1
|
Guo J, Zhang SS, Gao J, Guo Y, Ho CT, Bai N. The genus Fraxinus L. (Oleaceae): A review of botany, traditional and modern applications, phytochemistry, and bioactivity. PHYTOCHEMISTRY 2025; 232:114371. [PMID: 39710351 DOI: 10.1016/j.phytochem.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Fraxinus L., a member of the Oleaceae family with approximately 60 species worldwide, is widely distributed in the warm temperate zone of the northern hemisphere. It is not only used as a folk medicine for treating various illnesses but is also documented in medical books. The traditional Chinese medicine "Qin Pi" originated from this genus and is known for its efficacy in treating conditions such as intestinal inflammation, redness and pain in the eyes, abomination of redness and leucorrhoea, and bacterial infections. This paper aims to fill the gap in the existing literature by providing a comprehensive review and critical analysis of the Fraxinus genus plant. The discussion in this paper covers various aspects of the plant, including its botany, traditional and modern applications, phytochemistry, bioactivity, role in ecosystems, phytogenetic evolution, economic benefits, and future challenges. By synthesizing this information, the review aims to offer valuable insights for the advancement, utilization, and further research of the Fraxinus spp.. Phytochemical studies have identified a total of 281 chemical constituents in Fraxinus spp., including secoiridoids, coumarins, and flavonoids. These Fraxinus spp. plants exhibit a wide range of biological activities, such as anti-inflammatory, antioxidant, and antibacterial properties. Furthermore, this paper delves into potential research directions within the genus and addresses the challenges associated with achieving a comprehensive understanding of Fraxinus spp. This paper provides a comprehensive overview of Fraxinus spp., highlighting their bioactivity mechanism and the opportunity to facilitate the advancement of new pharmaceuticals.
Collapse
Affiliation(s)
- Jianjin Guo
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Shan-Shan Zhang
- College of Chemical Engineering, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China; College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing Gao
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
2
|
Yong PH, Qing TY, Azzani M, Anbazhagan D, Ng ZX. Role of medicinal plants in ameliorating the lipid and glucose levels in diabetes: A systematic literature review. Endocr Regul 2025; 59:57-77. [PMID: 40258225 DOI: 10.2478/enr-2025-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Objective. Diabetes is a chronic disease that causes insulin resistance and destruction of β-cells in pancreas. It is highly associated with hyperglycemia and hyperlipidemia, which can cause microvascular and macrovascular complications. The aim of this systematic review was to evaluate the beneficial effects of medicinal plant extracts on ameliorating glucose levels and lipid profile in diabetic rats. Methods. A systematic review search was conducted using PubMed, Scopus, Google Scholar and ScienceDirect databases using combined terms. The data were extracted and selected by two reviewers under the PRISMA guidelines, which included 25 articles. These 25 articles were selected by the inclusion and exclusion criteria. The quality assessments of the articles were carried out by using the Risk of Bias tool and animal intervention studies. Results. A total of 4651 articles were identified by searching the databases. Articles in the amount of 4505 were then excluded after screening the title and abstract. The remaining 146 articles proceeded to eligibility analysis and finally 25 articles were included into systemic review studies. From the 25 articles reviewed, Clerodendrum volubile showed the highest reducing effect on the blood glucose levels and lipid profile in diabetic rats. Solena amplexicaulis showed the lowest effect on ameliorating glucose levels, while Myrtus communis demonstrated the lowest effect on improving lipid profile in diabetic rats. Conclusion. The reviewed medicinal plant extracts reviewed demonstrated promising efficacy in ameliorating the blood glucose and lipid levels in diabetic rats.
Collapse
Affiliation(s)
- Phaik Har Yong
- 1School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Tan Yee Qing
- 1School of Bioscience, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Selangor, Malaysia
| | - Meram Azzani
- 2Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Deepa Anbazhagan
- 3Department of Microbiology, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Selangor, Malaysia
| | - Zhi Xiang Ng
- 4School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Zheng Z, Sun C, Zhong Y, Shi Y, Zhuang L, Liu B, Liu Z. Fraxini cortex: Progresses in phytochemistry, pharmacology and ethnomedicinal uses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117849. [PMID: 38301981 DOI: 10.1016/j.jep.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxini cortex, which has been widely used as a traditional Chinese medicine for 2000 years, is made from the dried bark of four plant species: Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray, Fraxinus chinensis Roxb., Fraxinus chinensis subsp. chinensis and Fraxinus stylosa Lingelsh.. In Chinese traditional medicine, it possesses the properties of heat-clearing and dampness-drying, asthma relief and cough suppression, as well as vision improvement. It is utilized for treating bacterial disorders, enteritis, leukorrhea, chronic bronitis, painful red eyes with swelling, lacrimation due to windward exposure, psoriasis, and other diseases or related symptoms. AIM OF THE STUDY Fraxini cortex is abundant in chemical constituents and has garnered significant attention from plant chemists, particularly regarding coumarins, as evidenced by the recently identified three coumarin compounds. Considering the current dearth of systematic reporting on studies pertaining to Fraxini cortex, herein we provide a comprehensive summary of the advancements in phytochemistry, pharmacology, detection methods, and ethnomedicinal applications of Fraxini cortex. MATERIALS AND METHODS We conducted a comprehensive search across online data sources (Web of Science, Public Medicine (PubMed), China National Knowledge Infrastructure (CNKI), as well as Chinese dissertations) and traditional Chinese medicine classics to gather the necessary literature resources for this review. RESULTS Briefly, The Fraxini cortex yielded a total of 132 phytochemicals, including coumarins, lignans, secoiridoids, phenylethanol glycosides, flavonoids, triterpenoids, and other compounds. Among them, the main active ingredients are coumarins which possess a diverse range of pharmacological activities such as anti-inflammatory effects, anti-tumor properties, prevention of tissue fibrosis and oxidation damage as well as cardioprotective effects. CONCLUSIONS All types of research conducted on Fraxini cortex, particularly in the field of ethnopharmacology, phytochemistry, and pharmacology, have been thoroughly reviewed. However, certain traditional applications and pharmacological activities of Fraxini cortex lack scientific evaluation or convincing evidence due to incomplete methodologies and ambiguous results, as well as a lack of clinical data. To validate its pharmacological activity, clinical efficacy, and safety profile, a systematic and comprehensive research evaluation is imperative. As an important traditional Chinese medicine, Fraxini cortex should be further explored to facilitate the development of novel drugs and therapeutics for various diseases. Greater attention should be given to how it can be better utilized.
Collapse
Affiliation(s)
- Zuoliang Zheng
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Chaoyue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.
| | - Yuping Zhong
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Yufei Shi
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Likai Zhuang
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| | - Bo Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhiwei Liu
- School of Life Science, Jiaying University, Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, China.
| |
Collapse
|
6
|
Wen Z, Liu Q, Jiang P, Zhu C, Li J, Wu J, Wang S, Ning B. Serum interleukin-1 is a new biomarker to predict the risk of rebleeding of ruptured intracranial aneurysm after admission. Neurosurg Rev 2023; 46:123. [PMID: 37195327 DOI: 10.1007/s10143-023-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Interleukin-1 (IL-1) could induce inflammation of the aneurysm wall, which might be related to intracranial aneurysm rupture. The aim of this study was to investigate whether IL-1 could serve as a biomarker to predict the risk of rebleeding after admission. Data between January 2018 and September 2020 were collected from patients with ruptured intracranial aneurysms (RIAs) and were retrospectively reviewed. The serum IL-1β and IL-1ra levels were detected using a panel, and IL-1 ratio was calculated as the log10 (IL-1ra/IL-1β). The predictive accuracy of IL-1 compared with previous clinical morphology (CM) model and other risk factors were evaluated by the c-statistic. Five hundred thirty-eight patients were finally included in the study, with 86 rebleeding RIAs. The multivariate Cox analysis confirmed aspect ratio (AR) > 1.6 (hazard ratio (HR), 4.89 [95%CI, 2.76-8.64], P < 0.001), size ratio (SR) > 3.0 (HR, 2.40 [95%CI, 1.34-4.29], P = 0.003), higher serum IL-1β (HR, 1.88 [95%CI, 1.27-2.78], P = 0.002), and lower serum IL-1ra (HR, 0.67 [95%CI, 0.56-0.79], P < 0.001) as the independent risk factors for rebleeding after admission. According to the c-statistics, the IL-1 ratio had the highest predictive accuracy (0.82), followed by IL-1ra and IL-1β (0.80), AR > 1.6 (0.79), IL-1ra (0.78), IL-1β (0.74), and SR > 3.0 (0.56), respectively. Subgroup analysis based on AR and SR presented similar results. The model combining IL-1 ratio and CM model showed higher predictive accuracy for the rebleeding after admission (c-statistic, 0.90). Serum IL-1, especially IL-1 ratio, could serve as a biomarker to predict the risk of rebleeding after admission.
Collapse
Affiliation(s)
- Zheng Wen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jiangan Li
- Emergency Medicine, the Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
7
|
Naseem N, Ahmad MF, Malik S, Khan RH, Siddiqui WA. The potential of esculin in ameliorating Type-2 diabetes mellitus induced neuropathy in Wistar rats and probing its inhibitory mechanism of insulin aggregation. Int J Biol Macromol 2023; 242:124760. [PMID: 37156314 DOI: 10.1016/j.ijbiomac.2023.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Diabetic neuropathy encompasses multiple pathological disturbances, many of which coincide with the pathophysiological mechanisms of neurodegenerative disorders. In the present study, various biophysical techniques like Rayleigh light scattering assay, Thioflavin T assay, far-UV Circular Dichroism spectroscopy, Transmission electron microscopy have unveiled the anti-fibrillatory effect of esculin upon human insulin fibrillation. MTT cytotoxicity assay demonstrated the biocompatibility of esculin and in-vivo studies such as behavioral tests like hot plate test, tail immersion test, acetone drop test, plantar test were performed for validating diabetic neuropathy. Assessment of levels of serum biochemical parameters, oxidative stress parameters, pro-inflammatory cytokines as well as neuron specific markers was done in the current study. Rat brains were subjected to histopathology and their sciatic nerves were subjected to transmission electron microscopy to analyze myelin structure alterations. All these results reveal that esculin ameliorates diabetic neuropathy in experimental diabetic rats. Conclusively, our study demonstrates the anti-amyloidogenic potential of esculin in the form of inhibition of human insulin fibrillation, making it a promising candidate in combating neurodegenerative disorders in the near future and the results of various behavioral, biochemical, and molecular studies reveal that esculin possesses anti-lipidemic, anti-inflammatory, anti-oxidative and neuroprotective properties which help in ameliorating diabetic neuropathy in streptozotocin induced diabetic Wistar rats.
Collapse
Affiliation(s)
- Nida Naseem
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Md Fahim Ahmad
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sadia Malik
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Rizwan Hasan Khan
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | - Waseem A Siddiqui
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
8
|
Arif A, Quds R, Salam S, Mahmood R. Esculin protects human blood cells from bioallethrin-induced toxicity: An ex vivo study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105375. [PMID: 36963944 DOI: 10.1016/j.pestbp.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Bioallethrin, a household insecticide, is a member of the pyrethroid family and is known for its adverse effects on human health. Human exposure to pyrethroids is unavoidable due to their widespread use in controlling several fatal vector-borne diseases, mostly in developing nations. Bioallethrin is known to induce oxidative stress in target cells, including erythrocytes. Here we have studied the protective effect of dietary antioxidant esculin on bioallethrin-induced damage in isolated human erythrocytes. The cells were incubated with 200 μM bioallethrin, without or with different concentrations of esculin (200, 400 and 600 μM), and the results compared to the untreated control samples. Bioallethrin-treated erythrocytes showed a significant increase in oxidative stress markers, like protein and lipid oxidation, accompanied by decrease in free amino groups and ratio of reduced to oxidized glutathione. There was enhanced generation of reactive oxygen and nitrogen species with changes in plasma membrane integrity. Bioallethrin oxidized hemoglobin to methemoglobin, which cannot transport oxygen. It altered the activities of antioxidant enzymes and lowered the electron donating and free radical quenching ability of erythrocytes. The cell morphology and redox system of erythrocyte membrane were also altered by bioallethrin. Treatment with esculin, prior to incubation with bioallethrin, led to significant restoration in all these parameters in an esculin concentration-dependent manner. Thus esculin attenuated the biolletherin-induced oxidative damage to erythrocytes. Esculin can, therefore, be an effective chemoprotectant against xenobiotic-induced toxicity in human erythrocytes.
Collapse
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Samreen Salam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
9
|
Kim S, Lyu JH, Yang B, Kim S, Kim JH, Kim H, Cho S. The Related Mechanisms Predicted through Network-Based Pharmacological Analysis and the Anti-Inflammatory Effects of Fraxinus rhynchophylla Hance Bark on Contact Dermatitis in Mice. Int J Mol Sci 2023; 24:ijms24076091. [PMID: 37047066 PMCID: PMC10094049 DOI: 10.3390/ijms24076091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Fraxinus rhynchophylla Hance bark has been used to treat patients with inflammatory or purulent skin diseases in China, Japan, and Korea. This study was undertaken to determine the mechanism responsible for the effects of F. rhynchophylla and whether it has a therapeutic effect in mice with contact dermatitis (CD). In this study, the active compounds in F. rhynchophylla, their targets, and target gene information for inflammatory dermatosis were investigated using network-based pharmacological analysis. Docking analysis was conducted using AutoDock Vina. In addition, the therapeutic effect of an ethanolic extract of F. rhynchophylla (EEFR) on skin lesions and its inhibitory effects on histopathological abnormalities, inflammatory cytokines, and chemokines were evaluated. Finally, its inhibitory effects on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways were observed in RAW 264.7 cells. In our results, seven active compounds were identified in F. rhynchophylla, and six were associated with seven genes associated with inflammatory dermatosis and exhibited a strong binding affinity (<-6 kcal/mol) to prostaglandin G/H synthase 2 (PTGS2). In a murine 1-fluoro-2,4-dinitrobenzene (DNFB) model, topical EEFR ameliorated the surface symptoms of CD and histopathological abnormalities. EEFR also reduced the levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and monocyte chemotactic protein (MCP)-1 in inflamed tissues and inhibited PTGS2, the nuclear translocation of NF-κB (p65), and the activation of c-Jun N-terminal kinases (JNK) in RAW 264.7 cells. In conclusion, the bark of F. rhynchophylla has potential use as a therapeutic or cosmetic agent, and the mechanism responsible for its effects involves the suppression of inflammatory mediators, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB)-α degradation, the nuclear translocation of NF-κB, and JNK phosphorylation.
Collapse
Affiliation(s)
- Sura Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
- Department of Microbiology, Medicine School of Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji-Hyo Lyu
- Research Institute for Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Jeonnam, Republic of Korea
| | - Beodeul Yang
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Soyeon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Suin Cho
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| |
Collapse
|
10
|
Li C, Li J, Lai J, Liu Y. The pharmacological and pharmacokinetic properties of esculin: A comprehensive review. Phytother Res 2022; 36:2434-2448. [PMID: 35599456 DOI: 10.1002/ptr.7470] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chun‐xiao Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing‐chun Li
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jiang Lai
- Department of Anorectal Surgery Third People's Hospital of Chengdu Chengdu China
| | - Ying Liu
- Department of Dermatology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
11
|
Ma C, Wang C, Zhang Y, Zhou H, Li Y. Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms. Curr Mol Pharmacol 2021; 15:846-861. [PMID: 34923950 DOI: 10.2174/1874467215666211217120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research. PURPOSE This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD. METHODS By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval. RESULTS The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed. CONCLUSION Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
12
|
Xu XN, Jiang Y, Yan LY, Yin SY, Wang YH, Wang SB, Fang LH, Du GH. Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153687. [PMID: 34482222 DOI: 10.1016/j.phymed.2021.153687] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Aesculin (AES), an effective component of Cortex fraxini, is a hydroxycoumarin glucoside that has diverse biological properties. The nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing 3 (NLRP3) inflammasome has been heavily interwoven with the development of myocardial ischemia/reperfusion injury (MIRI). Nevertheless, it remains unclear whether AES makes a difference to the changes of the NLRP3 inflammasome in MIRI. PURPOSE We used rats that were subjected to MIRI and neonatal rat cardiomyocytes (NRCMs) that underwent oxygen-glucose deprivation/restoration (OGD/R) process to investigate what impacts AES exerts on MIRI and the NLRP3 inflammasome activation. METHODS The establishment of MIRI model in rats was conducted using the left anterior descending coronary artery ligation for 0.5 h ischemia and then untying the knot for 4 h of reperfusion. After reperfusion, AES were administered intraperitoneally using 10 and 30 mg/kg doses. We evaluated the development of reperfusion ventricular arrhythmias, hemodynamic changes, infarct size, and the biomarkers in myocardial injury. The inflammatory mediators and pyroptosis were also assessed. AES at the concentrations of 1, 3, and 10 μM were imposed on the NRCMs immediately before the restoration process. We also determined the cell viability and cell death in the NRCMs exposed to OGD/R insult. Furthermore, we also analyzed the levels of proteins that affect the NLRP3 inflammasome activation, pyroptosis, and the AKT serine/threonine kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/nuclear factor-kappa B (NF-κB) signaling pathway via western blotting. RESULTS We found that AES notably attenuated reperfusion arrhythmias and myocardia damage, improved the hemodynamic function, and ameliorated the inflammatory response and pyroptosis of cardiomyocytes in rats and NRCMs. Additionally, AES reduced the NLRP3 inflammasome activation in rats and NRCMs. AES also enhanced the phosphorylation of Akt and GSK3β, while suppressing the phosphorylation of NF-κB. Moreover, the allosteric Akt inhibitor, MK-2206, abolished the AES-mediated cardioprotection and the NLRP3 inflammasome suppression. CONCLUSIONS These findings indicate that AES effectively protected cardiomyocytes against MIRI by suppressing the NLRP3 inflammasome-mediated pyroptosis, which may relate to the upregulated Akt activation and disruption of the GSK3β/NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Xu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Regional inspection fourth branch of Shandong medical products administration, Yantai, Shandong Province, 264010, China
| | - Yu Jiang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liu-Yan Yan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Su-Yue Yin
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China..
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| |
Collapse
|
13
|
Zaragozá C, Zaragozá F, Gayo-Abeleira I, Villaescusa L. Antiplatelet Activity of Coumarins: In Vitro Assays on COX-1. Molecules 2021; 26:molecules26103036. [PMID: 34069658 PMCID: PMC8161015 DOI: 10.3390/molecules26103036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death in developed countries. Therefore, there is an increasing interest in developing new potent and safe antiplatelet agents. Coumarins are a family of polyphenolic compounds with several pharmacological activities, including platelet aggregation inhibition. However, their antiplatelet mechanism of action needs to be further elucidated. The aim of this study is to provide insight into the biochemical mechanisms involved in this activity, as well as to establish a structure-activity relationship for these compounds. With this purpose, the antiplatelet aggregation activities of coumarin, esculetin and esculin were determined in vitro in human whole blood and platelet-rich plasma, to set the potential interference with the arachidonic acid cascade. Here, the platelet COX activity was evaluated from 0.75 mM to 6.5 mM concentration by measuring the levels of metabolites derived from its activity (MDA and TXB2), together with colorimetric assays performed with the pure recombinant enzyme. Our results evidenced that the coumarin aglycones present the greatest antiplatelet activity at 5 mM and 6.5 mM on aggregometry experiments and inhibiting MDA levels.
Collapse
|
14
|
Chen T, Zheng M, Li Y, Liu S, He L. The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. J Affect Disord 2020; 277:755-764. [PMID: 33065814 DOI: 10.1016/j.jad.2020.08.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate whether Esculin could improve the depressive symptom induced by LPS in mice and explore the role of CCR5 in its potential mechanism. METHODS Mice were stimulated with LPS to establish depression model and treated with Esculin. The emotional alteration was assessed via behavior tests. The ELISA assay and western blot analysis were applied to detect the expressions of inflammatory cytokines and correlative proteins. RESULTS As a result, Esculin played a protective role in LPS-induced depressive dysfunction, which was possible through the reduction of M1 microglia, and elevation of M2 microglia by inhibiting TLR4/NF-κB signaling pathway regulated by CCR5. Besides, Esculin led to up-regulation of the CREB/BDNF neuroprotective pathway, and suppression of inflammatory cytokines both in the central and peripheral system. BV2 cells were stimulated with LPS to further elucidate the accordant mechanism in vitro. Molecular docking results suggested that Esc bound to CCR5 at amino acid residues TYR187 and THR105 through hydrogen-bonding. LIMITATIONS Transgenic animals might be useful for the further investigation. CONCLUSIONS From the overall results, we concluded that Esculin might exert a beneficial effect on LPS-induced depression in mice and represent an effective treatment for depression.
Collapse
Affiliation(s)
- Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China.
| | - Menglin Zheng
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Yixuan Li
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Shengnan Liu
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
15
|
da Cruz RMD, Batista TM, de Sousa TKG, Mangueira VM, Dos Santos JAF, de Abrantes RA, Ferreira RC, Leite FC, Brito MT, Batista LM, Veras RC, Vieira GC, Mendonca FJB, de Araújo RSA, Sobral MV. Coumarin derivative 7-isopentenyloxycoumarin induces in vivo antitumor activity by inhibit angiogenesis via CCL2 chemokine decrease. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1701-1714. [PMID: 32388599 DOI: 10.1007/s00210-020-01884-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Cancer is one of the most urgent problems in medicine. In recent years, cancer is the second leading cause of death globally. In search for more effective and less toxic treatment against cancer, natural products are used as prototypes in the synthesis of new anticancer drugs. The aim of this study was to investigate the in vivo toxicity and the mechanism of antitumor action of 7-isopentenyloxycoumarin (UMB-07), a coumarin derivative with antitumor activity. The toxicity was evaluated in vitro (hemolysis assay), and in vivo (micronucleus and acute toxicity assays). Ehrlich ascites carcinoma model was used to evaluate in vivo antitumor activity of UMB-07 (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.), after 9 days of treatment, as well as toxicity. UMB-07 (2000 μg/mL) induced only 0.8% of hemolysis in peripheral blood erythrocytes of mice. On acute toxicity assay, LD50 (50% lethal dose) was estimated at around 1000 mg/kg (i.p.), and no micronucleated erythrocytes were recorded after UMB-07 (300 mg/kg, i.p.) treatment. UMB-07 (25 and 50 mg/kg) reduced tumor volume and total viable cancer cells. In the mechanism action investigation, no changes were observed on the cell cycle analysis; however, UMB-07 reduced peritumoral microvessels density and CCL2 chemokine levels. In addition, UMB-07 showed weak toxicity on biochemical, hematological, and histological parameters after 9 days of antitumor treatment. The current findings suggest that UMB-07 has low toxicity and exerts antitumor effect by inhibit angiogenesis via CCL2 chemokine decrease.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Tatianne Mota Batista
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Tatyanna Kelvia Gomes de Sousa
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Vivianne Mendes Mangueira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Jephesson Alex Floriano Dos Santos
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Renata Albuquerque de Abrantes
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Rafael Carlos Ferreira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Fagner Carvalho Leite
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Monalisa Taveira Brito
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Leônia Maria Batista
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Robson Cavalcante Veras
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Giciane Carvalho Vieira
- Departamento de Morfologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | | | | | - Marianna Vieira Sobral
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil.
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil.
| |
Collapse
|
16
|
Lee SH, Lee HS, Park G, Oh SM, Oh DS. Dual actions on gout flare and acute kidney injury along with enhanced renal transporter activities by Yokuininto, a Kampo medicine. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:57. [PMID: 30871515 PMCID: PMC6419507 DOI: 10.1186/s12906-019-2469-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/28/2019] [Indexed: 11/20/2022]
Abstract
Background Prolonged hyperuricemia is associated with kidney disease or gouty arthritis. Whether Yokuininto, a commercially available Kampo medicine that has been used for osteoarthritis or rheumatoid arthritis, can exhibit anti-hyperuricemic and inflammatory effects remains elusive. In the present study, Yokuininto exerts multiple homeostatic action on serum uric acid (sUA) levels by blocking pro-inflammatory cytokine activities and inducing uricosuric function with anti-renal injury functions. Methods The sUA was measured in potassium oxonate (PO)-administered mice. Renal transporter uptake assays were performed using HEK293 cells overexpressing OAT1, OCT2 or OAT3, MDCKII cells overexpressing BCRP, and Xenopus oocytes overexpressing OAT3 or URAT1. Immunoblot and ELISA assays were performed to detect the molecules (OAT3, GLUT9, XO, NGAL, KIM-1 and IL-1α) in various human kidney cell lines. Cell viability analysis was performed to evaluate the cytotoxicity of Yokuininto [Ephedrine + pseudoephedrine 21.94%; Paeoniflorin 35.40% and Liquiritin 16.21% relatively measured by the ratios (HR-MS2 intensity / HR-MS1 intensity)]. Results Yokuininto (300 mg/kg) significantly reduced sUA by approximately 44% compared to that of PO-induced mice. The OAT3 levels were decreased in PO-induced hyperuricemic condition, whereas the GLUT9 transporter levels were markedly increased. However, PO did not alter the levels of URAT1. Yokuininto significantly inhibited the lipopolysaccharide (LPS)-induced secretion of IL-1α by approximately 63.2% compared to the LPS-treated macrophages. In addition, Yokuininto inhibited nitric oxide synthesis by approximately 33.7 (500 µg/mL) and 64.6% (1000 µg/mL), compared to that of LPS-treated macrophages. Yokuininto markedly increased xanthine oxidase inhibition activity. Furthermore, interleukin-1α (IL-1α), a pro-inflammatory cytokine, elevated neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) activities in LLC-PK1 cells. Expression of renal inflammatory biomarkers, NGAL and KIM-1, was reduced under the Yokuininto treatment by 36.9 and 72.1%, respectively. Conclusions Those results suggest that Yokuininto may suppress inflammation and protect against kidney dysfunction in hyperuricemia. The present findings demonstrated that Yokuininto lowered sUA through both increased uric acid excretion and decreased uric acid production. Our results may provide a basis for the protection of prolonged hyperuricemia-associated kidney injury with uric acid-lowering agents such as Yokuininto. Electronic supplementary material The online version of this article (10.1186/s12906-019-2469-9) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Mo Z, Li L, Yu H, Wu Y, Li H. Coumarins ameliorate diabetogenic action of dexamethasone via Akt activation and AMPK signaling in skeletal muscle. J Pharmacol Sci 2019; 139:151-157. [PMID: 30733181 DOI: 10.1016/j.jphs.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids are widely prescribed for lots of pathological conditions, however, can produce 'Cushingoid' side effects including central obesity, glucose intolerance, insulin resistance and so forth. Our study is intended to investigate the improving effects of coumarins on diabetogenic action of dexamethasone in vivo and in vitro and elucidate potential mechanisms. ICR mice treated with dexamethasone for 21 days exhibited decreased body weight, increased blood glucose and impaired glucose tolerance, which were prevented by fraxetin (40 mg/kg/day), esculin (40 mg/kg/day) and osthole (20 mg/kg/day), respectively. Esculin, fraxetin and osthole also could promote glucose uptake in normal C2C12 myotubes, and improve insulin resistance in myotubes induced by dexamethasone. Western blotting results indicated that esculin, fraxetin and osthole could boost Akt activation, stimulate GLUT4 translocation, thus alleviate insulin resistance. Esculin and osthole also could activate AMPK, thereby phosphorylate TBC1D1 at Ser237, and consequently ameliorate diabetogenic action of dexamethasone. Our study indicates coumarins as potential anti-diabetic candidates or leading compounds for drug development.
Collapse
Affiliation(s)
- Zejun Mo
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Haiwen Yu
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yingqi Wu
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| |
Collapse
|
18
|
de Moura Barbosa H, Amaral D, do Nascimento JN, Machado DC, de Sousa Araújo TA, de Albuquerque UP, Guedes da Silva Almeida JR, Rolim LA, Lopes NP, Gomes DA, Lira EC. Spondias tuberosa inner bark extract exert antidiabetic effects in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:248-257. [PMID: 30176348 DOI: 10.1016/j.jep.2018.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus (DM) is one of the most important medical emergencies of the 21st century. However, commercially available oral drugs with antidiabetic properties have been limited because of potential side effects, such as: hypoglycemia, weight gain, hepatic dysfunction and abdominal discomfort. As well as antidiabetic drugs, many types of medicinal herbal supplements are utilized as alternative treatments for DM and related comorbidities. Spondias tuberosa Arruda (Anacardiaceae), popularly known as "umbu", has been used in traditional medicine to treat a vast range of diseases, including DM, infections, digestive disorders, diarrhea and menstrual abnormalities. AIM OF THE STUDY This study evaluated the effect of the hydroethanolic extract of the inner stem bark of Spondias tuberosa (EEStb) in streptozotocin-induced diabetic rats. MATERIALS AND METHODS Diabetes was induced in rats by a single injection of STZ (40 mg/kg i.p.). Diabetic rats were treated with 250 mg/kg or 500 mg/kg of the EEStb for 21 days. Water intake, urinary volume, body weight, as well as biochemical parameters, such as cholesterol total (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), hepatic and muscle glycogen urea, alanine and aspartate aminotransferase, total protein, albumin, and glucose blood levels, were analyzed. We also determined the hepatic antioxidant state, as well as both of insulin and glucose tolerance. RESULTS The extract was evaluated by HPLC, and the major components of EESTb were identified (i.e. gallic acid and quercetin). The 500 mg/kg dosage of EEStb significantly decreased fasting blood glucose and post-prandial glucose. The EEStb also reduced urinary volume, food and water intake, as well as decreased body weight gain. Diabetic rats that received EEStb had a lower loss of muscle mass and white adipose tissue. Additionally, EEStb improved the urinary excretion of urea and glucose. The extract significantly decreased triglycerides, total cholesterol and VLDL in diabetic rats. However, no significant effect was observed on the levels of total and HDL cholesterol. EEStb treatment prevented hepatotoxic diabetic-induced, improved GSH:GSSG ratio, SOD and CAT activity as well as reduced nitrite and TBARs levels. CONCLUSIONS Our results demonstrate that EEStb has antioxidant and hepatoprotective effects as well as improves insulin sensibility in diabetic rats. This indicates that S. tuberosa could be a potential resource for alternative therapies in the treatment of hyperglycemic conditions. These results also support the use of EEStb in ethnomedicine for the management of diabetes.
Collapse
Affiliation(s)
- Humberto de Moura Barbosa
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Dionísio Amaral
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Jailson Nunes do Nascimento
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Dijanah Cota Machado
- Department of Biophysics, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Thiago Antônio de Sousa Araújo
- Laboratoy of Ecology and Evolution of Social-Ecological Systems, Departament of Botany, Federal University of Pernambuco, Brazil
| | - Ulysses Paulino de Albuquerque
- Laboratoy of Ecology and Evolution of Social-Ecological Systems, Departament of Botany, Federal University of Pernambuco, Brazil
| | | | - Larissa Araújo Rolim
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56.304-205 Petrolina, Pernambuco, Brazil
| | - Norberto Peporine Lopes
- Departament of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14.040-903 Ribeirão Preto, São Paulo, Brazil
| | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901 Recife, Pernambuco, Brazil.
| |
Collapse
|
19
|
Ahmad I, Sharma S, Gupta N, Rashid Q, Abid M, Ashraf MZ, Jairajpuri MA. Antithrombotic potential of esculin 7, 3', 4', 5', 6'-O-pentasulfate (EPS) for its role in thrombus reduction using rat thrombosis model. Int J Biol Macromol 2018; 119:360-368. [PMID: 30009901 DOI: 10.1016/j.ijbiomac.2018.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
Currently available anticoagulants for prevention and treatment of thrombosis have several limitations, thus, small organic scaffolds that can dissolve clots in vivo in a dose dependent manner with lesser side effects are highly desirable. Here we report the synthesis of esculin pentasulfate (EPS) and assessment of its in vitro, in vivo and ex vivo anticoagulant and antithrombotic potential. Assessment of in vitro clotting times showed prolonged activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) in the presence of EPS. EPS also showed remarkable reduction in thrombus formation when administered in occlusion induced thrombotic rats at a low dose (2.5 mg/kg). Further, assessment of clot rate with plasma isolated from EPS treated rats confirmed its anticoagulation potential. EPS at varying concentrations showed no significant cytotoxic effect on HEK293 cell line. Further, molecular docking analysis of EPS with known anticoagulant proteins [(antithrombin (ATIII) and heparin cofactor II (HCF II)] that require heparin revealed good binding affinity (-7.9 kcal/mol) with ATIII but not with HCF II. ATIII when incubated with EPS showed increased fluorescence intensity, with no change in secondary structure. Overall, our results clearly show the in vivo modulation of thrombus formation using a modified natural scaffold EPS.
Collapse
Affiliation(s)
- Irshad Ahmad
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Swati Sharma
- Defence Institute of Physiology & Allied Sciences, Timarpur, New Delhi 110 054, India
| | - Neha Gupta
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Qudsia Rashid
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Medicinal Chemistry Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110 025, India
| | - Mohammad Z Ashraf
- Defence Institute of Physiology & Allied Sciences, Timarpur, New Delhi 110 054, India
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
20
|
Jeong NH, Yang EJ, Jin M, Lee JY, Choi YA, Park PH, Lee SR, Kim SU, Shin TY, Kwon TK, Jang YH, Song KS, Kim SH. Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines. Int Immunopharmacol 2018; 59:209-216. [DOI: 10.1016/j.intimp.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
|
21
|
Purple lettuce (Lactuca sativa L.) attenuates metabolic disorders in diet induced obesity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Song Y, Wang X, Qin S, Zhou S, Li J, Gao Y. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway. Mol Med Rep 2018; 17:7395-7402. [PMID: 29568860 DOI: 10.3892/mmr.2018.8727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Esculin is a derivative of coumarin, which is also an active ingredient of ash bark, and has antibacterial, anti-inflammatory, anti‑allergy and skin protective effects. The underlying mechanism and protective effects of esculin on cognitive impairment in experimental diabetic nephropathy (DN) was investigated in the present study. Male C57BL/6J 6‑week‑old mice were injected intravenously with a single dose of streptozotocin (STZ; 30 mg/kg). At 2 weeks after the STZ injection, mice received intravenous injection with 5, 10 or 20 mg/kg esculin for 2 weeks. In the present study, the results of the Morris water maze test demonstrated that esculin significantly improved behavior and recognition memory in STZ‑induced diabetic rats. Furthermore, treatment of STZ‑induced diabetic rats with esculin significantly inhibited tumor necrosis factor‑α, interleukin‑6, malondialdehyde, monocyte chemoattractant protein‑1 and intracellular adhesion molecule‑1 activity levels, and increased the activity of superoxide dismutase, in the kidney, which was determined by ELISA. In addition, esculin treatment significantly suppressed the renal protein expression of activator protein 1, phosphorylated (p)‑p38 mitogen activated protein kinase (MAPK) and p‑c‑Jun N‑terminal kinase, and increased p‑extracellular signal regulated kinase 1/2 protein expression, in STZ‑induced diabetic rats, as determined by western blotting. These results indicate that esculin may ameliorate cognitive impairment in experimental DN, and exert anti‑oxidative stress and anti‑inflammatory effects, via the MAPK signaling pathway. Thus, it may serve as a potential target for cognitive impairment of DN in the future.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaochun Wang
- Department of Nursing, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shengkai Qin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Siheng Zhou
- Department of Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiaolun Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yue Gao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Oh SM, Park G, Lee SH, Seo CS, Shin HK, Oh DS. Assessing the recovery from prerenal and renal acute kidney injury after treatment with single herbal medicine via activity of the biomarkers HMGB1, NGAL and KIM-1 in kidney proximal tubular cells treated by cisplatin with different doses and exposure times. Altern Ther Health Med 2017; 17:544. [PMID: 29258482 PMCID: PMC5738030 DOI: 10.1186/s12906-017-2055-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Background Acute kidney injury (AKI) is an initial factor in many kidney disorders. Pre- and intra-renal AKI biomarkers have recently been reported. Recovery from AKI by herbal medicine has rarely been reported. Thus, this study aimed to investigate the dose- and time-dependent effects of herbal medicines to protect against AKI in cisplatin-induced human kidney 2 (HK-2) cells by assessing the activities of high-mobility group box protein 1 (HMGB1), neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). Methods Proximal tubular HK-2 cell lines were treated with either 400 μM of cisplatin for 6 h or 10 μM of cisplatin for 24 h and then exposed to ten types of single herbal medicines, including Nelumbo nymphaea (NY) at a dose of 100 μg/mL. The AKI biomarkers HMGB1, NGAL and KIM-1 were repeatedly measured by an ELISA assay at 2, 4, and 6 h in the group treated with 400 μM of cisplatin to confirm necrotic cell death and at 6, 24, and 48 h in the group treated with 10 μM of cisplatin to examine apoptotic cell death. Recovery confirm was conducted through in vivo study using ICR mice for 3 day NY or Paeonia suffruticosa intake. Results Cisplatin treatment at a concentration of 10 μM decreased cell viability. Treatment with 400 μM of cisplatin reduced HMBG1 activity and resulted in lactate dehydrogenase release. In longer exposure durations (up to 48 h), NGAL and KIM-1 exhibited activity from 24 h onward. Additionally, NY treatment resulted in an approximately 50% change in all three biomarkers. The time-dependent profiles of HMGB1, NGAL and KIM-1 activities up to 48 h were notably different; HMGB1 exhibited a 7-fold change at 6 h, and NGAL and KIM-1 exhibited 1.7-fold changes at 24 h, respectively. Consistently, serum and urine NGAL and KIM-1 activities were all reduced in ICR mice. Conclusions Several single herbal medicines, including NY, have a potential as effectors of AKI due to their ability to inhibit the activation of HMGB1, NGAL and KIM-1 in an in vitro AKI-mimicked condition and simple in vivo confirm. Furthermore, an in vivo proof-of-concept study is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-2055-y) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Valero-Muñoz M, Backman W, Sam F. Murine Models of Heart Failure with Preserved Ejection Fraction: a "Fishing Expedition". JACC Basic Transl Sci 2017; 2:770-789. [PMID: 29333506 PMCID: PMC5764178 DOI: 10.1016/j.jacbts.2017.07.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/28/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of HF in the presence of a normal left ventricular (LV) ejection fraction (EF). Despite accounting for up to 50% of all clinical presentations of HF, the mechanisms implicated in HFpEF are poorly understood, thus precluding effective therapy. The pathophysiological heterogeneity in the HFpEF phenotype also contributes to this disease and likely to the absence of evidence-based therapies. Limited access to human samples and imperfect animal models that completely recapitulate the human HFpEF phenotype have impeded our understanding of the mechanistic underpinnings that exist in this disease. Aging and comorbidities such as atrial fibrillation, hypertension, diabetes and obesity, pulmonary hypertension and renal dysfunction are highly associated with HFpEF. Yet, the relationship and contribution between them remains ill-defined. This review discusses some of the distinctive clinical features of HFpEF in association with these comorbidities and highlights the advantages and disadvantage of commonly used murine models, used to study the HFpEF phenotype.
Collapse
Affiliation(s)
- Maria Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Warren Backman
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
- Evans Department of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cardiovascular Section, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
25
|
Fraxinus: A Plant with Versatile Pharmacological and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4269868. [PMID: 29279716 PMCID: PMC5723943 DOI: 10.1155/2017/4269868] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/11/2023]
Abstract
Fraxinus, a member of the Oleaceae family, commonly known as ash tree is found in northeast Asia, north America, east and western France, China, northern areas of Pakistan, India, and Afghanistan. Chemical constituents of Fraxinus plant include various secoiridoids, phenylethanoids, flavonoids, coumarins, and lignans; therefore, it is considered as a plant with versatile biological and pharmacological activities. Its tremendous range of pharmacotherapeutic properties has been well documented including anticancer, anti-inflammatory, antioxidant, antimicrobial, and neuroprotective. In addition, its bioactive phytochemicals and secondary metabolites can be effectively used in cosmetic industry and as a competent antiaging agent. Fraxinus presents pharmacological effectiveness by targeting the novel targets in several pathological conditions, which provide a spacious therapeutic time window. Our aim is to update the scientific research community with recent endeavors with specifically highlighting the mechanism of action in different diseases. This potentially efficacious pharmacological drug candidate should be used for new drug discovery in future. This review suggests that this plant has extremely important medicinal utilization but further supporting studies and scientific experimentations are mandatory to determine its specific intracellular targets and site of action to completely figure out its pharmacological applications.
Collapse
|
26
|
Wang Y, Zhao M, Ou Y, Zeng B, Lou X, Wang M, Zhao C. Metabolic profile of esculin in rats by ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:120-8. [PMID: 27038404 DOI: 10.1016/j.jchromb.2016.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 12/19/2022]
Abstract
Esculin, a coumarin derivative found in Fraxinus rhynchophylla, has been reported to possess multiple biological activities. This present study is designed to investigate the metabolic profile of esculin in vivo based on ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) for the first time. After oral administration of esculin (100 mg/kg) for rats, plasma, urine, feces and bile samples were collected to screen metabolites. As a result, a total of 19 metabolites (10 phase I metabolites and 9 phase II metabolites) were found and identified. Results showed that metabolic pathways of esculin included hydrolysis, dehydrogenation, hydroxylation, methylation, dehydrogenation, glucuronidation, sulfation, and glycine conjugation. It was also found that after oral administration of esculin, the esculin could be metabolized to esculetin in vivo via deglycosylation, and esculetin was found in all biological samples. This study also laid solid basis for in-depth development of esculin and provided important information for clarifying the biotransformation process of esculin in vivo.
Collapse
Affiliation(s)
- Yinan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yingfu Ou
- Medicine Experiment Center, School of Medicine, Eastern Liaoning University, Dandong 118002, China
| | - Bowen Zeng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Xinyu Lou
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|