1
|
Xue P, You X, Ren L, Yue W, Ma Z. PPARγ-mediated amelioration of lipid metabolism abnormality by kaempferol. Arch Biochem Biophys 2024; 761:110154. [PMID: 39278305 DOI: 10.1016/j.abb.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Kaempferol can exert biological functions by regulating various signaling pathways. This study evaluated the ameliorative effect of kaempferol on lipid accumulation using oleic acid and palmitic acid-treated HepG2 cells and high-fat diet mice. In vitro oil red O staining showed that kaempferol treatment improved lipid accumulation (p < 0.001 for TG content and p < 0.05 for TC content). Immunofluorescence, Western blot analysis and RT-qPCR showed that kaempferol could promote nuclear translocation of PPARγ and reduce the expression of PPARγ, C/EBPβ, and SREBP-1c. Dietary intervention with kaempferol could reduce the lipid accumulation in hepatocytes and inflammatory cell infiltration, as well as attenuated serum levels of IL-6 and TNF-α in HFD-fed mice (p < 0.001 for IL-6 and p < 0.01 for TNF-α at kaempferol 60 mg/kg/d). Meanwhile, histopathological examination revealed that there was no substantial damage or distinct inflammation lesions in organs at the experimental dose, including the heart, lung, kidney, and spleen. The aforementioned research findings can serve as references for further preclinical investigations on the potential of kaempferol to mitigate lipid accumulation.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Xinyong You
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Choi SY, Ahn SY, Jo D, Kim OY, Song J. Oligonol enhances brain cognitive function in high-fat diet-fed mice. Biomed Pharmacother 2024; 179:117322. [PMID: 39191029 DOI: 10.1016/j.biopha.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions. HFD mice were orally administered oligonol (20 mg/kg) daily, and SH-SY5Y cells and primary cortical neurons were pretreated with 500 ng/mL oligonol under in vitro insulin resistance conditions. Our findings revealed that oligonol administration reduced blood glucose levels and improved spatial memory function in HFD mice. In vitro data demonstrated that oligonol protected neuronal cells and enhanced neural structure against insulin resistance. We confirmed RNA sequencing in the oligonol-pretreated insulin-resistant SH-SY5Y neuronal cells. Our RNA-sequencing data indicated that oligonol contributes to metabolic signaling and neurite outgrowth. In conclusion, our study provides insights into therapeutic potential of oligonol with respect to preventing neuronal cell damage and improving neural structure and cognitive function in HFD mice.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Republic of Korea; Department of Health Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea.
| |
Collapse
|
3
|
Arulkumar R, Jung HJ, Noh SG, Kim HW, Chung HY. 8-Prenylgenistein Isoflavone in Cheonggukjang Acts as a Novel AMPK Activator Attenuating Hepatic Steatosis by Enhancing the SIRT1-Mediated Pathway. Int J Mol Sci 2024; 25:9730. [PMID: 39273677 PMCID: PMC11395689 DOI: 10.3390/ijms25179730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
8-Prenylgenistein (8PG), a genistein derivative, is present in fermented soybeans (Glycine max), including cheonggukjang (CGJ), and exhibits osteoprotective, osteogenic, and antiadipogenic properties. However, the hepatoprotective effects of 8PG and its underlying molecular mechanisms remain largely unexplored. Here, we identified the high binding affinity of 8PG with AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), which acts as a potent AMPK activator that counteracts hepatic steatosis. Notably, 8PG exhibited better pharmacokinetics with greater absorption and higher plasma binding than the positive controls for the target proteins. Moreover, 8PG exerted non-carcinogenic activity in rats and significantly increased AMPK phosphorylation. Compound C, an AMPK inhibitor, did not antagonize 8PG-activated AMPK in HepG2 cells. 8PG significantly attenuated palmitate-induced lipid accumulation and enhanced phosphorylated AMPK and its downstream target, acetyl-CoA carboxylase. Further, 8PG activated nuclear SIRT1 at the protein level, which promoted fatty acid oxidation in palmitate-treated HepG2 cells. Overall, 8PG acts as a potent AMPK activator, further attenuating hepatic steatosis via the SIRT1-mediated pathway and providing new avenues for dietary interventions to treat metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
| | - Hyun Woo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Republic of Korea; (S.G.N.); (H.W.K.)
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
4
|
An M, Heo H, Park J, Jeong HS, Kim Y, Lee J. Unsaponifiable Matter from Wheat Bran Cultivated in Korea Inhibits Hepatic Lipogenesis by Activating AMPK Pathway. Foods 2023; 12:4016. [PMID: 37959135 PMCID: PMC10650137 DOI: 10.3390/foods12214016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Unsaponifiable matter (USM) from wheat bran, a by-product obtained from wheat milling, is abundant in health-promoting compounds such as phytosterols, tocopherols, policosanols, and alkylresorcinols. This study aimed to examine the effects of USM from the wheat bran of normal and waxy type wheat, Saekeumkang (SKK) and Shinmichal (SMC), on hepatic lipid accumulation in free fatty acid (FFA)-induced hepatocytes and to investigate the cellular mechanism. The total phytochemical contents were 46.562 g/100 g USM and 38.130 g/100 g USM from SKK and SMC, respectively. FFA treatment increased intracellular lipid accumulation by approximately 260% compared to the control group; however, treatment with USM from SKK and SMC significantly attenuated lipid accumulation in the hepatocytes in a dose-dependent manner. Moreover, USM downregulated the expression of lipogenic factors such as fatty acid synthase and sterol regulatory-element-binding protein 1c by approximately 40% compared to the FFA treatment group. Treatment with USM promoted lipolysis and positively regulated the expression of the proteins involved in β-oxidation, including peroxisome proliferator-activated receptor α and its downstream protein, carnitine palmitoyltransferase 1A. Moreover, the blockade of AMPK activation significantly abolished the inhibitory effects of USM on hepatic lipid accumulation. These results indicated that the USM from both SKK and SMC can alleviate lipid accumulation in hepatocytes in an AMPK-dependent manner. Therefore, USM from wheat bran may be useful as a therapeutic intervention for treating metabolic-dysfunction-associated fatty liver disease.
Collapse
Affiliation(s)
- Minju An
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Jinhee Park
- Wheat Research Team, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Heon-Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Republic of Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (M.A.); (H.H.); (H.-S.J.)
| |
Collapse
|
5
|
Ku H, Kim Y, Kim AL, Lee G, Choi Y, Kim B. Protective Effects of Melatonin in High-Fat Diet-Induced Hepatic Steatosis via Decreased Intestinal Lipid Absorption and Hepatic Cholesterol Synthesis. Endocrinol Metab (Seoul) 2023; 38:557-567. [PMID: 37652870 PMCID: PMC10613779 DOI: 10.3803/enm.2023.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGRUOUND The preventative effect of melatonin on the development of obesity and the progression of fatty liver under a high-fat diet (HFD) has been well elucidated through previous studies. We investigated the mechanism behind this effect regarding cholesterol biosynthesis and regulation of cholesterol levels. METHODS Mice were divided into three groups: normal chow diet (NCD); HFD; and HFD and melatonin administration group (HFD+M). We assessed the serum lipid profile, mRNA expression levels of proteins involved in cholesterol synthesis and reabsorption in the liver and nutrient transporters in the intestines, and cytokine levels. Additionally, an in vitro experiment using HepG2 cells was performed. RESULTS Expression of hepatic sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) demonstrated that melatonin administration significantly reduces hepatic cholesterol synthesis in mice fed an HFD. Expression of intestinal sodium-glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), GLUT5, and Niemann-pick C1-like 1 (NPC1L1) demonstrated that melatonin administration significantly reduces intestinal carbohydrate and lipid absorption in mice fed an HFD. There were no differences in local and circulatory inflammatory cytokine levels among the NCD, HFD, and HFD+M group. HepG2 cells stimulated with palmitate showed reduced levels of SREBP, LDLR, and HMGCR indicating these results are due to the direct mechanistic effect of melatonin on hepatocytes. CONCLUSION Collectively, these data indicate the mechanism behind the protective effects of melatonin from weight gain and liver steatosis under HFD is through a reduction in intestinal caloric absorption and hepatic cholesterol synthesis highlighting its potential in the treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Hyungjune Ku
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yeonji Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Alvin Lyle Kim
- Department of Surgery, Kosin University College of Medicine, Busan, Korea
| | - Garam Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Youngsik Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Bukyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
6
|
Kim YC, Ki SW, Kim H, Kang S, Kim H, Go GW. Recent Advances in Nutraceuticals for the Treatment of Sarcopenic Obesity. Nutrients 2023; 15:3854. [PMID: 37686886 PMCID: PMC10490319 DOI: 10.3390/nu15173854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Sarcopenic obesity, low muscle mass, and high body fat are growing health concerns in the aging population. This review highlights the need for standardized criteria and explores nutraceuticals as potential therapeutic agents. Sarcopenic obesity is associated with insulin resistance, inflammation, hormonal changes, and reduced physical activity. These factors lead to impaired muscle activity, intramuscular fat accumulation, and reduced protein synthesis, resulting in muscle catabolism and increased fat mass. Myostatin and irisin are myokines that regulate muscle synthesis and energy expenditure, respectively. Nutritional supplementation with vitamin D and calcium is recommended for increasing muscle mass and reducing body fat content. Testosterone therapy decreases fat mass and improves muscle strength. Vitamin K, specifically menaquinone-4 (MK-4), improves mitochondrial function and reduces muscle damage. Irisin is a hormone secreted during exercise that enhances oxidative metabolism, prevents insulin resistance and obesity, and improves bone quality. Low-glycemic-index diets and green cardamom are potential methods for managing sarcopenic obesity. In conclusion, along with exercise and dietary support, nutraceuticals, such as vitamin D, calcium, vitamin K, and natural agonists of irisin or testosterone, can serve as promising future therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea; (Y.-C.K.); (S.-W.K.); (H.K.); (S.K.); (H.K.)
| |
Collapse
|
7
|
Shakoor H, Hussein H, Al-Hassan N, Alketbi M, Kizhakkayil J, Platat C. The Muscle-Conditioned Medium Containing Protocatechuic Acid Improves Insulin Resistance by Modulating Muscle Communication with Liver and Adipose Tissue. Int J Mol Sci 2023; 24:9490. [PMID: 37298440 PMCID: PMC10253324 DOI: 10.3390/ijms24119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetes mellitus is a public health concern, affecting 10.5% of the population. Protocatechuic acid (PCA), a polyphenol, exerts beneficial effects on insulin resistance and diabetes. This study investigated the role of PCA in improving insulin resistance and the crosstalk between muscle with liver and adipose tissue. C2C12 myotubes received four treatments: Control, PCA, insulin resistance (IR), and IR-PCA. Conditioned media from C2C12 was used to incubate HepG2 and 3T3-L1 adipocytes. The impact of PCA was analyzed on glucose uptake and signaling pathways. PCA (80 µM) significantly enhanced glucose uptake in C2C12, HepG2, and 3T3-L1 adipocytes (p < 0.05). In C2C12, PCA significantly elevated GLUT-4, IRS-1, IRS-2, PPAR-γ, P-AMPK, and P-Akt vs. Control (p ≤ 0.05), and modulated pathways in IR-PCA. In HepG2, PPAR-γ and P-Akt increased significantly in Control (CM) vs. No CM, and PCA dose upregulated PPAR-γ, P-AMPK, and P-AKT (p < 0.05). In the 3T3-L1 adipocytes, PI3K and GLUT-4 expression was elevated in PCA (CM) vs. No CM. A significant elevation of IRS-1, GLUT-4, and P-AMPK was observed in IR-PCA vs. IR (p ≤ 0.001). Herein, PCA strengthens insulin signaling by activating key proteins of that pathway and regulating glucose uptake. Further, conditioned media modulated crosstalk between muscle with liver and adipose tissue, thus regulating glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (H.S.)
| |
Collapse
|
8
|
Tang P, Tang Y, Liu Y, He B, Shen X, Zhang ZJ, Qin DL, Tian J. Quercetin-3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside Isolated from Eucommia ulmoides Leaf Relieves Insulin Resistance in HepG2 Cells via the IRS-1/PI3K/Akt/GSK-3β Pathway. Biol Pharm Bull 2023; 46:219-229. [PMID: 36517007 DOI: 10.1248/bpb.b22-00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For nearly 2000 years, Eucommia ulmoides Oliver (EUO) has been utilized in traditional Chinese medicine (TCM) throughout China. Flavonoids present in bark and leaves of EUO are responsible for their antioxidant, anti-inflammatory, antitumor, anti-osteoporosis, hypoglycemic, hypolipidemic, antibacterial, and antiviral properties, but the main bioactive compound has not been established yet. In this study, we isolated and identified quercetin glycoside (QAG) from EUO leaves (EUOL) and preliminarily explored its molecular mechanism in improving insulin resistance (IR). The results showed that QAG increased uptake of glucose as well as glycogen production in the palmitic acid (PA)-induced HepG2 cells in a dose-dependent way. Further, we observed that QAG increases glucose transporters 2 and 4 (GLUT2 and GLUT4) expression and suppresses the phosphorylation of insulin receptor substrate (IRS)-1 at serine612, thus promoting the expression of phosphatidylinositol-3-kinase (PI3K) at tyrosine458 and tyrosine199, as well as protein kinase B (Akt) and glycogen synthase kinase (GSK)-3β at serine473 and serine9, respectively. The influence posed by QAG on the improvement of uptake of glucose was significantly inhibited by LY294002, a PI3K inhibitor. In addition, the molecular docking result showed that QAG could bind to insulin receptors. In summary, our data established that QAG improved IR as demonstrated by the increased uptake of glucose and glycogen production through a signaling pathway called IRS-1/PI3K/Akt/GSK-3β.
Collapse
Affiliation(s)
- Peng Tang
- Clinical Medical College & Affiliated Hospital of Chengdu University.,School of Pharmacy, Southwest Medical University
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology.,Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University
| | - Yan Liu
- Drug Discovery Research Center of Southwest Medical University
| | - Bing He
- School of Pharmacy, Southwest Medical University
| | - Xin Shen
- Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University.,Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine
| | | | - Da-Lian Qin
- School of Pharmacy, Southwest Medical University.,Sichuan Key Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Bioactivity Screening in Traditional Chinese Medicine and Druggability Evalution, School of Pharmacy, Southwest Medical University
| | - Ji Tian
- School of Pharmacy, Southwest Medical University
| |
Collapse
|
9
|
Song H, Yang R, Zhang J, Sun P, Xing X, Wang L, Sairijima T, Hu Y, Liu Y, Cheng H, Zhang Q, Li L. Oleic acid-induced steatosis model establishment in LMH cells and its effect on lipid metabolism. Poult Sci 2023; 102:102297. [PMID: 36446267 PMCID: PMC9709224 DOI: 10.1016/j.psj.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatic steatosis is a highly prevalent liver disease, yet research on it is hampered by the lack of tractable cellular models in poultry. To examine the possibility of using organoids to model steatosis and detect it efficiently in leghorn male hepatocellular (LMH) cells, we first established steatosis using different concentrations of oleic acid (OA) (0.05-0.75 mmol/L) for 12 or 24 h. The subsequent detections found that the treatment of LMH cells with OA resulted in a dramatic increase in intracellular triglyceride (TG) concentrations, which was positively associated with the concentration of the inducing OA (R2 > 0.9). Then, the modeled steatosis was detected by flow cytometry after NileRed staining and it was found that the intensity of NileRed-A was positively correlated with the TG concentration (R2 > 0.93), which demonstrates that the flow cytometry is suitable for the detection of steatosis in LMH cells. According to the detection results of the different steatosis models, we confirmed that the optimal induction condition for the establishment of the steatosis model in LMH cells is OA (0.375 mmol/L) incubation for 12 h. Finally, the transcription and protein content of fat metabolism-related genes in steatosis model cells were detected. It was found that OA-induced steatosis could significantly decrease the expression of nuclear receptor PPAR-γ and the synthesis of fatty acids (SREBP-1C, ACC1, FASN), increasing the oxidative decomposition of triglycerides (CPT1A) and the assembly of low-density lipoproteins (MTTP, ApoB). Sterol metabolism in model cells was also significantly enhanced (HMGR, ABCA1, L-BABP). This study established, detected, and analyzed an OA-induced steatosis model in LMH cells, which provides a stable model and detection method for the study of poultry steatosis-related diseases.
Collapse
Affiliation(s)
- Huiqi Song
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China
| | - Ruizhi Yang
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; College of animal science and technology, Alar 843300, Xinjiang, China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Jiahao Zhang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Pengliang Sun
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Xiaoyue Xing
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Lan Wang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Ta Sairijima
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Yahui Hu
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Yang Liu
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Huixu Cheng
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Qiulin Zhang
- College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China
| | - Lianrui Li
- College of life science and technology, Tarim University, Alar 843300, Xinjiang, China; College of animal science and technology, Alar 843300, Xinjiang, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang ,China; Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China.
| |
Collapse
|
10
|
Cook KJ, Coulter A, Keenan M, Greenway F, Losso JN. Sodium Propionate or Sodium Butyrate Promotes Fatty Acid Oxidation in HepG2 Cells Under Oxidative Stress. J Med Food 2023; 26:74-79. [PMID: 36637439 PMCID: PMC9889010 DOI: 10.1089/jmf.2021.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/14/2023] Open
Abstract
The beneficial effects of sodium butyrate (NaB) and sodium propionate (NaP) on fatty acid oxidation (FAO) genes and production of proinflammatory cytokines related to nonalcoholic fatty liver disease (NAFLD) were evaluated using HepG2 human liver hepatocellular carcinoma cells exposed to palmitate/oleate or lipopolysaccharides (LPSs) as a model. The results showed that NaP or NaB was able to promote FAO, regulate lipolysis, and reduce reactive oxygen species production by significantly increasing the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase 1 alpha (CPT1α), fibroblast growth factor 21 (FGF21), and uncoupling protein 2 (UCP2) in HepG2 cells. Together, NaP and NaB may produce greater effects by increasing CPT1α, PPARα, and UCP2 mRNA expression in LPS-treated HepG2 cells and by increasing CPT1α and ATGL mRNA expression in palmitate-/oleate-treated HepG2 cells. Only NaP treatment significantly increased FGF21 mRNA expression in palmitate-/oleate-treated HepG2 cells. The enzyme-linked immunosorbent assay results revealed that only pretreatment with LPSs and not palmitate/oleate significantly increased tumor necrosis factor alpha (TNF-α) expression in HepG2 cells. NaP alone or in combination with NaB significantly decreased TNF-α expression in LPS-induced HepG2 cells. The expression of interleukin-8 in both models showed no significant differences in all treatments. NaP and NaB show potential for in vivo studies on NAFLD.
Collapse
Affiliation(s)
- Kristina J. Cook
- Pennington Biomedical Research Center, Louisisna State University System, Baton Rouge, Louisiana, USA
| | - Ann Coulter
- School of Nutrition and Food Sciences, Louisisna State University System, Baton Rouge, Louisiana, USA
| | - Michael Keenan
- Pennington Biomedical Research Center, Louisisna State University System, Baton Rouge, Louisiana, USA
| | - Frank Greenway
- School of Nutrition and Food Sciences, Louisisna State University System, Baton Rouge, Louisiana, USA
| | - Jack N. Losso
- Pennington Biomedical Research Center, Louisisna State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Musolino V, Macrì R, Cardamone A, Serra M, Coppoletta AR, Tucci L, Maiuolo J, Lupia C, Scarano F, Carresi C, Nucera S, Bava I, Marrelli M, Palma E, Gliozzi M, Mollace V. Nocellara Del Belice ( Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. PLANTS (BASEL, SWITZERLAND) 2022; 12:27. [PMID: 36616158 PMCID: PMC9824270 DOI: 10.3390/plants12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 μg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Cao Y, Han S, Lu H, Luo Y, Guo T, Wu Q, Luo F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022; 14:nu14235171. [PMID: 36501200 PMCID: PMC9735788 DOI: 10.3390/nu14235171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid β-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.
Collapse
Affiliation(s)
- Yunyun Cao
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han Lu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
13
|
Chayanupatkul M, Sawatdee W, Chutaputti A, Tangkijvanich P. The Efficacy of Oligonol in Nonalcoholic Fatty Liver Disease: A Randomized Double-Blinded Placebo-Controlled Trial. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:904-908. [PMID: 36074799 DOI: 10.1089/jicm.2021.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Introduction: Oligonol, an oligomerized-polyphenol from Litchi chinensis extract, has been shown to alleviate metabolic syndrome. The aim of this study was to evaluate the effects of oligonol in patients with nonalcoholic fatty liver disease (NAFLD). Methods: Adult patients with NAFLD defined by magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) ≥11% were enrolled and then randomly assigned to receive either oligonol or placebo capsules. Primary endpoint was ≥30% reduction in MRI-PDFF at 24 weeks. Secondary outcomes were reductions in bodyweight, waist circumference, alanine transaminase, fasting blood sugar, and lipid profiles at week 24. Results: Forty patients were enrolled (n = 20/group). Primary endpoint was achieved in 20% in the oligonol group and 15% in the placebo group (p = 0.50). The authors found a reduction in MRI-PDFF between weeks 0 and 24 in the oligonol group; however, the change was not different from the placebo group. Secondary outcomes were similar between two groups. Discussion: Oligonol has not shown a significant therapeutic effect in NAFLD. Future studies with a longer duration of therapy might be needed to achieve the primary endpoint. Clinical Trial Registration Number: Thai Clinical Trial Registry identification number: TCTR20200814001.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases Research Unit, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Waleerat Sawatdee
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anuchit Chutaputti
- Department of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
14
|
Peng LN, Lin MH, Lee HF, Hsu CC, Chang SJ, Chen LK. Clinical efficacy of oligonol® supplementation on metabolism and muscle health in middle-aged and older adults: A double-blinded randomized controlled trial. Arch Gerontol Geriatr 2022; 103:104784. [PMID: 35985196 DOI: 10.1016/j.archger.2022.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oligonol® is a low-molecular-weight polyphenol that has biological effects on metabolism in animals. However, little is known about its roles in muscle function and muscle quality in middle-aged and older adults. METHODS 120 participants were enrolled for study based on 1:1 randomization. Participants in the intervention group were provided 200 mg oligonol® prepared as capsules, and 200 mg placebo (dextrin) was provided in control group. RESULTS Data from 103 participants (52 in the intervention group and 51 in the control group) were available for analysis. The mean age of all participants was 64.0 ± 8.2 years, and two-thirds of the participants were females. Baseline demographic characteristics, functional assessment, laboratory data and muscle parameters were similar between groups. Hip circumference decreased (p = 0.009) during the study period, and the 6-m walking speed increased (p = 0.001) in women in the intervention group. In contrast, 6-m walking speed, 6-min walking distance and handgrip strength were significantly improved in men in the intervention group, but increased total body fat percentage (p = 0.038) and decreased mid-thigh cross-muscle area (CMA) (p = 0.007) were observed in the control group. Compared to the control group, the 12-week interval change in the percentage of mid-thigh CMA was maintained in men in the intervention group but was significantly decreased in the control group (p = 0.03, 95% CI:0.002-0.05). CONCLUSIONS Oligonol supplementation (200 mg per day) significantly improved physical performance and muscle mass in men. Further studies are needed to confirm the potential favorable effects of oligonol® supplementation.
Collapse
Affiliation(s)
- Li-Ning Peng
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan.
| | - Ming-Hsien Lin
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Huei-Fang Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan
| | - Chia-Chia Hsu
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Rd., Taipei 11217, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan; Taipei Municipal Gan-Dau Hospital (Managed by Taipei Veterans General Hospital), Taipei, Taiwan
| |
Collapse
|
15
|
Arulkumar R, Jung HJ, Noh SG, Chung HY. Soyasapogenol C from Fermented Soybean ( Glycine Max) Acting as a Novel AMPK/PPARα Dual Activator Ameliorates Hepatic Steatosis: A Novel SANDA Methodology. Int J Mol Sci 2022; 23:5468. [PMID: 35628280 PMCID: PMC9141180 DOI: 10.3390/ijms23105468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Soyasapogenol C (SSC), a derivative of soyasapogenol B (SSB), is specifically found high in many fermented soybean (Glycine max) products, including Cheonggukjang (in Korean). However, the biological activities for preventing and treating hepatic steatosis, and the precise underlying mechanisms of SSC, remain to be explored. (2) Methods: A novel SANDA (structural screening, ADMET prediction, network pharmacology, docking validation, and activity evaluation) methodology was used to examine whether SSC exerts hepatoprotective effects in silico and in vitro. (3) Results: SSC had better ADMET characteristics and a higher binding affinity with predicted targets chosen from network pathway analysis than SSB. SSC induced the phosphorylation of AMP-activated protein kinase (AMPK) and stimulated the nuclear translocation of peroxisome proliferator-activated receptor alpha (PPARα), further enhancing PPAR response element (PPRE) binding activity in HepG2 cells. Concurrently, SSC significantly inhibited triglyceride accumulation, which was associated with the suppression of lipogenesis genes and the enhancement of fatty acid oxidation gene expression in HepG2 cells. (4) Conclusions: Soyasapogenol C, discovered using a novel SANDA methodology from fermented soybean, is a novel AMPK/PPARα dual activator that is effective against hepatic steatosis. Dietary supplementation with soyasapogenol C may prevent the development of hepatic steatosis and other diseases associated with fat accumulation in the liver.
Collapse
Affiliation(s)
- Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan 46241, Korea; (R.A.); (S.G.N.)
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
16
|
Harder NHO, Lee HP, Flood VJ, San Juan JA, Gillette SK, Heffern MC. Fatty Acid Uptake in Liver Hepatocytes Induces Relocalization and Sequestration of Intracellular Copper. Front Mol Biosci 2022; 9:863296. [PMID: 35480878 PMCID: PMC9036104 DOI: 10.3389/fmolb.2022.863296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal micronutrient with biological roles ranging from energy metabolism to cell signaling. Recent studies have shown that copper regulation is altered by fat accumulation in both rodent and cell models with phenotypes consistent with copper deficiency, including the elevated expression of the copper transporter, ATP7B. This study examines the changes in the copper trafficking mechanisms of liver cells exposed to excess fatty acids. Fatty acid uptake was induced in liver hepatocarcinoma cells, HepG2, by treatment with the saturated fatty acid, palmitic acid. Changes in chaperones, transporters, and chelators demonstrate an initial state of copper overload in the cell that over time shifts to a state of copper deficiency. This deficiency is due to sequestration of copper both into the membrane-bound copper protein, hephaestin, and lysosomal units. These changes are independent of changes in copper concentration, supporting perturbations in copper localization at the subcellular level. We hypothesize that fat accumulation triggers an initial copper miscompartmentalization within the cell, due to disruptions in mitochondrial copper balance, which induces a homeostatic response to cytosolic copper overload. This leads the cell to activate copper export and sequestering mechanisms that in turn induces a condition of cytosolic copper deficiency. Taken together, this work provides molecular insights into the previously observed phenotypes in clinical and rodent models linking copper-deficient states to obesity-associated disorders.
Collapse
|
17
|
Kim JH, Lee H, Kim JM, Lee BJ, Kim IJ, Pak K, Jeon YK, Kim K. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci Nutr 2022; 10:1184-1194. [PMID: 35432979 PMCID: PMC9007287 DOI: 10.1002/fsn3.2750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low‐molecular‐weight polyphenol product derived from lychee (Litchi chinensis Sonn.) fruits. This study was focused on the effects of oligonol on the skeletal muscle of ovariectomized rats. We randomly divided female Sprague–Dawley rats into three groups: a sham surgery control group (Sham), an ovariectomy (OVX) group, and an OVX group treated with oligonol (OVX + Oligonol). Oligonol was intraperitoneally administrated at 30 mg/kg daily for 6 weeks. Oligonol treatment after OVX decreased body weight and fat mass, regulated lipid metabolism in skeletal muscle, without loss of lean mass and bone. Bone turnover was not affected by oligonol. In protein synthesis and degradation, oligonol increased the levels of the mammalian target of rapamycin and its downstream targets, eukaryotic initiation factor 4E‐binding protein 1 and 70‐kDa ribosomal protein S6 kinase, and it stimulated the expression of ubiquitin‐proteasome pathway proteins, the forkhead box transcription factors of the class O and the muscle ring‐finger protein‐1. Moreover, oligonol treatment enhanced mitochondrial biogenesis and dynamics. Thus, our results indicated that oligonol treatment had beneficial effects on the skeletal muscle in an estrogen‐deficiency rat model.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Hyangkyu Lee
- Biobehavioral Research Centre Mo-Im Kim Nursing Research Institute College of Nursing Yonsei University Seoul Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute Pusan National University School of Medicine Pusan National University Yangsan Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery Pusan National University School of Medicine Pusan National University Busan Korea
| | - In-Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Yun Kyung Jeon
- Department of Internal Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| |
Collapse
|
18
|
Pancreastatin inhibitor PSTi8 prevents free fatty acid-induced oxidative stress and insulin resistance by modulating JNK pathway: In vitro and in vivo findings. Life Sci 2022; 289:120221. [PMID: 34902437 DOI: 10.1016/j.lfs.2021.120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/17/2022]
Abstract
AIM Free fatty acid-mediated obesity plays a crucial role in the pathogenesis of Type 2 Diabetes. FFA induced JNK activation acts as a central regulator in causing hepatic insulin resistance. Similarly, Pancreastatin, a chromogranin A peptide, serves as a crucial link between FFA-induced insulin resistance. Therefore, in the present work, we sought to test Pancreastatin inhibitor PSTi8 to ameliorate FFA-induced hepatic insulin resistance in in vitro and in vivo models. MATERIAL AND METHODS To verify our objective, we exposed hepatocytes (HepG2 cells) with palmitate (0.3 mM) or palmitate + PSTi8 (200 nM). Parallelly mice were fed either HFD or HFD + PSTi8 (1 mg/kg). After 21 days animals were scanned for increased fat mass, along with GTT, ITT and PTT experiment to check glucose, and insulin tolerance. Furthermore, ROS generation and hepatic glycogen content was measured in FFA exposed hepatocytes. Gene expression and protein expression studies were further conducted to delineate the action mechanism of PSTi8. KEY FINDINGS PSTi8 exposure decreased ROS accumulation, lipid accumulation, and reduced glycogen content in FFA-induced groups. It also enhances glucose uptake and reduces gluconeogenesis to combat the FFA effect. Furthermore, gene expression studies indicate that PSTi8 treatment reduces NADPH oxidase3 (NOX3) expression and inhibits JNK signaling, a predominant source of ROS-induced insulin resistance. SIGNIFICANCE To summarize, the protective effect of PSTi8 on FFA-induced insulin resistance is mediated via inhibition of JNK signaling, which leads to decreased ROS generation and enhanced insulin sensitivity. Hence PSTi8 could be a therapeutic molecule to prevent western diet-induced insulin resistance.
Collapse
|
19
|
Effects of oligonol on the submandibular gland in ovariectomized rats. Biomed Pharmacother 2021; 141:111897. [PMID: 34328116 DOI: 10.1016/j.biopha.2021.111897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to observe the effects of oligonol on submandibular gland dysfunction in ovariectomized rats. We randomly divided female Sprague-Dawley rats into sham-operated, ovariectomized, and oligonol-treated ovariectomized groups. Oligonol was intraperitoneally administered at 30 mg/kg daily for six weeks. Lipogenesis increased after the ovariectomy while fatty acid oxidation increased and intracellular triglyceride levels decreased in response to oligonol treatment. Submandibular gland fibrosis characterized by collagen type I accumulation was observed in the ovariectomized group. However, oligonol markedly reduced fibrosis to a level comparable to that observed in the sham group. Aquaporin 1 and glucose transporter 4 were downregulated in the ovariectomized group. Nevertheless, both factors were significantly upregulated by oligonol treatment. However, aquaporin 5 was significantly downregulated in the oligonol treatment group. Our findings indicate that oligonol protects against damage in postmenopausal rat salivary glands.
Collapse
|
20
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
21
|
Zhao N, Tan H, Wang L, Han L, Cheng Y, Feng Y, Li T, Liu X. Palmitate induces fat accumulation via repressing FoxO1-mediated ATGL-dependent lipolysis in HepG2 hepatocytes. PLoS One 2021; 16:e0243938. [PMID: 33449950 PMCID: PMC7810308 DOI: 10.1371/journal.pone.0243938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), and elevated serum palmitate is the link between obesity and excessive hepatic lipid accumulation. Forkhead box O-1 (FoxO1) is one of the FoxO family members of transcription factors and can stimulate adipose triglyceride lipase (ATGL) and suppress its inhibitor G0/G1 switch gene 2 (G0S2) expression in the liver. However, previous researches have also shown conflicting results regarding the role of FoxO1 in hepatic lipid accumulation. We therefore examined the role of FoxO1 as a downstream suppressor to palmitate-stimulated hepatic steatosis. Palmitate significantly promoted lipid accumulation but inhibited lipid decomposition in human HepG2 hepatoma cells. Palmitate also significantly reduced FoxO1, ATGL and its activator comparative gene identification-58 (CGI-58) expression but increased peroxisome proliferator-activated receptorγ (PPARγ) and its target gene G0S2 expression. FoxO1 overexpression significantly increased palmitate-inhibited ATGL and CGI-58 expression but reduced palmitate-stimulated PPARγ and its target gene G0S2 expression. FoxO1 overexpression also inhibited lipid accumulation and promoted lipolysis in palmitate-treated hepatocytes. Overall, these results indicate that FoxO1-mediated ATGL-dependent lipolysis may be an effective molecular mechanism in protecting hepatocytes from palmitate-induced fat accumulation.
Collapse
Affiliation(s)
- Naiqian Zhao
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail:
| | - Huiwen Tan
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Wang
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Han
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanli Cheng
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Feng
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Li
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoling Liu
- Department of Gerontology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
22
|
Cheng J, Liu Y, Liu Y, Liu D, Liu Y, Guo Y, Wu Z, Li H, Wang H. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro. J Food Sci 2020; 85:3998-4008. [PMID: 33001454 DOI: 10.1111/1750-3841.15475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mechanism underlying the effect of ursolic acid (UA) on lipid metabolism remains unclear. This study aimed to explore the mechanisms of UA in reducing lipid accumulation in free fatty acids-cultured HepG2 cells and in high-fat-diet-fed C57BL/6J mice. In vivo, UA effectively alleviated liver steatosis and decreased the size of adipocytes in the epididymis. It also significantly decreased the total cholesterol (TC) and triglyceride (TG) contents in the liver and plasma in C57BL/6 mice. In vitro, UA (20 µM) significantly reduced lipid accumulation; the intracellular TC contents decreased from 0.078 ± 0.0047 to 0.049 ± 0.0064 µmol/mg protein, and TG contents from 0.133 ± 0.005 to 0.066 ± 0.0047 µmol/mg protein, in HepG2 cells. Furthermore, UA reduced the mRNA expression related to fat synthesis, enhanced the mRNA expression related to adipose decomposition, and dramatically upregulated the protein expression of P-AMPK in vivo and in vitro. Of note, these protective effects of UA on a high-fat environment were blocked by the AMPK inhibitor (compound C) in vitro. In addition, the molecular docking results suggested that UA could be docked to the AMPK protein as an AMPK activator. These results indicated that UA lowered the lipid content probably via activating the AMPK signaling pathway, thereby inhibiting lipid synthesis and promoting fat decomposition. PRACTICAL APPLICATION: Ursolic acid (UA) widely exists in vegetables and fruits. This study highlighted a lipid-lowing mechanism of UA in HepG2 cells and C57BL/6J mice. The data indicated that UA might be used in lipid-lowering functional foods.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yaojie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yang Liu
- Animal and Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, 300461, China
| | - Yatu Guo
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300384, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300143, China
| | - Heyu Li
- Tianjin Ubasio Biotechnology Group Co. Ltd., Tianjin, 300457, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| |
Collapse
|
23
|
Lu J, Meng Z, Chen Y, Yu L, Gao B, Zheng Y, Guan S. Apigenin induced autophagy and stimulated autophagic lipid degradation. Food Funct 2020; 11:9208-9215. [PMID: 33030472 DOI: 10.1039/d0fo00949k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Apigenin, as a natural flavonoid, has been proved to have many biological effects. Our previous research has found the antiadipogenic effects of apigenin on HepG2 cells. Autophagy is intimately associated with the metabolism of lipid droplets (LDs) and is considered to be one of the lipid breakdown pathways. However, there is no study to elucidate the lipid-lowering mechanism of apigenin from the perspective of autophagy. Here, we investigated the possible role of apigenin in autophagy and lipid accumulation in palmitic acid (PA)-induced HepG2 cells. Our results showed that apigenin increased autophagosome formation and the LC3-II/I ratio, but decreased the p-mTOR/mTOR ratio and P62 protein expression. The effects of apigenin were blocked by chloroquine (CQ). Likewise, apigenin significantly stimulated autophagic flux in the cytoplasm. This effect also could be blocked by CQ. Moreover, apigenin decreased the lipid content and co-localization of LDs with LC3, and CQ could block these effects. Thus, we proposed that apigenin induced autophagy and stimulated autophagic lipid degradation in PA-treated HepG2 cells.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Yan Chen
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Liangli Yu
- Univ Maryland, Dept Nutr & Food Sci, College Pk, MD 20742, USA and Shanghai Jiao Tong Univ, Sch Agr & Biol, Inst Food & Nutraceut Sci, Shanghai 200240, Peoples R China
| | - Boyan Gao
- Univ Maryland, Dept Nutr & Food Sci, College Pk, MD 20742, USA and Shanghai Jiao Tong Univ, Sch Agr & Biol, Inst Food & Nutraceut Sci, Shanghai 200240, Peoples R China
| | - Yangjie Zheng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| |
Collapse
|
24
|
Reale M, Costantini E, Jagarlapoodi S, Khan H, Belwal T, Cichelli A. Relationship of Wine Consumption with Alzheimer's Disease. Nutrients 2020; 12:E206. [PMID: 31941117 PMCID: PMC7019227 DOI: 10.3390/nu12010206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most threatening neurodegenerative disease, is characterized by the loss of memory and language function, an unbalanced perception of space, and other cognitive and physical manifestations. The pathology of AD is characterized by neuronal loss and the extensive distribution of senile plaques and neurofibrillary tangles (NFTs). The role of environment and the diet in AD is being actively studied, and nutrition is one of the main factors playing a prominent role in the prevention of neurodegenerative diseases. In this context, the relationship between dementia and wine use/abuse has received increased research interest, with varying and often conflicting results. Scope and Approach: With this review, we aimed to critically summarize the main relevant studies to clarify the relationship between wine drinking and AD, as well as how frequency and/or amount of drinking may influence the effects. Key Findings and Conclusions: Overall, based on the interpretation of various studies, no definitive results highlight if light to moderate alcohol drinking is detrimental to cognition and dementia, or if alcohol intake could reduce risk of developing AD.
Collapse
Affiliation(s)
- Marcella Reale
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Erica Costantini
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Srinivas Jagarlapoodi
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
| | - Angelo Cichelli
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| |
Collapse
|
25
|
Lu J, Meng Z, Cheng B, Liu M, Tao S, Guan S. Apigenin reduces the excessive accumulation of lipids induced by palmitic acid via the AMPK signaling pathway in HepG2 cells. Exp Ther Med 2019; 18:2965-2971. [PMID: 31572539 PMCID: PMC6755459 DOI: 10.3892/etm.2019.7905] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, increasing attention has been paid to diseases caused by excessive accumulation of lipids in the liver with therapeutic agents derived from natural products offering an alternative treatment to conventional therapies. Among these therapeutic agents, apigenin, a natural flavonoid, has been proven to exert various beneficial biological effects. In the present study, the antiadipogenic effects of apigenin in HepG2 cells was investigated. It was demonstrated that the treatment of cells with different concentrations of apigenin for 24 h significantly decreased the palmitic acid-induced increases in total cholesterol (TC) and triglyceride (TG) levels as well as intracellular lipid accumulation. In addition, apigenin increased the phosphorylated-AMP-activated protein kinase (AMPK) levels but decreased the expression levels of 3-hydroxy-3-methylglutaryl CoA reductase, sterol regulatory element-binding protein (SREBP)-1, fatty acid synthase, and SREBP-2 in a concentration-dependent manner. The present findings suggested that apigenin might improve lipid metabolism by activating the AMPK/SREBP pathway to reduce lipid accumulation in the liver.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Bijun Cheng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Meitong Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Siyu Tao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
26
|
Khodarahmi A, Eshaghian A, Safari F, Moradi A. Quercetin Mitigates Hepatic Insulin Resistance in Rats with Bile Duct Ligation Through Modulation of the STAT3/SOCS3/IRS1 Signaling Pathway. J Food Sci 2019; 84:3045-3053. [DOI: 10.1111/1750-3841.14793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Ameneh Khodarahmi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Azam Eshaghian
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Fatemeh Safari
- Dept. of Physiology, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| | - Ali Moradi
- Dept. of Biochemistry, School of MedicineShahid Sadoughi Univ. of Medical Sciences and Health Services Yazd 8915173149 Iran
| |
Collapse
|
27
|
Cheng J, Liu D, Zhao J, Li X, Yan Y, Wu Z, Wang H, Wang C. Lutein attenuates oxidative stress and inhibits lipid accumulation in free fatty acids-induced HepG2 cells by activating the AMPK pathway. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Zou C, Xu M, Chen L, Liu Q, Zhou Y, Sun Z, Ye H, Su N, Ye C, Wang A. Xiaochaihu Decoction reduces hepatic steatosis and improves D-GalN/LPS-induced liver injury in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2019; 91:293-305. [PMID: 31100441 DOI: 10.1016/j.fsi.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Excessive lipid accumulation and chemical abuse can induce fatty liver diseases in fish, but the underlying mechanism and therapies are unknown. The present study aims to evaluate the effects of Xiaochaihu Decoction (XCHD) on the growth performance, lipid metabolism and antioxidant function of hybrid grouper in vitro and in vivo, and provide evidence as to whether it can be potentially used as a medicine for liver diseases in aquaculture. In vitro, steatosis model of hybrid grouper primary hepatocytes were incubated for 48 h in control or lipid emulsion (LE)-containing medium with or without 24 h post-treatment with XCHD. XCHD treatment reversed the LE-induced intracellular lipid accumulation, cell viability and hepatocytes morphological structure. In vivo, a total of 300 hybrid grouper with an average initial weight of 25.43 ± 0.18 g were fed diets containing five graded levels of XCHD at 150-1200 mg/kg diet for 8 weeks. After that, a challenge trial was conducted by injection of D-GalN/LPS to induce liver injury. As a result, dietary supplementation with 150-300 mg/kg XCHD diets can significant improve growth performance and feed utilization (P < 0.05). Dietary XCHD down-regulated the expression of lipogenic-related genes (G6PD, DGAT2 and ME1) and up-regulated lipolysis-related genes (ATGL, PPARα and LPL) expression in the liver of hybrid grouper. Livers challenged with D-GalN/LPS exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. These pathological alterations were ameliorated by XCHD treatment. XCHD significantly down-regulated the D-GalN/LPS induced apoptosis-related genes caspase-3, caspase-9 and p53 mRNA expression and up-regulated the antioxidant-related genes CAT and MnSOD mRNA expression in dose dependent manner, respectively. XCHD potently reduced hepatic lipid accumulation and enhanced antioxidant capability in hybrid grouper and may be a potential fish-feed additive to prevent fatty liver diseases onset and progression.
Collapse
Affiliation(s)
- Cuiyun Zou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Minglei Xu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Leling Chen
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuanyuan Zhou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Huaqun Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Ningning Su
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Anli Wang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
29
|
Rafiei H, Omidian K, Bandy B. Dietary Polyphenols Protect Against Oleic Acid-Induced Steatosis in an in Vitro Model of NAFLD by Modulating Lipid Metabolism and Improving Mitochondrial Function. Nutrients 2019; 11:nu11030541. [PMID: 30832407 PMCID: PMC6471211 DOI: 10.3390/nu11030541] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to determine the relative effectiveness of common dietary polyphenols or the isoquinoline alkaloid berberine in protecting against molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD) involving changes to cellular lipid metabolism and bioenergetics. In a model of steatosis using HepG2 hepatocytes, exposure of the cells to 1.5 mM oleic acid (OA) for 24 h caused steatosis and distorted cell morphology, induced the expression of mRNA for enzymes that are involved in lipogenesis and fatty acid oxidation (FAS and CPT1A), and impaired indices of aerobic energy metabolism (PPARγ mRNA expression, mitochondrial membrane potential (MMP), and galactose-supported ATP production). Co-treatment with 10 µM of selected polyphenols all strongly protected against the steatosis and changes in cell morphology. All polyphenols, except cyanidin, inhibited the effects on FAS and PPARγ and further increased CPT1A1 expression, suggesting a shift toward increased β-oxidation. Resveratrol, quercetin, catechin, and cyanidin, however not kuromanin or berberine, ameliorated the decreases in MMP and galactose-derived ATP. Berberine was unique in worsening the decrease in galactose-derived ATP. In further investigations of the mechanisms involved, resveratrol, catechin, and berberine increased SIRT1 enzyme activity and p-AMPKαThr172 protein, which are involved in mitochondrial biogenesis. In conclusion, selected polyphenols all protected against steatosis with similar effectiveness, however through different mechanisms that increased aerobic lipid metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Hossein Rafiei
- Nutrition Division, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kosar Omidian
- Nutrition Division, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Brian Bandy
- Nutrition Division, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
30
|
Zhou J, Mock ED, Martella A, Kantae V, Di X, Burggraaff L, Baggelaar MP, Al-Ayed K, Bakker A, Florea BI, Grimm SH, den Dulk H, Li CT, Mulder L, Overkleeft HS, Hankemeier T, van Westen GJP, van der Stelt M. Activity-Based Protein Profiling Identifies α-Ketoamides as Inhibitors for Phospholipase A2 Group XVI. ACS Chem Biol 2019; 14:164-169. [PMID: 30620559 PMCID: PMC6379856 DOI: 10.1021/acschembio.8b00969] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of α-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( Ki = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.
Collapse
Affiliation(s)
- Juan Zhou
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Elliot D. Mock
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Martella
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Vasudev Kantae
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Xinyu Di
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karol Al-Ayed
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Chun T. Li
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura Mulder
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
Mazibuko-Mbeje SE, Dludla PV, Roux C, Johnson R, Ghoor S, Joubert E, Louw J, Opoku AR, Muller CJF. Aspalathin-Enriched Green Rooibos Extract Reduces Hepatic Insulin Resistance by Modulating PI3K/AKT and AMPK Pathways. Int J Mol Sci 2019; 20:ijms20030633. [PMID: 30717198 PMCID: PMC6387445 DOI: 10.3390/ijms20030633] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated that an aspalathin-enriched green rooibos extract (GRE) reversed palmitate-induced insulin resistance in C2C12 skeletal muscle and 3T3-L1 fat cells by modulating key effectors of insulin signalling such as phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK). However, the effect of GRE on hepatic insulin resistance is unknown. The effects of GRE on lipid-induced hepatic insulin resistance using palmitate-exposed C3A liver cells and obese insulin resistant (OBIR) rats were explored. GRE attenuated the palmitate-induced impairment of glucose and lipid metabolism in treated C3A cells and improved insulin sensitivity in OBIR rats. Mechanistically, GRE treatment significantly increased PI3K/AKT and AMPK phosphorylation while concurrently enhancing glucose transporter 2 expression. These findings were further supported by marked stimulation of genes involved in glucose metabolism, such as insulin receptor (Insr) and insulin receptor substrate 1 and 2 (Irs1 and Irs2), as well as those involved in lipid metabolism, including Forkhead box protein O1 (FOXO1) and carnitine palmitoyl transferase 1 (CPT1) following GRE treatment. GRE showed a strong potential to ameliorate hepatic insulin resistance by improving insulin sensitivity through the regulation of PI3K/AKT, FOXO1 and AMPK-mediated pathways.
Collapse
Affiliation(s)
- Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Candice Roux
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
| | - Samira Ghoor
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa.
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Private Bag X1, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
32
|
Ye P, Xiang M, Liao H, Liu J, Luo H, Wang Y, Huang L, Chen M, Xia J. Dual-Specificity Phosphatase 9 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through ASK1 Suppression. Hepatology 2019; 69:76-93. [PMID: 30063256 PMCID: PMC6590435 DOI: 10.1002/hep.30198] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH), is the leading cause of chronic liver diseases. Until now, no medications for NAFLD have been approved by relevant governmental agencies. Dual-specificity phosphatase 9 (Dusp9) is a member of the DUSP protein family. Dusp9 is expressed in insulin-sensitive tissues, and its expression may be modified with the development of insulin resistance (IR). However, the molecular targets and mechanisms of Dusp9 action on NAFLD and NASH remain poorly understood. In this study, using conditional liver-specific Dusp9-knockout (Dusp9-CKO) mice and Dusp9-transgenic mice, we showed that Dusp9 was a key suppressor of high-fat diet-induced hepatic steatosis and inflammatory responses and that Dusp9 deficiency aggravated high-fat high-cholesterol diet-induced liver fibrosis. Dusp9 was shown to exert its effects by blocking apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and the subsequent activation of p38 and c-Jun NH2-terminal kinase signaling. Conclusion: Hepatocyte Dusp9 prevents NAFLD and NASH progression in mice, including lipid accumulation, glucose metabolism disorders, and enhanced inflammation and liver fibrosis, in an ASK1-dependent manner; these findings suggest that Dusp9 may be a promising therapeutic target for the treatment of NAFLD and NASH.
Collapse
Affiliation(s)
- Ping Ye
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mei Xiang
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hua Liao
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jijun Liu
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongbo Luo
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yayun Wang
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Huang
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Manhua Chen
- Department of CardiologyThe Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jiahong Xia
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
33
|
Aguillín-Osma J, Loango-Chamorro N, Landazuri P. Modelos celulares hepáticos para el estudio del metabolismo de los lípidos. Revisión de literatura. REVISTA DE LA FACULTAD DE MEDICINA 2019. [DOI: 10.15446/revfacmed.v67n1.64964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. El hígado juega un papel importante en la homeostasis lipídica, especialmente en la síntesis de ácidos grasos y triglicéridos. Una amplia variedad de modelos celulares ha sido utilizada para investigar el metabolismo lipídico hepático y para elucidar detalles específicos de los mecanismos bioquímicos del desarrollo y progresión de enfermedades relacionadas, brindando información para tratamientos que reduzcan su impacto. Los modelos celulares hepáticos poseen un alto potencial en la investigación del metabolismo de lípidos y de agentes farmacológicos o principios activos que permiten la reducción de la acumulación de lípidos.Objetivo. Comparar algunos modelos celulares hepáticos utilizados para el estudio del metabolismo lipídico, sus características y los resultados más relevantes de investigación en ellos.Materiales y métodos. Se realizó una búsqueda sistemática en bases de datos sobre los modelos celulares hepáticos de mayor uso para el estudio del metabolismo de lípidos.Resultados. Se exponen los cinco modelos celulares más utilizados para este tipo de investigaciones, destacando su origen, aplicación, ventajas y desventajas al momento de estimular el metabolismo lipídico.Conclusión. Para seleccionar el modelo celular, el investigador debe tener en cuenta cuáles son los requerimientos y el proceso que desea evidenciar, sin olvidar que los resultados obtenidos solo serán aproximaciones de lo que en realidad podría suceder a nivel del hígado como órgano.
Collapse
|
34
|
Zhang Q, Huang Y, Li X, Liu H, He B, Wang B, Ma Y, Zhou X, Liu Y, Wu S. Tangduqing Granules Attenuate Insulin Resistance and Abnormal Lipid Metabolism through the Coordinated Regulation of PPAR γ and DGAT2 in Type 2 Diabetic Rats. J Diabetes Res 2019; 2019:7403978. [PMID: 31019978 PMCID: PMC6452558 DOI: 10.1155/2019/7403978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance (IR) is a vital hallmark of type 2 diabetes mellitus, which is characterized by an impaired ability of insulin to promote glucose uptake and utilization. Lipid deposition is closely associated with impaired insulin sensitivity. PPARγ plays an important role in glucose homeostasis, adipocyte differentiation, and insulin sensitivity. Likewise, DGAT2 also exerts a crucial role in integrating carbohydrate and lipid metabolism in the liver. The present study is aimed at evaluating a Chinese medicinal formula, Tangduqing granules (TDQ), with multifaceted actions against lipid and glucose metabolism disorder and IR of type 2 diabetes. An animal model of type 2 diabetes was developed by high-fat diet feeding plus low-dose streptozotocin injection. After oral administration of TDQ for 5 weeks, the effects on glucose and lipid metabolism and the underlying mechanism were evaluated by biochemical, histological, RT-PCR, and western blotting methods. The results showed that TDQ decreased fasting blood glucose, ameliorated glucose tolerance, and improved IR. Besides, TDQ regulated hyperlipidemia symptoms, decreased serum lipid levels and liver TG, and reduced hepatic steatosis in a type 2 diabetic rat model. Furthermore, TDQ reversed diabetes-induced decrease in the mRNA and protein expression of PPARγ and elevation in the mRNA and protein levels of DGAT2 in the liver. In addition, we showed that interference of TDQ ameliorated palmitate-induced glucose and lipid metabolic abnormalities in HepG2 cells. TDQ are, therefore, a potential Chinese medicinal formula that relieves IR and lipid metabolism disorder might be through promotion of PPARγ and decrease of DGAT2 expression.
Collapse
Affiliation(s)
- Qinghua Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongyi Liu
- Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, China
| | | | - Bin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuntao Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiang Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqin Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shentao Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
35
|
Zhao N, Li X, Feng Y, Han J, Feng Z, Li X, Wen Y. The Nuclear Orphan Receptor Nur77 Alleviates Palmitate-induced Fat Accumulation by Down-regulating G0S2 in HepG2 Cells. Sci Rep 2018; 8:4809. [PMID: 29556076 PMCID: PMC5859288 DOI: 10.1038/s41598-018-23141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Excessive triglyceride accumulation in hepatocytes is the hallmark of obesity-associated nonalcoholic fatty liver disease (NAFLD). Elevated levels of the saturated free fatty acid palmitate in obesity are a major contributor to excessive hepatic lipid accumulation. The nuclear orphan receptor Nur77 is a transcriptional regulator and a lipotoxicity sensor. Using human HepG2 hepatoma cells, this study aimed to investigate the functional role of Nur77 in palmitate-induced hepatic steatosis. The results revealed that palmitate significantly induced lipid accumulation and suppressed lipolysis in hepatocytes. In addition, palmitate significantly suppressed Nur77 expression and stimulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes. Nur77 overexpression significantly reduced palmitate-induced expression of PPARγ and its target genes. Moreover, Nur77 overexpression attenuated lipid accumulation and augmented lipolysis in palmitate-treated hepatocytes. Importantly, G0S2 knockdown significantly attenuated lipid accumulation and augmented lipolysis in palmitate-treated hepatocytes, whereas G0S2 knockdown had no effect on the palmitate-induced expression of Nur77, PPARγ, or PPARγ target genes. In summary, palmitate suppresses Nur77 expression in HepG2 cells, and Nur77 overexpression alleviates palmitate-induced hepatic fat accumulation by down-regulating G0S2. These results display a novel molecular mechanism linking Nur77-regulated G0S2 expression to palmitate-induced hepatic steatosis.
Collapse
Affiliation(s)
- Naiqian Zhao
- Department of Gerontology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| | - Xiaoyan Li
- Department of Infectious Diseases, First People's Hospital of Jinzhong, 85 Shuncheng Street, Jinzhong, 030600, Shanxi, China
| | - Ying Feng
- Department of Gerontology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jinxiang Han
- Department of Gerontology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Ziling Feng
- Department of Infectious Diseases, First People's Hospital of Jinzhong, 85 Shuncheng Street, Jinzhong, 030600, Shanxi, China
| | - Xifeng Li
- Department of Infectious Diseases, First People's Hospital of Jinzhong, 85 Shuncheng Street, Jinzhong, 030600, Shanxi, China
| | - Yanfang Wen
- Department of Infectious Diseases, First People's Hospital of Jinzhong, 85 Shuncheng Street, Jinzhong, 030600, Shanxi, China
| |
Collapse
|
36
|
Zhang J, Zhao J, Zheng X, Cai K, Mao Q, Xia H. Establishment of a novel hepatic steatosis cell model by Cas9/sgRNA-mediated DGKθ gene knockout. Mol Med Rep 2018; 17:2169-2176. [PMID: 29207074 PMCID: PMC5783457 DOI: 10.3892/mmr.2017.8140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023] Open
Abstract
To investigate the role of diacylglycerol kinase θ (DGKθ) in lipid metabolism and insulin resistance, the present study generated an in vitro hepatic steatosis cell model by knockout of the DGKθ gene in liver cancer cell line HepG2 using CRISPR/Cas9 technology. The cell line was characterized by Oil Red O staining and shown to exhibit increased intracellular lipid accumulation, compared with that in wild‑type liver cancer cell line HepG2. The gene expression levels of signaling proteins in pathways involved in lipid metabolism, insulin resistance and gluconeogenesis were also examined. The DGKθ‑knockout HepG2 cells showed increased mRNA and protein expression levels of lipid synthesis‑related genes, fatty acid synthase, peroxisome proliferator‑activated receptor‑γ and sterol regulatory element‑binding protein‑1c, and decreased expression levels of the lipolysis‑related gene, carnitine palmitoyltransferase1A. These changes may account for the increased intracellular lipid content of this cell line. The DGKθ‑knockout HepG2 cells also exhibited an increased phosphorylation level of protein kinase Cε and decreased phosphorylation levels of insulin receptor substrate 1, mechanistic target of rapamycin and protein kinase B (also known as Akt). These changes have been reported to mediate insulin resistance. Taken together, an in vitro hepatic steatosis cell model was established in the present study, providing a valuable tool for understanding the pathogenesis of nonalcoholic fatty liver disease and associated insulin resistance, and for developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Jingjing Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Kai Cai
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| | - Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China
| |
Collapse
|
37
|
Zhao NQ, Li XY, Wang L, Feng ZL, Li XF, Wen YF, Han JX. Palmitate induces fat accumulation by activating C/EBPβ-mediated G0S2 expression in HepG2 cells. World J Gastroenterol 2017; 23:7705-7715. [PMID: 29209111 PMCID: PMC5703930 DOI: 10.3748/wjg.v23.i43.7705] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the role of G0/G1 switch gene 2 (G0S2) and its transcriptional regulation in palmitate-induced hepatic lipid accumulation.
METHODS HepG2 cells were treated with palmitate, or palmitate in combination with CCAAT/enhancer binding protein (C/EBP)β siRNA or G0S2 siRNA. The mRNA expression of C/EBPβ, peroxisome proliferator-activated receptor (PPAR)γ and PPARγ target genes (G0S2, GPR81, GPR109A and Adipoq) was examined by qPCR. The protein expression of C/EBPβ, PPARγ, and G0S2 was determined by Western blotting. Lipid accumulation was detected with Oil Red O staining and quantified by absorbance value of the extracted Oil Red O dye. Lipolysis was evaluated by measuring the amount of glycerol released into the medium.
RESULTS Palmitate caused a dose-dependent increase in lipid accumulation and a dose-dependent decrease in lipolysis in HepG2 cells. In addition, palmitate increased the mRNA expression of C/EBPβ, PPARγ, and PPARγ target genes (G0S2, GPR81, GPR109A, and Adipoq) and the protein expression of C/EBPβ, PPARγ, and G0S2 in a dose-dependent manner. Knockdown of C/EBPβ decreased palmitate-induced PPARγ and its target genes (G0S2, GPR81, GPR109A, and Adipoq) mRNA expression and palmitate-induced PPARγ and G0S2 protein expression in HepG2 cells. Knockdown of C/EBPβ also attenuated lipid accumulation and augmented lipolysis in palmitate-treated HepG2 cells. G0S2 knockdown attenuated lipid accumulation and augmented lipolysis, while G0S2 knockdown had no effects on the mRNA expression of C/EBPβ, PPARγ, and PPARγ target genes (GPR81, GPR109A and Adipoq) in palmitate-treated HepG2 cells.
CONCLUSION Palmitate can induce lipid accumulation in HepG2 cells by activating C/EBPβ-mediated G0S2 expression.
Collapse
Affiliation(s)
- Nai-Qian Zhao
- Department of Gerontology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Yan Li
- Department of Infectious Diseases, the First People’s Hospital of Jinzhong, Jinzhong 030600, Shanxi Province, China
| | - Li Wang
- Department of Gerontology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zi-Ling Feng
- Department of Infectious Diseases, the First People’s Hospital of Jinzhong, Jinzhong 030600, Shanxi Province, China
| | - Xi-Fen Li
- Department of Infectious Diseases, the First People’s Hospital of Jinzhong, Jinzhong 030600, Shanxi Province, China
| | - Yan-Fang Wen
- Department of Infectious Diseases, the First People’s Hospital of Jinzhong, Jinzhong 030600, Shanxi Province, China
| | - Jin-Xiang Han
- Department of Gerontology, the Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
38
|
Jian T, Wu Y, Ding X, Lv H, Ma L, Zuo Y, Ren B, Zhao L, Tong B, Chen J, Li W. A novel sesquiterpene glycoside from Loquat leaf alleviates oleic acid-induced steatosis and oxidative stress in HepG2 cells. Biomed Pharmacother 2017; 97:1125-1130. [PMID: 29136950 DOI: 10.1016/j.biopha.2017.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022] Open
Abstract
Loquat (Eriobotrya japonica) leaf has displayed beneficial effect on metabolic syndrome. In our previously study, total sesquiterpene glycosides (TSG) isolated from Loquat leaf exhibited therapeutic effect on Non-alcoholic fatty liver disease (NAFLD) in vivo, but the accurate active compound remains unknown. Sesquiterpene glycoside 1 (SG1) is a novel compound, which is exclusively isolated from Loquat leaf, but its biological activity has been rarely reported. The present study was designed to evaluate the pharmacological effect of SG1, the main component of TSG, in oleic acid (OA)-induced HepG2 cell model of NAFLD with its related mechanisms of action. In this study, both SG1 and TSG were found to significantly reduce the lipid deposition in the cell model. They could also decrease total cholesterol (TC), triglyceride (TG) and intracellular free fatty acid (FFA) contents. Compared with OA-treated cells, the superoxide dismutase (SOD) level increased, and the malondialdehyde (MDA) and 4-hydroxynonenal levels respectively decreased after the administration of SG1 or TSG. The high dose of SG1 (140 μg/mL) displayed a similar therapeutic effect as TSG at 200 μg/mL. Both SG1 and TSG were found to suppress the expression of cytochrome P450 2E1 (CYP2E1) and the phosphorylation of c-jun terminal kinase (JNK) and its downstream target c-Jun in OA-treated cell. These results demonstrate again that TSG are probably the main responsible chemical profiles of Loquat leaf for the treatment of NAFLD, for which it can effectively improve OA-induced steatosis and reduce oxidative stress, probably by downregulating of CYP2E1 expression and JNK/c-Jun phosphorylation, while SG1 may be the principle compound.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Li Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
39
|
Liu HW, Chen YJ, Chang YC, Chang SJ. Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1. Nutrients 2017; 9:nu9091040. [PMID: 28930190 PMCID: PMC5622800 DOI: 10.3390/nu9091040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
Stimulation of the ubiquitin-proteasome pathway-especially E3 ubiquitin ligases Atrogin-1 and MuRF1-is associated with muscle loss in diabetes. Elevated lipid metabolites impair myogenesis. Oligonol, a low molecular weight polyphenol derived from lychee, exhibited anti-diabetic and anti-obesity properties, suggesting it could be a proper supplement for attenuating muscle loss. Dietary (10 weeks) oligonol supplementation (20 or 200 mg/kg diet) on the skeletal muscle loss was investigated in diabetic db/db mice. Transcription factors NF-κB and FoxO3a involved in regulation of Atrogin-1 and MuRF1 were also investigated. Attenuation of muscle loss by oligonol (both doses) was associated with down-regulation of Atrogin-1 and MuRF1 gene expression. Oligonol supplementation decreased NF-κB expression in the nuclear fraction compared with db/db mice without oligonol supplement. Upregulation of sirtuin1 (SIRT1) expression prevented FoxO3a nuclear localization in db/db mice supplemented with oligonol. Marked increases in AMPKα activity and Ppara mRNA expression leading to lower lipid accumulation by oligonol provided additional benefits for attenuating muscle loss. Oligonol limited palmitate-induced senescent phenotype and cell cycle arrest and suppressed Atrogin-1 and MuRF1 mRNA expression in palmitate-treated C2C12 muscle cells, thus contributing to improving the impaired myotube formation. In conclusion, oligonol-mediated downregulation of Atrogin-1 and MuRF1 gene expression alleviates muscle loss and improves the impaired myotube formation, indicating that oligonol supplementation may be useful for the attenuation of myotube loss.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
- Department of Physical Education, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Yen-Ju Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Yun-Ching Chang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
40
|
Ma Z, Liu H, Wang W, Guan S, Yi J, Chu L. Paeoniflorin suppresses lipid accumulation and alleviates insulin resistance by regulating the Rho kinase/IRS-1 pathway in palmitate-induced HepG2Cells. Biomed Pharmacother 2017; 90:361-367. [PMID: 28380411 DOI: 10.1016/j.biopha.2017.03.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 12/22/2022] Open
Abstract
In this study, we evaluated the effects of paeoniflorin (PF) on palmitate (PA)-induced insulin resistance and explored the potential molecular mechanisms in HepG2 cells. HepG2 cells were pre-treated with 3μM, 30μM, or 100μM PF for 1h followed by immediate stimulation with 0.25mM palmitate for 24h to induce hepatic steatosis. PF treatment could decrease PA-induced intracellular lipid deposition via inhibiting de novo lipid synthesis. PF treatment also restored insulin sensitivity by suppressing the activation of Rho kinase (ROCK) and the expression of serine phosphorylation of insulin receptor substrate (IRS)-1, thereby promoting Akt and glycogen synthase kinase (GSK)-3β phosphorylation. These results suggest that PF alleviates PA-induced hepatic steatosis and insulin resistance in HepG2 cells. Furthermore, the effect of PF may be associated with its role in inhibiting de novo lipid synthesis and in regulating the ROCK/IRS/Akt signalling pathways.
Collapse
Affiliation(s)
- Zhihong Ma
- Yichun University, Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun, 336000, China; Hebei University of Chinese Medicine, Department of Immunology and Pathobiology, Shijiazhuang, 050200, China
| | - Hongying Liu
- Hebei General Hospital, Department of Infectious Diseases, Shijiazhuang, 050051, China
| | - Weijie Wang
- The Second Hospital of Hebei Medical University, Department of Surgery, Shijiazhuang, 050000, China
| | - Shengjiang Guan
- Hebei University of Chinese Medicine, Department of Pharmacology, Shijiazhuang, 050200, China
| | - Jianfeng Yi
- Yichun University, Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun, 336000, China.
| | - Li Chu
- Hebei University of Chinese Medicine, Department of Pharmaceutics, Shijiazhuang, 050200, China.
| |
Collapse
|
41
|
Liu TY, Xiong XQ, Ren XS, Zhao MX, Shi CX, Wang JJ, Zhou YB, Zhang F, Han Y, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes 2016; 65:3262-3275. [PMID: 27504012 DOI: 10.2337/db16-0356] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022]
Abstract
Fibronectin type III domain-containing 5 (FNDC5) protein induces browning of subcutaneous fat and mediates the beneficial effects of exercise on metabolism. However, whether FNDC5 is associated with hepatic steatosis, autophagy, fatty acid oxidation (FAO), and lipogenesis remains unknown. Herein, we show the roles and mechanisms of FNDC5 in hepatic steatosis, autophagy, and lipid metabolism. Fasted FNDC5-/- mice exhibited severe steatosis, reduced autophagy, and FAO, and enhanced lipogenesis in the liver compared with wild-type mice. Energy deprivation-induced autophagy, FAO, and AMPK activity were attenuated in FNDC5-/- hepatocytes, which were restored by activating AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Inhibition of mammalian target of rapamycin (mTOR) complex 1 with rapamycin enhanced autophagy and FAO and attenuated lipogenesis and steatosis in FNDC5-/- livers. FNDC5 deficiency exacerbated hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. Exogenous FNDC5 stimulated autophagy and FAO gene expression in hepatocytes and repaired the attenuated autophagy and palmitate-induced steatosis in FNDC5-/- hepatocytes. FNDC5 overexpression prevented hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. These results indicate that FNDC5 deficiency impairs autophagy and FAO and enhances lipogenesis via the AMPK/mTOR pathway. FNDC5 deficiency aggravates whereas FNDC5 overexpression prevents the HFD-induced hyperlipemia, hepatic lipid accumulation, and impaired FAO and autophagy in the liver.
Collapse
Affiliation(s)
- Tong-Yan Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Sheng Ren
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming-Xia Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang-Xiang Shi
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Liu HW, Wei CC, Chen YJ, Chen YA, Chang SJ. Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing mTOR/SREBP-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Mol Nutr Food Res 2016; 60:2288-2296. [DOI: 10.1002/mnfr.201501064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hung-Wen Liu
- Department of Life Sciences; National Cheng Kung University; Tainan Taiwan
| | - Chu-Chun Wei
- Department of Life Sciences; National Cheng Kung University; Tainan Taiwan
| | - Yen-Ju Chen
- Department of Life Sciences; National Cheng Kung University; Tainan Taiwan
| | - Yun-An Chen
- Department of Life Sciences; National Cheng Kung University; Tainan Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
43
|
Xiang M, Wang PX, Wang AB, Zhang XJ, Zhang Y, Zhang P, Mei FH, Chen MH, Li H. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J Hepatol 2016; 64:1365-77. [PMID: 26860405 DOI: 10.1016/j.jhep.2016.02.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor receptor-associated factor 1 (TRAF1) is an important adapter protein that is largely implicated in molecular events regulating immunity/inflammation and cell death. Although inflammation is closely related to and forms a vicious circle with insulin dysfunction and hepatic lipid accumulation, the role of TRAF1 in hepatic steatosis and the related metabolic disorders remains unclear. METHODS The participation of TRAF1 in the initiation and progression of hepatic steatosis was evaluated in high fat diet (HFD)-induced and genetic obesity. Mice with global TRAF1 knockout or liver-specific TRAF1 overexpression were employed to investigate the role of TRAF1 in insulin resistance, inflammation, and hepatic steatosis based on various phenotypic examinations. Molecular mechanisms underlying TRAF1-regulated hepatic steatosis were further explored in vivo and in vitro. RESULTS TRAF1 expression was significantly upregulated in the livers of NAFLD patients and obese mice and in palmitate-treated hepatocytes. In response to HFD administration or in ob/ob mice, TRAF1 deficiency was hepatoprotective, whereas the overexpression of TRAF1 in hepatocytes contributed to the pathological development of insulin resistance, inflammatory response and hepatic steatosis. Mechanistically, hepatocyte TRAF1 promotes hepatic steatosis through enhancing the activation of ASK1-mediated P38/JNK cascades, as evidenced by the fact that ASK1 inhibition abolished the exacerbated effect of TRAF1 on insulin dysfunction, inflammation, and hepatic lipid accumulation. CONCLUSIONS TRAF1 functions as a positive regulator of insulin resistance, inflammation, and hepatic steatosis dependent on the activation of ASK1-P38/JNK axis.
Collapse
Affiliation(s)
- Mei Xiang
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Ai-Bing Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Jing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yaxing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Fang-Hua Mei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China
| | - Man-Hua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Animal Experiment Center/Animal Biosafety Level-III Laboratory, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
44
|
Choi JS, Bhakta HK, Fujii H, Min BS, Park CH, Yokozawa T, Jung HA. Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease. Arch Pharm Res 2016; 39:409-20. [DOI: 10.1007/s12272-015-0682-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/15/2015] [Indexed: 12/01/2022]
|