1
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Abdelkader GS, El-Naenaeey ESY, Abdallah HM, Abu-Zeid EH, Rehan IF, Zigo F, Elmowalid GA. Immune enhancement and disease resistance against Aeromonas hydrophila infection by dietary Lactobacillus plantarum-fermented Moringa oleifera leaves in Oreochromis niloticus. Front Vet Sci 2025; 12:1557671. [PMID: 40351771 PMCID: PMC12063360 DOI: 10.3389/fvets.2025.1557671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 05/14/2025] Open
Abstract
For enhancing the nutritional characteristics of Moringa oleifera leaves (MOLs), the present research set out to examine the effect of MOLs fermented by Lactobacillus plantarum (MOLF) or MOLs powder (MOLP) on innate immunity defense and resilience to Aeromonas hydrophila challenge in Oreochromis niloticus. A 30-day experiment was conducted with 180 Nile tilapia fingerlings, divided randomly into five equal-sized groups of 36 fingerlings, three replicates per group. The 1st control fish received a basal meal devoid of any supplements. The 2nd MOLP-L and the 3rd MOLP-H fish received basal meals enriched with low and high levels of MOLP (50 g or 100 g/kg diet). The 4th MOLF-L and 5th MOLF-H fish received basal meals enriched with low and high levels of MOLF (50 g or 100 g/kg diet). Ferulic acid, gallic acid, caffeic acid, and p-coumaric acid were the primary phenolic components identified by HPLC in the fermented MOLs. Meanwhile, naringenin, rutin, quercetin, kaempferol, luteolin, apigenin, and catechin were the main flavonoids detected. The results revealed that MOLF dietary supplementation enhanced the immune-related outcomes more significantly (P < 0.05) than MOLP in a dose-related manner. Supplementation of MOLF increased serum nitric oxide and lysozyme levels, phagocytic index, phagocytic %, hepatic superoxide dismutase, and glutathione, yet declined the levels of malondialdehyde more significantly (P < 0.05) than the MOLP. The proinflammatory genes IL1β, TNFα, and IL-2 were significantly (P < 0.0.05) down-regulated. In contrast, the expression of the IL-10 gene was markedly upregulated in the spleen and head kidney (anterior) post A. hydrophila challenge in the MOLF-groups than the MOLP-groups. MOLF-supplemented groups showed a significantly (P < 0.05) enhanced relative proportion of survivorship and survival rates but decreased the A. hydrophila bacterial load (CFU) compared to the MOLP-supplemented groups. In conclusion, our findings have offered new insights into the promising immune-enhancing outcome of MOLF as a dietary supplement for immune augmentation against disease challenges in Nile tilapia.
Collapse
Affiliation(s)
- Ghada S. Abdelkader
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - El-Sayed Y. El-Naenaeey
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hossam M. Abdallah
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ehsan H. Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Komenského, Slovakia
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Komenského, Slovakia
| | - Gamal A. Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Du J, Wang H, Zhong L, Wei S, Min X, Deng H, Zhang X, Zhong M, Huang Y. Bioactivity and biomedical applications of pomegranate peel extract: a comprehensive review. Front Pharmacol 2025; 16:1569141. [PMID: 40206073 PMCID: PMC11979244 DOI: 10.3389/fphar.2025.1569141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Pomegranate peel is a by-product generated during the processing of pomegranate (Punica granatum L.) fruit, accounting for approximately 50% of the total mass of the fruit. Although pomegranate peel is usually regarded as waste, it is rich in various bioactive metabolites such as polyphenols, tannins, and flavonoids, demonstrating significant medicinal and nutritional value. In recent years, Pomegranate peel extract (PPE) has shown broad application prospects in the biomedical field due to its multiple effects, including antioxidant, anti-inflammatory, antibacterial, anti-apoptotic properties, and promotion of cell regeneration. This review consolidates the major bioactive metabolites of PPE and explores its applications in biomedical materials, including nanodrug carriers, hydrogels, and tissue engineering scaffolds. By synthesizing the existing literature, we delve into the potential value of PPE in biomedicine, the challenges currently encountered, and the future directions for research. The aim of this review is to provide a scientific basis for optimizing the utilization of PPE and to facilitate its broader application in the biomedical field.
Collapse
Affiliation(s)
- Jinsong Du
- School of Health Management, Zaozhuang University, Zaozhuang, China
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
| | - Heming Wang
- School of Nursing, Jilin University, Jilin, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shujie Wei
- Image Center, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Xiaoqiang Min
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
- Department of Geriatics, Shandong Healthcare Group Xinwen Central Hospital, Taian, China
| | - Hongyan Deng
- School of Health Management, Zaozhuang University, Zaozhuang, China
| | - Xiaoyan Zhang
- Magnetic Resonance Imaging Department, Shandong Healthcare Group Zaozhuang Central Hospital, Zaozhuang, China
| | - Ming Zhong
- Lanshu Cosmetics Co., Ltd., Huzhou, Zhejiang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Othman B, Beigh S, Albanghali MA, Sindi AAA, Shanawaz MA, Ibahim MAEM, Marghani D, Kofiah Y, Iqbal N, Rashid H. Comprehensive pharmacokinetic profiling and molecular docking analysis of natural bioactive compounds targeting oncogenic biomarkers in breast cancer. Sci Rep 2025; 15:5426. [PMID: 39948091 PMCID: PMC11825887 DOI: 10.1038/s41598-024-84401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 02/16/2025] Open
Abstract
Breast cancer is one of the leading causes of death in women worldwide, highlighting the crucial need for novel and effective treatments. In this study, we look at the ability of four natural compounds i.e. Berberine, Curcumin, Withaferin A, and Ellagic Acid to target important breast cancer biomarkers such as B-cell lymphoma 2 (BCL-2), programmed death-ligand 1 (PDL-1), cyclin-dependent kinase 4/6 (CDK4/6) and fibroblast growth factor receptor (FGFR). These indicators have important roles in tumor development, survival, immune response, and cell cycle control, making them potential targets for future cancer treatments. Our study employs a variety of techniques, including pharmacokinetic profiling (ADME), molecular docking, and molecular dynamics simulations, to determine how successful these drugs could be in therapy. The pharmacokinetic investigation found that Berberine and Ellagic Acid stand out due to their high absorption and solubility, implying that they could be suitable for clinical application. When we ran docking simulations, we discovered substantial connections between these chemicals and the target proteins. Additionally, Berberine has a binding affinity of - 9.3 kcal/mol for BCL-2, indicating that it can impair the protein's cancer cell-protective activities. Ellagic Acid, on the other hand, has an even higher binding affinity for PDL-1 of - 9.8 kcal/mol, showing that it may be able to increase immune responses against tumors. Molecular dynamics simulations over 100 ns demonstrated the stability of these protein-ligand complexes. Interestingly, Ellagic Acid was found to be more structurally stable than Berberine throughout these simulations. We found consistent interactions between the chemicals and key residues in the target proteins. For example, Ellagic Acid (CID: 5281855) established persistent linkages with LYS43, ASP163, and VAL27, whereas Berberine (CID: 2353) interacted with VAL27, ALA41, and LEU152 throughout the simulation. In conclusion, the combination of good pharmacokinetics, robust interactions with cancer biomarkers, and stable complexes makes Berberine and Ellagic Acid interesting candidates for further investigation as natural inhibitors in breast cancer treatment. These findings establish the framework for future research into novel and inventive techniques to effectively combating breast cancer.
Collapse
Affiliation(s)
- Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia.
| | - Mohammad A Albanghali
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | | | - Dina Marghani
- Clinical Laboratory Science Department, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Yasser Kofiah
- Department of Surgery, College of Medicine, Al-Baha University Al-Baha, Al-Baha, Saudi Arabia
| | - Navid Iqbal
- Department of Bioinformatics, The Islamic University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
5
|
Oliveira IMM, Teófilo MNG, Siqueira MAC, Manso JAX, Oliveira MG, Blanch GT, Paula JR, Cardoso AM, Oliveira MAP, Borges LL, Gomes CM. Evaluation of the antimicrobial potential of extracts Myrciaria cauliflora in strains of Staphylococcus aureus ATCC and Staphylococcus aureus BLAC. BRAZ J BIOL 2025; 84:e286908. [PMID: 39936793 DOI: 10.1590/1519-6984.286908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Bacteria of medical interest have increasingly acquired resistance to available antimicrobials over the years. This resistance makes these microorganisms a challenge for conventional medicine treatments, and new research is focusing on herbal medicine to fight these pathogens. The present work aimed to evaluate the cytotoxic activity of Myrciaria cauliflora and Genipa americana extracts, considering an in vitro bacterial inhibition, using a modified antibiogram technique, the extracts were studied in strains of Staphylococcus aureus ATCC 29213 and Staphylococcus aureus BLAC, where inhibition was observed in the two strains studied by the extract. This study observed that the M. cauliflora bark extract has antimicrobial potential when tested in vitro on S. aureus ATCC 29213 and S. aureus BLAC strains, indicating it is a potential herbal medicine for infections by this pathogen.
Collapse
Affiliation(s)
- I M M Oliveira
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
| | - M N Gu Teófilo
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
- Universidade Estadual de Goiás - UEG, Goiânia, GO, Brasil
| | - M A C Siqueira
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
| | - J A X Manso
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
| | - M G Oliveira
- Universidade Federal de Goiás - UFG, Goiânia, GO, Brasil
| | - G T Blanch
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
| | - J R Paula
- Universidade Federal de Goiás - UFG, Goiânia, GO, Brasil
| | - A M Cardoso
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
- Faculdade da Polícia Militar, Goiânia, GO, Brasil
| | - M A P Oliveira
- Universidade Federal de Goiás - UFG, Goiânia, GO, Brasil
| | - L L Borges
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
- Universidade Estadual de Goiás - UEG, Goiânia, GO, Brasil
| | - C M Gomes
- Pontifícia Universidade Católica de Goiás - PUC Goiás, Goiânia, GO, Brasil
- Faculdade da Polícia Militar, Goiânia, GO, Brasil
| |
Collapse
|
6
|
Lunić T, Petković M, Rakić M, Lađarević J, Repac J, Nedeljković BB, Božić B. Anti-neuroinflammatory potential of hydroxybenzoic ester derivatives: In silico insight and in vitro validation. J Mol Struct 2025; 1321:139804. [DOI: 10.1016/j.molstruc.2024.139804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Khumaidi A, Murwanti R, Damayanti E, Hertiani T. Empirical use, phytochemical, and pharmacological effects in wound healing activities of compounds in Diospyros leaves: A review of traditional medicine for potential new plant-derived drugs. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118966. [PMID: 39427738 DOI: 10.1016/j.jep.2024.118966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing extracts' activity is increasingly being studied in the field of traditional medicine. Among medicinal plants, Diospyros is known to have healing effects on wounds, along with activities such as anti-biofilm, anti-inflammatory, antibacterial, antioxidant, and regulation of the immune system. However, the current use of the leaves could be more optimal, and the scientific basis needs to be improved. AIM OF THIS REVIEW This review aimed to critically examine the literature on the traditional use and bioactive metabolites of several Diospyros species, demonstrating the significant potential in wound healing, antibacterial, anti-biofilm, regulatory effect on the immune system, anti-inflammatory, and antioxidant activities. The critical analysis was conducted to provide robust perspectives and recommendations for future studies on the use of Diospyros potential resources of wound healing material, including related activities. MATERIALS AND METHODS Exploratory studies on Diospyros species over the past 20 years were examined, with a focus on general information, practical use, secondary metabolite, and pharmacological activities related to wound healing. Data were meticulously collected from scientific databases including Scopus, ScienceDirect, Web of Science, Taylor & Francis, Google Scholar, PubMed as well as various botanical and biodiversity sources. Furthermore, manual searches were conducted to ensure comprehensive coverage. Reference manager software was used to manage articles and remove duplicates, then the gathered data were summarized and verified, ensuring the thoroughness and validity of the review process. RESULTS The results showed that Diospyros leaves have great potential to be harnessed as herbal medications, evidenced by both scientific findings and community uses. Various substances, including flavonoids, coumarins, tannins, terpenoids, steroids, lignans, quinones, and secoiridoids were identified. Chemical compound investigations in both in vivo and in vitro studies of Diospyros leaves reported wound healing activity, as well as antibacterial, anti-inflammatory, anti-biofilm, antioxidant, and immunomodulatory properties. CONCLUSION The review highlights the traditional uses and bioactive metabolites of Diospyros species in wound healing, identifying various beneficial compounds such as flavonoids and tannins. These compounds demonstrate various therapeutic effects, including antibacterial, anti-biofilm, anti-inflammatory, antioxidant, and immunomodulatory activities. Diospyros leaf extracts have a favorable safety profile, but further studies, including in vivo investigations and clinical trials, are necessary to confirm their efficacy and safety for clinical applications. Diospyros leaf extracts have significant potential for the development of wound healing substances due to the wide range of bioactivities targeting various stages of wound healing.
Collapse
Affiliation(s)
- Akhmad Khumaidi
- Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94118, Indonesia
| | - Retno Murwanti
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, 55861, Indonesia
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
8
|
Diaz MJ, Tran JT, Rose D, Wei A, Lakshmipathy D, Lipner SR. Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature. Nutrients 2025; 17:357. [PMID: 39861486 PMCID: PMC11767946 DOI: 10.3390/nu17020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Vitiligo is a chronic autoimmune pigmentation disorder shaped by a complex interplay of genetic predispositions and environmental triggers. While conventional therapies-phototherapy, corticosteroids, and immunosuppressants-can be effective, their benefits are often partial and temporary, with recurrence common once treatment stops. As such, there is increasing interest in exploring complementary approaches that may offer a more sustainable impact. Emerging evidence suggests that macronutrient and micronutrient-level changes could be beneficial for managing progression and, in some cases, facilitating repigmentation. Antioxidant-rich foods, such as apples, green tea, Indian gooseberry, onions, and peppers, may help mitigate oxidative stress, while inflammatory foods, such as gluten and high-phenol nuts and berries, may exacerbate the condition. Certain supplements, including high-dose vitamin D, vitamin C, vitamin E, and selenium, may enhance phototherapy outcomes. Omega-3 and other unsaturated fatty acids, in addition to prebiotics and probiotics, are under active investigation for their roles in gut health and immune regulation. Notably, plant-derived compounds, i.e., Ginkgo biloba, have demonstrated promise in promoting repigmentation and managing disease progression. However, it must be emphasized that these nutritional interventions remain exploratory, and more research is needed to establish their efficacy, safety, and optimal usage before they can be recommended as part of a standard treatment regimen.
Collapse
Affiliation(s)
- Michael J. Diaz
- College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Jasmine T. Tran
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Drake Rose
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aria Wei
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Lakshmipathy
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shari R. Lipner
- Department of Dermatology, Weill Cornell Medicine, New York City, NY 10021, USA
| |
Collapse
|
9
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2025; 22:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
10
|
Liu TT, Hong KS, Yang TS. Functionalities of Tremella fuciformis Polysaccharides Modified with Gallic Acid. Molecules 2024; 29:5890. [PMID: 39769979 PMCID: PMC11677367 DOI: 10.3390/molecules29245890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This research aimed to modify polysaccharides extracted from the edible mushroom Tremella fuciformis with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified Tremella fuciformis polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity against DPPH radicals, nitric oxide, and hydrogen peroxide. Additionally, TFP-GA exhibited superior reducing ability toward Fe3+ and enhanced chelating activity toward Fe2+ compared to unmodified TFP. Notably, the TFP-GA conjugate outperformed GA in Fe2+-chelating activity. In terms of antimicrobial activity, the TFP-GA-Zn complex showed significantly improved antimicrobial effectiveness against S. aureus and E. coli compared to TFP-GA.
Collapse
Affiliation(s)
- Tai-Ti Liu
- Department of Food Science, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan; (T.-T.L.); (K.-S.H.)
| | - Kai-Siang Hong
- Department of Food Science, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan; (T.-T.L.); (K.-S.H.)
| | - Tsung-Shi Yang
- Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| |
Collapse
|
11
|
Dutta S, Nishad K, Usha T, Ramesh N, Middha SK. In-vitro scientific validation of anti-inflammatory activity of Punica granatum L. on Leukemia monocytic cell line. Afr Health Sci 2024; 24:240-249. [PMID: 40190537 PMCID: PMC11970145 DOI: 10.4314/ahs.v24i4.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Background The induction of the inflammatory cascade results in the production of a number of inflammatory mediators, including prostaglandin E2 (PGE2), nitric oxide (NO), and proinflammatory cytokines like TNF-, IL-, and IL-6. This study examined the cytotoxicity and anti-inflammatory properties of a methanolic crude extract of Punica granatum L. peel (PPM) on monocytic leukaemia cell line (THP-1). Materials and methods The PPM along with Quercetin as reference was used to assess the cytotoxic effect on THP-1 cells and describe its effect on pro-inflammatory cytokines such as COX-2, TNF-α, IL-6 against cancer cell line by flow cytometry. Results The percentage of viable cells significantly decreased which correlates to non-toxicity whereas quercetin was found to be highly toxic, the IC50 could not be calculated because of drug precipitation. There was a significant decrease in the expressions of inflammatory cytokines upon pre-treatment of the cells with PPM prior to LPS stimulation. Conclusion Our findings indicate that no cytotoxicity was observed after the treatment of THP-1 cells with PPM (25-400 µg/ml), but at higher concentration (400µg/ml), the cell viability decreased to 84% and attenuated the expression level of inflammatory cytokines. The inhibitory effect of the extract on pro-inflammatory factors production may provide a theoretical source on upcoming treatment of inflammation.
Collapse
Affiliation(s)
- Sharmistha Dutta
- Department, Biotechnology, School of Applied Sciences Reva University, Rukmini Knowledge Park, Bengaluru-560 064, India
| | - Khushbu Nishad
- Department, Biotechnology, School of Applied Sciences Reva University, Rukmini Knowledge Park, Bengaluru-560 064, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College For Women, Bengaluru-560 012, India
| | - Nijalingappa Ramesh
- Department, Biotechnology, School of Applied Sciences Reva University, Rukmini Knowledge Park, Bengaluru-560 064, India
| | - Sushil Kumar Middha
- Department of Biotechnology, Maharani Lakshmi Ammanni College For Women, Bengaluru-560 012, India
| |
Collapse
|
12
|
El-Hamid MIA, Ibrahim D, Abdelfattah-Hassan A, Mohammed OB, Pet I, Khalil SS, El-Badry SM, Metwally AS, Azouz AA, Elnegiry AA, Elnahriry SS, Ahmadi M, Elazab ST. Silver nanoparticles loaded with pomegranate peel extract and hyaluronic acid mediate recovery of cutaneous wounds infected with Candida albicans. Front Cell Infect Microbiol 2024; 14:1469493. [PMID: 39679196 PMCID: PMC11638243 DOI: 10.3389/fcimb.2024.1469493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 12/17/2024] Open
Abstract
Smart innovative nanocomposites based on active ingredients and metallic nanoparticles with effective wound healing and antifungal properties are efficient in overcoming the limitations of traditional therapeutic products. Open wounds provide an ideal niche for colonization by Candida albicans (C. albicans) which poses substantial global health issues owing to delayed wound healing and disordered healing mechanisms. Therefore, proficient innovative therapies that control C. albicans infection and promote wound healing are of imperative importance for the management of wounds and prevention of infection and possible complications. This study aims to design a novel nanocarrier platform based on a hydrogel loaded with silver nanoparticles (AgNPs) and doped with pomegranate peel extract (PPE) and hyaluronic acid (HA), offering an unprecedented opportunity to achieve skin repair and manage C. albicans colonization with an efficient wound healing process. Sprague-Dawley rats (n=100) were assigned to 5 groups and infected with C. albicans and distributed as follows: control positive (untreated) and four cutaneous wound-healing model groups treated topically with commercial cream and PPE-HA-AgNPs at full, 50%, and 25% concentrations for 15 days, respectively. Our findings revealed that the severity of clinical signs, C. albicans burden, and the expression of biofilm-related genes ALS1, HYR1, and PLB1 were diminished following treatment with PPE-HA-AgNPsIII. Notably, the formulated nanocomposite was very effective in extending the release of PPE-HA-AgNPs in infected wounds with retention percentages of 65.4% for PPE-HA-AgNPsIII. Topical administration of PPE-HA-AgNPsIII successfully alleviated the extensive inflammatory response and healed wounded skin via downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 and IL-1 beta, and nitric oxide synthase (NOS) levels as shown by enzyme-linked immunosorbent (ELISA) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays. Interestingly, PPE-HA-AgNPsIII modulated angiogenic and wound healing markers as evidenced by the downregulation of MMP-9 and the upregulation of angiopoietin-1 (Ang-1), vascular endothelial growth factor (VEGF) (up to 10 days post-treatment), transforming growth factor-beta 1 (TGF-β1), bFGF, EGF, Ki-67, and collagen I and III with efficient wound closure capability. This was evidenced by the lessening of histopathological severity, which accelerated the healing of the infected skin wounds post-treatment with PPE-HA-AgNPs. Overall, our formulated PPE-HA-AgNPs provide an effective innovative therapeutic strategy for the treatment of cutaneous wounds infected with C. albicans with maximized wound healing efficacy, indicating their potential in clinical practice.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Samah S. Khalil
- Department of Biochemistry & Molecular Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Sara M. El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A. Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A. Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
14
|
Xu YH, Chen XY, Chen J. An integrated strategy for deciphering quality markers of Terminaliae Belliricae Fructus based on a three-dimensional characteristic model. J Chromatogr A 2024; 1737:465465. [PMID: 39471606 DOI: 10.1016/j.chroma.2024.465465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Terminalia bellirica (Gaertn.) Roxb. is an ethnomedicinal plant that has been utilized in Tibetan and traditional Chinese medicine (TCM). Nevertheless, its quality standard officially listed in the Chinese Pharmacopoeia does not include any content determination of the indicator components of Terminaliae Belliricae Fructus, which constrains the effective quality evaluation of medicinal material and related products. In this paper, a three-dimensional "content-pharmacokinetics-pharmacology" network strategy was developed to identify the quality markers (Q-markers) of Terminaliae Belliricae Fructus in terms of "measurability", "traceability" and "effectiveness". Chromatographic fingerprint analysis was performed to outline its chemical contour, and identify the differential components of 17 batches of Terminaliae Belliricae Fructus combined with multivariate statistics analysis and UPLC-QTOF-MS analysis. Serum pharmacochemistry analysis was implemented on rats, and 25 prototype components absorbed into the blood were identified. By network pharmacology analysis, a component-disease-target-pathway network was constructed, thus validating the effectiveness of the chemical components of Terminaliae Belliricae Fructus. Afterwards, the above screened candidate components were put into construction of three-dimensional "radar chart". According to the calculated regression area (RA) and coefficient of variation (CV) values, the potential Q-markers was determined, followed by "specificity" evaluation. Ultimately, ellagic acid (EA), chebulagic acid (CHA), gallic acid (GA), chebulinic acid (CA), corilagin (CO) and chebulanin (CH) were specified as the Q-markers of Terminaliae Belliricae Fructus. Owing to high content, good pharmacokinetic property, high pharmacological activities and specificity. The screened Q-markers could offer a scientific foundation for the quality control of Terminaliae Belliricae Fructus, and the proposed strategy is demonstrated to be reliable and feasible for deciphering Q-markers of TCM.
Collapse
Affiliation(s)
- Yi-Han Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xin-Yue Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Juan Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
15
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Jha AB, Chaube UJ, Jha AB. Ellagic acid improves the symptoms of early-onset Alzheimer's disease: Behavioral and physiological correlates. Heliyon 2024; 10:e37372. [PMID: 39309887 PMCID: PMC11416286 DOI: 10.1016/j.heliyon.2024.e37372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Oryza sativa is a globally recognized staple food, rich in essential phyto-phenolic compounds such as γ-Oryzanol (OZ), Ferulic acid (FA), and Ellagic acid (EA). These phytochemicals are known for their potential to beneficially modulate molecular biochemistry. The present investigation aimed to evaluate the neuroprotective and cognitive enhancement effects of Oryza sativa phyto-phenolics in a model of early-onset Alzheimer's disease (EOAD) induced by Aβ (1-42) in animals. In-silico studies suggested that FA, OZ, and EA have target specificity for Aβ, with EA being further selected based on its potent in-vitro Aβ anti-aggregatory effects for exploring neurodegenerative conditions. The in-vivo experiments demonstrated that EA exerts therapeutic effects in Aβ-induced EOAD, modulating both biochemical and behavioral outcomes. EA treatment at two dose levels, EA70 and EA140 (70 μM and 140 μM, respectively, administered i.c.v.), significantly counteracted Aβ aggregation and modulated the Ca2⁺/Calpain/GSK-3β/CDK5 signaling pathways, exhibiting anti-tauopathy effects. Additionally, EA was shown to exert anti-inflammatory effects by preventing astroglial activation, modulating FAIM-L expression, and protecting against TNF-α-induced apoptotic signals. Moreover, the neuromodulatory effects of EA were attributed to the regulation of CREB levels, Dnm-1 expression, and synaptophysin levels, thereby enhancing LTP and synaptic plasticity. EA also induced beneficial cytological and behavioral changes, improving both long-term and short-term spatial memory as well as associative learning behavior in the animal model, which underscores its cognitive enhancement properties.
Collapse
Affiliation(s)
- Abhishek B. Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Udit J. Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | | |
Collapse
|
17
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
18
|
Libero ML, Montero-Hidalgo AJ, Recinella L, Luque RM, Generali D, Acquaviva A, Orlando G, Ferrante C, Menghini L, Di Simone SC, Nilofar N, Chiavaroli A, Brunetti L, Leone S. The Protective Effects of an Aged Black Garlic Water Extract on the Prostate. Nutrients 2024; 16:3025. [PMID: 39275340 PMCID: PMC11396974 DOI: 10.3390/nu16173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic inflammation is a recognized risk factor for various cancers, including prostate cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE) against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We used an ex vivo model of inflammation induced by Escherichia coli lipopolysaccharide (LPS) on C57BL/6 male mouse prostate specimens to investigate the anti-inflammatory properties of ABGE. The gene expression levels of pro-inflammatory biomarkers (COX-2, NF-κB, and TNF-α, IL-6) were measured. Additionally, we evaluated ABGE's therapeutic effects on the prostate cancer cell lines through in vitro functional assays, including colony formation, tumorsphere formation, migration assays, and phosphorylation arrays to assess the signaling pathways (MAPK, AKT, JAK/STAT, and TGF-β). ABGE demonstrated significant anti-inflammatory and antioxidant effects in preclinical models, partly attributed to its polyphenolic content, notably catechin and gallic acid. In the ex vivo model, ABGE reduced the gene expression levels of COX-2, NF-κB, TNF-α, and IL-6. The in vitro studies showed that ABGE inhibited cell proliferation, colony and tumorsphere formation, and cell migration in the prostate cancer cells, suggesting its potential as a therapeutic agent. ABGE exhibits promising anti-inflammatory and anti-cancer properties, supporting further investigation into ABGE as a potential agent for managing inflammation and prostate cancer.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | | | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| |
Collapse
|
19
|
Wang T, Li Y, Yin L, Chen J, Shi P, Wang F, Wu K, Yao K, Yin Y. Terminalia Chebula Extract Replacing Zinc Oxide Enhances Antioxidant and Anti-Inflammatory Capabilities, Improves Growth Performance, and Promotes Intestinal Health in Weaned Piglets. Antioxidants (Basel) 2024; 13:1087. [PMID: 39334746 PMCID: PMC11429426 DOI: 10.3390/antiox13091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to assess the effects of substituting zinc oxide with terminalia chebula extract (TCE) on growth performance, antioxidant capacity, immune function, and intestinal health in weaned pigs. Initially, 72 weaned Duroc × Landrace × Large White piglets, 28 days old with an initial weight of 7.43 ± 0.14 kg, equally divided by gender, were randomly assigned into three groups, with six replicates and four piglets per replicate. They were fed a basal diet (CON group), a diet containing 2 g/kg zinc oxide (ZnO group), or 2 g/kg TCE (TCE group) for a duration of 28 days. Subsequently, to further confirm the most appropriate levels of TCE in piglets, 96 piglets of the same breeds and age, with an initial weight of 7.42 ± 0.12 kg, also equally divided by gender, were randomly assigned into four groups, each with six replicates and four piglets per replicate, and fed a basal diet (CON group), or diets supplemented with 1 g/kg TCE (LTCE group), 2 g/kg TCE (MTCE group), or 4 g/kg TCE (HTCE group) for a duration of 28 days. The results demonstrated that both TCE and ZnO reduced diarrhea rates (p = 0.001) and enhanced average daily gain (ADG) (p = 0.014) compared to the control group. TCE at 1 g/kg and 4 g/kg reduced the feed to gain ratio (p = 0.050). Dietary supplementing with TCE and ZnO increased serum total antioxidant capacity (T-AOC) (p = 0.020). Various doses of TCE also increased jejunal IgA (p = 0.000) levels and IL-10 expression (p = 0.004), and decreased the levels of TNF-α in both serum (p = 0.043) and jejunal mucosa (p = 0.000). Notably, TCE reduced the crypt depth (CD) of the duodenal (p = 0.007) and increased the villus height (VH) of the ileal (p = 0.045), and with increased dosage, there was a rise in the villus height to crypt depth ratio (VH:CD) in the duodenum (p = 0.000) and jejunum (p = 0.001). Higher abundances of Lactobacillaceae (p = 0.000) and lower levels of Streptococcaceae (p = 0.000) and Peptostreptococcaceae (p = 0.035) in cecal contents were fed the ZnO and TCE pigs compared with CON pigs. Therefore, TCE was firstly presented as being able to replace zinc oxide, improve intestinal morphology, and enhance antioxidant and immune functions, thus safeguarding intestinal mucosal health and promoting piglet growth.
Collapse
Affiliation(s)
- Tao Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yuying Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China (J.C.)
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China (J.C.)
| | - Pengjun Shi
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Fang Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kangle Wu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
20
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
21
|
Hoang SH, Dao H, Lam EM. A network pharmacology approach to elucidate the anti-inflammatory effects of ellagic acid. J Biomol Struct Dyn 2024; 42:7409-7420. [PMID: 37522847 DOI: 10.1080/07391102.2023.2240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Ellagic acid (EA) is a naturally occurring polyphenolic compound found in various fruits and vegetables like strawberries, raspberries, pomegranates, and nuts such as pecans and walnuts. With its antioxidant properties, EA has shown potential health benefits, although further research is necessary to fully comprehend its effects, mechanisms, and safe and effective application as a complementary medicine. Notably, there is accumulating evidence of EA's anti-inflammatory effects; however, the precise underlying mechanism remains unclear. To investigate the anti-inflammatory properties of EA, a network pharmacology approach was employed. The study identified 52 inflammation-related targets of EA and revealed significant signaling pathways and relevant diseases associated with inflammation through GO and KEGG analysis. Furthermore, topological analysis identified 10 important targets, including AKT1, VEGFA, TNF, MAPK3, ALB, SELP, MMP9, MMP2, PTGS2, and ICAM1. Molecular docking and molecular dynamics simulations were conducted, indicating that AKT1, PTGS2, VEGFA, and MAPK3 are the most likely targets of EA, as evidenced by their molecular mechanics Poisson-Boltzmann surface area binding energy calculations. In summary, this study not only confirmed the anti-inflammatory effects of EA observed in previous research but also identified the most probable targets of EA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H Hoang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Hue Dao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Emerson My Lam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
El-Demerdash FM, Minjal AH, El-Sayed RA, Baghdadi HH. Hepatoprotective Effect of Ethanolic Pomegranate Peel Extract Against Levofloxacin via Suppression of Oxidative Stress, Proinflammation, and Apoptosis in Male Rats. J Med Food 2024; 27:866-878. [PMID: 39001843 DOI: 10.1089/jmf.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
One of the fluoroquinolone antibiotics, levofloxacin (LEV), is used to treat a variety of illnesses leading to oxidative stress and cellular damage. Peel from Punica granatum is a waste product abundant in phytochemicals with various biological activities. This study aimed to evaluate P. granatum peel extract's (PGPE) potential to mitigate oxidative stress, inflammation, apoptosis, and liver damage caused by LEV. There were four groups of rats: control, PGPE, LEV, and PGPE + LEV, respectively, and they were orally administered their daily treatments for 2 weeks. Results revealed that PGPE has a large number of phytochemical components with high antioxidant activity. PGPE intake alone enhanced the antioxidant status and decreased oxidative stress. On the other hand, pretreatment of the LEV group with PGPE restored oxidative stress, antioxidant enzymes, glutathione content, liver function biomarkers, and hematological parameters. Also, normalization of gene expressions (cyclooxygenase-2, transforming growth factor-beta1, caspase-3, heme oxygenase-1, B cell lymphoma-2, interleukin [IL]-10, and IL-1) and improvement in liver architecture, and immunohistochemical alpha-smooth muscle actin, were seen in comparison to the LEV group. Conclusively, PGPE exhibits strong anti-inflammatory, antiapoptotic, and antioxidant properties that shield rat liver from the damaging effects of LEV and offer a fresh viewpoint on the application of fruit waste products.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Ali H Minjal
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Raghda A El-Sayed
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
23
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
25
|
Ngece K, Ntondini TL, Khwaza V, Paca AM, Aderibigbe BA. Polyene-Based Derivatives with Antifungal Activities. Pharmaceutics 2024; 16:1065. [PMID: 39204411 PMCID: PMC11360744 DOI: 10.3390/pharmaceutics16081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Polyenes are a class of organic compounds well known for their potent antifungal properties. They are effective due to their ability to target and disrupt fungal cell membranes by binding to ergosterol and forming pores. Despite their effectiveness as antifungal drugs, polyenes have several limitations, such as high toxicity to the host cell and poor solubility in water. This has prompted ongoing research to develop safer and more efficient derivatives to overcome such limitations while enhancing their antifungal activity. In this review article, we present a thorough analysis of polyene derivatives, their structural modifications, and their influence on their therapeutic effects against various fungal strains. Key studies are discussed, illustrating how structural modifications have led to improved antifungal properties. By evaluating the latest advancements in the synthesis of polyene derivatives, we highlight that incorporating amide linkers at the carboxylic moiety of polyene molecules notably improves their antifungal properties, as evidenced by derivatives 4, 5, 6G, and 18. This review can help in the design and development of novel polyene-based compounds with potent antifungal activities.
Collapse
Affiliation(s)
| | | | - Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| |
Collapse
|
26
|
Estrada-Camerena E, López-Rubalcava C, Vega-Rivera NM, González-Trujano ME. Antidepressant- and Anxiolytic-like Effects of Pomegranate: Is It Acting by Common or Well-Known Mechanisms of Action? PLANTS (BASEL, SWITZERLAND) 2024; 13:2205. [PMID: 39204642 PMCID: PMC11358894 DOI: 10.3390/plants13162205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The pharmacological effects of pomegranates have been described considering metabolic aspects such as hypoglycemic and hypolipidemic activities. The pomegranate extract has activity on the central nervous system (CNS) as a natural antidepressant and anxiolytic. The chemical composition of pomegranates is complex since the bioactive compounds are multiple secondary metabolites that have been identified in the extracts derived from the peel, seed, flowers, leaves, or in their combination; so, it has not been easy to identify an individual compound as responsible for its observed pharmacological properties. From this point of view, the present review analyzes the effects of crude extracts or fractions of pomegranates and their possible mechanisms of action concerning antidepressant- and anxiolytic-like effects in animal models. Serotonin receptors, estrogen receptors, the peroxisome proliferator-activated receptor gamma (PPARγ), or monoamine oxidase enzymes, as well as potent antioxidant and neuroplasticity properties, have been described as possible mediators involved in the antidepressant- and anxiolytic-like behaviors after pomegranate treatment. The pharmacological effects observed on the CNS in experimental models associated with a specific stress level suggest that pomegranates could simultaneously modulate the stress response by activating several targets. For the present review, scientific evidence was gathered to integrate it and suggest a possible pathway for mediators to be involved in the mechanisms of action of the pomegranate's antidepressant- and anxiolytic-like effects. Furthermore, the potential benefits are discussed on comorbid conditions with anxiety and depression, such as perimenopause transition and pain.
Collapse
Affiliation(s)
- Erika Estrada-Camerena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| | - Carolina López-Rubalcava
- Laboratorio 17, Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados, Sede Sur, Mexico City 14330, Mexico;
| | - Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico;
| |
Collapse
|
27
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
28
|
Adiamo OQ, Bobasa EM, Phan ADT, Akter S, Seididamyeh M, Dayananda B, Gaisawat MB, Kubow S, Sivakumar D, Sultanbawa Y. In-vitro colonic fermentation of Kakadu plum (Terminalia ferdinandiana) fruit powder: Microbial biotransformation of phenolic compounds and cytotoxicity. Food Chem 2024; 448:139057. [PMID: 38555694 DOI: 10.1016/j.foodchem.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Kakadu plum (Terminalia ferdinandiana) (KP) is an indigenous fruit used as a functional ingredient in powdered form. Three KP doses (1, 2.5 and 5 g) were digested in a dynamic in vitro gut digestion model over 48 h. Faecal water digests from the colonic reactors were assessed for total soluble polyphenols (TSP), ferric reducing antioxidant power (FRAP), phenolic metabolites and short-chain fatty acids (SCFAs). Effects of digests on cell viability were tested against Caco-2 intestinal and HepG2 hepatic cells. All doses of KP fermentation produced castalagin, corilagin, chebulagic acid, chebulinic acid, and gallic acid. TSP and FRAP significantly increased in 5 g KP digests at 0 and 48 h of fermentation. SCFA concentrations significantly increased after 48 h. Cytotoxic effects of 2.5 and 5 g KP digests diminished significantly after 12 h. Overall, colonic fermentation increased antioxidant activity and polyphenolic metabolites of 5 g KP powder for 48 h.
Collapse
Affiliation(s)
- Oladipupo Q Adiamo
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Eshetu M Bobasa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Anh Dao Thi Phan
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Saleha Akter
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Maral Seididamyeh
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Stan Kubow
- School of Human Nutrition, McGill University, Montréal, QC, Canada
| | - Dharini Sivakumar
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia; Phytochemical Food Network, Department of Crop Sciences, Tshwane University of Technology, Pretoria 001, South Africa
| | - Yasmina Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland (UQ), Indooroopilly, QLD 4068, Australia.
| |
Collapse
|
29
|
Jantakee K, Panwong S, Sattayawat P, Sumankan R, Saengmuang S, Choowongkomon K, Panya A. Clinacanthus nutans (Burm. f.) Lindau Extract Inhibits Dengue Virus Infection and Inflammation in the Huh7 Hepatoma Cell Line. Antibiotics (Basel) 2024; 13:705. [PMID: 39200005 PMCID: PMC11350823 DOI: 10.3390/antibiotics13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 09/01/2024] Open
Abstract
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 μg/mL. In addition, the virus-host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells.
Collapse
Affiliation(s)
- Kanyaluck Jantakee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
| | - Suthida Panwong
- Doctoral of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchaneewan Sumankan
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Sasithorn Saengmuang
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
31
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
32
|
Libero ML, Lucarini E, Recinella L, Ciampi C, Veschi S, Piro A, Chiavaroli A, Acquaviva A, Nilofar N, Orlando G, Generali D, Ghelardini C, di Cesare Mannelli L, Montero-Hidalgo AJ, Luque RM, Ferrante C, Menghini L, di Simone SC, Brunetti L, Leone S. Anti-inflammatory and anti-hyperalgesic effects induced by an aqueous aged black garlic extract in rodent models of ulcerative colitis and colitis-associated visceral pain. Phytother Res 2024. [PMID: 38923108 DOI: 10.1002/ptr.8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory bowel disease (IBD) is a morbid condition characterized by relapsing-remitting inflammation of the colon, accompanied by persistent gut dysmotility and abdominal pain. Different reports demonstrated biological activities of aged black garlic (ABG), including anti-inflammatory and antioxidant effects. We aimed to investigate beneficial effects exerted by ABGE on colon inflammation by using ex vivo and in vivo experimental models. We investigated the anti-inflammatory effects of an ABG water extract (ABGE) on rat colon specimens exposed to E. coli lipopolysaccharide (LPS), a known ex vivo experimental model of ulcerative colitis. We determined gene expression of various biomarkers involved in inflammation, including interleukin (IL)-1β, IL-6, nuclear factor-kB (NF-kB), tumor necrosis factor (TNF)-α. Moreover, we studied the acute effects of ABGE on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) injection in rats. ABGE suppressed LPS-induced gene expression of IL-1β, IL-6, NF-kB, and TNF-α. In addition, the acute administration of ABGE (0.03-1 g kg-1) dose-dependently relieved post-inflammatory visceral pain, with the higher dose (1 g kg-1) able to significantly reduce both the behavioral nociceptive response and the entity of abdominal contraction (assessed by electromyography) in response to colorectal distension after the acute administration in DNBS-treated rats. Present findings showed that ABGE could represent a potential strategy for treatment of colitis-associated inflammatory process and visceral pain. The beneficial effects induced by the extract could be related to the pattern of polyphenolic composition, with particular regard to gallic acid and catechin.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Anna Piro
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
33
|
Osman NA, Soltan MK, Rezq S, Flaherty J, Romero DG, Abdelkhalek AS. Dual COX-2 and 15-LOX inhibition study of novel 4-arylidine-2-mercapto-1-phenyl-1H-imidazolidin-5(4H)-ones: Design, synthesis, docking, and anti-inflammatory activity. Arch Pharm (Weinheim) 2024; 357:e2300615. [PMID: 38315093 PMCID: PMC11073913 DOI: 10.1002/ardp.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Nermine A. Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mostafa K. Soltan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Oman College of Health Sciences, Muscat, Sultanate Oman
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joseph Flaherty
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ahmed S. Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
34
|
Zhou Q, He M, Jin Q, Gao S, Yang Z, Zhu P, Tan W, Liu L. Mechanism of action of Taohong Siwu decoction in the alleviation of primary dysmenorrhea. Front Med (Lausanne) 2024; 11:1343179. [PMID: 38751973 PMCID: PMC11095111 DOI: 10.3389/fmed.2024.1343179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background As one of the most common gynecological disorders, PD significantly impacts the quality of life for women. TSD, a well-known traditional Chinese medical prescription, has gained popularity for its use in treating gynecological cold coagulation and blood stasis syndromes such as PD. However, the lack of comprehensive data hinders our understanding of its molecular mechanism. Purpose The objective of the present study is to investigate the therapeutic effects of TSD on PD and elucidate its plausible mechanism. Methods HPLC was employed to confirm the presence of the principal metabolites of TSD. The rat model of PD was induced by OT exposure following IWM and EB pretreatment, and subsequently treated with TSD via gastric gavage. The effects and potential mechanisms of TSD on PD rats were explored, encompassing general behavior, morphological alterations in the uterus and ovaries, biochemical indicators in the uterus and serum, and levels of proteins related to the PI3K/AKT signaling pathway. Results Gallic acid, hydroxysafflower yellow A, albiflorin, paeoniflorin, and ferulic acid were determined to be the primary active metabolites of TSD. The pharmacological studies yielded results indicating the successful establishment of the PD model in rats. Additionally, TSD demonstrated its ability to protect PD rats by ameliorating general behavior, mitigating pathological damage to uterine and ovarian tissues, and modulating the expression levels of correlated factors (PGE2, PGF2α, Ca2+, TXB2, IL-6, TNF-α, NO, and COX-2) as well as p-PI3K/PI3K and p-AKT/AKT proteins. Conclusion TSD exhibited protective effects against PD in rats through its interaction with multiple targets including P13K/AKT signaling pathway, indicating that TSD holds therapeutic potential for PD treatment and providing evidence supporting the rational utilization of TSD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and health, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and health, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
35
|
El-Deeb EM, Elsayed HE, Ateya HB, Taha HS, Elgindi MR, Abouelenein D, Caprioli G, Lai KH, Mustafa AM, Moharram FA. Phenolic profiling and bioactivity assessment of in vitro propagated Psidium cattleianum Sabine: A promising study. Heliyon 2024; 10:e29379. [PMID: 38644814 PMCID: PMC11033136 DOI: 10.1016/j.heliyon.2024.e29379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Psidium cattleianum Sabine (strawberry guava) is an evergreen shrub that is grown as a fruiting hedge and has received significant consideration in the food and pharmaceutical disciplines. This study aims to set a promising protocol for in vitro propagation of P. cattleianum, along with profiling the phenolic content of the original plant (OP), induced callus (IC), and regenerated plantlets (RP) extracts, ultimately, evaluating their anti-inflammatory, antioxidant, and anticancer potential. Seeds were treated with commercial bleaching, HCl, and H2O2 to enhance the germination percentage and minimize the contamination percentage. Culturing sterilized leaf explants onto Murashige and Skoog (MS) medium supplemented with benzyl adenine (BA), 2,4-dichloro phenoxy acetic acid, and kinetin showed the best callus induction, while supplementation of MS media with BA, adenine sulfate, naphthalene acetic acid, and gibberellic acid activated regeneration. Augmentation of MS media with indol-3-butyric acid recorded the maximum rooting percentage. Finally, the obtained rooted shoots were successfully acclimatized in sand and peat moss soil. HPLC-MS/MS profiles of OP, RP, and IC showed a variety of phenolic metabolites. IC extract decreased the viability of MCF-7, HepG2, and K-562 cancer cell lines. Also, OP exhibits strong antioxidant activity. P. cattleianum and its RP are profound sources of phenolic compounds promoted for promising applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eman M. El-Deeb
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hanaa B. Ateya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hussein S. Taha
- Department of Plant Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed R. Elgindi
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, via Sant’ Agostino 1, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
36
|
Li X, Zhang Z, Xu G, Li Z, Lu C, Shen Y. Synthesis of urolithin derivatives and their anti-inflammatory activity. Biochem Biophys Res Commun 2024; 704:149711. [PMID: 38417344 DOI: 10.1016/j.bbrc.2024.149711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Two series of urolithin derivatives, totally 38 compounds, were synthesized. Their anti-inflammatory activity was investigated by detecting the inhibitory effects on the expression of TNF-α in bone marrow-derived macrophages (BMDMs), showing that 24 of 38 ones reduced the expression of TNF-α. Compound B2, the ring C opened derivative of urolithin B with a butoxycarbonyl substitution in ring A, showed the strongest inhibitory activity compared with that of indomethacin. Furthermore, B2 treatment decreased the expression of pro-inflammatory factors IL-1β, IL-6, iNOS and COX-2. Mechanically, the anti-inflammatory effect of B2 was related to the inhibition of NF-κB signaling pathway. These results clearly illustrated that B2 hold potential for application as an anti-inflammatory agent. The present study provided a viable approach to modify the gut metabolites for anti-inflammatory drug development.
Collapse
Affiliation(s)
- Xintong Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengzheng Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiying Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
37
|
Luo J, Luo M, Kaminga AC, Wei J, Dai W, Peng Y, Zhao K, Duan Y, Xiao X, Ouyang S, Yao Z, Liu Y, Pan X. Integrative metabolomics highlights gut microbiota metabolites as novel NAFLD-related candidate biomarkers in children. Microbiol Spectr 2024; 12:e0523022. [PMID: 38445874 PMCID: PMC10986516 DOI: 10.1128/spectrum.05230-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Altered gut microbiota and metabolites are important for non-alcoholic fatty liver disease (NAFLD) in children. We aimed to comprehensively examine the effects of gut metabolites on NAFLD progression. We performed integrative metabolomics (untargeted discovery and targeted validation) analysis of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and obesity in children. Fecal samples were collected from 75 subjects in the discovery cohort (25 NAFL, 25 NASH, and 25 obese control children) and 145 subjects in an independent validation cohort (53 NAFL, 39 NASH, and 53 obese control children). Among 2,491 metabolites, untargeted metabolomics revealed a complete NAFLD metabolic map containing 318 increased and 123 decreased metabolites. Then, machine learning selected 65 important metabolites that can distinguish the severity of the NAFLD. Furthermore, precision-targeted metabolomics selected 5 novel gut metabolites from 20 typical metabolites. The functionality of candidate metabolites was validated in hepatocyte cell lines. In the end, this study annotated two novel elevated pathogenic metabolites (dodecanoic acid and creatinine) and a relationship between depleted protective gut microbiota (Butyricicoccus and Alistipes), increased inflammation (IL-1β), lipid metabolism (TG), and liver function (ALT and AST). This study demonstrates the role of novel gut metabolites (dodecanoic acid and creatinine), as the fatty acid metabolism regulator contributing to NAFLD development through its influence on inflammation and liver function. IMPORTANCE Altered gut microbiota and metabolites are a major cause of non-alcoholic fatty liver disease (NAFLD) in children. This study demonstrated a complete gut metabolic map of children with NAFLD, containing 318 increased and 123 decreased metabolites by untargeted metabolomic. Multiple validation approaches (machine learning and targeted metabolomic) selected five novel gut metabolites for targeted metabolomics, which can distinguish NAFLD status and severity. The gut microbiota (Butyricicoccus and Alistipes) and metabolites (creatinine and dodecanoic acid) were novel biomarkers associated with impaired liver function and inflammation and validated by experiments of hepatocyte cell lines. The data provide a better understanding of the importance of gut microbiota and metabolite alterations in NAFLD, which implies that the altered gut microbiota and metabolites may represent a potential target to prevent NAFLD development.
Collapse
Affiliation(s)
- Jiayou Luo
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Jia Wei
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wen Dai
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Kunyan Zhao
- School of Public Health, University of South China, Hengyang, China
| | - Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - SiSi Ouyang
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenzhen Yao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yixu Liu
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
38
|
Sharma D, Sharma S, Mandal V, Dhobi M. Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1935-1956. [PMID: 37796311 DOI: 10.1007/s00210-023-02734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
The plant Acalypha indica L. is a well-known traditional plant belonging to the family Euphorbiaceae. Traditional practices of the plant claim to treat asthma, pneumonia, wound healing, rheumatoid arthritis, bronchitis, and skin disorders. The major phytochemicals reported are cyanogenic glucosides, tannins, coumarins, flavonoid glycosides, fatty acids, and volatile oils. To summarize the anti-inflammatory potential of Acalypha indica extract and its phytochemicals through preclinical studies. The search terms include anti-inflammatory, Acalypha indica, and Acalypha indica extract independently or in combination with pro-inflammatory markers using various databases, including Scopus, Web of Science, PubMed, ProQuest, and Google Scholar. The results of preclinical studies confirm that Acalypha indica exhibits strong anti-inflammatory activity. Most of the experimental studies that have been conducted on plant extract are protein denaturation, human red blood cell membrane stabilization assay, and carrageenan-induced inflammation models. However, the molecular mechanism in these studies is still unclear to demonstrate its anti-inflammatory effects. Acalypha indica possesses anti-inflammatory effects that may be due to the presence of phenolic compounds especially flavonoids present in the Acalypha indica. Thus, further research is needed, to understand mechanistic insights of the plant phytochemicals to represent anti-inflammatory properties.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Vivekananda Mandal
- Division of Pharmacognosy, Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chattisgarh, 495009, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India.
| |
Collapse
|
39
|
Khumalo GP, Loa-Kum-Cheung W, Van Wyk BE, Feng Y, Cock IE. Leaf extracts of eight selected southern African medicinal plants modulate pro-inflammatory cytokine secretion in LPS-stimulated RAW 264.7 macrophages. Inflammopharmacology 2024; 32:1607-1620. [PMID: 38310564 PMCID: PMC11006729 DOI: 10.1007/s10787-023-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
This study investigates the anti-inflammatory properties of extracts prepared from the leaves of eight southern African medicinal plants used traditionally to treat inflammation and pain. The inhibitory effect of aqueous and ethanol extracts on the release of pro-inflammatory cytokines was determined in lipopolysaccharide (LPS) stimulated and unstimulated RAW 264.7 murine macrophage cells. The levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2 release were determined using cytokine multiplex-bead assays. The ethanol extracts of Melianthus comosus Vahl (commonly known as honey flower), Tetradenia riparia (Hochst.) Codd (misty plume bush) and Warburgia salutaris (G. Bertol.) Chiov. (pepper-bark tree), demonstrated the most significant inhibitory activity, with over 50-fold inhibition of IL-1β, IL-6 and TNF-α levels in LPS-stimulated RAW 264.7 macrophages. The aqueous extract of M. comosus also significantly inhibited the secretion of all the tested cytokines and chemokines. Phytochemical investigation of M. comosus ethanol leaf extract using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) led to the detection of crassolide, deoxylimonoic acid D-ring-lactone, 2-hydroxynonanoic acid and 5-noniloxytryptamine. To the best of our knowledge, the cytokine inhibition properties of most of the medicinal plants screened in this study are reported for the first time. Our results support the use of southern African medicinal plants as anti-inflammatory remedies and provide an insight into the immunomodulatory mechanisms of action.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
| | - Wendy Loa-Kum-Cheung
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, QLD, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, QLD, 4111, Australia.
| |
Collapse
|
40
|
Gomaa W, Saleem A, McGeough E, Ominski K, Chen L, Yang W. Effect of red osier dogwood extract on in vitro gas production, dry matter digestibility, and fermentation characteristics of forage-based diet or grain-based diet. Heliyon 2024; 10:e27991. [PMID: 38524609 PMCID: PMC10957426 DOI: 10.1016/j.heliyon.2024.e27991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2023] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.
Collapse
Affiliation(s)
- W.M.S. Gomaa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
- Department of Animal Nutrition and Clinical Nutrition, Assiut University, Assiut, Egypt
| | - A.M. Saleem
- Department of Animal and Poultry Production, South Valley University, Qena, 83523, Egypt
| | - E.J. McGeough
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - K. Ominski
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - L.Y. Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - W.Z. Yang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
41
|
Zheng J, Haseeb A, Wang Z, Wang H. Network pharmacology, computational biology integrated surface plasmon resonance technology reveals the mechanism of ellagic acid against rotavirus. Sci Rep 2024; 14:7548. [PMID: 38555283 PMCID: PMC10981743 DOI: 10.1038/s41598-024-58301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
The target and mechanism of ellagic acid (EA) against rotavirus (RV) were investigated by network pharmacology, computational biology, and surface plasmon resonance verification. The target of EA was obtained from 11 databases such as HIT and TCMSP, and RV-related targets were obtained from the Gene Cards database. The relevant targets were imported into the Venny platform to draw a Venn diagram, and their intersections were visualized. The protein-protein interaction networks (PPI) were constructed using STRING, DAVID database, and Cytoscape software, and key targets were screened. The target was enriched by Gene Ontology (GO) and KEGG pathway, and the 'EA anti-RV target-pathway network' was constructed. Schrodinger Maestro 13.5 software was used for molecular docking to determine the binding free energy and binding mode of ellagic acid and target protein. The Desmond program was used for molecular dynamics simulation. Saturation mutagenesis analysis was performed using Schrodinger's Maestro 13.5 software. Finally, the affinity between ellagic acid and TLR4 protein was investigated by surface plasmon resonance (SPR) experiments. The results of network pharmacological analysis showed that there were 35 intersection proteins, among which Interleukin-1β (IL-1β), Albumin (ALB), Nuclear factor kappa-B1 (NF-κB1), Toll-Like Receptor 4 (TLR4), Tumor necrosis factor alpha (TNF-α), Tumor protein p53 (TP53), Recombinant SMAD family member 3 (SAMD3), Epidermal growth factor (EGF) and Interleukin-4 (IL-4) were potential core targets of EA anti-RV. The GO analysis consists of biological processes (BP), cellular components (CC), and molecular functions (MF). The KEGG pathways with the highest gene count were mainly related to enteritis, cancer, IL-17 signaling pathway, and MAPK signaling pathway. Based on the crystal structure of key targets, the complex structure models of TP53-EA, TLR4-EA, TNF-EA, IL-1β-EA, ALB-EA, NF-κB1-EA, SAMD3-EA, EGF-EA, and IL-4-EA were constructed by molecular docking (XP mode of flexible docking). The MMGBS analysis and molecular dynamics simulation were also studied. The Δaffinity of TP53 was highest in 220 (CYS → TRP), 220 (CYS → TYR), and 220 (CYS → PHE), respectively. The Δaffinity of TLR4 was highest in 136 (THR → TYR), 136 (THR → PHE), and 136 (THR → TRP). The Δaffinity of TNF-α was highest in 150 (VAL → TRP), 18 (ALA → GLU), and 144 (PHE → GLY). SPR results showed that ellagic acid could bind TLR4 protein specifically. TP53, TLR4, and TNF-α are potential targets for EA to exert anti-RV effects, which may ultimately provide theoretical basis and clues for EA to be used as anti-RV drugs by regulating TLR4/NF-κB related pathways.
Collapse
Affiliation(s)
- Jiangang Zheng
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Abdul Haseeb
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Ziyang Wang
- Institute of TCM, Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Hejie Wang
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China.
| |
Collapse
|
42
|
Thomas A, Shinde S, Wavhale R, Jadhav P, Tambe S, Lokhande K, Chitlange S. In-silico screening of phytomolecules against multiple targets for wound management. In Silico Pharmacol 2024; 12:19. [PMID: 38550524 PMCID: PMC10965871 DOI: 10.1007/s40203-024-00194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/07/2024] [Indexed: 03/28/2025] Open
Abstract
Chronic wound healing, especially in burns, is a major medical challenge with limited treatments. This study employs computational tools to identify phytomolecules that target multiple pathways involved in wound healing. By utilizing shape analysis, molecular docking, and binding energy calculations, potential compounds are pinpointed,to address the growing problem of chronic wounds. Initially, a set of phytomolecules from the ZINC database of natural molecules was screened to find compounds with shapes similar to well-known wound healing phytomolecules like curcumin, chromogenic acid, gallic acid, and quercetin. The most promising phytomolecules identified through shape similarity were further studied through molecular docking studies on several key targets involved in wound healing, including TNF-α, FGF, and TGF-β. Among the tested phytomolecules, a ligand known as Fluorophenyl(5-(5-chloro-1-(2-fluorophenyl)-2-oxopentyl)-4,5,6,7-tetrahydrothieno[3,2c]pyridine-2-yl acetate) exhibited a strong affinity with favourable binding interactions for TNF-α ( - 7.1 kcal/mole), FGF (-6.9 kcal/mole), and TGF-β (-5.1 kcal/mole). Another compound, 2,4 methoxybenzylidene-(-3)-oxo-2,3-dihydro-1-benzofuran-6-yl-4-methoxybenzoate, demonstrated a strong affinity with low binding energy for TNF-α ( - 6.8 kcal/mole) and FGF ( - 7.0 kcal/mole) targets. Isosakuranetin and Ermanin displayed moderate affinity for both TNF-α and FGF, with the highest affinity observed for the TGF-β target. These findings suggest that these identified phytomolecules hold promise as potential lead compounds for further structural modifications, with the goal of designing new molecules that can target multiple pathways involved in the wound healing process.
Collapse
Affiliation(s)
- Asha Thomas
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Sheetal Shinde
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Ravindra Wavhale
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Pranali Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Sham Tambe
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| | - Kiran Lokhande
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Deemed to Be University, Pune, Maharashtra India
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP India
| | - Sohan Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411 018 India
| |
Collapse
|
43
|
Dimitrijevic J, Tomovic M, Bradic J, Petrovic A, Jakovljevic V, Andjic M, Živković J, Milošević SĐ, Simanic I, Dragicevic N. Punica granatum L. (Pomegranate) Extracts and Their Effects on Healthy and Diseased Skin. Pharmaceutics 2024; 16:458. [PMID: 38675119 PMCID: PMC11054180 DOI: 10.3390/pharmaceutics16040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this review is to provide a summary of the botany, phytochemistry and dermatological effects of Punica granatum (PG), with special emphasis on therapeutic mechanisms in various skin conditions. PG peel contains the highest levels of chemical compounds. Due to the high abundance of polyphenolic compounds, including phenolic acids, anthocyanins and flavonoids, exhibiting strong antioxidant properties, PG peel possesses significant health-promoting effects. Up until now, different parts of PG in the form of various extracts, fixed seed oil or individual active compounds have been investigated for various effects on skin conditions in in vitro and in vivo studies, such as antioxidant, anti-inflammatory, antimicrobial, chemoprotective and antiaging effects, as well as positive effects on striae distensae, skin repair mechanisms, erythema, pigmentation and psoriasis. Therefore, formulations containing PG active compounds have been used for skincare of diseased and healthy skin. Only a few effects have been confirmed on human subjects. Based on encouraging results obtained in in vitro and animal studies about the numerous substantial dermatological effects of PG active compounds, future perspectives should incorporate more in vivo investigations in human volunteers. This approach can aid in identifying the optimal concentrations and formulations that would be most efficacious in addressing specific skin conditions.
Collapse
Affiliation(s)
- Jovana Dimitrijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.D.); (J.B.); (A.P.)
| | - Marina Tomovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.D.); (J.B.); (A.P.)
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.D.); (J.B.); (A.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.D.); (J.B.); (A.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya St., 119991 Moscow, Russia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.D.); (J.B.); (A.P.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pancic”, Tadeusa Koscuska 1, 11000 Belgrade, Serbia;
| | - Suzana Đorđević Milošević
- Environment and Sustainable Development, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Igor Simanic
- Specialized Hospital for Rehabilitation and Orthopedic Prosthetics, Sokobanjska 17, 11000 Beograd, Serbia;
- Department of Physical Medicine and Rehabilitation, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| |
Collapse
|
44
|
Fabian MCP, Astorga RMN, Atis AAG, Pilapil LAE, Hernandez CC. Anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark through bioassay-guided fractionation and liquid chromatography-tandem mass spectrometry. Front Pharmacol 2024; 15:1349725. [PMID: 38523640 PMCID: PMC10957545 DOI: 10.3389/fphar.2024.1349725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Women have been found to be at a higher risk of morbidity and mortality from type 2 diabetes mellitus (T2DM) and asthma. α-Glucosidase inhibitors have been used to treat T2DM, and arachidonic acid 15-lipoxygenase (ALOX15) inhibitors have been suggested to be used as treatments for asthma and T2DM. Compounds that inhibit both enzymes may be studied as potential treatments for people with both T2DM and asthma. This study aimed to determine potential anti-diabetic and anti-inflammatory bioactive hits from Coriaria intermedia Matsum. stem and Dracontomelon dao (Blanco) Merr. & Rolfe bark. A bioassay-guided fractionation framework was used to generate bioactive fractions from C. intermedia stem and D. dao bark. Subsequently, dereplication through ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and database searching was performed to putatively identify the components of one bioactive fraction from each plant. Seven compounds were putatively identified from the C. intermedia stem active fraction, and six of these compounds were putatively identified from this plant for the first time. Nine compounds were putatively identified from the D. dao bark active fraction, and seven of these compounds were putatively identified from this plant for the first time. One putative compound from the C. intermedia stem active fraction (corilagin) has been previously reported to have inhibitory activity against both α-glucosidase and 15-lipoxygenase-1. It is suggested that further studies on the potential of corilagin as an anti-diabetic and anti-inflammatory treatment should be pursued based on its several beneficial pharmacological activities and its low reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Christine Chichioco Hernandez
- Bioorganic and Natural Products Laboratory, Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
45
|
Elder SH, Ross MK, Nicaise AJ, Miller IN, Breland AN, Hood ARS. Development of in situ forming implants for controlled delivery of punicalagin. Int J Pharm 2024; 652:123842. [PMID: 38266943 PMCID: PMC10922986 DOI: 10.1016/j.ijpharm.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Due to efficient drainage of the joint, the development of intra-articular depots for long-lasting drug release is a difficult challenge. Moreover, a disease-modifying osteoarthritis drug (DMOAD) that can effectively manage osteoarthritis has yet to be identified. The current study was undertaken to explore the potential of injectable, in situ forming implants to create depots that support the sustained release of punicalagin, a promising DMOAD. In vitro experiments demonstrated punicalagin's ability to suppress production of interleukin-1β and prostaglandin E2, confirming its chondroprotective properties. Regarding the entrapment of punicalagin, it was demonstrated by LC-MS/MS to be stable within PLGA in situ forming implants for several weeks and capable of inhibiting collagenase upon release. In vitro punicalagin release kinetics were tunable through variation of solvent, PLGA lactide:glycolide ratio, and polymer concentration, and an optimized formulation supported release for approximately 90 days. The injection force of this formulation steadily increased with plunger advancement and higher rates of advancement were associated with greater forces. Although the optimal formulation was highly cytotoxic to primary chondrocytes if cells were exposed immediately or shortly after implant formation, upwards of 70 % survival was achieved when the implants were first allowed to undergo a 24-72 h period of phase inversion prior to cell exposure. This study demonstrates a PLGA-based in situ forming implant for the controlled release of punicalagin. With modification to address cytotoxicity, such an implant may be suitable as an intra-articular therapy for OA.
Collapse
Affiliation(s)
- Steven H Elder
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States.
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Mississippi State University, Starkville MS, United States
| | - Ashleigh J Nicaise
- College of Veterinary Medicine, Mississippi State University, Starkville MS, United States
| | - Isaac N Miller
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Austen N Breland
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| | - Ariory R S Hood
- Department of Agricultural & Biological Engineering, Mississippi State University, Starkville MS, United States
| |
Collapse
|
46
|
Ma Y, Zhang F, Xie Y, An L, Zhang B, Yu B, Li R. Oligosaccharides from Asparagus cochinchinensis for ameliorating LPS-induced acute lung injury in mice. Food Funct 2024; 15:2693-2705. [PMID: 38376424 DOI: 10.1039/d3fo05628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asparagi radix is an edible herb with medicinal properties and is now widely used in clinical applications for improving pulmonary inflammation. However, the lung-protective effect and the active constituents of Asparagi radix are yet to be elucidated. Herein, the potential pulmonary protective effect of the oligosaccharides of Asparagi radix was investigated. We firstly identified eighteen oligosaccharides with different degrees of polymerization from Asparagi radix using HPLC-QTOF MS. Oligosaccharides were analysed for 20 samples of Asparagi radix collected from various regions in China using HILIC-ELSD and were found to stably exist in this herb. In this study, we found that AROS significantly reduced NO production and effectively down-regulated the mRNA expression of IL-6, IL-1β and TNF-α in RAW 264.7 cells, thereby reducing the inflammatory response induced by LPS. AROS also inhibited LPS-stimulated intracellular ROS production. A murine model of lipopolysaccharide (LPS)-induced acute lung injury was used to evaluate the in vivo anti-inflammatory and lung protective efficacies of AROS. AROS ameliorated the damage to the pulmonary cellular architecture pathological injury and lung edema. AROS significantly decreased the levels of cytokines IL-6, TNF-α and IL-1β; the levels of MPO and MDA; and superoxide dismutase consumption in vivo. This effect of oligosaccharides can explain the traditional usage of Asparagus cochinchinensis as a tonic medicine for respiratory problems, and oligosaccharides from Asparagi radix used as a natural ingredient can play an important role in protecting lung injury.
Collapse
Affiliation(s)
- Yajie Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Yujun Xie
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Luyao An
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Boli Zhang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| | - Renshi Li
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China.
| |
Collapse
|
47
|
Jantaruk P, Roytrakul S, Sistayanarain A, Kunthalert D. The pomegranate-derived peptide Pug-4 alleviates nontypeable Haemophilus influenzae-induced inflammation by suppressing NF-kB signaling and NLRP3 inflammasome activation. PeerJ 2024; 12:e16938. [PMID: 38406294 PMCID: PMC10885808 DOI: 10.7717/peerj.16938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation. Our results clearly showed that to varying degrees the Pug peptides inhibited NTHi-induced production of IL-1β, a pivotal cytokine in COPD, and showed that these effects were not related to cytotoxicity. Pug-4 peptide exhibited the most potent inhibitory activity. This was demonstrated in all studied cell types including murine (RAW264.7) and human (differentiated THP-1) macrophages as well as human lung epithelial cells (A549). Substantial reduction by Pug-4 of TNF-α, NO and PGE2 in NTHi-infected A549 cells was also observed. In addition, Pug-4 strongly inhibited the expression of nuclear-NF-κB p65 protein and the NF-κB target genes (determined by IL-1β, TNF-α, iNOS and COX-2 mRNA expression) in NTHi-infected A549 cells. Pug-4 suppressed the expression of NLRP3 and pro-IL-1β proteins and inhibited NTHi-mediated cleavage of caspase-1 and mature IL-1β. These results demonstrated that Pug-4 inhibited NTHi-induced inflammation through the NF-κB signaling and NLRP3 inflammasome activation. Our findings herein highlight the significant anti-inflammatory activity of Pug-4, a newly identified peptide from pomegranate, against NTHi-induced inflammation. We therefore strongly suggest the potential of the Pug-4 peptide as an anti-inflammatory medicine candidate for treatment of NTHi-mediated inflammation.
Collapse
Affiliation(s)
- Pornpimon Jantaruk
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sittiruk Roytrakul
- National Science and Technology Development Agency, Thailand Science Park, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Anchalee Sistayanarain
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
48
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Antinociceptive Non-Opioid Active Principles for Medicinal Chemistry and Drug Design. Molecules 2024; 29:815. [PMID: 38398566 PMCID: PMC10892999 DOI: 10.3390/molecules29040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pain is associated with many health problems and a reduced quality of life and has been a common reason for seeking medical attention. Several therapeutics are available on the market, although side effects, physical dependence, and abuse limit their use. As the process of pain transmission and modulation is regulated by different peripheral and central mechanisms and neurotransmitters, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery due to their chemical structural variety and different analgesic mechanisms. Numerous studies suggested that some chemicals from medicinal plants could be alternative options for pain relief and management. Previously, we conducted a literature search aimed at identifying natural products interacting either directly or indirectly with opioid receptors. In this review, instead, we have made an excursus including active ingredients derived from plants whose mechanism of action appears from the literature to be other than the modulation of the opioid system. These substances could, either by themselves or through synthetic and/or semi-synthetic derivatives, be investigated in order to improve their pharmacokinetic characteristics and could represent a valid alternative to the opioid approach to pain therapy. They could also be the basis for the study of new mechanisms of action in the approach to this complex and disabling pathology.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.T.); (S.P.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
49
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
50
|
Cortez TV, Cerqueira NM, Gallas JA, Oliveira WP, Corona SAM, Souza-Gabriel AE. Pomegranate extract on eroded dentin: antioxidant action, bond strength and morphology of the adhesive interface after aging. Restor Dent Endod 2024; 49:e9. [PMID: 38449495 PMCID: PMC10912540 DOI: 10.5395/rde.2024.49.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 03/08/2024] Open
Abstract
Objectives This study aimed to evaluate the effect of pomegranate solution (Punica granatum) on eroded dentin through antioxidant action, shear bond strength (SBS) and interface morphology. Materials and Methods The 10% pomegranate peel extract was prepared by the lyophilization method. Punicalagin polyphenol was confirmed by high-performance liquid chromatography. Antioxidant activity was evaluated by capturing the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. For the SBS, 48 dentin fragments were divided into sound or eroded, and subdivided according to the pretreatment (n = 12): water or P. granatum. The surfaces were restored with self-etch adhesive and a bulk-fill resin (Ecosite; DMG). The SBS was done immediately (24 hours) and after thermal cycling + water storage (12 months). For scanning electron microscopy, 48 dentin fragments (24 sound and 24 eroded) received the same treatments as for SBS (n = 6), and they were analyzed after 24 hours and 12 months. Results The P. granatum had antioxidant action similar (p = 0.246) to the phenolic standard antioxidants. After 24 hours, eroded dentin had lower SBS than sound dentin (p < 0.001), regardless of the pretreatment. After 12 months, P. granatum maintained the SBS of sound dentin (13.46 ± 3.42 MPa) and eroded dentin (10.96 ± 1.90 MPa) statistically similar. The lowest values were found on eroded dentin treated with water (5.75 ± 1.65 MPa) (p < 0.001). P. granatum on eroded dentin caused peritubular demineralization and hybrid layer with resin tags. Conclusions The pomegranate extract had antioxidant action and preserved the adhesive interface of the eroded dentin.
Collapse
Affiliation(s)
- Thiago Vinícius Cortez
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathália Mancioppi Cerqueira
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julia Adornes Gallas
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wanderley Pereira Oliveira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silmara Aparecida Milori Corona
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Evangelista Souza-Gabriel
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|