natural flavonoid, rutin (RUT), possesses strong antioxidant and antiapoptotic activity that is attributed to ameliorate the reproductive dysfunction induced by CP. Many previous studies proved that the formulation of flavonoids in nanoemulsion has a promising perspective in mitigating the side effects of chemotherapy. Therefore, the main objective of this study was to investigate the ameliorative effects of RUT and RUT-loaded chitosan nanoparticles (RUT-CH NPs) against CP-induced reproductive dysfunction in male rats. For this aim, thirty-six male albino rats were randomly allocated into six groups as follows: control, RUT, RUT-CH NPs, CP, CP + RUT, and CP + RUT-CH NPs. In the CP groups, a single intraperitoneal injection of CP (150 mg/kg bwt) was administered on the first day of the experiment. RUT and RUT-CH NPs were orally administered either alone or with CP injection at a dose of 10 mg/kg bwt per day for 60 days. The results revealed that CP administration caused significant testicular oxidative stress damage through increasing the nitric oxide and malondialdehyde levels as well as decreasing the total antioxidant capacity and reduced glutathione contents. It also impaired spermatogenesis and steroidogenesis via altering the transcription levels of CYP11A1, HSD-3b, StAR, Bax, bcl-2, and Nrf-2 genes. Otherwise, the oral intake of either RUT or RUT-CH NPs with CP injection effectively attenuated these alterations and significantly improved the microscopic appearance of testicular tissue. In conclusion, this study highlights the potential of RUT either free or NPs in mitigating CP-induced testicular dysfunction via its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dina A AbdElrazek
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - H I Abass
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
8
|
Kumbhare SD, Ukey SS, Gogle DP. Antioxidant activity of Flemingia praecox and Mucuna pruriens and their implications for male fertility improvement. Sci Rep 2023; 13:19360. [PMID: 37938242 PMCID: PMC10632466 DOI: 10.1038/s41598-023-46705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Globally, 15-24% couples are unable to conceive naturally and 50% of cases of this problem are due to infertility in males. Of this, about 50% of male infertility problems are developed due to unknown reasons called as idiopathic infertility. It is well established that, reactive oxygen species (ROS) have negative impact on male fertility and are involved in 80% of total idiopathic male infertility cases. Medicinal plants are considered as an alternative approach for mitigating the health problems. The plants with good antioxidant capacity can improve the male infertility symptoms generated by ROS. Such medicinal plants can be used to alleviate the symptoms of male infertility with their diverse phytoconstituents. Mucuna pruriens is a well-accepted herb, with its seeds being used to improve the male fertility in various ways and one of the ways is by eliminating the ROS. In our field survey, another plant, Flemingia praecox, although less known, its roots are used in all problems related to the male fertility by tribal people of the Gadchiroli district of Maharashtra, India. The study was conducted to determine in vitro antioxidant potential of F. praecox and compared the results with the well-established male fertility improving plant M. pruriens with special emphasis on medicinally important roots of F. praecox and seeds of M. pruriens. The objective of the study was investigated by studying their total phenol (TPC) and flavonoid (TFC) content, antioxidant parameters (DPPH, FRAP, ABTS, DMPD, β-carotene bleaching and TAA) and finally DNA damage protection capacity of the plant extracts was studied. The plant parts used for the medicinal purposes have been investigated along with other major parts (leaves, stem and roots of both the plants) and compared with synthetic antioxidants, BHA, BHT and ascorbic acid. Moreover, the inhibition of two male infertility enzyme markers, PDE5 and arginase by F. praecox root and M. pruriens seed extract was also studied in vitro. The results showed that F. praecox possesses higher antioxidant activity than M. pruriens in the majority of studies as observed in TFC, DPPH, TAA, ABTS and DMPD assays. However, M. pruriens seeds showed best results in TPC, FRAP and DNA damage protection assay. F. praecox root extract also gave better PDE5 inhibition value than M. pruriens seeds. This study will help to establish the authenticity of F. praecox used by tribal people and will encourage its further use in managing the male infertility problems.
Collapse
Affiliation(s)
- Shravan D Kumbhare
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India
| | - Sanghadeep S Ukey
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India
- Department of Botany, Lokmanya Tilak College, Yavatmal, 445304, India
| | - Dayanand P Gogle
- Post Graduate Teaching Department of Botany, RTM Nagpur University, Nagpur, 440033, India.
- Post Graduate Teaching Department of Molecular Biology and Genetic Engineering, RTM Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
9
|
Ma X, Ren X, Zhang X, Griffin N, Liu H, Wang L. Rutin ameliorates perfluorooctanoic acid-induced testicular injury in mice by reducing oxidative stress and improving lipid metabolism. Drug Chem Toxicol 2023; 46:1223-1234. [PMID: 36373176 DOI: 10.1080/01480545.2022.2145483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
This study investigated the protective effect of rutin on reproductive and blood-testis barrier (BTB) damage induced by perfluorooctanoic acid (PFOA) exposure. In this study, male ICR mice were randomly divided into three groups, Ctrl group (ddH2O, 5 mL/kg), PFOA group (PFOA, 20 mg/kg/d, 5 mL/kg), PFOA + rutin group (PFOA, 20 mg/kg/d, 5 mL/kg; rutin, 20 mg/kg/d, 5 mL/kg). Mice were exposed to PFOA for 28 days by gavage once daily in the presence or absence of rutin. Histopathological observations demonstrated that rutin treatment during PFOA exposure can reduce structural damage to testis and epididymis such as atrophy of spermatogenic epithelium and stenosis of epididymal lumen, while increase in the number and layers of spermatogenic cells. Biochemical detection demonstrated that rutin can reduce 8-hydroxy-2'-desoxyguanosine (8-OHdG) concentration in the serum and testis tissues. Rutin can also ameliorate glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) content, and reduce malondialdehyde (MDA) and total cholesterol (TC) content in testis tissues. Biotin tracking immunofluorescence and transmission electron microscopy demonstrated that rutin can ameliorate BTB structural damage during PFOA exposure. Rutin ameliorated the stress expression of tight junction proteins occludin and claudin-11. In conclusion, our findings suggested that rutin has a degree of protection in reproductive and BTB damage, which could put forward a new perspective on the application of rutin to prevent reproductive damage.
Collapse
Affiliation(s)
- Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| | - Xuemin Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hui Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
10
|
Najafi A, Mohammadi H, Sharifi SD. Enhancing post-thaw quality of ram epididymal sperm by supplementation of rutin in cryopreservation extender. Sci Rep 2023; 13:10873. [PMID: 37407620 DOI: 10.1038/s41598-023-38022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
The purpose of this study was to examine the effect of different rutin concentrations on rams epididymal sperm. A local slaughterhouse provided 50 pair of testes from 25 rams. The testes were sent to the lab at room temperature. Spermatozoa were extracted by suspending portions of cauda epididymis in tris solution. Ram sperm was cryopreserved (in liquid nitrogen) in a tris extender containing rutin at 0, 0.5, 0.75, 1, and 1.25 mM. Rutin showed superior sperm total and progressive motility, beat cross frequency, straight line velocity, velocity average pathway and membrane integrity values at 0.75 and 1 mM. The morphology of the sperm and the superoxide dismutase levels did not significantly change with different treatments. Moreover, rutin at 0.75 and 1 mM was also shown to have the highest level of mitochondrial activity. The results showed ATP, total antioxidant capacity, and glutathione peroxidase levels were significantly greater in the rutin 0.75 and 1 mM groups (P < 0.05). Rutin at 0.75 and 1 mM levels had the lowest reactive oxygen species concentrations. Rutin at 0.75 and 1 mM substantially increased the proportion of viable sperm (P < 0.05). The lowest amount of apoptosis was observed in 0.75 and 1 mM rutin. Rutin at 0.75 and 1 mM yielded the least significant percentage of dead sperm. It may be inferred that adding 0.75 and 1 mM to the sperm extender can enhance the quality of the epididymal sperm in rams after the cryopreservation process.
Collapse
Affiliation(s)
- Abouzar Najafi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Nofal AE, Okdah YA, Rady MI, Hassaan HZ. Gum Acacia attenuates cisplatin toxic effect spermatogenesis dysfunction and infertility in rats. Int J Biol Macromol 2023; 240:124292. [PMID: 37030465 DOI: 10.1016/j.ijbiomac.2023.124292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
This study aimed to investigate the potential benefits Gum Arabic/Acacia senegal (GA) in mitigating the harmful effects of cisplatin (CP) on spermatogenesis and testicular health in male adult rats. A total of forty albino rats were used in the study and divided into four groups; control, GA, CP, and Co-treated group, which received both CP and GA concurrently. The results revealed that CP caused a significant increase in oxidative stress and a decrease in antioxidant activities (CAT, SOD, and GSH), which disturbed the testicular machinery. This caused significant histological and ultrastructural damage to the testicular structure, including atrophied seminiferous tubules with severely reduced germinal epithelium. Additionally, CP caused a decrease in reproductive hormones (testosterone and LH), a decline in nucleic proliferation PCNA immunoexpression, and an increase in cytoplasmic apoptotic Caspase-3 protein expression in testicular tissue, when compared to the control and GA groups. Moreover, the CP treatment impaired spermatogenesis and decreased sperm number and motility with abnormal morphology. However, co-administration of GA with CP mitigated the dysfunction in spermatogenesis and reversed testicular damage caused by CP through significantly (P < 0.01) reducing oxidative stress (MDA) and increasing the activities of CAT, SOD, and GSH. Additionally, co-administration of GA elevated the levels of testosterone and luteinizing hormone in blood sera, significantly (P < 0.01) improved the histometric measurements of seminiferous tubules diameter, their epithelial height, Johnsen's score of spermatogenesis, 4-level histological grading scale Cosentino's score, immunohistochemical expression of nucleic PCNA, and cytoplasmic Caspase-3 proteins. Furthermore, TEM examination confirmed the synergistic effect of GA in restoring the germinal epithelial cells ultrastructure, the elongated and transverse sections of spermatozoa in the lumen, and the interstitial tissue. All of these effects resulted in a significant improvement in sperm quality in the Co-treated animals compared with the CP group, as well as, a significant decline in the morphological abnormalities of sperm in Co-treated rats compared to those in the CP group. GA is a valuable agent for ameliorating chemotherapy-related infertility.
Collapse
Affiliation(s)
- Amany E Nofal
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Yosry A Okdah
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Mohamed I Rady
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Hamada Z Hassaan
- Zoology Department, Faculty of Science, Menoufia University, Egypt.
| |
Collapse
|
12
|
Adelakun SA, Akintunde OW, Ogunlade B, Adeyeluwa BE. Histochemical and histomorphological evidence of the modulating role of 1-isothiocyanate-4-methyl sulfonyl butane on cisplatin-induced testicular-pituitary axis degeneration and cholesterol homeostasis in male Sprague-Dawley rats. Morphologie 2023; 107:80-98. [PMID: 35659716 DOI: 10.1016/j.morpho.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study examine the histochemical and histomorphological effect of 1-isothiocyanato-4-methyl sulfonyl butane (SFN) on cisplatin (CP) induced testicular alteration and cholesterol homeostasis. MATERIALS AND METHODS Ninety adult-male Sprague-Dawley rats were randomized into nine groups of ten (n=10) rats each. Group A (control) received normal saline, group B received a single dose of 10mg/Kg body weight (bwt) CP (i.p.), group C received 50mg/Kg bwt of SFN, group D received 100mg/Kg bwt of SFN, group E received 10mg/Kg bwt CP and 50mg/Kg bwt of SFN, group F received 10mg/Kg bwt CP and 100mg/Kg bwt of SFN, group G received 10mg/Kg bwt CP and 50mg/Kg bwt vitamin C, group H received 50mg/Kg bwt of SFN and 10mg/Kg bwt CP, group I received 100mg/Kg bwt of SFN and 10mg/Kg bwt CP. The procedure lasted for 56 days. Testicular histomorphology and histochemistry, testicular testosterone, sperm parameters, total antioxidant status (TSA), total oxidant status (TOS), oxidative stress index (OSI), and serum lipid profile were examined. RESULTS Cisplatin decrease intra-testicular testosterone, sperm quality, and expression of glycogen and increases testicular TOS and OSI, serum lipid profile, collagen, and disruption of germinal epithelium. However, the intervention of SFN reversed the effect of CP on testes' weight and volume, DSP, ESP, testosterone production, TAS, TOS, and OSI. Histoarchitectecture showing normal seminiferous tubules and even distribution of glycogen and collagen fibers. CONCLUSION Treatment with SFN ameliorate CP-induced testicular toxicity by reversing the cytotoxic mechanisms of CP.
Collapse
Affiliation(s)
- S A Adelakun
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria; Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - O W Akintunde
- Department of Anatomy, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
| | - B Ogunlade
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - B E Adeyeluwa
- Department of Human Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
13
|
Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: A mini review. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:130-135. [PMID: 36717303 DOI: 10.1016/j.joim.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
Male infertility has become a problem worldwide, and recent research has emphasized the development of more effective therapy options. Among natural compounds, rutin has been widely studied for its potential to treat dysfunction related to male infertility, including a reduction in sperm quality, spermatogenesis disruption and structural disruption in the testis. A thorough review of scientific literature published in several databases, including Google Scholar, PubMed/MEDLINE and Scopus, was used to synthesize the present state of research on the role of rutin in male reproductive health. Rutin has been shown to possess antiapoptotic, antioxidant and anti-inflammatory activities, among others, which are crucial in the management of male infertility. Numerous investigations have shown that rutin protects against male infertility and have explored the underlying mechanisms involved. The present review, therefore, assesses the therapeutic mechanisms involved in male infertility treatment using rutin. Rutin was able to mitigate the induced oxidative stress, apoptosis, inflammation, and related physiological processes that can cause testicular dysfunction. Please cite this article as: Rotimi DE, Elebiyo TC, Ojo OA. Therapeutic potential of rutin in male infertility: a mini review. J Integr Med. 2022; Epub ahead of print.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria; Department of Biochemistry, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo 232101, Osun State, Nigeria.
| |
Collapse
|
14
|
Shi Z, Zhang C, Lei H, Chen C, Cao Z, Song Y, Chen G, Wu F, Zhou J, Lu Y, Zhang L. Structural Insights into Amelioration Effects of Quercetin and Its Glycoside Derivatives on NAFLD in Mice by Modulating the Gut Microbiota and Host Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14732-14743. [PMID: 36351282 DOI: 10.1021/acs.jafc.2c06212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The sugar moieties of natural flavonoids determine their absorption, bioavailability, and bioactivity in humans. To explore structure-dependent bioactivities of quercetin, isoquercetin, and rutin, which have the same basic skeleton linking different sugar moieties, we systemically investigated the ameliorative effects of dietary these flavonoids on high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) of mice. Our results revealed that isoquercetin exhibits the strongest capability in improving NAFLD phenotypes of mice, including body and liver weight gain, glucose intolerance, and systemic inflammation in comparison with quercetin and rutin. At the molecular level, dietary isoquercetin markedly ameliorated liver dysfunction and host metabolic disorders in mice with NAFLD. At the microbial level, the three flavonoids compounds, especially isoquercetin, can effectively regulate the gut microbiota composition, such as genera Akkermansia, Bifidobacterium, and Lactobacillus, which were significantly disrupted in NAFLD mice. These comparative findings offer new insights into the structure-dependent activities of natural flavonoids for NAFLD treatment.
Collapse
Affiliation(s)
- Zunji Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
16
|
Yoon JH, Kim DW, Lee SK, Kim SG. Effects of 4-hexylresorcinol administration on the submandibular glands in a growing rat model. Head Face Med 2022; 18:16. [PMID: 35668488 PMCID: PMC9172157 DOI: 10.1186/s13005-022-00320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background 4-Hexylresorcinol (4HR) is a food additive and class I histone deacetylase inhibitor. In this study, we examined the effects of 4HR administration on the submandibular gland in a growing rat model. Methods Four-week-old rats were used in this study. The experimental group (nine males and eight females) received 12.8 mg/kg of 4HR weekly for 12 weeks. Ten rats (five males and five females) were used as controls. The submandibular glands of rats were collected 12 weeks after the first administration of 4HR. The weight of the glands was measured. Histological analysis, immunoprecipitation-high-performance liquid chromatography (IP-HPLC), and western blotting were performed. Results The weights of the rat submandibular glands were higher in the experimental groups than in the control group, especially in male rats (P < 0.05). The vascular endothelial growth factor (VEGF) and testosterone in the submandibular glands were more highly expressed in 4HR-treated male rats than in untreated rats, as detected by both western blotting and immunohistochemistry. The IP-HPLC results demonstrated that the expression levels of Ki67, epidermal growth factor, and testosterone in the submandibular glands were higher in 4HR-treated male rats than in untreated rats. Conclusions This study demonstrated that the systemic administration of 4HR increased the weight of submandibular glands in male rats. In addition, the testosterone and VEGF expression levels in the submandibular glands increased owing to 4HR administration.
Collapse
Affiliation(s)
- Joo-Hyung Yoon
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Jukheon gil 7, 25457, Gangneung, Gangwondo, Republic of Korea
| | - Dae-Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, 28644, Gangneung, Korea
| | - Suk Keun Lee
- Institution of Hydrogen Magnetic Reaction Gene Regulation, 34140, Daejeon, Korea
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Jukheon gil 7, 25457, Gangneung, Gangwondo, Republic of Korea.
| |
Collapse
|
17
|
Eisa CS, Mohammed SS, El-Aziz HIA, Farghaly LM, Hosny S. The Effect of Selenium Nanoparticles versus Royal Jelly against Cisplatin-Induced Testicular Toxicity in Adult Male Albino Rats: A Light and Transmission Electron Microscopic Study. J Microsc Ultrastruct 2022; 10:180-196. [PMID: 36687330 PMCID: PMC9846925 DOI: 10.4103/jmau.jmau_44_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023] Open
Abstract
Background and Aim Cisplatin (Cis) is a highly effective chemotherapeutic agent. However, it produces severe testicular toxicity. It was reported that some antioxidants could overcome this toxicity. Selenium nanoparticles and royal jelly (RJ) were among these reported antioxidants. Therefore, this study was designed to compare these two antioxidants in protecting the testes against Cis-induced toxicity. Materials and Methods This study was conducted on sixty healthy adult male albino rats (weight: 200-220 g) randomized into six groups, ten animals each. Group I (control), Group II (animals received intragastric Nano Selenium), Group III (animals received intragastric RJ), Group IV (animals received an IP injection of Cis 7 mg/kg), Group V (animals received intragastric Nano Selenium, and Cis injection), and Group VI (animals received intragastric RJ and Cis injection). After 10 days, the animals were sacrificed by cervical decapitation. The testes were weighted, and specimens from the left testis were processed for histological and immunohistochemical techniques, whereas specimens from the right testes were prepared for transmission electron microscopic examination. Results Cis-treated animals had significantly reduced weight of their testes. Light microscopic examination revealed severe histopathological changes in the germinal epithelium and Leydig cells, confirmed with electron microscopic examination. There was a significant increase in the color area percentage of Caspase-3 immunostaining of the germinal epithelium and Leydig cells, compared to that of the control group. Group II and III were similar to control group. Both Groups V and VI revealed significant preservation compared to the Cis group. Conclusion Selenium nanoparticles and RJ partially improved testis from Cis-induced toxicity, However, there was no significant difference between both groups.
Collapse
Affiliation(s)
- Christina S. Eisa
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sally S. Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt,Address for correspondence: Dr. Sally S. Mohammed, Faculty of Medicine, Suez Canal University, Circular Road, Ismailia, Egypt. E-mail:
| | - Hoida I. Abd El-Aziz
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lamia M. Farghaly
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Somaya Hosny
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
18
|
Negm WA, El-Kadem AH, Hussein IA, Alqahtani MJ. The Mechanistic Perspective of Bilobetin Protective Effects against Cisplatin-Induced Testicular Toxicity: Role of Nrf-2/Keap-1 Signaling, Inflammation and Apoptosis. Biomedicines 2022; 10:biomedicines10051134. [PMID: 35625871 PMCID: PMC9138600 DOI: 10.3390/biomedicines10051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cisplatin (CP) is a productive anti-tumor used to treat numerous tumors. However, multiple toxicities discourage prolonged use, especially toxicity on the reproductive system. This experiment was mapped out to determine the potential therapeutic impact of Bilobetin on CP-induced testicular damage. Herein, Bilobetin was isolated from Cycas thouarsii leaves R. Br ethyl acetate fractions for the first time. A single dose of CP (7 mg/kg, IP) was used to evoke testicular toxicity on the third day. Rats were classified into five groups; Normal control, Bilobetin 12 mg/kg, Untreated CP, and CP treated with Bilobetin (6 and 12 mg/kg, respectively) orally daily for ten days. Bilobetin treatment ameliorated testicular injury. In addition, it boosted serum testosterone levels considerably and restored relative testicular weight. Nevertheless, apoptosis biomarkers such as P53, Cytochrome-C, and caspase-3 decreased significantly. Additionally, it enhanced the testes’ antioxidant status via the activation of Nrf-2, inhibition of Keap-1, and significant elevation of SOD activity in addition to a reduction in lipid peroxidation. Histopathologically, Bilobetin preserved testicular architecture and improved testicular immunostaining of Ki67 substantially, showing evidence of testicular regeneration. Bilobetin’s beneficial effects on CP-induced testicular damage are associated with enhanced antioxidant effects, lowered apoptotic signals, and the restoration of testes’ regenerative capability. In addition, Bilobetin may be used in combination with CP in treatment protocols to mitigate CP-induced testicular injury.
Collapse
Affiliation(s)
- Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (W.A.N.); (A.H.E.-K.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (W.A.N.); (A.H.E.-K.)
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MI 38677, USA
| |
Collapse
|
19
|
Mumtaz N, Akhtar MF, Saleem A, Riaz A. Harmful Consequences of Proton Pump Inhibitors on Male Fertility: An Evidence from Subchronic Toxicity Study of Esomeprazole and Lansoprazole in Wistar Rats. Int J Endocrinol 2022; 2022:4479261. [PMID: 35529080 PMCID: PMC9072022 DOI: 10.1155/2022/4479261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
Proton pump inhibitors (PPIs) are frequently prescribed as gastric acid-suppressing agents. Nevertheless, there is limited evidence supporting the risk of detrimental effects of PPIs on male fertility. The purpose of the current study was to evaluate the effect of subchronic use of proton pump inhibitors on male fertility. Seventy adult male Wistar rats were assigned into seven groups. The normal control group orally received solvent only. Groups 2, 3, and 4 were orally given esomeprazole while groups 5, 6, and 7 received lansoprazole at 2.5, 5, and 10 mg/kg/day, respectively. After 45 days of treatment, blood samples, epididymis, and testis were collected. Sperm count, motility, and morphology were determined. The level of hormones such as testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) and oxidative status of testis tissue, such as superoxide dismutase, catalase, reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were estimated. Results demonstrated a significant decline in sperm count, motility, morphology, testosterone, and catalase at 10 mg/kg/day and GSH at 2.5 mg/kg/day. A significant increase in FSH, LH, and MDA at 10 mg/kg/day and NO at 2.5 mg/kg/day was found as compared to the control group. The pathological alterations specifically dilation of Leydig cells, vacuolization, and degeneration of the seminiferous tubules were also evident. It is concluded that PPIs had caused male reproductive toxicity in Wistar rats due to altered levels of hormones such as testosterone, FSH, and LH, elevated levels of NO, and oxidative stress.
Collapse
Affiliation(s)
- Namra Mumtaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Riaz
- Department of Thriogenology, University of Veterinary and Animal Science, Lahore, Pakistan
| |
Collapse
|
20
|
Elsayed A, Elkomy A, Alkafafy M, Elkammar R, El-Shafey A, Soliman A, Aboubakr M. Testicular toxicity of cisplatin in rats: ameliorative effect of lycopene and N-acetylcysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24077-24084. [PMID: 34825328 DOI: 10.1007/s11356-021-17736-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Lycopene (LP) and N-acetylcysteine (NAC) protective effects were assessed for testicular toxicity mediated by cisplatin (CP) in rats. Forty-nine rats were divided into 7 groups (n = 7); these groups included the control group (saline, PO), LP (10 mg/kg, PO), NAC (150 mg/kg, PO), CP (7.5 mg/kg, IP) on the 27th day of the study, LP + CP, NAC+CP, and LP + NAC + CP. Serum levels of testosterone were decreased following CP injection. Malondialdehyde (MDA) has been increased with considerable glutathione (GSH), and dismutase superoxide (SOD) and catalase (CAT) decline in the testis tissues after CP injection. CP caused severe alterations in testicular tissues and elevated caspase-3 expression. Besides that, LP and/or NAC administration improved CP-induced testicular toxicity and apoptosis, probably via their antioxidant properties.
Collapse
Affiliation(s)
- Asmaa Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Ashraf Elkomy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Reda Elkammar
- Department of Histology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Anwar El-Shafey
- Anatomy Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt
| | - Ahmed Soliman
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubiyya, 13736, Egypt.
| |
Collapse
|
21
|
Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep 2022; 49:6063-6074. [DOI: 10.1007/s11033-022-07395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
|
22
|
Adelakun SA, Ogunlade B, Fidelis OP, Omotoso OD. Protective effect of nutritional supplementation of zinc-sulfate against cisplatin-induced spermatogonial and testicular dysfunctions in adult male Sprague-Dawley rats. ENDOCRINE AND METABOLIC SCIENCE 2022. [DOI: 10.1016/j.endmts.2021.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Prasad R, Prasad SB. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Adv Pharm Bull 2021; 11:746-754. [PMID: 34888222 PMCID: PMC8642793 DOI: 10.34172/apb.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Accepted: 08/05/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose: Cisplatin is a cancer chemotherapeutic drug that has been extensively used in the treatment of a variety of cancers. However, the full usage of cisplatin is limited due to its treatment associated development of multiple side effects in the host. In the present study, the modulatory effect of rutin, a type of flavonoid, on the cisplatin mediated antitumor activity and allied genotoxicity in ascites Dalton’s lymphoma (DL)-bearing mice were investigated. Methods: The antitumor activity was determined by calculating the percent increase in the life span of mice, cell viability and scanning electron microscopy (SEM) of DL cells. Further, the modulatory effect of rutin on the cisplatin-induced genotoxic effects in the same DL-bearing mice was assessed by the analysis of micronuclei, chromosomal aberration and sperm abnormality. Results: The combination treatment of mice with rutin and cisplatin showed a considerable increase in the life span of the DL-bearing mice depicting better antitumor efficacy. SEM of these DL cells showed severe membrane deformities in DL cells such as fusion of cell membrane, membrane blebbing, cell shrinkage, membrane folding and loss in microvilli from the tumor cell surface which may lead to cell death. Cisplatin alone treatment caused an increase in the frequency of chromosomal aberrations, micronuclei and sperms abnormality. However, the combination treatment of DL-bearing mice with rutin and cisplatin comparatively reduced these genotoxic effects. Conclusion: The overall findings suggest that rutin enhances the cisplatin-mediated antitumor activity and cytotoxicity against DL cells and at the same time diminishes the genotoxic effects induced by cisplatin in the DL-bearing mice.
Collapse
Affiliation(s)
- Rajesh Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| | - Surya Bali Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, North-Eastern Hill University, Umshing-Mawkynroh, Shillong, Meghalaya, India
| |
Collapse
|
24
|
Rahimi A, Asadi F, Rezghi M, Kazemi S, Soorani F, Memariani Z. Natural products against cisplatin-induced male reproductive toxicity: A comprehensive review. J Biochem Mol Toxicol 2021; 36:e22970. [PMID: 34820939 DOI: 10.1002/jbt.22970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin is widely used as one of the most effective anticancer agents in the treatment of some neoplasms. Reproductive toxicity is the most common outcome associated with cisplatin testicular damage. Alternative natural medicines for treating male testicular disorders and infertility have received extensive attention in research. Natural products, medicinal herbs, and their secondary metabolites have been shown as promising agents in the management of testicular damage induced by chemotherapy drugs. This study aimed to review the research related to natural substances that are promising in mitigation of the cisplatin-induced toxicity in the reproductive system. PubMed and Scopus were searched for studies on various natural products for their potential protective property against reproductive toxicity induced by cisplatin from 2000 to 2020. Eligibility was checked based on selection criteria. Fifty-nine articles were included in this review. Mainly in animal studies, several natural agents have positively affected cisplatin-reproductive-toxicity factors, including reactive oxygen species, inflammatory mediators, DNA damage, and activation of the mitochondrial apoptotic pathway. Most of the natural agents were investigated in short-term duration and high doses of cisplatin exposure, considering their antioxidant activity against oxidative stress. Considering antioxidant properties, various natural products might be effective for the management of cisplatin reproductive toxicity. However, long-term recovery of spermatogenesis and management of low-dose-cisplatin toxicity should be considered as well as the bioavailability of these agents before and after treatment with cisplatin without affecting its anticancer activity.
Collapse
Affiliation(s)
- Atena Rahimi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Asadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Soharb Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farangiz Soorani
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of traditional Persian Medicine, School of traditional Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
CEYLAN T, KARABULUT D, ÖZTÜRK E, AKİN AT, KAYMAK E, YAKAN B. Histological evaluation of the effects of rapamycin and 3-methyladenine on cisplatin-induced epididymal injury in rats. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.924352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
El Gizawy HA, Boshra SA, Mostafa A, Mahmoud SH, Ismail MI, Alsfouk AA, Taher AT, Al-Karmalawy AA. Pimenta dioica (L.) Merr. Bioactive Constituents Exert Anti-SARS-CoV-2 and Anti-Inflammatory Activities: Molecular Docking and Dynamics, In Vitro, and In Vivo Studies. Molecules 2021; 26:5844. [PMID: 34641388 PMCID: PMC8510437 DOI: 10.3390/molecules26195844] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023] Open
Abstract
In response to the urgent need to control Coronavirus disease 19 (COVID-19), this study aims to explore potential anti-SARS-CoV-2 agents from natural sources. Moreover, cytokine immunological responses to the viral infection could lead to acute respiratory distress which is considered a critical and life-threatening complication associated with the infection. Therefore, the anti-viral and anti-inflammatory agents can be key to the management of patients with COVID-19. Four bioactive compounds, namely ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were isolated from the leaves of Pimenta dioica (L.) Merr (ethyl acetate extract) and identified using spectroscopic evidence. Furthermore, molecular docking and dynamics simulations were performed for the isolated and identified compounds (1-4) against SARS-CoV-2 main protease (Mpro) as a proposed mechanism of action. Furthermore, all compounds were tested for their half-maximal cytotoxicity (CC50) and SARS-CoV-2 inhibitory concentrations (IC50). Additionally, lung toxicity was induced in rats by mercuric chloride and the effects of treatment with P. dioca aqueous extract, ferulic acid 1, rutin 2, gallic acid 3, and chlorogenic acid 4 were recorded through measuring TNF-α, IL-1β, IL-2, IL-10, G-CSF, and genetic expression of miRNA 21-3P and miRNA-155 levels to assess their anti-inflammatory effects essential for COVID-19 patients. Interestingly, rutin 2, gallic acid 3, and chlorogenic acid 4 showed remarkable anti-SARS-CoV-2 activities with IC50 values of 31 µg/mL, 108 μg/mL, and 360 µg/mL, respectively. Moreover, the anti-inflammatory effects were found to be better in ferulic acid 1 and rutin 2 treatments. Our results could be promising for more advanced preclinical and clinical studies especially on rutin 2 either alone or in combination with other isolates for COVID-19 management.
Collapse
Affiliation(s)
- Heba A. El Gizawy
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University (O6U), October 6 City, Giza 12585, Egypt;
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City, Giza 12585, Egypt;
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt; (A.M.); (S.H.M.)
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt; (A.M.); (S.H.M.)
| | - Muhammad I. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, Cairo 11837, Egypt;
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Azza T. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City, Giza 12585, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
27
|
Mesbahzadeh B, Hassanzadeh-Taheri M, Aliparast MS, Baniasadi P, Hosseini M. The protective effect of crocin on cisplatin-induced testicular impairment in rats. BMC Urol 2021; 21:117. [PMID: 34470647 PMCID: PMC8411509 DOI: 10.1186/s12894-021-00889-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Side effects of cisplatin (CIS) such as testicular toxicity restrict its clinical use. Instead, evidence indicates that crocin (CR) has synergistic anti-cancer potential with CIS and exhibited beneficial effects on CIS-induced hepatorenal damage. The aim of this study was to investigate the protective potential of CR against CIS-induced testicular toxicity in rats. METHODS Fifty adult male Wistar rats randomly assigned to five equal groups including control, CIS, and CIS plus CR at doses of 6.25 mg/kg (CIS + CR6.25), 25 mg/kg (CIS + CR25), and 100 mg/kg (CIS + CR100). CIS and CIS + CR groups received a single intraperitoneally (i.p.) injection of CIS (7 mg/kg). CR (6.25-100 mg/kg i.p.) injections were started three days before the CIS injection and continued once a day for up to 13 days. On the 14th day, all animals were sacrificed and their blood samples and testes were removed for biochemical and histological analyses. RESULTS Compared to the control group, CIS significantly decreased relative testis weight (0.28 vs. 0.39, p < 0.001), testosterone level (0.3 vs. 2.31 ng/mL, p < 0.001), germinal layer area (25,886 vs. 35,320 µm2, p < 0.001), superoxide dismutase (SOD) (0.9 vs.1.73 U/mg, p < 0.001) and increased testicular lipid peroxidation (3.05 vs. 15.35 nmol/mg, p < 0.001). CR at 25 mg/kg ameliorated testicular lipid peroxidation and enhanced SOD activity compared to CIS group (p < 0.05). Besides, CR treatment at the maximum dose (100 mg/kg) resulted in reversing CIS effects on testis weight, testosterone level, SOD, lipid peroxidation, and germinal layer area. CONCLUSIONS These findings demonstrated that CR co-treatment could prevent CIS-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Behzad Mesbahzadeh
- Department of Physiology, School of Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammadmehdi Hassanzadeh-Taheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Pardis Baniasadi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
28
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
29
|
Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed Pharmacother 2021; 142:112040. [PMID: 34416630 DOI: 10.1016/j.biopha.2021.112040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022] Open
Abstract
Treatment of cancer in young adults is associated with several side effects, particularly in the reproductive system. Detrimental effects of chemotherapy on the germ cells depend on many factors including primary semen parameters, the way of drug administration, the kind and dose of chemotherapeutic regimens, and the phase of spermatogenesis during the time of drug administration. Lack of appropriate fertility preservation treatments particularly in the affected children necessitates the introduction of methods to amend the harmful effects of chemotherapeutic agents on male germ cells. Several studies have assessed the toxic effects of chemotherapeutic agents in rodent models and tested a number of antioxidants to evaluate their possible impact on the preservation of sperm cells. In the present manuscript, we describe the effects of the mostly investigated chemotherapeutic drugs in this regard i.e., cisplatin, doxorubicin, paclitaxel, 5-fluorouracil, and cyclophosphamide. As several in vivo and in vitro studies have shown the impact of antioxidants on chemotherapy-induced damage of sperms, we also describe the protective effects of antioxidants in this regard.
Collapse
|
30
|
Altındağ F, Meydan İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia 2021; 53:e14189. [PMID: 34268770 DOI: 10.1111/and.14189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cisplatin is an effective chemotherapeutic drug used to treat many types of tumours. However, it may cause male reproductive toxicity. Gallic acid exhibits beneficial effects such as antioxidant, anti-inflammatory and antitumor. The current study investigated the beneficial effects of gallic acid against testis and epididymis toxicity induced by cisplatin. Male rats were divided into 4 groups as follows (n = 7): Control, cisplatin (a single dose of 8 mg/kg), Gallic acid (50 mg/kg) and cisplatin +Gallic acid groups. Testis was examined morphometrically by stereological methods. In addition, apoptosis, DNA damage, oxidative stress parameters in testis and testosterone in serum were measured. Epididymis was histopathologically evaluated. As a result, a significant decrease was observed in the number of spermatogonia, Leydig and Sertoli cells, testicular volume, height of germinal epithelial, Bcl-2 immunopositive cell number, activity of CAT, GSH and SOD enzymes and serum testosterone levels compared with the cisplatin group control group, while a significant increase was observed in the number of Caspase-3, Bax and 8-OHdG immunopositive cells and the MDA levels. However, Gallic acid significantly restored these parameters. Our study reveals that Gallic acid may improve Cisplatin-induced male reproductive toxicity by reducing oxidative stress, suppressing apoptosis and DNA damage and restoring structural and functional deterioration.
Collapse
Affiliation(s)
- Fikret Altındağ
- Department of Histology and Embryology, Van Yüzüncü Yıl University, Van, Turkey
| | - İsmet Meydan
- Department of Biochemistry, Van Vocational Higher School of Healthcare Studies, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
31
|
Makled MN, Said E. Tranilast abrogates cisplatin-induced testicular and epididymal injuries: An insight into its modulatory impact on apoptosis/proliferation. J Biochem Mol Toxicol 2021; 35:e22817. [PMID: 34047436 DOI: 10.1002/jbt.22817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin is a chemotherapeutic agent whose therapeutic use is greatly limited by the associated organs' toxicity and particularly, testicular toxicity. Cisplatin-induced testicular damage reported being mediated through mitochondria-mediated apoptosis, inflammation, and oxidative stress. Evidence showed that tranilast (TRN) has the ability to restore the oxidative status and modulate TRAIL/caspase-8 signaling. This led us to hypothesize that TRN could abrogate cisplatin-induced testicular and epididymal injuries via inhibiting oxidative stress and modulating proliferation and TRAIL/caspase-8/cJNK signaling. Cisplatin injection induced oligospermia and abnormalities in testicular and epididymal structure along with impaired oxidative status. TRN administration (100 or 300 mg/kg) for 7 days post-cisplatin injection preserved spermatogenesis and restored testicular and epididymal architecture, but restoration was more so in TRN300 than TRN100. This was in line with the restoration of balanced oxidative status as indicated by the increased total antioxidant capacity, glutathione and superoxide dismutase activity, and the decreased malondialdehyde content in testes (p < 0.05 vs. cisplatin). TRN increased the cell proliferation revealed by the increased expression of proliferating cell nuclear antigen in a dose-dependent manner (p < 0.05 vs. cisplatin) whereas only TRN300 decreased testicular cJNK, TRAIL, and caspase-8 expression (p < 0.05 vs. cisplatin). Moreover, TRN dose-dependently inhibited the pro-inflammatory transcription factor NF-kB and the cytokine TNF-α expressions in testes. In conclusion, TRN300 was more effective than TRN100 in alleviating cisplatin-induced testicular and epididymal injuries and in enhancing spermatogenesis. This curative effect of TRN might be mediated through its antioxidant and anti-inflammatory impacts along with its modulatory impact on cJNK/TRAIL/caspase-8 signaling favoring proliferation rather than apoptosis.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
Adelakun SA, Ogunlade B, Olawuyi TS, Ojewale AO. Aqueous extract of Tetrapleura tetraptera fruit peels influence copulatory behavior and maintain testicular integrity in sexually mature male Sprague-Dawley rats: Pro-fertility evaluation and histomorphometry evidence. Curr Res Physiol 2021; 4:7-16. [PMID: 34746822 PMCID: PMC8562241 DOI: 10.1016/j.crphys.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
Tetrapleura tetraptera (TT) has been used as a spice, dietary supplement and medicine for various ailments. This study evaluate influence of Tetrapleura tetraptera extract on testis and copulatory behavior in sexually mature male rats. Thirty-two male and sixty-four virgin female rats weighing 150-200 g were used for this study. Male rats randomly divided into four groups of eight (n = 8) rats each. Group A: Control given 2 ml distilled water, group B, C and D received 50, 300 and 700 mg/kg bwt TT for 56 days through oral gavage. The female rats were used for fertility test. Testicular histology, histomorphology, copulatory behavior, sperm parameters, testosterone (TET), luteinizing hormone (LH), follicle stimulating hormone (FSH), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and fertility test were investigated. Tetrapleura tetraptera significantly increase sperm count, motility, normal morphology, daily sperm production, efficiency of sperm production, sperm (average path velocity, straight line velocity and curvilinear velocity), TET, LH, FHS, SOD, GPx, CAT, number of pregnant females, number of fetuses, seminiferous diameter, epithelium thickness and decrease abnormal morphology, seminiferous height, tubule lumen and MDA across the group as compared with control group. Improved testicular histological integrity, sexual behaviour and libido by increased frequencies of mount, intromission, ejaculation and ejaculatory latency. Latencies of mount, intromission and post-ejaculation were significantly reduced. Also, observed increase spermatocytes and spermatids showed no significant difference in spermatogonia cell counts. Tetrapleura tetraptera therefore, enhance steroidogenesis, spermatogenesis, and improved testicular histological integrity and boost sexual competence in male rats.
Collapse
Affiliation(s)
| | - Babatunde Ogunlade
- Department Human Anatomy, Federal University of Technology, Akure, Nigeria
| | | | | |
Collapse
|
33
|
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL pro and PL pro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021; 891:173759. [PMID: 33249077 PMCID: PMC7691142 DOI: 10.1016/j.ejphar.2020.173759] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The novel coronavirus outbreak (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents the actual greatest global public health crisis. The lack of efficacious drugs and vaccines against this viral infection created a challenge for scientific researchers in order to find effective solutions. One of the promising therapeutic approaches is the search for bioactive molecules with few side effects that display antiviral properties in natural sources like medicinal plants and vegetables. Several computational and experimental studies indicated that flavonoids especially flavonols and their derivatives constitute effective viral enzyme inhibitors and possess interesting antiviral activities. In this context, the present study reviews the efficacy of many dietary flavonols as potential antiviral drugs targeting the SARS-CoV-2 enzymes and proteins including Chymotrypsin-Like Protease (3CLpro), Papain Like protease (PLpro), Spike protein (S protein) and RNA-dependent RNA polymerase (RdRp), and also their ability to interact with the angiotensin-converting enzyme II (ACE2) receptor. The relationship between flavonol structures and their SARS-CoV-2 antiviral effects were discussed. On the other hand, the immunomodulatory, the anti-inflammatory and the antiviral effects of secondary metabolites from this class of flavonoids were reported. Also, their bioavailability limitations and toxicity were predicted.
Collapse
Affiliation(s)
- Chaima Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria.
| | - Soumia Mouffouk
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| | - Sara Mouffouk
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Leila Hambaba
- Faculty of Nature and Life Sciences, Department of Organisms, University of Batna 2, Algeria
| | - Hamada Haba
- Laboratory of Chemistry and Environmental Chemistry (L.C.C.E), Department of Chemistry, Faculty of Sciences of the Matter, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
34
|
Abdel-All SR, Shakour ZTA, Abouhussein DMN, Reda E, Sallam TF, El-Hefnawy HM, Abdel-Monem AR. Phytochemical and Biological Evaluation of a Newly Designed Nutraceutical Self-Nanoemulsifying Self-Nanosuspension for Protection and Treatment of Cisplatin Induced Testicular Toxicity in Male Rats. Molecules 2021; 26:E408. [PMID: 33466804 PMCID: PMC7830605 DOI: 10.3390/molecules26020408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022] Open
Abstract
The incorporation of cisplatin (CP) as a cytotoxic antineoplastic agent in most chemotherapeutic protocols is a challenge due to its toxic effect on testicular tissues. Natural compounds present a promising trend in research, so a new nutraceutical formulation (NCF) was designed to diminish CP spermatotoxicity. A combination of three nutraceutical materials, 250 mg Spirulina platensis powder (SP), 25 mg Tribulus terrestris L. extract (TT), and 100 mg fish oil (FO) were formulated in self-nanoemulsifying self-nanosuspension (SNESNS). SP was loaded into the optimized self-nanoemulsifying system (30% FO, 50% span 80/cremophor EL and 20% isopropanol) and mixed with TT aqueous solution to form SNESNS. For the SP, phytochemical profiling revealed the presence of valuable amounts of fatty acids (FAs), amino acids, flavonoids, polyphenols, vitamins, and minerals. Transmission electron microscopy (TEM) and particle size analysis confirmed the formation of nanoemulsion-based nanosuspension upon dilution. Method validation of the phytochemical constituents in NCF has been developed. Furthermore, NCF was biologically evaluated on male Wistar rats and revealed the improvement of spermatozoa, histopathological features, and biochemical markers over the CP and each ingredient group. Our findings suggest the potential of NCF with SNESNS as a delivery system against CP-induced testicular toxicity in male rats.
Collapse
Affiliation(s)
- Sherif R. Abdel-All
- Phytochemistry and Natural Product Department, Egyptian Drug Authority, Giza 12553, Egypt;
| | | | | | - Enji Reda
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia 41611, Egypt;
| | - Thoraya F. Sallam
- Histology and Cytology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hala M. El-Hefnawy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.M.E.-H.); (A.R.A.-M.)
| | - Azza R. Abdel-Monem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.M.E.-H.); (A.R.A.-M.)
| |
Collapse
|
35
|
Elrashidy RA, Hasan RA. Stromal cell-derived factor-1α predominantly mediates the ameliorative effect of linagliptin against cisplatin-induced testicular injury in adult male rats. Cytokine 2020; 136:155260. [DOI: 10.1016/j.cyto.2020.155260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
|
36
|
Abdel-Salam EM, Faisal M, Alatar AA, Qahtan AA, Alam P. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. J Biotechnol 2020; 325:43-56. [PMID: 33271156 DOI: 10.1016/j.jbiotec.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
Ruta chalepensis L., most commonly known as 'fringed rue,' is an excellent and valuable bioactive plant that produces a range of complex flavonoids, of which rutin is the major compound present in this plant of great pharmaceutical and medicinal significance. The present study is a pioneering attempt to examine the changes in the transcriptomic landscape of leaf, stem, and root tissues and correlate this with rutin quantity in each tissue in order to identify the candidate genes responsible for rutin biosynthesis and to increase genomic resources in fringed rue. Comparative transcriptome sequencing of leaves, stems and roots were performed using the NovaSeq 6000 platform. The de novo transcriptome assembly generated 254,685 transcripts representing 154,018 genes with GC content of 42.60 % and N50 of 2280 bp. Searching assembled transcripts against UniRef90 and SwissProt databases annotated 79.7 % of them as protein coding. The leaf tissues had the highest rutin content followed by stems and roots. Several differentially expressed genes and transcripts relating to rutin biosynthesis were identified in leaves comparing with roots or stems comparing with roots. All the genes known to be involved in rutin biosynthesis showed up-regulation in leaves as compared with roots. These results were confirmed by gene ontology (GO) and pathway enrichment analyses. Up-regulated genes in leaves as compared with roots enriched GO terms with relation to rutin biosynthesis e.g. action of flavonol synthase, biosynthetic mechanism of malonyl-CoA, and action of monooxygenase. Phylogenetic analysis of the rhamnosyltransferase (RT) gene showed that it was highly homologues with RT sequence from Citrus species and all were located in the same clade. This transcriptomic dataset will serve as an important public resource for future genomics and transcriptomic studies in R. chalepensis and will act as a benchmark for the identification and genetic modification of genes involved in the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Eslam M Abdel-Salam
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
37
|
Wang L, He Y, Li Y, Pei C, Olatunji OJ, Tang J, Famurewa AC, Wang H, Yan B. Protective Effects of Nucleosides-Rich Extract from Cordyceps cicadae against Cisplatin Induced Testicular Damage. Chem Biodivers 2020; 17:e2000671. [PMID: 33007148 DOI: 10.1002/cbdv.202000671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin (CISP) is an efficacious anticancer agent used in chemotherapy, however, the constraint to its clinical utility is the stray organ toxicity including testicular damage linked to oxidative and inflammatory cascades. This study aimed to explore the protective effect of nucleosides-rich extract from Cordyceps cicadae (NRCE) against CISP-induced testicular damage in rats. Rats were subjected to prophylactic oral administration of NRCE (50, 100 and 400 mg/kg body weight/day) for 7 days prior to testicular toxicity induced by CISP (10 mg/kg, ip) and were sacrificed after 72 h post-CISP injection. Cisplatin caused significant deficits in sperm count, viability and motility, testosterone and follicle stimulating hormone (FSH) compared to normal control. It depressed testicular activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), total antioxidant content (TAC), whereas malondialdehyde (MDA) increased remarkably. CISP considerably increased tumor necrosis factor-alpha (TNF-α) and interleukin-one beta (IL-1β) with alterations in testis histology compared to normal control. Interestingly, NRCE pretreatment inhibited the CISP-induced alterations in reproductive indices, restored the antioxidant activities in testes as well as inflammatory mediators and histology comparable to control. Our findings demonstrate that NRCE could prevent CISP testicular damage via inhibition of oxidative stress and pro-inflammation in rats.
Collapse
Affiliation(s)
- Ling Wang
- Department of Reproductive Center, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, P. R. China
| | - Yigang He
- Department of Health Service, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, 730050, P. R. China
| | - Yudi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, P. R. China
| | - Chengbin Pei
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Songkla, 90110, Thailand
| | - Jian Tang
- School of Chinese Medicine, Bozhou University, Bozhou, 236800, P. R. China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Hongyan Wang
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Bei Yan
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750004, P. R. China
| |
Collapse
|
38
|
Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids. Fitoterapia 2020; 147:104756. [PMID: 33069836 DOI: 10.1016/j.fitote.2020.104756] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Male infertility has affected many families around the world. However, due to the mechanism underlying male reproductive system dysfunction are not completely elucidated, the use of drugs for male reproductive system dysfunction treatment only insignificant higher pregnancy outcomes, low-quality evidence suggests that clinical pregnancy rates may increase. Therefore, the focus in the future will be on developing more viable treatment options to prevent or treatment of male reproductive system dysfunction and achieve the purpose of improving fertility. Interestingly, natural products, as the potential inhibitors for the treatment of male reproductive system dysfunction, have shown a good therapeutic effect. Among many natural products, flavonoids have been extensively investigated for the treatment of male reproductive system dysfunction, such as testicular structural disruption, spermatogenesis disturbance and sperm quality decline. Flavonoids have been reported to have antioxidant, anti-inflammatory, immune stimulating, anti-apoptotic, anticarcinogenic, anti-allergic and antiviral activities, investigating for the treatment of male reproductive system dysfunction. In this review, we evaluate the therapeutic effects of flavonoids on male reproductive system dysfunction under different cellular scenarios and summarize the therapeutic strategies of flavonoids based on the aforementioned retrospective analysis. In the end, we describe some perspective research areas relevant to the application of flavonoids in the treatment of male reproductive system dysfunction.
Collapse
|
39
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|
40
|
Prasad R, Prasad SB. Histoprotective effect of rutin against cisplatin-induced toxicities in tumor-bearing mice: Rutin lessens cisplatin-induced toxicities. Hum Exp Toxicol 2020; 40:245-258. [PMID: 32787450 DOI: 10.1177/0960327120947793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cisplatin is an effective anticancer drug used against a variety of cancers. The full therapeutic potential of cisplatin is often hampered due to concurrent development of various side effects in the hosts. Rutin, a naturally occurring bioflavonoid shows several pharmacological activities. It has been earlier reported by us that rutin and cisplatin in combination show better antitumor activity against murine ascites Dalton's lymphoma. As cisplatin is given to cancer-bearing hosts only, the present study was undertaken to explore the histoprotective effect of rutin against some toxicities induced by cisplatin in tumor-bearing mice. Cisplatin treatment caused severe damages in tissue architecture such as degenerated hepatocytes with nuclear condensation and sinusoidal dilatation in the liver, glomerular deterioration, infiltration of cells, and tubular congestion in the kidney, and vacuolization of Sertoli cells or dense granules in the cytoplasm and damaged seminiferous tubules in the testes. In the rutin plus cisplatin combination-treated mice, all the abnormal tissue architectural features were decreased. Further, as compared to cisplatin treatment, combination treatment did not show any significant elevation in the liver functional biomarkers (serum aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) and renal functional biomarkers (serum urea and creatinine levels). The combination treatment reduced the sperm abnormalities also as compared to the cisplatin alone treatment. The in vitro hemolysis assay of red blood cells and scanning electron microscopy revealed that combination treatment lessened the cisplatin-induced hemolysis and abnormalities in RBCs. Thus, the present findings demonstrate that rutin has histoprotective ability against cisplatin-induced toxicities in tumor-bearing mice.
Collapse
Affiliation(s)
- R Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, 29666North-Eastern Hill University, Shillong, India
| | - S B Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, School of Life Sciences, 29666North-Eastern Hill University, Shillong, India
| |
Collapse
|
41
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL. The protective effect of rutin against busulfan-induced testicular damage in adult rats. Drug Chem Toxicol 2020; 45:1035-1043. [PMID: 32757678 DOI: 10.1080/01480545.2020.1803905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here, we studied the protective effect of rutin (RUT) against testicular damage caused by busulfan (BUS) in rats. Adult male Wistar rats were intraperitoneally injected with BUS (4 mg/kg body weight at day 7 and 14), and then treated with RUT (30 mg/kg body weight) by gavage thrice weekly for 60 days. The results showed that BUS-induced increase in 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by RUT, whereas 17β-HSD activity and plasma testosterone concentration remained unaffected (p > 0.05). It was also observed that RUT inhibited BUS-induced increase in nitrite concentrations and myeloperoxidase enzyme activities in the plasma and testes (p < 0.05). Similarly, BUS-induced decrease in glutathione and increase in malondialdehyde concentrations in the testes were significantly normalized to control values by RUT. Finally, RUT administration showed some tendency to improve the architecture of the seminiferous epithelium of the rat's testes after BUS treatment. Overall, RUT inhibited BUS-induced oxidative damage and inflammation in the testis of an experimental rat model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
42
|
Implications for glycosylated compounds and their anti-cancer effects. Int J Biol Macromol 2020; 163:1323-1332. [PMID: 32622770 DOI: 10.1016/j.ijbiomac.2020.06.281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Glycosylated compounds are major secondary metabolites of plants, which have various therapeutic effects on human diseases, by acting as anti-cancer, antioxidant, and anti-inflammatory agents. Glycosylation increases stability, bioactivity, and solubility of compounds and improves their pharmacological properties. Two well-known examples of glycosylated compounds include cardiac and flavonoid, the anti-tumor activities of which have been emphasized by several studies. However, little is known about their role in the treatment or prevention of cancer. In this review, recent studies on anti-tumor properties of cardiac and flavonoid glycosides, and their mechanisms of action, have been investigated. More specifically, this review is aimed at focusing on the multifactorial properties of cardiac and flavonoid compounds as well as their correlation with signaling pathways in the treatment of cancer.
Collapse
|
43
|
Wang PT, Sudirman S, Hsieh MC, Hu JY, Kong ZL. Oral supplementation of fucoxanthin-rich brown algae extract ameliorates cisplatin-induced testicular damage in hamsters. Biomed Pharmacother 2020; 125:109992. [PMID: 32084700 DOI: 10.1016/j.biopha.2020.109992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is recognized as a common pathology that affects up to half of all men infertile. Fucoxanthin possesses antioxidant activity, and several investigators have reported anti-inflammatory action. This study extracted powder of Sargassum glaucescens by acetone to obtained fucoxanthin rich-brown algae extract (FXE). The objective of this study was to evaluate the ameliorative effects of fucoxanthin extract from Sargassum glaucescens on lipopolysaccharide-induced inflammation in RAW264.7 macrophage cells and its protective effects of against Cisplatin (CP)-induced reproductive damage in hamsters. Eighty male Syrian hamsters were injected with and without CP, then daily oral gavage with various concentrations of fucoxanthin for 5 days. Treatment with FXE reduced the level of reactive oxygen species and malondialdehyde in RAW 264.7 cells and the rats' testis as well as protective effects on mitochondrial membrane potential. The FXE administration also improved testosterone level and alpha-glucosidase activity. The sperm count also increased after treated with FXE, whereas sperm abnormality was reduced. Histopathological analysis showed that FXE successfully improved the seminiferous tubules morphology. According to these findings, fucoxanthin extract from Sargassum glaucescens can be used as an alternative for the treatment of testicular damage.
Collapse
Affiliation(s)
- Pei-Tzu Wang
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Ming-Chou Hsieh
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Jia-Yuan Hu
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| |
Collapse
|
44
|
Saad KM, Abdelrahman RS, Said E. Mechanistic perspective of protective effects of nilotinib against cisplatin-induced testicular injury in rats: Role of JNK/caspase-3 signaling inhibition. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103334. [PMID: 32059174 DOI: 10.1016/j.etap.2020.103334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Cisplatin is an effective anticancer used widely in treatment of solid and germ cell tumors, however, the immense toxicity on healthy tissues discourages cisplatin use in prolonged treatment protocols. Testicular toxicity is amongst its undesired adverse effects. Nilotinib is a second generation multityrosine kinase inhibitor which is used as an anticancer agent with anti-inflammatory and antioxidant activities. In the present study, a single dose of cisplatin (7 mg/kg, I.P) to rats induced a significant testicular injury. Daily administration of nilotinib (20 mg/kg, orally) 24 h post cisplatin injection for 10 days ameliorated testicular damage. Nilotinib significantly increased serum testosterone and sperm concentration outside frame of oligospermia with simultaneous full recovery of sperm viability. Nevertheless, biomarkers of apoptosis such as JNKs and Caspase -3, were significantly reduced. Moreover, improved antioxidant status of the testes was inferred by significant elevation of GSR, SOD and TAC alongside with reduction in lipid peroxidation biomarkers; MDA and 4-HNE. Flow Cytometry analysis of the cell cycle confirmed a significant increase in the percentage of testicular cells present in G2/M phase and a significant decrease in the percentage of apoptotic testicular cells after nilotinib administration. Histopathologically, nilotinib preserved testicular architecture showing significant numbers of sperm and spermatids within lumens of seminiferous tubule. Furthermore, nilotinib enhanced testicular expression of Ki67 significantly, providing evidence of testicular regeneration. In conclusion, nilotinib refinement of cisplatin induced testicular toxicity is attributed to enhancing antioxidant capabilities, decreasing apoptotic signals and restoring regenerative capacity of testes suggesting nilotinib to be used in conjunction with cisplatin in treatment protocols to avoid cisplatin induced long term testicular toxicity.
Collapse
Affiliation(s)
- Kareem M Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al Madinah Al-Munawwarah, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
45
|
Azarbarz N, Shafiei Seifabadi Z, Moaiedi MZ, Mansouri E. Assessment of the effect of sodium hydrogen sulfide (hydrogen sulfide donor) on cisplatin-induced testicular toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8119-8128. [PMID: 31900777 DOI: 10.1007/s11356-019-07266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Cisplatin (CIS) is an antineoplastic drug able to produce free radicals that are capable to induce various side effects in different tissues. Hydrogen sulfide (H2S) has notable antioxidant, anti-apoptotic, and anti-inflammatory effects in different systems but its role in male reproductive system is not fully understood. In the present research, the effect of sodium hydrosulfide (NaHS) on cisplatin-induced testicular toxicity in male rats was studied. Thirty-two Sprague-Dawley rats were equally divided into 4 groups. The control group was treated with normal saline by intraperitoneal injection. The NaHS group received NaHS (200 μg/kg/day) intraperitoneally for 15 days. The CIS group received single dose of cisplatin (5 mg/kg) intraperitoneally, while the combination of CIS and NaHS was given to the CIS+ NaHS group. At the end of the study, body and testicular weights, plasma testosterone level, histological and morphometrical alterations, inflammation via IL-1β protein, lipid peroxidation, and activity of antioxidant enzymes (including glutathione peroxidase, superoxide dismutase, and catalase) of testicular tissue were evaluated. CIS injection revealed a significant decrease (p < 0.01) in body and testis weights, plasma testosterone concentration, diameter of seminiferous tubules, germinal epithelium thickness, the number of Sertoli cells, spermatogonia and spermatocyte, Johnsen's testicular score, and testicular antioxidant enzymes, whereas it caused a significant increase (p < 0.01) in lumen diameter of the seminiferous tubules, level of lipid peroxidation, and IL-1β protein expression when compared with the control group. NaHS administration to CIS-treated rats provided marked improvement (p < 0.05) in all biochemical, histological, and morphometrical changes induced by CIS. The beneficial effects of NaHS were mediated, at least partly, by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Nastaran Azarbarz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maasoumeh Zare Moaiedi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61335, Iran.
| |
Collapse
|
46
|
Zhang K, Weng H, Yang J, Wu C. Protective effect of Liuwei Dihuang Pill on cisplatin-induced reproductive toxicity and genotoxicity in male mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112269. [PMID: 31610261 DOI: 10.1016/j.jep.2019.112269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cisplatin (CP) is the classical chemotherapeutic drug for various cancer, but it also accompanies reproductive toxicity and genotoxicity. Liuwei Dihuang Pill (LW) is the traditional Chinese medicine prescription for treating Kidney-Yin deficiency syndrome, which has been reported to prevent and treat various diseases. However, the protective effect of LW on CP-induced reproductive toxicity and genotoxicity has not been reported. AIM OF THE STUDY To investigate the potential protective effect and mechanism of LW on CP-induced reproductive toxicity and genotoxicity in male mice. MATERIALS AND METHODS Mice were given LW (0.4, 1.2 and 3.6 g/kg) or Vitamin C (0.1 g/kg) once daily by oral gavage for thirteen consecutive days. Then, CP (3.00 mg/kg) was given intraperitoneal injection once daily for five consecutive days starting on the ninth day. The protective effects of LW against CP-induced reproductive toxicity and genotoxicity were evaluated by body weight, testis ratio, sperm count, sperm viability, sperm abnormal morphology type, micronuclei test, testicular histopathology, serum malondialdehyde (MDA), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) level. RESULTS The results demonstrated that LW could significantly increase CP-induced the reduction of sperm count and sperm viability, then decrease abnormal sperm type rate and micronucleus rate. Moreover, LW also could improve testicular abnormal histopathologic morphology induced by CP exposure. Meanwhile, LW decreased serum MDA level and increased T-SOD, GSH-Px and CAT level compared to CP group. CONCLUSION our findings show that LW has protective effects on CP-induced reproductive toxicity and genotoxicity. LW decreases serum MDA level and increases T-SOD, GSH-Px and CAT level, which indicates that antioxidant activity may be the potential mechanism of LW to resist reproductive toxicity and genotoxicity.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Huili Weng
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China; Department of Pharmacy, Chengde Maternal and Child Health-Care Hospital, Chengde, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
47
|
Jahan S, Azad T, Ayub A, Ullah A, Afsar T, Almajwal A, Razak S. Ameliorating potency of Chenopodium album Linn. and vitamin C against mercuric chloride-induced oxidative stress in testes of Sprague Dawley rats. Environ Health Prev Med 2019; 24:62. [PMID: 31759394 PMCID: PMC6875164 DOI: 10.1186/s12199-019-0820-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mercury has been documented as an industrial risk that posed a serious danger to human health. Mercury exposure results in oxidative stress that may lead to the pathogenesis of male reproductive dysfunction. The present study investigated the ameliorating potential of Chenopodium album L. and vitamin C against mercuric chloride-induced oxidative deterioration of reproductive functions in adult male rats. METHODS Group 1 (control) received saline. Group 2 received Mercury (0.15 mg/kg b.w, i.p) dissolved in distilled water. Groups 3 and 4 were given oral gavage of vitamin C (200 mg/kg b.w) and the ethanolic extract of C. album (200 mg/kg b.w) respectively, along with Mercury (0.15 mg/kg b.w, i.p). Group 5 was treated only with C. album (200 mg/kg b.w). After 30 days of the treatment, the rats were dissected and their testicular tissue and the cauda epididymis were used for biochemical analysis while blood plasma was used for protein determination. RESULTS The applied dose-treatment of Mercury-induced oxidative stress in the testis and cauda epididymis tissues of the rats was apparent by a noteworthy decrease in total protein, CAT, SOD, POD, and GST values while there was increase in ROS and TBARS levels. Furthermore, Mercury decreases daily sperm production and enhanced sperm DNA damage as noticeable by an increase in the head and tail length of comets and decrease in intact DNA. There was no significant effect on the body weight and the weight of the reproductive tissues. Treatment with C. album significantly ameliorated the total protein, ROS, and TBARS content. Similarly, the level of CAT, SOD, POD, and GST was significantly improved and the daily sperm production was significantly increased. Furthermore, C. album administration significantly protected Mercury-induced sperm DNA damage. The results of the extract treatment group were compared with those of vitamin C in detoxifying the oxidative stress and restoring the sperm parameters. CONCLUSION C. album showed protection against Mercury-induced oxidative stress by ameliorating antioxidant enzyme activity, daily sperm production, and DNA damage in rat testes. This suggests that C. album could be beneficial against toxicity induced by an environmental toxicant.
Collapse
Affiliation(s)
- Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Azad
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Amina Ayub
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asad Ullah
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|