1
|
Morelli T, Freeman A, Staples KJ, Wilkinson TMA. Hidden in plain sight: the impact of human rhinovirus infection in adults. Respir Res 2025; 26:120. [PMID: 40155903 PMCID: PMC11954259 DOI: 10.1186/s12931-025-03178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 03/02/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Human rhinovirus (HRV), a non-enveloped RNA virus, was first identified more than 70 years ago. It is highly infectious and easily transmitted through aerosols and direct contact. The advent of multiplex PCR has enhanced the detection of a diverse range of respiratory viruses, and HRV consistently ranks among the most prevalent respiratory pathogens globally. Circulation occurs throughout the year, with peak incidence in autumn and spring in temperate climates. Remarkably, during the SARS-CoV-2 pandemic, HRV transmission persisted, demonstrating its resistance to stringent public health measures aimed at curbing viral transmission. MAIN BODY HRV is characterised by its extensive genetic diversity, comprising three species and more than 170 genotypes. This diversity and substantial number of concurrently circulating strains allows HRVs to frequently escape the adaptive immune system and poses formidable challenges for the development of effective vaccines and antiviral therapies. There is currently a lack of specific treatments. Historically, HRV has been associated with self-limiting upper respiratory infection. However, there is now extensive evidence highlighting its significant role in severe lower respiratory disease in adults, including exacerbations of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), as well as pneumonia. These severe manifestations can occur even in immunocompetent individuals, broadening the clinical impact of this ubiquitous virus. Consequently, the burden of rhinovirus infections extends across various healthcare settings, from primary care to general hospital wards and intensive care units. The impact of HRV in adults, in terms of morbidity and healthcare utilisation, rivals that of the other major respiratory viruses, including influenza and respiratory syncytial virus. Recognition of this substantial burden underscores the critical need for novel treatment strategies and effective management protocols to mitigate the impact of HRV infections on public health. CONCLUSION This review examines the epidemiology, clinical manifestations, and risk factors associated with severe HRV infection in adults. By drawing on contemporary literature, we aim to provide a comprehensive overview of the virus's significant health implications. Understanding the scope of this impact is essential for developing new, targeted interventions and improving patient outcomes in the face of this persistent and adaptable pathogen.
Collapse
Affiliation(s)
- Tommaso Morelli
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK.
| | - Anna Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
2
|
Bai H, Rodas M, Si L, Man Y, Ji J, Plebani R, Mercer JD, Powers RK, Belgur C, Jiang A, Hall SRR, Prantil-Baun R, Ingber DE. Host Serine Proteases and Antiviral Innate Immunity as Potential Therapeutic Targets in Influenza A Virus Infection-Induced COPD Exacerbations. Int J Mol Sci 2025; 26:2549. [PMID: 40141187 PMCID: PMC11941970 DOI: 10.3390/ijms26062549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Lung manifestations of chronic obstructive pulmonary disease (COPD) are often exacerbated by influenza A virus infections; however, the underlying mechanisms remain largely unknown, and hence therapeutic options are limited. Using a physiologically relevant human lung airway-on-a-chip (Airway Chip) microfluidic culture model lined with human airway epithelium from COPD or healthy donors interfaced with pulmonary microvascular endothelium, we observed that Airway Chips lined with COPD epithelium exhibit an increased sensitivity to influenza virus infection, as is observed clinically in COPD patients. Differentiated COPD airway epithelial cells display increased inflammatory cytokine production, barrier function loss, and mucus accumulation upon virus infection. Transcriptomic analysis revealed gene expression profiles characterized by upregulation of serine proteases that may facilitate viral entry and downregulation of interferon-related genes associated with antiviral immune responses. Importantly, treatment of influenza virus-infected COPD epithelium with a protease inhibitor, nafamostat, ameliorated the disease phenotype, as evidenced by dampened viral replication, reduced mucus accumulation, and improved tissue barrier integrity. These findings suggest that targeting host serine proteases may represent a promising therapeutic avenue against influenza-afflicted COPD exacerbations.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Melissa Rodas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Longlong Si
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Yuncheng Man
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Ji
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Roberto Plebani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Johnathan D. Mercer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Rani K. Powers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Chaitra Belgur
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sean R. R. Hall
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; (H.B.); (L.S.); (Y.M.); (J.J.); (R.P.); (C.B.); (A.J.)
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Liu C, Song Q, Lin L, Li T, Zhang P, Zeng Y, Peng Y, Chen Y, Cai S, Chen P. Impact of intensive health education on influenza vaccination and acute exacerbations in outpatients with chronic obstructive pulmonary disease: a real-world study. J Glob Health 2025; 15:04047. [PMID: 40052198 PMCID: PMC11886753 DOI: 10.7189/jogh.15.04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background The influenza vaccination rate of chronic obstructive pulmonary disease (COPD) patients in China was very low. In this study, we aimed to evaluate the effect of clinician-led intensive health education on influenza vaccination in outpatients with COPD and the effect of influenza vaccination on the risk of acute exacerbations in the real world. Methods Participants were from the Real World Research of Diagnosis and Treatment of COPD study, a real-world prospective cohort study. COPD patients were included from December 2016 to April 2023 and followed up for one year. In January 2022, clinicians began strengthening health education for outpatients with COPD. We identified patients visiting the clinic from January 2022 to April 2023 as the intensive health education group and those visiting from December 2016 to December 2021 as the control group. We analysed factors associated with influenza vaccination and the effect of influenza vaccine on acute exacerbations by multivariate analysis. Results 7834 patients were included. Compared with the control group, the intensive health education group had a higher rate of influenza vaccination (1.6% vs. 12.2%, P < 0.01). Smoking cessation, high school education or above, influenza vaccination in the past year and intensive health education were independently associated with influenza vaccination. Influenza vaccination reduced the incidence of future acute exacerbations (adjusted odds ratio (aOR) = 0.48; 95% confidence interval (CI) = 0.33-0.68, P < 0.01), frequent acute exacerbations (aOR = 0.47; 95% CI = 0.27-0.82, P = 0.01), and severe acute exacerbation (aOR = 0.38; 95% CI = 0.23-0.63, P < 0.01) in COPD patients. Conclusions Influenza vaccination reduced the risk of future acute exacerbations in patients with COPD. Clinician-led intensive health education can improve the influenza vaccination of outpatients with COPD, and clinicians and policymakers should pay attention to and apply this method.
Collapse
Affiliation(s)
- Cong Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Tao Li
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Ping Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Yuqin Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Yating Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Shan Cai
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Centre for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
4
|
Caparros-Martin JA, Saladié M, Agudelo-Romero SP, Nichol KS, Reen FJ, Moodley YP, Mulrennan S, Stick S, Wark PAB, O’Gara F. Bile acids in the lower airways is associated with airway microbiota changes in chronic obstructive pulmonary disease: an observational study. BMJ Open Respir Res 2024; 11:e002552. [PMID: 39694676 PMCID: PMC11667286 DOI: 10.1136/bmjresp-2024-002552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex disorder with a high degree of interindividual variability. Gastrointestinal dysfunction is common in patients with COPD and has been proposed to influence the clinical progression of the disease. Using the presence of bile acid(s) (BA) in bronchoalveolar lavage (BAL) fluid as a marker of gastric aspiration, we evaluated the relationships between BAs, clinical outcomes and bacterial lung colonisation. METHODS We used BAL specimens from a cohort of patients with COPD and healthy controls. BAs were profiled and quantified in BAL supernatants using mass spectrometry. Microbial DNA was extracted from BAL pellets and quantified using quantitative PCR. We profiled the BAL microbiota using an amplicon sequencing approach targeting the V3-V4 region of the 16S rRNA gene. RESULTS Detection of BAs in BAL was more likely at the earliest clinical stages of COPD and was independent of the degree of airway obstruction. BAL specimens with BAs demonstrated higher bacterial biomass and lower diversity. Likewise, the odds of recovering bacterial cultures from BAL were higher if BAs were also detected. Detection of BAs in BAL was not associated with either inflammatory markers or clinical outcomes. We also observed different bacterial community types in BAL, which were associated with different clinical groups, levels of inflammatory markers and the degree of airway obstruction. CONCLUSION Detection of BAs in BAL was associated with alterations in the airway bacterial communities. Further studies are needed to evaluate whether BAs in BAL can be used to stratify patients and predict disease progression trajectories.
Collapse
Affiliation(s)
- Jose A Caparros-Martin
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- The University of Western Australia, Perth, Western Australia, Australia
| | - Montserrat Saladié
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - S Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- The University of Western Australia, Perth, Western Australia, Australia
- European Virus Bioinformatics Centre, Jena, TH, Germany
| | - Kristy S Nichol
- Immune Health Program, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Yuben P Moodley
- Centre for Respiratory Health, School of Biomedical Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Cell Biology Group, Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Institute of Respiratory Health and Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Siobhain Mulrennan
- Institute of Respiratory Health and Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Stephen Stick
- The University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Peter A B Wark
- Faculty of Medicine Nursing and Health Sciences, Monash University, Prahran, Victoria, Australia
| | - Fergal O’Gara
- Wal-yan Respiratory Research Centre, The Kids Research Institute Australia, Nedlands, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Kurmanova G, Zhanaev A, Kaldybek A, Abdrakhmanova B, Akparova A. Impact of the COVID-19 pandemic on the clinical features of patients with chronic obstructive pulmonary disease: an observational cross-sectional study. Monaldi Arch Chest Dis 2024. [PMID: 39569839 DOI: 10.4081/monaldi.2024.3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
The presence of chronic obstructive pulmonary disease (COPD) and COVID-19 infection is a detrimental combination for patients and can cause negative clinical consequences. The investigation aimed to compare sociodemographic and clinical parameters of COPD individuals hospitalized for exacerbations before and at the end of the COVID-19 pandemic. An observational cross-sectional study including 222 patients with COPD was conducted in two stages: a survey and assessment of clinical and laboratory data of patients hospitalized from September 2022 to March 2023 (n=98) and processing of the medical histories of patients with COPD who received hospital treatment in 2017 and 2018 (n=124). A comparative analysis of patients who received inpatient treatment for COPD showed that the frequency of patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) I was half as high after the COVID-19 pandemic, whereas the individuals with GOLD IV were more frequent during the same period (p<0.05). Multiple regression analysis proved the effects of smoking status and previous COVID-19 infection on the health status of patients with COPD according to COPD Assessment Test data (p<0.05). There was an increase in the frequency of comorbid pathologies in the post-COVID period: hypertension, coronary heart disease, gastrointestinal diseases, anemia (p<0.05), and other diseases. This study highlights the significant influence of the COVID-19 infection on people with COPD, which manifested as impaired lung function and an increased incidence of comorbidities.
Collapse
Affiliation(s)
- Gaukhar Kurmanova
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty
| | - Almas Zhanaev
- Department of Pulmonology, City Clinical Hospital No. 1, Almaty
| | | | - Balkiya Abdrakhmanova
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana
| | - Almira Akparova
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty
| |
Collapse
|
6
|
Pappe E, Hübner RH, Saccomanno J, Ebrahimi HDN, Witzenrath M, Wiessner A, Sarbandi K, Xiong Z, Kursawe L, Moter A, Kikhney J. Biofilm infections of endobronchial valves in COPD patients after endoscopic lung volume reduction: a pilot study with FISHseq. Sci Rep 2024; 14:23078. [PMID: 39366990 PMCID: PMC11452729 DOI: 10.1038/s41598-024-73950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Endoscopic lung volume reduction (ELVR) using endobronchial valves (EBV) is a treatment option for a subset of patients with severe chronic obstructive pulmonary disease (COPD), suffering from emphysema and hyperinflation. In this pilot study, we aimed to determine the presence of bacterial biofilm infections on EBV and investigate their involvement in lack of clinical benefits, worsening symptomatology, and increased exacerbations that lead to the decision to remove EBVs. We analyzed ten COPD patients with ELVR who underwent EBV removal. Clinical data were compared to the microbiological findings from conventional EBV culture. In addition, EBV were analyzed by FISHseq, a combination of Fluorescence in situ hybridization (FISH) with PCR and sequencing, for visualization and identification of microorganisms and biofilms. All ten patients presented with clinical symptoms, including pneumonia and recurrent exacerbations. Microbiological cultures from EBV detected several microorganisms in all ten patients. FISHseq showed either mixed or monospecies colonization on the EBV, including oropharyngeal bacterial flora, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus spp., and Fusobacterium sp. On 5/10 EBV, FISHseq visualized biofilms, on 1/10 microbial microcolonies, on 3/10 single microorganisms, and on 1/10 no microorganisms. The results of the study demonstrate the presence of biofilms on EBV for the first time and its potential involvement in increased exacerbations and clinical worsening in patients with ELVR. However, further prospective studies are needed to evaluate the clinical relevance of biofilm formation on EBV and appropriate treatment options to avoid infections in patients with ELVR.
Collapse
Affiliation(s)
- Eva Pappe
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Ralf-Harto Hübner
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jacopo Saccomanno
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Hadis Darvishi Nakhl Ebrahimi
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Disease, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Capnetz Foundation, Hannover, Germany
| | - Alexandra Wiessner
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| | - Kurosh Sarbandi
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Zhile Xiong
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| | - Laura Kursawe
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Annette Moter
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Moter Diagnostics, Berlin, Germany
| | - Judith Kikhney
- Institute of Microbiology, Infectious Diseases and Immunology, Biofilmcenter, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- MoKi Analytics GmbH, Berlin, Germany
| |
Collapse
|
7
|
Di Gioacchino M, Santilli F, Pession A. Is There a Role for Immunostimulant Bacterial Lysates in the Management of Respiratory Tract Infection? Biomolecules 2024; 14:1249. [PMID: 39456182 PMCID: PMC11505618 DOI: 10.3390/biom14101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial Lysates are immunostimulants clinically prescribed for the prevention of respiratory tract infections (RTIs). It has been shown that Bacterial Lysates upregulate the immune system, acting both on innate and adaptive reactions. In fact, there are demonstrations of their efficacy in restoring the integrity and immune function of epithelial barriers, activating ILC3 and dendritic cells with an enhanced Th1 response, and producing serum IgG and serum and salivary IgA specific to the administered bacterial antigens. The activated immune system also protects against other bacteria and viruses due to a trained immunity effect. Most studies show that the number of RTIs and their severity decrease in Bacterial Lysates-pretreated patients, without relevant side effects. The Bacterial Lysates treatment, in addition to reducing the number of RTIs, also prevents the deterioration of the underlying disease (i.e., COPD) induced by repeated infections. Despite these positive data, the most recent meta-analyses evidence the weakness of the studies performed, which are of low quality and have an inadequate number of patients, some of which were non-randomized while others were without a control group or were performed contemporarily in different clinical conditions or with different ages. The high heterogeneity of the studies does not allow us to state Bacterial Lysates' effectiveness in preventing RTIs with sufficient certainty. To completely define their indications, double-blind, placebo-controlled, multicenter, randomized clinical trials should be performed for each product and for each indication. The study population should be adequate for each indication. For this purpose, an adequate run-in phase will be necessary.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Francesca Santilli
- Center for Advanced Science and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Science of Aging, G. d’Annunzio University, 66100 Chieti, Italy
| | - Andrea Pession
- Department of Medicine and Surgery, “Alma Mater Studiorum”-University of Bologna, 40100 Bologna, Italy;
| |
Collapse
|
8
|
Sandhu KK, Scott A, Tatler AL, Belchamber KBR, Cox MJ. Macrophages and the microbiome in chronic obstructive pulmonary disease. Eur Respir Rev 2024; 33:240053. [PMID: 39631929 PMCID: PMC11615662 DOI: 10.1183/16000617.0053-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/22/2024] [Indexed: 12/07/2024] Open
Abstract
COPD is a heterogeneous disease of the lungs characterised by restricted airflow. Chronic inflammation and recurrent bacterial infections are known to be important driving factors in exacerbations of this disease. Despite a marked increase in the number of alveolar macrophages present in the lungs of COPD patients, there is evidence of reduced clearance of pathogenic bacteria, leading to recurrent infection, exacerbation and subsequent lung function decline. This is thought to be attributed to a defect in the phagocytic capability of both alveolar and monocyte-derived macrophages in COPD. In addition to this defect, there is apparent selectivity in bacterial uptake by COPD macrophages because certain pathogenic genera, such as Haemophilus, Moraxella and Streptococcus, are taken up more readily than others. The respiratory microbiome plays a key role in regulating the host immune response both in health and during chronic inflammation. In patients with COPD, there are distinct changes in the composition of the respiratory microbiome, particularly the lower respiratory tract, where dominance of clinically relevant pathogenic species is commonly observed. Whether there are links between these changes in the microbiome and dysfunctional macrophage phagocytosis has not yet been widely studied. This review aims to discuss what is currently known about these phenomena and to explore interactions between macrophages and the respiratory microbiome.
Collapse
Affiliation(s)
- Karanjot K Sandhu
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Aaron Scott
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, School of Medicine, University of Nottingham, Nottingham, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Kylie B R Belchamber
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- These authors contributed equally
| | - Michael J Cox
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, School of Infection, Inflammation and Immunity, College of Medicine and Health, University of Birmingham, Birmingham, UK
- These authors contributed equally
| |
Collapse
|
9
|
Park YC, Choi SY, Cha Y, Yoon HW, Son YM. Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression. J Microbiol 2024; 62:709-725. [PMID: 39240507 DOI: 10.1007/s12275-024-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Collapse
Affiliation(s)
- Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Soo Yeon Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yunah Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyeong Won Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
10
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 PMCID: PMC11583054 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Wold M, Oancea SC. Influenza Vaccination in Adults in the United States with COPD before and after the COVID-19 Pandemic (2017-2022): A Multi-Year Cross-Sectional Study. Vaccines (Basel) 2024; 12:931. [PMID: 39204054 PMCID: PMC11359522 DOI: 10.3390/vaccines12080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
There is limited literature regarding seasonal influenza vaccination (SIV) among those with a history of chronic obstructive pulmonary disease (HCOPD) prior to the COVID-19 pandemic, and no information on the topic assessing the years following the pandemic. This cross-sectional study used the Behavioral Risk Factor Surveillance Survey (BRFSS) data from the years 2017 to 2022 (n = 822,783 adults ages 50-79 years; 50.64% males). The exposure was a HCOPD, and the outcome was SIV within the past year. Weighted and adjusted logistic regression models were conducted overall and by the significant effect modifiers: smoking status, sex, and year. Having an HCOPD significantly increases the weighted adjusted odds (WAO) of SIV when compared to not having an HCOPD overall and by smoking status, sex, and year. For 2017 through 2022, among all current, former, and never smokers with an HCOPD, the WAO of SIV were: 1.36 (1.28, 1.45), 1.35 (1.27, 1.43), and 1.18 (1.09, 1.27), respectively. Among males with an HCOPD who were current, former, and never smokers, the WAO of SIV were: 1.35 (1.23, 1.48), 1.45 (1.33, 1.58), and 1.23 (1.05, 1.44), respectively. Among females with an HCOPD who were current, former, and never smokers, the WAO of SIV were: 1.31 (1.20, 1.43), 1.24 (1.15, 1.35), and 1.13 (1.04, 1.23), respectively. Study findings suggest males had significantly greater WAO ratios of receiving SIV than females in 2020 and 2022, during and after the COVID-19 pandemic. More specifically, males with an HCOPD who were former smokers had significantly greater WAOR of receiving SIV than females in 2020 and 2022. Understanding the potential barriers to SIV receipt by smoking status and sex, especially during a pandemic, and especially for individuals impacted by an HCOPD, is essential for better health interventions in times of a national crisis such as a pandemic. Additionally, SIV receipt is low among those with an HCOPD, and efforts should be made to improve this.
Collapse
|
12
|
Kastratovic N, Cekerevac I, Sekerus V, Markovic V, Arsenijevic A, Volarevic A, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. Effects of combustible cigarettes and heated tobacco products on immune cell-driven inflammation in chronic obstructive respiratory diseases. Toxicol Sci 2024; 200:265-276. [PMID: 38788227 DOI: 10.1093/toxsci/kfae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Since long-term effects of heated tobacco products (HTP) on the progression of chronic obstructive pulmonary disease (COPD) are unknown, we used COPD mice model to compare immune cell-dependent pathological changes in the lungs of animals which were exposed to HTP or combustible cigarettes (CCs). We also performed intracellular staining and flow cytometry analysis of immune cells which were present in the blood of CCs and HTP users who suffered from immune cell-driven chronic obstructive respiratory diseases. CCs enhanced NLRP3 inflammasome-dependent production of inflammatory cytokines in lung-infiltrated neutrophils and macrophages and increased influx of cytotoxic Th1, Th2, and Th17 lymphocytes in the lungs of COPD mice. Similarly, CCs promoted generation of inflammatory phenotype in circulating leukocytes of COPD patients. Opposite to CCs, HTP favored expansion of immunosuppressive, IL-10-producing, FoxP3-expressing T, NK, and NKT cells in inflamed lungs of COPD mice. Compared with CCs, HTP had weaker capacity to promote synthesis of inflammatory cytokines in lung-infiltrated immune cells. Significantly lower number of inflammatory neutrophils, monocytes, Th1, Th2, and Th17 lymphocytes were observed in the blood of patients who consumed HTP than in the blood of CCs users, indicating different effects of CCs and HTP on immune cells' phenotype and function.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Pulmonology Clinic, University Clinical Center Kragujevac, Kragujevac 34000, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica 21204, Serbia
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Vladimir Markovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandar Arsenijevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Faculty of Pharmacy Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
13
|
Bondeelle L, Salmona M, Houdouin V, Diaz E, Dutrieux J, Mercier-Delarue S, Constant S, Huang S, Bergeron A, LeGoff J. Inefficient antiviral response in reconstituted small-airway epithelium from chronic obstructive pulmonary disease patients following human parainfluenza virus type 3 infection. Virol J 2024; 21:78. [PMID: 38566231 PMCID: PMC10988791 DOI: 10.1186/s12985-024-02353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maud Salmona
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | - Véronique Houdouin
- Service de Pneumologie, APHP, Hôpital Robert-Debré, Paris, F-75010, France
| | - Elise Diaz
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France
| | - Jacques Dutrieux
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, F-75014, France
| | - Séverine Mercier-Delarue
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | | | - Song Huang
- Epithelix Sarl, Geneva, 1228, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Jérôme LeGoff
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France.
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France.
| |
Collapse
|
14
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Luo L, Tang J, Du X, Li N. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med 2024; 225:107586. [PMID: 38460708 DOI: 10.1016/j.rmed.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease characterized by progressive airflow limitation and chronic inflammation. The progressive development and long-term repeated acute exacerbation of COPD make many patients still unable to control the deterioration of the disease after active treatment, and even eventually lead to death. An increasing number of studies have shown that the occurrence and development of COPD are closely related to the composition and changes of airway microbiome. This article reviews the interaction between COPD and airway microbiome, the potential mechanisms of interaction, and the treatment methods related to microbiome. We elaborated the internal correlation between airway microbiome and different stages of COPD, inflammatory endotypes, glucocorticoid and antibiotic treatment, analyze the pathophysiological mechanisms such as the "vicious cycle" hypothesis, abnormal inflammation-immune response of the host and the "natural selection" of COPD to airway microbiome, introduce the treatment of COPD related to microbiome and emphasize the predictive value of airway microbiome for the progression, exacerbation and prognosis of COPD, as well as the guiding role for clinical management of patients, in order to provide a new perspective for exploring the pathogenesis of COPD, and also provide clues and guidance for finding new treatment targets.
Collapse
Affiliation(s)
- Lingxin Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junli Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Na Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
16
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
17
|
Asare PF, Hurtado PR, Tran HB, Perkins GB, Roscioli E, Hodge S. Reduction in Rubicon by cigarette smoke is associated with impaired phagocytosis and occurs through lysosomal degradation pathway. Clin Exp Med 2023; 23:4041-4055. [PMID: 37310658 DOI: 10.1007/s10238-023-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND A common feature of COPD is a defective lung macrophage phagocytic capacity that can contribute to chronic lung inflammation and infection. The precise mechanisms remain incompletely understood, although cigarette smoke is a known contributor. We previously showed deficiency of the LC3-associated phagocytosis (LAP) regulator, Rubicon, in macrophages from COPD subjects and in response to cigarette smoke. The current study investigated the molecular basis by which cigarette smoke extract (CSE) reduces Rubicon in THP-1, alveolar and blood monocyte-derived macrophages, and the relationship between Rubicon deficiency and CSE-impaired phagocytosis. METHODOLOGY Phagocytic capacity of CSE-treated macrophages was measured by flow cytometry, Rubicon expression by Western blot and real time polymerase chain reaction, and autophagic-flux by LC3 and p62 levels. The effect of CSE on Rubicon degradation was determined using cycloheximide inhibition and Rubicon protein synthesis and half-life assessment. RESULTS Phagocytosis was significantly impaired in CSE-exposed macrophages and strongly correlated with Rubicon expression. CSE-impaired autophagy, accelerated Rubicon degradation, and reduced its half-life. Lysosomal protease inhibitors, but not proteasome inhibitors, attenuated this effect. Autophagy induction did not significantly affect Rubicon expression. CONCLUSIONS CSE decreases Rubicon through the lysosomal degradation pathway. Rubicon degradation and/or LAP impairment may contribute to dysregulated phagocytosis perpetuated by CSE.
Collapse
Affiliation(s)
- Patrick F Asare
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Thoracic Medicine, Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia.
| | - Plinio R Hurtado
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Hai B Tran
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Griffith B Perkins
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Sandra Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
18
|
Malli IA, Mohamud MS, Al-Nasser S. Enhancing Medical Students' Confidence and Knowledge in Antibiotic Prescription and Administration through Virtual Education: A Quasi-Experimental Study. Antibiotics (Basel) 2023; 12:1546. [PMID: 37887247 PMCID: PMC10604531 DOI: 10.3390/antibiotics12101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Antibiotic resistance is a worldwide health concern that necessitates antibiotic stewardship. Medical students significantly impact future healthcare practices; thus, their trust in antibiotic prescription and administration is crucial. This research aims to assess medical students' levels of confidence and knowledge in these areas before and after exposure to virtual antibiotic stewardship education. METHODS A one-group pretest-posttest design was conducted with medical students from King Saud bin Abdulaziz University for Health Sciences in Jeddah, Saudi Arabia. Participants were enrolled in the WHO-online antibiotic stewardship course. RESULTS The group's baseline confidence and background knowledge were reported to be lower than what was offered after introducing the virtual course. The McNemar-Bowker test showed a significant difference in students' confidence in pre-course and post-course scores (Z = 20, p < 0.002); the matched paired t-test revealed a significant difference in students' knowledge scores (M = 7.66 verses M = 5.36, Z = 3.54, p = 0.001). In the sample, 70% of the students were unfamiliar with antibiotic stewardship; thus, the analysis revealed a significant difference in their familiarity before and after enrolling in the online course (30 vs. 100, p < 0.001). CONCLUSION Medical students experience low confidence in the safe practice of the antibiotic stewardship program. The WHO-online antibiotic stewardship course is considered a valuable resource that can be used in a formative medical curriculum. Thus, educators and the academic curriculum must promote practical strategies to minimize antibiotic stewardship literacy and increase antibiotic prescribing and administration quality. Introducing antibiotic stewardship across the medical curriculum and establishing educational courses are some strategies that can be undertaken to ensure that future doctors are well-educated in the principles and practices of the appropriate use of antibiotic stewardship.
Collapse
Affiliation(s)
- Israa Abdullah Malli
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Mohamud Salaad Mohamud
- Department of Primary Care and Public Health, School of Public Health, Faculty of Medicine, Imperial College London, London W6 8RP, UK
- Research and Development, Somali Centers for Public Health, London NW2 1TB, UK
| | - Sami Al-Nasser
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| |
Collapse
|
19
|
Zhu Y, Chang D. Interactions between the lung microbiome and host immunity in chronic obstructive pulmonary disease. Chronic Dis Transl Med 2023; 9:104-121. [PMID: 37305112 PMCID: PMC10249200 DOI: 10.1002/cdt3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease and the third leading cause of death worldwide. Developments in next-generation sequencing technology have improved microbiome analysis, which is increasingly recognized as an important component of disease management. Similar to the gut, the lung is a biosphere containing billions of microbial communities. The lung microbiome plays an important role in regulating and maintaining the host immune system. The microbiome composition, metabolites of microorganisms, and the interactions between the lung microbiome and the host immunity profoundly affect the occurrence, development, treatment, and prognosis of COPD. In this review, we drew comparisons between the lung microbiome of healthy individuals and that of patients with COPD. Furthermore, we summarize the intrinsic interactions between the host and the overall lung microbiome, focusing on the underlying mechanisms linking the microbiome to the host innate and adaptive immune response pathways. Finally, we discuss the possibility of using the microbiome as a biomarker to determine the stage and prognosis of COPD and the feasibility of developing a novel, safe, and effective therapeutic target.
Collapse
Affiliation(s)
- Yixing Zhu
- Graduate School of The PLA General HospitalBeijingChina
| | - De Chang
- Department of Respiratory and Critical Care Medicine, Eighth Medical Center, Department of Respiratory and Critical Care Seventh Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
20
|
Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. J Pers Med 2023; 13:jpm13050804. [PMID: 37240974 DOI: 10.3390/jpm13050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. The association between lung and gut microbiomes in the pathogenesis of COPD has been recently uncovered. The goal of this study was to discuss the role of the lung and gut microbiomes in COPD pathophysiology. A systematic search of the PubMed database for relevant articles submitted up to June 2022 was performed. We examined the association between the lung and gut microbiome dysbiosis, reflected in bronchoalveolar lavage (BAL), lung tissue, sputum, and feces samples, and the pathogenesis and progression of COPD. It is evident that the lung and gut microbiomes affect each other and both play a vital role in the pathogenesis of COPD. However, more research needs to be carried out to find the exact associations between microbiome diversity and COPD pathophysiology and exacerbation genesis. Another field that research should focus on is the impact of treatment interventions targeting the human microbiome in preventing COPD genesis and progression.
Collapse
Affiliation(s)
- Efstathios Karakasidis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Department of Human Pathophysiology, Faculty of Nursing, School of Health Science, University of Thessaly, Gaiopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, School of Health Science, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
21
|
Waeijen-Smit K, DiGiandomenico A, Bonnell J, Ostridge K, Gehrmann U, Sellman BR, Kenny T, van Kuijk S, Peerlings D, Spruit MA, Simons SO, Houben-Wilke S, Franssen FME. Early diagnostic BioMARKers in exacerbations of chronic obstructive pulmonary disease: protocol of the exploratory, prospective, longitudinal, single-centre, observational MARKED study. BMJ Open 2023; 13:e068787. [PMID: 36868599 PMCID: PMC9990620 DOI: 10.1136/bmjopen-2022-068787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) play a pivotal role in the burden and progressive course of chronic obstructive pulmonary disease (COPD). As such, disease management is predominantly based on the prevention of these episodes of acute worsening of respiratory symptoms. However, to date, personalised prediction and early and accurate diagnosis of AECOPD remain unsuccessful. Therefore, the current study was designed to explore which frequently measured biomarkers can predict an AECOPD and/or respiratory infection in patients with COPD. Moreover, the study aims to increase our understanding of the heterogeneity of AECOPD as well as the role of microbial composition and hostmicrobiome interactions to elucidate new disease biology in COPD. METHODS AND ANALYSIS The 'Early diagnostic BioMARKers in Exacerbations of COPD' study is an exploratory, prospective, longitudinal, single-centre, observational study with 8-week follow-up enrolling up to 150 patients with COPD admitted to inpatient pulmonary rehabilitation at Ciro (Horn, the Netherlands). Respiratory symptoms, vitals, spirometry and nasopharyngeal, venous blood, spontaneous sputum and stool samples will be frequently collected for exploratory biomarker analysis, longitudinal characterisation of AECOPD (ie, clinical, functional and microbial) and to identify host-microbiome interactions. Genomic sequencing will be performed to identify mutations associated with increased risk of AECOPD and microbial infections. Predictors of time-to-first AECOPD will be modelled using Cox proportional hazards' regression. Multiomic analyses will provide a novel integration tool to generate predictive models and testable hypotheses about disease causation and predictors of disease progression. ETHICS AND DISSEMINATION This protocol was approved by the Medical Research Ethics Committees United (MEC-U), Nieuwegein, the Netherlands (NL71364.100.19). TRIAL REGISTRATION NUMBER NCT05315674.
Collapse
Affiliation(s)
- Kiki Waeijen-Smit
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Antonio DiGiandomenico
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Jessica Bonnell
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Kristoffer Ostridge
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bret R Sellman
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Tara Kenny
- Discovery Microbiome, Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Sander van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands
| | | | - Martijn A Spruit
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Sami O Simons
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| | | | - Frits M E Franssen
- Department of Research and Development, CIRO, Horn, Netherlands
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health Medicine and Life Sciences, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
22
|
Malm Tillgren S, Nieto-Fontarigo JJ, Cerps S, Ramu S, Menzel M, Mahmutovic Persson I, Meissner A, Akbarshahi H, Uller L. C57Bl/6N mice have an attenuated lung inflammatory response to dsRNA compared to C57Bl/6J and BALB/c mice. J Inflamm (Lond) 2023; 20:6. [PMID: 36810092 PMCID: PMC9942641 DOI: 10.1186/s12950-023-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lower respiratory infections caused by ssRNA viruses are a major health burden globally. Translational mouse models are a valuable tool for medical research, including research on respiratory viral infections. In in vivo mouse models, synthetic dsRNA can be used as a surrogate for ssRNA virus replication. However, studies investigating how genetic background of mice impacts the murine lung inflammatory response to dsRNA is lacking. Hence, we have compared lung immunological responses of BALB/c, C57Bl/6N and C57Bl/6J mice to synthetic dsRNA. METHODS dsRNA was administered intranasally to BALB/c, C57Bl/6N and C57Bl/6J mice once/day for three consecutive days. Lactate dehydrogenase (LDH) activity, inflammatory cells, and total protein concentration were analyzed in bronchoalveolar lavage fluid (BALF). Pattern recognition receptors levels (TLR3, MDA5 and RIG-I) were measured in lung homogenates using RT-qPCR and western blot. Gene expression of IFN-β, TNF-α, IL-1β and CXCL1 was assessed in lung homogenates by RT-qPCR. ELISA was used to analyze protein concentrations of CXCL1 and IL-1β in BALF and lung homogenates. RESULTS BALB/c and C57Bl/6J mice showed infiltration of neutrophils to the lung, and an increase in total protein concentration and LDH activity in response to dsRNA administration. Only modest increases in these parameters were observed for C57Bl/6N mice. Similarly, dsRNA administration evoked an upregulation of MDA5 and RIG-I gene and protein expression in BALB/c and C57Bl/6J, but not C57Bl/6N, mice. Further, dsRNA provoked an increase in gene expression of TNF-α in BALB/c and C57Bl/6J mice, IL-1β only in C57Bl/6N mice and CXCL1 exclusively in BALB/c mice. BALF levels of CXCL1 and IL-1β were increased in BALB/c and C57Bl/6J mice in response to dsRNA, whereas the response of C57Bl/6N was blunt. Overall, inter-strain comparisons of the lung reactivity to dsRNA revealed that BALB/c, followed by C57Bl/6J, had the most pronounced respiratory inflammatory responses, while the responses of C57Bl/6N mice were attenuated. CONCLUSIONS We report clear differences of the lung innate inflammatory response to dsRNA between BALB/c, C57Bl/6J and C57Bl/6N mice. Of particular note, the highlighted differences in the inflammatory response of C57Bl/6J and C57Bl/6N substrains underscore the value of strain selection in mouse models of respiratory viral infections.
Collapse
Affiliation(s)
- Sofia Malm Tillgren
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Juan José Nieto-Fontarigo
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Samuel Cerps
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Sangeetha Ramu
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Mandy Menzel
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Irma Mahmutovic Persson
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Anja Meissner
- grid.4514.40000 0001 0930 2361Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden ,grid.7307.30000 0001 2108 9006Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hamid Akbarshahi
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Division of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Lena Uller
- Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
24
|
The Lung Microbiome: A New Frontier for Lung and Brain Disease. Int J Mol Sci 2023; 24:ijms24032170. [PMID: 36768494 PMCID: PMC9916971 DOI: 10.3390/ijms24032170] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Due to the limitations of culture techniques, the lung in a healthy state is traditionally considered to be a sterile organ. With the development of non-culture-dependent techniques, the presence of low-biomass microbiomes in the lungs has been identified. The species of the lung microbiome are similar to those of the oral microbiome, suggesting that the microbiome is derived passively within the lungs from the oral cavity via micro-aspiration. Elimination, immigration, and relative growth within its communities all contribute to the composition of the lung microbiome. The lung microbiome is reportedly altered in many lung diseases that have not traditionally been considered infectious or microbial, and potential pathways of microbe-host crosstalk are emerging. Recent studies have shown that the lung microbiome also plays an important role in brain autoimmunity. There is a close relationship between the lungs and the brain, which can be called the lung-brain axis. However, the problem now is that it is not well understood how the lung microbiota plays a role in the disease-specifically, whether there is a causal connection between disease and the lung microbiome. The lung microbiome includes bacteria, archaea, fungi, protozoa, and viruses. However, fungi and viruses have not been fully studied compared to bacteria in the lungs. In this review, we mainly discuss the role of the lung microbiome in chronic lung diseases and, in particular, we summarize the recent progress of the lung microbiome in multiple sclerosis, as well as the lung-brain axis.
Collapse
|
25
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
26
|
The association between the respiratory tract microbiome and clinical outcomes in patients with COPD. Microbiol Res 2023; 266:127244. [DOI: 10.1016/j.micres.2022.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
27
|
Keir HR, Chalmers JD. Rebuttal From Dr Keir and Prof Chalmers. Chest 2022; 162:977-978. [PMID: 36344130 DOI: 10.1016/j.chest.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland.
| |
Collapse
|
28
|
Millares L, Monso E. The Microbiome in COPD: Emerging Potential for Microbiome-Targeted Interventions. Int J Chron Obstruct Pulmon Dis 2022; 17:1835-1845. [PMID: 35983167 PMCID: PMC9380728 DOI: 10.2147/copd.s371958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of interventions over the respiratory microbiome in COPD is to preserve the original microbial flora, focusing in taxa with a demonstrated impact on the prognosis of the disease. Inhaled therapy is the main treatment for COPD, and chronic corticosteroid use is recommended for patients with frequent exacerbations. This therapy, however, increases both the bronchial microbial load and the abundance of potentially pathogenic bacteria in patients with low peripheral eosinophil counts, and to minimize its use in patients without peripheral eosinophilia, when possible, may avoid increases in bacterial loads of microorganisms as Haemophilus influenzae and Streptococcus pneumoniae. In exacerbations antibiotics determine a decrease in the microbial diversity, a change that persists during stability periods in frequent exacerbators. High-diversity bronchial microbiomes are enriched in non-dominant genera and determine low exacerbation frequencies and survival improvement. Limiting the antibiotic use to the treatment of exacerbations which would clearly benefit would favor the diversity of the respiratory microbiome and may have a positive impact on quality of life and survival. Oral antiseptics have shown and effect on the bronchial microbiome that was associated with improvements in quality of life, and the gut microbiome may be also modified through the oral administration of probiotics or prebiotics, that potentially may determine decreases in lung inflammation and bronchial hyperreactivity. High fiber diets also favor the production of anti-inflammatory molecules by the digestive flora, which would reach the respiratory system through the bloodstream. Interventional approaches favoring the preservation of the respiratory microbiome in COPD need first to select accurately the patients who would benefit from long-term inhaled corticosteroids and antibiotic treatments during exacerbations, under the hypothesis that keeping a respiratory microbiome close to the healthy subject would favor the respiratory health. Additionally, high fiber diets may be able to modify the gut microbiome and influence the respiratory system through the gut-lung axis. Therapeutic approaches targeting the microbiome to improve COPD, however, still require clinical validation and the identification of patient subtypes who would benefit the most with their use.
Collapse
Affiliation(s)
- Laura Millares
- Airway Inflammation Research Group, Parc Taulí Research and Innovation Institute - I3PT - Parc Taulí Foundation, Sabadell, Barcelona, Spain.,Catalan Institute of Oncology - ICO, Badalona, Barcelona, Spain
| | - Eduard Monso
- Airway Inflammation Research Group, Parc Taulí Research and Innovation Institute - I3PT - Parc Taulí Foundation, Sabadell, Barcelona, Spain.,Catalan Institute of Oncology - ICO, Badalona, Barcelona, Spain.,Biomedical Research Network on Respiratory Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain.,Autonomous University of Barcelona - UAB, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
29
|
Joean O, Welte T. Vaccination and modern management of chronic obstructive pulmonary disease - a narrative review. Expert Rev Respir Med 2022; 16:605-614. [PMID: 35713962 DOI: 10.1080/17476348.2022.2092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) carries a tremendous societal and individual burden, posing significant challenges for public health systems worldwide due to its high morbidity and mortality. Due to aging and multimorbidity but also in the wake of important progress in deciphering the heterogeneous disease endotypes, an individualized approach to the prevention and management of COPD is necessary. AREAS COVERED This article tackles relevant immunization strategies that are available or still under development with a focus on the latest evidence but also controversies around different regional immunization approaches. Further, we present the crossover between chronic lung inflammation and lung microbiome disturbance as well as its role in delineating COPD endotypes. Moreover, the article attempts to underline endotype-specific treatment approaches. Lastly, we highlight non-pharmacologic prevention and management programs in view of the challenges and opportunities of the COVID-19 era. EXPERT OPINION Despite the remaining challenges, personalized medicine has the potential to offer tailored approaches to prevention and therapy and promises to improve the care of patients living with COPD.
Collapse
Affiliation(s)
- Oana Joean
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease, Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
30
|
Rao CM, Sarbhai K, Subhankar S, Mohapatra A, Singh N, Panda PS, Patro S, Pati S. Pathogens Isolated and Their Association With the Long-Term Outcome in Patients With Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Cureus 2022; 14:e26174. [PMID: 35891879 PMCID: PMC9303514 DOI: 10.7759/cureus.26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
|
31
|
Russo C, Colaianni V, Ielo G, Valle MS, Spicuzza L, Malaguarnera L. Impact of Lung Microbiota on COPD. Biomedicines 2022; 10:biomedicines10061337. [PMID: 35740358 PMCID: PMC9219765 DOI: 10.3390/biomedicines10061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
There is a fine balance in maintaining healthy microbiota composition, and its alterations due to genetic, lifestyle, and environmental factors can lead to the onset of respiratory dysfunctions such as chronic obstructive pulmonary disease (COPD). The relationship between lung microbiota and COPD is currently under study. Little is known about the role of the microbiota in patients with stable or exacerbated COPD. Inflammation in COPD disorders appears to be characterised by dysbiosis, reduced lung activity, and an imbalance between the innate and adaptive immune systems. Lung microbiota intervention could ameliorate these disorders. The microbiota’s anti-inflammatory action could be decisive in the onset of pathologies. In this review, we highlight the feedback loop between microbiota dysfunction, immune response, inflammation, and lung damage in relation to COPD status in order to encourage the development of innovative therapeutic goals for the prevention and management of this disease.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Valeria Colaianni
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Giuseppe Ielo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence: (M.S.V.); (L.M.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
- Correspondence: (M.S.V.); (L.M.)
| |
Collapse
|
32
|
Mkorombindo T, Balkissoon R. Journal Club: Biologics and Potential for Immune Modulation in Chronic Obstructive Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:285-297. [PMID: 35487702 PMCID: PMC9166326 DOI: 10.15326/jcopdf.2022.0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama, Birmingham, Alabama, United States
| | | |
Collapse
|
33
|
Love ME, Proud D. Respiratory Viral and Bacterial Exacerbations of COPD—The Role of the Airway Epithelium. Cells 2022; 11:cells11091416. [PMID: 35563722 PMCID: PMC9099594 DOI: 10.3390/cells11091416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
COPD is a leading cause of death worldwide, with acute exacerbations being a major contributor to disease morbidity and mortality. Indeed, exacerbations are associated with loss of lung function, and exacerbation frequency predicts poor prognosis. Respiratory infections are important triggers of acute exacerbations of COPD. This review examines the role of bacterial and viral infections, along with co-infections, in the pathogenesis of COPD exacerbations. Because the airway epithelium is the initial site of exposure both to cigarette smoke (or other pollutants) and to inhaled pathogens, we will focus on the role of airway epithelial cell responses in regulating the pathophysiology of exacerbations of COPD. This will include an examination of the interactions of cigarette smoke alone, and in combination with viral and bacterial exposures in modulating epithelial function and inflammatory and host defense pathways in the airways during COPD. Finally, we will briefly examine current and potential medication approaches to treat acute exacerbations of COPD triggered by respiratory infections.
Collapse
|
34
|
Campbell CD, Barnett C, Sulaiman I. A clinicians’ review of the respiratory microbiome. Breathe (Sheff) 2022; 18:210161. [PMID: 36338247 PMCID: PMC9584600 DOI: 10.1183/20734735.0161-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/02/2022] [Indexed: 11/25/2022] Open
Abstract
The respiratory microbiome and its impact in health and disease is now well characterised. With the development of next-generation sequencing and the use of other techniques such as metabolomics, the functional impact of microorganisms in different host environments can be elucidated. It is now clear that the respiratory microbiome plays an important role in respiratory disease. In some diseases, such as bronchiectasis, examination of the microbiome can even be used to identify patients at higher risk of poor outcomes. Furthermore, the microbiome can aid in phenotyping. Finally, development of multi-omic analysis has revealed interactions between the host and microbiome in some conditions. This review, although not exhaustive, aims to outline how the microbiome is investigated, the healthy respiratory microbiome and its role in respiratory disease. The respiratory microbiome encompasses bacterial, fungal and viral communities. In health, it is a dynamic structure and dysbiotic in disease. Dysbiosis can be related to disease severity and may be utilised to predict patients at clinical risk.https://bit.ly/3pNSgnA
Collapse
|
35
|
Tiew PY, Mac Aogáin M, Chotirmall SH. The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2022; 28:121-133. [PMID: 34839338 DOI: 10.1097/mcp.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
36
|
Martinez-García MA, Rigau D, Barrecheguren M, García-Ortega A, Nuñez A, Oscullo Yepez G, Miravitlles M. Long-Term Risk of Mortality Associated with Isolation of Pseudomonas aeruginosa in COPD: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:371-382. [PMID: 35210766 PMCID: PMC8858763 DOI: 10.2147/copd.s346294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chronic bronchial infection is frequent in chronic obstructive pulmonary disease (COPD), but the impact of the isolation of pathogenic bacteria, and in particular Pseudomonas aeruginosa (PA) in respiratory samples on the prognosis of COPD is unclear. Methods We conducted a systematic review of prognostic studies including patients with isolation of PA in sputum in stable state or during exacerbations of COPD. The main outcomes were all-cause mortality, respiratory mortality, and number and severity of future exacerbations. Data were expressed as hazard ratio (HR) (95% confidence interval [CI]) whenever possible. Results Of 2773 studies, eight were finally included (23,228 individuals). The mean age ranged from 65.5 to 73 years. Six studies reported data for all-cause mortality. The adjusted risk of death was almost double in patients with PA isolation (HR 1.95, 95% CI, 1.34 to 2.84; quality of evidence moderate). Patients with PA isolation showed a three times higher adjusted risk of readmission at 30 days after discharge (OR 3.60, 95% CI, 3.60 to 12.03, 1 study; quality of evidence very low), and more than double adjusted risk of death and hospitalization at two years (HR 2.80, 95% CI, 2.20 to 3.56, 1 study; quality of evidence very low). Conclusion There is moderate certainty that the isolation of PA in sputum is associated with an adjusted increased risk of death in patients with COPD.
Collapse
Affiliation(s)
- Miguel Angel Martinez-García
- Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - David Rigau
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Miriam Barrecheguren
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Alexa Nuñez
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Grace Oscullo Yepez
- Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Correspondence: Marc Miravitlles, University Hospital Vall d’Hebron, Department of Pneumology, Vall d’Hebron Barcelona Hospital Campus, Pg Vall d’Hebron 119-129, Barcelona, 08036, Spain, Email
| |
Collapse
|
37
|
Current opinion on the role of vitamin D supplementation in respiratory infections and asthma/COPD exacerbations: A need to establish publication guidelines for overcoming the unpublished data. Clin Nutr 2022; 41:755-777. [DOI: 10.1016/j.clnu.2022.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
38
|
Ke L, Chen L, Yaling Y, Can G, Jun L, Chuan Z. Investigation on the Pathological Mechanism of Frequent Exacerbators With Chronic Obstructive Pulmonary Disease Based on the Characteristics of Respiratory Flora. Front Med (Lausanne) 2022; 8:816802. [PMID: 35127772 PMCID: PMC8811034 DOI: 10.3389/fmed.2021.816802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common obstructive respiratory disease characterized by persistent respiratory symptoms and limited airflow due to airway obstruction. The present study investigates the distribution characteristics of respiratory tract flora in both frequent and infrequent exacerbators of COPD. The 16S sequencing technique was adopted to differentiate the inherent differences of respiratory tract flora between frequent exacerbators and infrequent exacerbators. Additionally, cell counting kit 8 (CCK8), lactate dehydrogenase (LDH) test, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and western blot were carried out in human bronchial epithelial cells cultured in vitro and the regulatory effects of differential flora were verified. The results revealed that the observed species index, Chao1 index, and the ACE estimator of COPD frequent exacerbators were markedly higher than those of COPD infrequent exacerbators. The top five strains of COPD frequent exacerbators included g_Streptococcus (15.565%), g_Prevotella (10.683%), g_Veillonella (6.980%), g_Haemophilus (5.601%), and g_Neisseria (4.631%). Veillonella parvula generated obvious cytotoxicity and substantially reduced the activity of human bronchial epithelial cells (p < 0.01). Furthermore, the results of flow cytometry indicated that the proportion of human bronchial epithelial cells in both the S phase and G2 phase decreased following Veillonella parvula treatment indicated that Veillonella parvula inhibited cell proliferation. Meanwhile, being treated using Veillonella parvula, the expressions of interleukin-1 (IL-1), IL-6, Tumor Necrosis Factor α (TNF-α), and p-nuclear factor kappa B (NF-κB) of the cells were increased markedly (p < 0.01). Taken together, the current research demonstrated that the relative abundance of Veillonella in COPD frequent exacerbators was higher than that of infrequent exacerbators. Veillonella parvula activated the inflammatory pathway, ultimately destroyed the cell viability, and greatly impaired the activity of human bronchial epithelial cells, thereby inhibiting cell proliferation.
Collapse
Affiliation(s)
- Li Ke
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
- *Correspondence: Li Ke
| | - Luo Chen
- Department of Respiratory and Critical Care, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Yuan Yaling
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Gao Can
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Lin Jun
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| | - Zhang Chuan
- Department of Laboratory Medicine, Chongqing the Seventh People's Hospital, Chongqing, China
| |
Collapse
|
39
|
Serigstad S, Markussen D, Grewal HMS, Ebbesen M, Kommedal Ø, Heggelund L, van Werkhoven CH, Faurholt-Jepsen D, Clark TW, Ritz C, Ulvestad E, Bjørneklett R, Knoop ST. Rapid syndromic PCR testing in patients with respiratory tract infections reduces time to results and improves microbial yield. Sci Rep 2022; 12:326. [PMID: 35013351 PMCID: PMC8748978 DOI: 10.1038/s41598-021-03741-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Lack of rapid and comprehensive microbiological diagnosis in patients with community acquired pneumonia (CAP) hampers appropriate antimicrobial therapy. This study evaluates the real-world performance of the BioFire FilmArray Pneumonia panel plus (FAP plus) and explores the feasibility of evaluation in a randomised controlled trial. Patients presenting to hospital with suspected CAP were recruited in a prospective feasibility study. An induced sputum or an endotracheal aspirate was obtained from all participants. The FAP plus turnaround time (TAT) and microbiological yield were compared with standard diagnostic methods (SDs). 96/104 (92%) enrolled patients had a respiratory tract infection (RTI); 72 CAP and 24 other RTIs. Median TAT was shorter for the FAP plus, compared with in-house PCR (2.6 vs 24.1 h, p < 0.001) and sputum cultures (2.6 vs 57.5 h, p < 0.001). The total microbiological yield by the FAP plus was higher compared to SDs (91% (162/179) vs 55% (99/179), p < 0.0001). Haemophilus influenzae, Streptococcus pneumoniae and influenza A virus were the most frequent pathogens. In conclusion, molecular panel testing in adults with CAP was associated with a significant reduction in time to actionable results and increased microbiological yield. The impact on antibiotic use and patient outcome should be assessed in randomised controlled trials.
Collapse
Affiliation(s)
- S Serigstad
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway
| | - D Markussen
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - H M S Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway. .,Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
| | - M Ebbesen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Ø Kommedal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - L Heggelund
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway.,Department of Internal Medicine, Vestre Viken Hospital Trust, Drammen, Norway
| | - C H van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Faurholt-Jepsen
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - T W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway.,National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - E Ulvestad
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine and Dentistry, University of Bergen, The New Lab. Building, NO-5021, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - R Bjørneklett
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - S T Knoop
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
40
|
Melo-Dias S, Valente C, Andrade L, Marques A, Sousa A. Saliva as a non-invasive specimen for COPD assessment. Respir Res 2022; 23:16. [PMID: 35093093 PMCID: PMC8800366 DOI: 10.1186/s12931-022-01935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND People with COPD have been reported to bear a distinct airway microbiota from healthy individuals based on bronchoalveolar lavage (BAL) and sputum samples. Unfortunately, the collection of these samples involves relatively invasive procedures and is resource-demanding, limiting its regular use. Non-invasive samples from the upper airways could constitute an interesting alternative, but its relationship with COPD is still underexplored. We examined the merits of saliva to identify the typical profile of COPD oral bacteria and test its association with the disease. METHODS Outpatients with COPD and age-sex matched healthy controls were recruited and characterised based on clinical parameters and 16S rRNA profiling of oral bacteria. A clustering analysis based on patients' oral bacteria beta-diversity and logistic regressions were performed to evaluate the association between oral bacteria composition and COPD. RESULTS 128 individuals participated (70 patients and 58 controls). Differential abundance analyses showed differences in patients comparable to the ones previously observed in samples from the lower respiratory tract, i.e., an increase in Proteobacteria (particularly Haemophilus) and loss of microbiota diversity. An unsupervised clustering analysis separated patients in two groups based on microbiota composition differing significantly in the frequency of patients hospitalized due to severe acute exacerbation of COPD (AECOPD) and in the frequency of GOLD D patients. Furthermore, a low frequency of Prevotella was associated with a significantly higher risk of recent severe AECOPD and of being GOLD D. CONCLUSION Salivary bacteria showed an association with COPD, particularly with severe exacerbations, supporting the use of this non-invasive specimen for future studies of heterogeneous respiratory diseases like COPD.
Collapse
Affiliation(s)
- Sara Melo-Dias
- grid.7311.40000000123236065Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Valente
- Department of Pulmonology, Hospital Center of Baixo Vouga, Aveiro, Portugal
| | - Lília Andrade
- Department of Pulmonology, Hospital Center of Baixo Vouga, Aveiro, Portugal
| | - Alda Marques
- grid.7311.40000000123236065Lab3R-Respiratory Research and Rehabilitation Laboratory, School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Sousa
- grid.7311.40000000123236065Department of Medical Sciences, University of Aveiro, Aveiro, Portugal ,grid.7311.40000000123236065Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
41
|
Armitage MN, Spittle DA, Turner AM. A Systematic Review and Meta-Analysis of the Prevalence and Impact of Pulmonary Bacterial Colonisation in Stable State Chronic Obstructive Pulmonary Disease (COPD). Biomedicines 2021; 10:biomedicines10010081. [PMID: 35052762 PMCID: PMC8773377 DOI: 10.3390/biomedicines10010081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Half of acute exacerbations of COPD are due to bacterial infection, and the other half are likely influenced by microbial colonisation. The same organisms commonly cultured during acute exacerbations are often found in the sputum of patients during stability. A robust assessment of the prevalence of potentially pathogenic microorganisms (PPMs) in the sputum of stable COPD patients may help to inform the targeted prevention of exacerbation by these organisms. Methods: A systematic review and meta-analysis was carried out to determine the prevalence of PPMs in patients with COPD in the stable state. Meta-analysis of prevalence was carried out using the Freeman–Tukey double arcsine transformation random effects model, and sub-group analysis was performed for sputum modality. Prevalence of total and individual PPMs was calculated from patient-level data from individual studies. Results: Pooled prevalence of PPMs identified by sputum culture was found to be 41% (95% CI 36–47%). Significant heterogeneity was found across all studies, which can likely be attributed to inconsistent measuring and reporting of PPMs. The most commonly reported organisms were H. influenzae, M catarrhalis, S. pneumoniae, S. aureus, and P. aeruginosa. Declining lung function was weakly correlated with prevalence of PPMs. Conclusion: The airways of patients with COPD are colonised with PPMs during the stable state in almost half of patients. A complex relationship likely exists between the microbiome in the stable state and the phenotype of COPD patients. Targeted microbial therapy for preventing exacerbations of COPD should carefully consider the stable microbiome as well as the exacerbated.
Collapse
Affiliation(s)
- Michael N. Armitage
- Medical Education, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Rd., Coventry CV2 2DX, UK;
| | - Daniella A. Spittle
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Alice M. Turner
- University Hospitals Birmingham NHS Foundation Trust, Institute of Applied Health Research, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence:
| |
Collapse
|
42
|
Ruan R, Deng X, Dong X, Wang Q, Lv X, Si C. Microbiota Emergencies in the Diagnosis of Lung Diseases: A Meta-Analysis. Front Cell Infect Microbiol 2021; 11:709634. [PMID: 34621687 PMCID: PMC8490768 DOI: 10.3389/fcimb.2021.709634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Although many studies have reported that microbiota emergencies are deeply involved in the occurrence and subsequent progression of lung diseases, the present diagnosis of lung disease depends on microbiota markers, which is still poorly understood. Therefore, a meta-analysis was performed to confirm lung microbiota markers for the diagnosis of lung diseases. Literature databases were searched following the inclusion and exclusion criteria. There are 6 studies including 1347 patients and 26 comparisons to be enrolled, and then the diagnostic effect was evaluated using Stata 14.0 and Meta-disc 1.4 software. The pooled sensitivity (SEN), specificity (SPE), diagnostic likelihood ratio positive (DLR+), diagnostic likelihood ratio negative (DLR-), and diagnostic OR (DOR), as well as area under the curve (AUC) of microbiota markers in the diagnosis of lung diseases were 0.90 (95% CI: 0.83-0.94), 0.89 (95% CI: 0.76-0.95), 7.86 (95% CI: 3.39-18.21), 0.12 (95% CI: 0.06-0.21), 22.254 (95% CI: 12.83-39.59.14), and 0.95 (95% CI: 0.93-0.97), respectively. Subgroup analysis revealed that research based on Caucasian, adult, BAL fluid, PCR, pneumonia obtained higher AUC values. The microbiota markers have shown potential diagnosis value for lung diseases. But further large-scale clinical studies are still needed to verify and replicate the diagnostic value of lung microbiota markers.
Collapse
Affiliation(s)
- Renyu Ruan
- College of Undergradute, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Xiangmin Deng
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Qi Wang
- College of Pharmacy, Harbin Medical University-Daqing, Da Qing, China
| | - Xiaoling Lv
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
43
|
Morrow JD, Castaldi PJ, Chase RP, Yun JH, Lee S, Liu YY, Hersh CP. Peripheral blood microbial signatures in current and former smokers. Sci Rep 2021; 11:19875. [PMID: 34615932 PMCID: PMC8494912 DOI: 10.1038/s41598-021-99238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiome has a role in the development of multiple diseases. Individual microbiome profiles are highly personalized, though many species are shared. Understanding the relationship between the human microbiome and disease may inform future individualized treatments. We hypothesize the blood microbiome signature may be a surrogate for some lung microbial characteristics. We sought associations between the blood microbiome signature and lung-relevant host factors. Based on reads not mapped to the human genome, we detected microbial nucleic acids through secondary use of peripheral blood RNA-sequencing from 2,590 current and former smokers with and without chronic obstructive pulmonary disease (COPD) from the COPDGene study. We used the Genome Analysis Toolkit (GATK) microbial pipeline PathSeq to infer microbial profiles. We tested associations between the inferred profiles and lung disease relevant phenotypes and examined links to host gene expression pathways. We replicated our analyses using a second independent set of blood RNA-seq data from 1,065 COPDGene study subjects and performed a meta-analysis across the two studies. The four phyla with highest abundance across all subjects were Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. In our meta-analysis, we observed associations (q-value < 0.05) between Acinetobacter, Serratia, Streptococcus and Bacillus inferred abundances and Modified Medical Research Council (mMRC) dyspnea score. Current smoking status was associated (q < 0.05) with Acinetobacter, Serratia and Cutibacterium abundance. All 12 taxa investigated were associated with at least one white blood cell distribution variable. Abundance for nine of the 12 taxa was associated with sex, and seven of the 12 taxa were associated with race. Host-microbiome interaction analysis revealed clustering of genera associated with mMRC dyspnea score and smoking status, through shared links to several host pathways. This study is the first to identify a bacterial microbiome signature in the peripheral blood of current and former smokers. Understanding the relationships between systemic microbial signatures and lung-related phenotypes may inform novel interventions and aid understanding of the systemic effects of smoking.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Goolam Mahomed T, Peters RPH, Allam M, Ismail A, Mtshali S, Goolam Mahomed A, Ueckermann V, Kock MM, Ehlers MM. Lung microbiome of stable and exacerbated COPD patients in Tshwane, South Africa. Sci Rep 2021; 11:19758. [PMID: 34611216 PMCID: PMC8492659 DOI: 10.1038/s41598-021-99127-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by the occurrence of exacerbations triggered by infections. The aim of this study was to determine the composition of the lung microbiome and lung virome in patients with COPD in an African setting and to compare their composition between the stable and exacerbated states. Twenty-four adult COPD patients were recruited from three hospitals. Sputum was collected and bacterial DNA was extracted. Targeted metagenomics was performed to determine the microbiome composition. Viral DNA and RNA were extracted from selected samples followed by cDNA conversion. Shotgun metagenomics sequencing was performed on pooled DNA and RNA. The most abundant phyla across all samples were Firmicutes and Proteobacteria. The following genera were most prevalent: Haemophilus and Streptococcus. There were no considerable differences for alpha and beta diversity measures between the disease states. However, a difference in the abundances between disease states was observed for: (i) Serratia (3% lower abundance in exacerbated state), (ii) Granulicatella (2.2% higher abundance in exacerbated state), (iii) Haemophilus (5.7% higher abundance in exacerbated state) and (iv) Veillonella (2.5% higher abundance in exacerbated state). Virome analysis showed a high abundance of the BeAn 58058 virus, a member of the Poxviridae family, in all six samples (90% to 94%). This study is among the first to report lung microbiome composition in COPD patients from Africa. In this small sample set, no differences in alpha or beta diversity between stable and exacerbated disease state was observed, but an unexpectedly high frequency of BeAn 58058 virus was observed. These observations highlight the need for further research of the lung microbiome of COPD patients in African settings.
Collapse
Affiliation(s)
- T Goolam Mahomed
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - R P H Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| | - M Allam
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - A Ismail
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - S Mtshali
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | | | - V Ueckermann
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| | - M M Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Johannesburg, South Africa
| | - M M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
45
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
46
|
Yin T, Jeong JH, Hardcastle TF, Biswas K, Douglas RG. A scoping review of longitudinal airway microbiota studies. Expert Rev Respir Med 2021; 15:1187-1195. [PMID: 33908842 DOI: 10.1080/17476348.2021.1924061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The role of the microbiota in inflammatory airway diseases is unclear. Antimicrobial therapies have predominantly been guided by culture results. However, molecular sequencing has shown that the airway microbiota is much more complex and accurate modeling requires longitudinal analysis. AREAS COVERED A Preferred Reporting Items for Systematic Reviews and Meta-Analyses scoping review was performed by searching Medline, Scopus, and Web of Science databases for all longitudinal airway microbiota studies that utilized molecular techniques. 38 studies with 1,993 participants were included in this review. Healthy microbial communities were more diverse, individualized and stable over time. Acute infections resulted in changes in the microbiota that were detected earlier and more sensitively by molecular sequencing than culture. Distinct microbiota profiles have been demonstrated in chronic obstructive pulmonary disease patients associated with exacerbation frequency and severity. EXPERT OPINION Longitudinal studies provide essential data on the stability of the microbiota over time and valuable information about the dynamic interactions between host, disease and microbes. We believe that molecular sequencing will be increasingly incorporated into research and clinical practice in the future. These advances can lead to improved diagnosis, enhanced prescribing guidance and reduce unnecessary antibiotic usage.
Collapse
Affiliation(s)
- Tary Yin
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Jae H Jeong
- Department of Otolaryngology-Head and Neck Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Tim F Hardcastle
- Department of Otolaryngology-Head and Neck Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Kristi Biswas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Richard G Douglas
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Abstract
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
Collapse
|
48
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
49
|
Li B, Mao Q, Zhou D, Luo M, Gan R, Li H, Huang S, Saimaiti A, Shang A, Li H. Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol-Exposed Mice. Foods 2021; 10:1232. [PMID: 34071491 PMCID: PMC8228948 DOI: 10.3390/foods10061232] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis has been a crucial contributor to the pathogenesis of alcoholic fatty liver disease (AFLD). Tea is a popular beverage worldwide and exerts antioxidant and anti-inflammatory activities, as well as hepatoprotective effects. However, the potential role of gut microbiota regulated by tea in the prevention and management of AFLD remains unclear. Here, the protective effects of oolong tea, black tea, and dark tea on AFLD and its regulation of gut microbiota in chronic alcohol-exposed mice were explored and investigated. The results revealed that tea supplementation significantly prevented liver steatosis, decreased oxidative stress and inflammation, and modulated gut microbiota in chronic alcohol-exposed mice, especially oolong tea and dark tea. However, black tea showed less effectiveness against liver injury caused by alcohol. Moreover, the diversity, structure and composition of chronic alcohol-disrupted gut microbiota were restored by the supplementation of oolong tea and dark tea based on the analysis of gut microbiota. Furthermore, the relationship between liver injury biochemical indicators and gut microbiota indicated that some specific bacteria, such as Bacteroides, Alloprevotella, and Parabacteroides were closely associated with AFLD. In addition, the phytochemical components in tea extracts were measured by high-performance liquid chromatography, which could contribute to preventive effects on AFLD. In summary, oolong tea and dark tea could prevent chronic alcohol exposure-induced AFLD by modulating gut microbiota.
Collapse
Affiliation(s)
- Bangyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Qianqian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Dandan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu 610106, China
| | - Hangyu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (B.L.); (Q.M.); (D.Z.); (M.L.); (H.L.); (S.H.); (A.S.); (A.S.)
| |
Collapse
|
50
|
Waeijen-Smit K, Houben-Wilke S, DiGiandomenico A, Gehrmann U, Franssen FME. Unmet needs in the management of exacerbations of chronic obstructive pulmonary disease. Intern Emerg Med 2021; 16:559-569. [PMID: 33616876 PMCID: PMC7897880 DOI: 10.1007/s11739-020-02612-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) are episodes of acute worsening of respiratory symptoms that require additional therapy. These events play a pivotal role in the natural course of the disease and are associated with a progressive decline in lung function, reduced health status, a low physical activity level, tremendous health care costs, and increased mortality. Although most exacerbations have an infectious origin, the underlying mechanisms are heterogeneous and specific predictors of their occurrence in individual patients are currently unknown. Accurate prediction and early diagnosis of exacerbations is essential to develop novel targets for prevention and personalized treatments to reduce the impact of these events. Several potential biomarkers have previously been studied, these however lack specificity, accuracy and do not add value to the available clinical predictors. At present, microbial composition and host-microbiome interactions in the lung are increasingly recognized for their role in affecting the susceptibility to exacerbations, and may steer towards a novel direction in the management of COPD exacerbations. This narrative review describes the current challenges and unmet needs in the management of acute exacerbations of COPD. Exacerbation triggers, biological clusters, current treatment strategies, and their limitations, previously studied biomarkers and prediction tools, the lung microbiome and its role in COPD exacerbations as well as future directions are discussed.
Collapse
Affiliation(s)
- Kiki Waeijen-Smit
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.
| | - Sarah Houben-Wilke
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Ulf Gehrmann
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frits M E Franssen
- Department of Research and Education, Ciro, Horn, NM, 6085, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| |
Collapse
|